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We perform an improved cosmic microwave background (CMB) analysis to search for dark matter—
proton scattering with a momentum-transfer cross section of the form ogv™ for n=—-2 and n=—4.
In particular, we present a new and robust prescription for incorporating the relative bulk velocity
between the dark matter and baryon fluids into the standard linear Boltzmann calculation. Using
an iterative procedure, we self-consistently include the effects of the bulk velocities in a cosmology
in which dark matter interacts with baryons. With this prescription, we derive CMB bounds on
the cross section, excluding o¢ > 2.3 X 1073 cm? for n=—2 and 09 > 1.7x107*! cm? for n= —4
at 95% confidence, for dark matter masses below 10 MeV. Furthermore, we investigate how these
constraints change when only a subcomponent of dark matter is interacting. We show that Planck
limits vanish if $0.4% of dark matter is tightly coupled to baryons. We discuss the implications of
our results for present and future cosmological observations.

I. INTRODUCTION

Cosmological observables provide a unique avenue to search for evidence of non-gravitational interactions between
dark matter (DM) and the Standard Model particles, and thereby gain insight into the unknown physical nature
of DM. In particular, elastic scattering between DM and baryons transfers heat and momentum between the two
fluids. The time evolution for the rate of momentum transfer depends on how the interaction cross section scales
with the relative particle velocities, and the effects of scattering can be important at different cosmological epochs.
If scattering is efficient before recombination, it affects the temperature, polarization, and lensing anisotropies of the
cosmic microwave background (CMB), as well as the linear matter power spectrum on small angular scales [1-6]. If
scattering is significant in the post-recombination Universe, it can result in anomalous late-time heating or cooling of
the baryon gas, altering the 21-cm signal from neutral hydrogen at redshifts prior to the Epoch of Reionization [7-9].

In a ACDM Universe, there is a relative bulk velocity between the cold DM and baryon fluids, which results
in supersonic coherent flows of the baryons post recombination [10]. If DM and baryons interact, but the rate of
momentum transfer is low, the drag force between the two fluids may not efficiently dissipate their relative bulk velocity,
allowing it to dominate over the thermal particle motions, once the Universe is sufficiently cooled. Furthermore, if the
relative bulk velocity is significant prior to recombination, the computation of the Boltzmann equations for the CMB
becomes infeasible using standard methods: the equations describing the velocity fluctuations of the fluids become
nonlinear, resulting in the coupling of individual Fourier modes. In an attempt to address this issue when computing
CMB limits on DM-baryon interactions, previous studies [3, 6, 11] used the root-mean-square (RMS) of the relative
bulk velocity as a correction to the thermal velocity dispersion, suppressing the rate of momentum transfer, and
thus obtaining conservative upper limits on DM—-baryon interactions. That approach has two important caveats: the
RMS velocity was computed in ACDM, inconsistent with a cosmology that features DM—baryon interactions; and the
same RMS velocity was used in the Boltzmann equations for all Fourier modes, neglecting differences in how modes
contribute at a given scale.

In this work, we develop an improved treatment of the relative bulk velocity and reassess CMB limits on DM-
proton scattering. Specifically, we supplement the standard Boltzmann linear calculations with an iterative procedure
that self-consistently includes the effects of the relative bulk velocity in a cosmology in which dark matter interacts
with baryons. We parameterize the momentum-transfer cross section as oyt =0gv™, where v is the relative velocity
between the scattering particles, and focus on two interaction models for which the relative bulk velocity is expected
to have a substantial impact: n = —2 (arising in the case of, e.g., electric or magnetic dipole interactions through
light mediators) and n=—4 (from, e.g., Coulomb-like interactions or Yukawa interactions through light mediators).
We analyze the latest public CMB data from the Planck 2015 data release [12, 13] and find o¢ < 2.3 x 10733 cm?
for n=—2 and ¢ < 1.7x107*! cm? for n = —4 at the 95% confidence level (C.L.) for DM masses below 10 MeV.
We forecast the sensitivity of the next-generation ground-based CMB experiment and find that CMB-Stage 4 [14]
could deliver roughly a factor of ~3 improvement (not including a CMB lensing analysis), for a DM mass of 1 MeV.
Additionally, we report limits on o for scenarios in which only a fraction of DM interacts with protons. For very
small fractions, large values of oy are allowed, and there exists a regime in which the DM and baryons are tightly



coupled, such that DM behaves as baryons and experiences acoustic oscillations. We find that the constraining power
of Planck is drastically diminished when less than 0.4% of DM is interacting.

The Experiment to Detect the Global Epoch of Reionization Signature (EDGES) recently reported an anomalously
large sky-averaged absorption signal [15], which was attributed to dark matter interactions with baryons [9]. Our
results do not rule out a phenomenological n=—4 interaction invoked to explain the EDGES signal [9]; however, we
do exclude a percent of DM interacting with ions only, at a level consistent with the EDGES signal [16]. In a separate
study, we investigate the regime of subpercent fractions of millicharge-like DM and discuss the implications of our
newly-derived CMB limits for the DM interpretation of EDGES [17].

This paper is structured as follows. In Section II, we derive the Boltzmann equations that include DM-baryon
scattering and present a new treatment of the relative bulk velocity. In Section ITI, we describe and quantify the
effects of scattering on the CMB power spectra. In Section IV, we describe our analysis of Planck 2015 data and
present new limits on the interactions with n=—2 and n=—4. We discuss and conclude in Section V.

II. MODIFIED COSMOLOGY

In this section, we incorporate the DM—baryon collision term into the Boltzmann equations and present an improved
treatment to account for a non-negligible relative bulk velocity between baryons and DM. Further details of our
calculations are provided in Appendix A. We consider DM interactions with protons and parameterize the momentum-
transfer cross section as oyt =0gv", where v is the relative velocity between the scattering particles. Scattering with
helium involves non-trivial form factors that depend on the specific structure of the interaction [5, 18], and it is mainly
relevant for DM masses above 1 GeV [4, 5]. We neglect it here for simplicity; incorporating it would improve our
constraints presented in Section I'V.

A. Evolution of perturbations and temperatures

The scattering between DM and protons introduces a drag force and heat exchange between the DM and baryon
fluids. Hence, the Boltzmann equations governing the evolution of their velocity perturbations and of their temper-
atures must be adjusted accordingly. We assume that the DM and baryon fluids are nonrelativistic, with energy
densities p, and py, temperatures T, and T, and sound speeds ¢, and ¢, respectively. The motion of the two fluids

is given by their peculiar velocities VX and ‘7},, with a relative bulk velocity be = Vx — ‘_/},

The linear Boltzmann equations incorporate terms only up to first order in the metric fluctuations and fluid
perturbations. However, in the presence of DM-baryon interactions, the equations become nonlinear at times when
the relative bulk velocity exceeds the relative thermal velocity dispersion. Therefore, we begin by describing the
evolution of the temperatures and peculiar velocities in real space without assuming a small relative bulk velocity.
We show the full derivation in Appendix A, where we present generic expressions for n > —5 and for scattering with
multiple species of baryons. This calculation was previously performed in Ref. [8] for the specific case of n=—4, and
our results agree.

From Eq. (A13), the peculiar velocities evolve as
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and from Eq. (A21), the temperatures evolve as
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where 1 Fy is the confluent hypergeometric function of the first kind, 93 = T} /m, +T}/m, is the relative thermal
velocity dispersion squared, m, is the DM mass, m, is the proton mass, m. is the electron mass, p; is the mean
molecular weight of the baryons, and J, and d, are density perturbations in DM and baryons, respectively. These
equations are written in synchronous gauge, where a is the scale factor, and the dot notation indicates a derivative
with respect to conformal time 7. The terms proportional to R, and R, in Eq. (1) represent drag terms, which
describe the transfer of momentum between the interacting fluids. The momentum-transfer rate coefficient R, arises
from photon-baryon interactions through Compton scattering, while R, arises from the new DM-proton interactions
and is given by
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where N, = 207™)/21(3 4-n/2)/(3y/7) and Yy is the mass fraction of hydrogen. The heat-transfer rate coefficient in
Eq. (2) is R} = Rymy /(my +my).

The competition between R, and the expansion rate af{ determines the efficiency of momentum transfer at a given
redshift: when R, /aH > 1, the fluids are tightly coupled and move together. Given the current CMB limits for
interactions with n >0, this regime occurs at very early times (z>>10%), and results in dark acoustic oscillations that
imprint oscillatory features in the linear matter power spectrum at small scales [4, 5]. In that case, the drag between
the DM and baryon fluids couples their motion, resulting in a small relative bulk velocity—compared to the thermal
particle velocities at redshifts relevant for CMB measurements—and can thus be ignored. However, for n < —2, the
two fluids have a feeble interaction rate at early times, and the relative bulk velocity is non-negligible. As a result,
Egs. (1) and (2) are nonlinear. In the following, we present a new prescription for capturing the effects of the relative
bulk velocity on the momentum-transfer rate between DM and baryons in both regimes.

B. Treatment of relative bulk velocity

Standard CMB computations rely on linearity of the Boltzmann equations, for which it is possible to Fourier
transform real-space equations and independently track the evolution of each Fourier mode with wave number k. In
the limit VXQb < v, the 1 F} functions in Egs. (1) and (2) asymptote to 1, and the evolution of the peculiar velocities
is indeed linear (and the temperature evolution equations are independent of the relative bulk velocity). It is then
possible to take the divergence and the Fourier transform of Eq. (1) to obtain the evolution equations for the velocity
divergences of the DM and baryons, 6, (k, z) and 6;(k, z), respectively. However, when this approximation breaks
down, the Boltzmann equations are nonlinear, resulting in coupling of Fourier modes.

In order to bypass this difficulty, we first define
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where Af(kz) is the initial curvature perturbation variance per Ink. We then propose the following prescription to
reduce Eq. (1) to a linear expression, while modifying the momentum-transfer rate coefficient to reincorporate the
effects of mode mixing. For a given mode k*, the density perturbations from larger scales cause a relative bulk
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FIG. 1. [Left] Evolution of Vrms (top panel) and Vhow (bottom panel) as a function of redshift for various wave numbers
k, indicated in the legend. The thermal velocity oy (black) is shown for reference. [Right] Modification to the coefficient
of the momentum-transfer rate from Eq. (7) for various k. In both panels, we show the n=—2 (dashed) and n=—4 (solid)
interactions, for a DM mass of 1 MeV. We set the coefficients of the momentum-transfer cross section to their respective 95%
C.L. upper limit, derived using our “main” prescription, reported in Section IV.

flow between the DM and baryon fluids that contributes to their existing relative bulk motion.! To account for the

bulk flow, we absorb the | F; function into the momentum-transfer rate coefficient, replacing Vi, with Vaow(k*, 2).
Meanwhile, the density perturbations from smaller scales collectively act as a source of velocity dispersion, in addition
to the thermal dispersion. We thus augment all instances of T)tzh with the square of the one-dimensional RMS velocity
VI%MS(k*, z)/3. With this prescription, the Boltzmann equations in Fourier space become
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where h is the trace of the scalar metric perturbation, and the modified momentum-transfer rate coefficient is
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In the limit Viy\iq, Vi, <03, We recover the results from Refs. [3-6].

In the left panel of Figure 1, we show the evolution of Vrys (top panel) and Viow (bottom panel), with k=0 (dark
blue), k=0.1 (light blue), k=0.5 (light green), and k=1 (dark green), for n=—2 (dashed lines) and n=—4 (solid
lines). We also show the evolution of @y, (black). Since Vaow(k = 0) vanishes by definition, there is no associated
curve plotted in the bottom panel. In the right panel of Figure 1, we show the evolution for the ratio Ex /R, for
the same values of k in the left panel. At early times, Ex approaches R, since ¥, dominates over Vrys and Viagw.
For redshifts z < 10°, Vems and Viaow become increasingly important and suppress the rate of momentum transfer.
At recombination near z ~ 103, the baryons decouple from the photons, causing Varms and View to suddenly begin
decreasing adiabatically, thereby lessening the suppression of the rate.

We note that the evolution of R, is quite similar between various k, indicating that incorporating the k dependence
via VRMms ang Viaow might not play a significant role; indeed, we can understand this observation from the limiting
behavior of R,. The full variance, integrated over all k, of the relative bulk velocity is given by (V) = Vi, + VEys-
For small values of k, V2 —0 while Vi$j;q — (VXQb>; thus, the 1 Fy function in Eq. (7) approaches 1. For large values of

I Reference [10] similarly had to account for the bulk flow between the DM and baryon fluids within the context of ACDM. In that study,
there was a clear separation of scales such that the post-recombination Universe could be represented as individual patches across the
sky, each with a particular value of the relative bulk velocity. Averaging over the various patches yielded a local isotropically averaged
power spectrum. Since we do not have a similar separation of scales, it is not appropriate to follow the same technique.



k, Vs — 0 while V2 — (VXQb); furthermore, if Vioy is much larger than oy, the 1 Fy function in Eq. (7) asymptotes
to ~{V2, . /[2(0% + Vidys/3)]} " H1/2. In either case, the modified momentum-transfer rate coefficient has the form
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ignoring an n-dependent prefactor in the large-k limit. Thus, this form of the modified rate may sufficiently capture the
combined large-scale and small-scale effects of mode mixing. In either case, for the temperature evolution equations in
Eq. (2), we substitute V2 for its average value (V.3). In the limit (V) <@7,, we again recover previous results [3-6].

This work builds upon the mean-field approach introduced in previous studies investigating DM—baryon scatter-
ing [3]. In that study, the modified momentum-transfer rate was
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is the variance of the relative bulk velocity in ACDM [which is approximately (V.3)=10"% at z>10% and redshifts as
(1+2)? at later times [6, 11]] and 6. is the velocity divergence for cold collisionless DM [10]. We improve upon the
previous work in two important ways. First, we compute the variance (VXQb> in a consistent manner, using the values
of 0, and 0, obtained in a cosmology that includes DM-baryon scattering; this improvement corresponds to using
the modified momentum-transfer rate in Eq. (8). Second, we treat the effects of mode coupling from smaller scales
(k > k*) separate from those arising from larger scales (k < k*). These two steps constitute our main prescription
captured in Eq. (7). When the rate of momentum exchange is sufficiently small at times relevant for Planck, using
0. within ACDM is a decent estimation. This condition is satisfied for the upper limits on o( derived assuming all
of DM interacts with baryons, and in that case we find little difference from our improved treatments of the relative
bulk velocity. However, if the rate is moderate or large, momentum exchange drives the values of 6, and 6, closer
together, such that (V2) computed in ACDM overestimates the relative bulk velocity and thus overly suppresses the
interaction rate. This situation arises if only a subcomponent of DM is allowed to couple to baryons, and it is thus
essential to employ the techniques presented in this work in order to derive limits on the DM-baryon interaction for
that case.

Throughout the remainder of this work, we refer to various treatments of the relative bulk velocity that enable us to
explore how various aspects of our new prescription affect our constraints on the DM—baryon scattering cross section.
The “main” prescription is our primary treatment given by Eq. (7), and we consider it to be the most accurate for
any regime of DM-baryon coupling. The “k-independent” prescription is the treatment given by Eq. (8). These
two prescriptions both have the feature that the variance of the relative bulk velocity is computed self-consistently
within an interacting cosmology, using the iterative procedure described in Appendix B. The “cdm” prescription is
that found in previous literature [3, 6, 11] and uses Eq. (9); in this case, we employ the same temperature evolution
equations presented in those works and not the full expressions of our Eq. (2). Finally, the “aggressive” prescription
uses Eq. (3) and naively ignores the relative bulk velocity entirely in both the temperature and velocity evolution
equations. The constraints on o resulting from this prescription are thus the most aggressive; their comparison with
the other constraints reported in this work quantifies the importance of incuding an accurate treatment of the relative
bulk velocity.

III. THE EFFECT ON COSMOLOGICAL OBSERVABLES

In this Section, we discuss the impact of DM—proton scattering on cosmological observables. In Section IIT A, we
show the thermal histories of the DM and baryon fluids, as well as the evolution of the free-electron fraction. In
Section III B, we describe the effects on the primary CMB anisotropies, the matter power spectrum, and the CMB
lensing power spectrum. In Section IITC, we investigate a specific regime in which DM is tightly coupled to, and

2 Reference [3] used the quantity <Vc2b>7 but labeled it as VE%MS‘ We refer to Vrms(k, z) as a k-dependent quantity, calculated in the
interacting theory. The full variances (Vfb> and <V>?b> are k-independent quantities; the former is calculated in ACDM and the latter in
the interacting theory.
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FIG. 2. Temperature evolution (top panels) and residuals of z. with respect to ACDM (bottom panels), for the n=—4 (left
panels) and n=—2 (right panels) interaction, for DM masses of 1 MeV (orange) and 100 MeV (purple). We set the coefficients of
the momentum-transfer cross section to their respective 95% C.L. upper limit, derived using our “main” prescription, reported
in Section IV. We also show the baryon temperature in ACDM (black) for reference.

oscillates together with, the baryons at some point in cosmic history; this regime is allowed by Planck data for n=—4
if only a small fraction of DM interacts with baryons.

To compute the power spectra, we have incorporated the Boltzmann equations from Section II into the Boltzmann
solver CLASS® [19]. We chose adiabatic initial conditions, and set the DM temperature and velocity divergences to
match those of the baryons at the start of the integration (z=10'*). For n=—4, the rate of heat transfer is too low to
maintain thermal equilibrium with the baryons, and the temperature and velocity divergences of the DM rapidly drop
from their original values. Thus, our initial conditions are effectively equivalent to starting with vanishing temperature
and velocity divergences. In fact, for all interaction strengths relevant in this work, we have verified that the choice
of initial conditions is irrelevant, as long as they are set well above z~10° (roughly the redshift below which modes
Planck is sensitive to start entering the cosmological horizon). We present further details on our modifications to
CLASS in Appendix B.

Throughout this section, we use ACDM parameters at their best-fit Planck 2015 values [20]. Unless otherwise
noted, we fix the coefficient of the momentum-transfer cross section, og, to its appropriate 95% C.L. upper limit,
derived in Section IV using our “main” prescription for the relative bulk velocity. When plotting residuals, we show
the relative difference between an observable computed for the cosmology with DM-proton scattering and for the
reference ACDM cosmology.

A. Thermal history

An accurate determination of the thermal history is essential to the calculation of CMB power spectra. The CMB
is very sensitive to the number of free electrons in the plasma through the visibility function and the optical depth in
the line-of-sight solution of the Boltzmann equations [21]. Scattering between DM and protons alters the temperature
evolution of the baryons, which in turn influences the free-electron fraction, z.. If interactions with DM cool the
baryon gas around recombination, the rate of recombination increases. If cooling occurs at later times, it reduces
the number of free electrons in a manner opposite to that of an early reionization from energy injection [22]. In the
top panels of Figure 2, we show the evolution of the baryon (solid) and DM (dashed) temperatures as a function of
redshift, comparing them to the evolution of the baryon temperature in ACDM (black solid), for DM masses of 1 MeV
(orange) and 100 MeV (purple), for n = —4 (left panel) and n = —2 (right panel). In the bottom panels, we show
the residuals for the evolution of the free-electron fraction with respect to ACDM. We set the values of o( to their
respective 95% C.L. upper limits, obtained using our “main” prescription in Section IV. We find that the DM-proton
interaction has no strong impact on the recombination era. The impact on the free-electron fraction is substantial

3 https://github.com/lesgourg/class
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FIG. 3. [Top]: Percent residuals (with respect to ACDM) of the lensed TT (left panel) and EE (right panel) power spectra
for the case of n=—4 and a DM mass of 1 MeV. We show residuals for the “main” prescription (red) and the “k-independent”
prescription (purple). In both cases, we set the coefficient of the momentum-transfer cross section to its 95% C.L. upper limit,
derived using the “main” prescription. Gray bands roughly represent the 20 Planck error bars, with a bin size of Af = 50.
[Bottom]: Same as the top panels, but for the case of n=—2. The difference between the two prescriptions is less prominent
in this case because of the weaker scaling of the momentum-transfer cross section with relative velocity.

only at late times. Since the CMB is only marginally sensitive to changes in the late-time free-electron fraction
(through the low-¢ EE power spectrum), baryon cooling is a subdominant effect compared to the drag acceleration
from scattering, and we have verified that it can be safely ignored for the purposes of this work.

B. Power spectra

In Figure 3, we illustrate the effect of DM—proton interactions on CMB temperature and polarization power spectra
by showing their residuals with respect to ACDM. We show the power spectra computed using two treatments of the
relative bulk velocity, for comparison: the “main” prescription (red) and the “k-independent” prescription (purple).

In both cases, we fix oy to the 95% C.L. upper limit, derived using the “main” prescription. The effects of DM-
proton scattering are as follows:

e The dominant effect on the CMB power spectra is a scale-dependent modulation of the acoustic-oscillation
amplitude, which occurs for the following reasons. First, small modes enter the cosmological horizon earlier and
are therefore subject to damping due to friction between the two fluids for a longer time than larger modes.
Second, the interactions reduce the overall growth of perturbations, as well as the associated metric potentials
that directly affect the CMB photons [23]. Prior to recombination, the interactions modify the Sachs-Wolfe (SW)
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FIG. 4. Percent residuals (with respect to ACDM) of the lensing-potential power spectrum C’f * (left panel) and the linear
matter power spectrum P(k) (right panel) for the case of n = —2 (blue) and n = —4 (red), both for a DM mass of 1 MeV.
We use the “main” prescription and set the coefficient of the momentum-transfer cross section to its 95% C.L. upper limit,
reported in Section IV.

contribution to the metric perturbations (both in terms of the overall amplitude and zero-point of oscillations in
the quantity d-/4 + 1, where 1) is the gravitational potential in the Newtonian gauge). Around recombination,
the time evolution of the metric perturbations is affected, in turn contributing to a change in the early integrated
Sachs-Wolfe (EISW) effect. In the TT spectrum, modifications of the SW and EISW terms lead to the relative
enhancement of the first acoustic peak, while other peaks are suppressed overall.

e At early times, photons are tightly coupled to electrons such that 6, =6,. The DM-baryon interaction effectively
increases the inertia of baryons, suppressing the speed of sound in the plasma and reducing the frequency of the
acoustic oscillations; as a consequence, the Doppler peaks shift to smaller physical and angular scales (larger
£). We find that this effect is subdominant in the 77" spectrum. However, the EE power spectrum is mostly
sourced by the quadrupolar temperature patterns close to the last scattering surface [21, 24, 25] and is thus
predominantly affected by modifications to the Doppler term.

e The sound speeds of the DM and baryon fluids depend on the fluid temperatures and are therefore affected
by the heat transfer. Since the sound-speed terms enter Eq. (6) with a prefactor of k2, the dynamics of small
angular scales (corresponding roughly to large k) are affected. We find that these terms also have a negligible
contribution to the fluid evolution equations.

e Finally, as we detail in Section IIT A, post-recombination cooling of baryons decreases the number of free elec-
trons, in turn lowering the optical depth to the surface of last scattering, as compared to the ACDM case.
This effect is opposite to that of an early reionization and leads to an increase of power in modes that enter the
horizon before reionization (i.e., £ 2 20 for both temperature and polarization) and to lowering of the reionization
bump in the EE power spectrum. This effect is also subdominant, as far as the CMB observables are concerned.
However, for higher cross sections, it produces a small modulation of power at the lowest values of £ in the FE
power spectrum.

The primary difference between the power spectra computed using the “main” and the “k-independent” prescriptions
is at high multipoles, where the “main” prescription leads to a more prominent damping tail. For n=—2, the scaling
of the momentum-transfer cross section with relative velocity is rather weak; the feedback of the interactions on the
computation of Vrys and Viey is small, and the power spectra of the two prescriptions look very similar. The power
spectra of the prescriptions for n = —4 exhibit a more noticeable difference. For the remainder of this paper, we
consider only our main “main” prescription.

Finally, in Figure 4, we show the effects of DM—proton scattering on the power spectrum of the CMB lensing
potential (left) and the linear matter power spectrum (right); we plot residuals of the power spectra with respect

4 As previously mentioned, early-time cooling of baryons accelerates recombination, in turn shifting the peaks toward higher £. However,
this effect is not present, in practice, given the strength of the CMB constraints.
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FIG. 5. [Left]: The evolution of the ratio of the momentum-transfer rate to the expansion rate of the Universe for n=—2 (blue)
and n=—4 (red), for interacting DM fractions f, =1 (solid), 0.1 (dashed), 0.01 (dot-dashed), and 0.003 (dotted). We show a
reference line (solid gray) where the momentum-transfer rate matches the expansion rate. [Right]: The density perturbations
8p/p (top panel) and velocity divergences (bottom panel) for the mode k=0.1 Mpc~'. We show the case of n=—4 (red) for the
same interacting DM fractions considered in the left panel. For reference, we show the ACDM case for baryons (black); note
that the line for the density perturbations of cold DM lies underneath those for the n = —4 interaction with fractions f, =1
and fy, =0.1. In both panels, we set the coefficient of the momentum-transfer cross section to its respective 95% C.L. upper
limit, derived using the “main” prescription in Section IV, and set the DM mass to 1 MeV.

to ACDM, using the “main” prescription, for n = —2 (blue) and n = —4 (red). We set og to its 95% C.L. upper
limit, derived using the same prescription in Section IV. The interactions suppress the growth of DM (and baryon)
perturbations, resulting in a progressively larger reduction of power at smaller scales. The suppression of lensing
power manifests as a reduction of peak smearing in the 7T and EE power spectra.

We note that it is possible to use large-scale structure data to constrain DM-baryon interactions with the matter
power spectrum. However, for the n = —2 and n = —4 models, constraints from the Lyman-« flux power spectrum
yield a minor improvement upon CMB-only constraints at the O(1) level [3, 6]; and the Lyman-« data are subject to
modeling caveats that the CMB is not.

C. Strongly coupled DM fraction

The discussion thus far has focused on DM comprised entirely of a single species that is only weakly coupled to
baryons at all times. It is worth noting that the CMB constraints imply weak coupling at all times only for the specific
values of n we are concerned with in this work, while for n > 0, CMB data constrain the interaction cross section such
that the coupling is strong for 2 2 10* — 10° [4, 5]. In the strong-coupling case, DM is tightly coupled to baryons and
behaves like an extra baryonic component, with the important caveat that it does not participate in recombination.
It does, however, experience dark acoustic oscillations, evident in the behavior of the matter power spectrum at scales
k>1 Mpce~! [5]. It is also possible to have strong coupling for n=—2 and n=—4, without violating CMB bounds, if
the interacting species represents only a fraction f, =p,/ppm of the total DM density, while the remaining fraction
is cold collisionless DM. A strongly-coupled subcomponent of DM has been previously studied generically [26] and in
the context of millicharged DM [27, 28].°

In Figure 5, we demonstrate the behavior of a strongly-coupled DM subcomponent, for m, =1 MeV. In the left
panel, we compare the evolution of the momentum-transfer rate to the expansion rate of the Universe for n = —2
(blue) and n=—4 (red), with f, =1 (solid), 0.1 (dashed), 0.01 (dot-dashed), and 0.003 (dotted). In the right panel,
we plot the density perturbations and velocity divergences for n=—4 (red) and for baryons in ACDM. In both panels,
we set o in each case to its appropriate 95% C.L. upper limit, derived using the “main” prescription. For large values
of fy, Planck constrains the momentum-transfer rate to be below the expansion rate, and the density perturbations

5 We emphasize that, unlike Refs. [26-28], we do not assume tight coupling between DM and baryons when analyzing data in Section IV;
the strong coupling regime occurs as a consequence of the large value of the cross section allowed for small values of fy.
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of the interacting subcomponent of DM tracks those of cold DM in ACDM. As f, decreases, the data allow for large
momentum-transfer rates, and the interacting DM subcomponent begins to track the motion of the baryons more
closely. For f, =0.003, the modes that Planck is sensitive to become tightly coupled upon entering the horizon, and
the interacting DM subcomponent experiences acoustic oscillations.

IV. PLANCK CONSTRAINTS

In this Section, we constrain DM—proton interactions using Planck 2015 data. We describe the data set and analysis
method in Section IV A and present numerical results in Section IV B.

A. Data and method

We analyze the Planck 2015 temperature, polarization, and lensing power spectra, using the Planck Likelihood Code
v2.0 (C1lik/P1lik) [12, 13]; in particular, we use the nuisance-marginalized joint 7T, TE, EF likelihood, C1ik/Plik
lite, and the lensing likelihood with SMICA-map-based lensing reconstruction.® We sample the cosmological pa-
rameter space using the MontePython [29] software package with the PyMultinest [30-33] likelihood sampler. We
verify that our sampling runs converge by evaluating the variance between several runs and by comparing a subset
of results to those we obtain using a Markov chain Monte Carlo (MCMC) sampler. The MCMC sampler implemented in
MontePython uses the Metropolis-Hastings algorithm, and chain convergence is evaluated using the Gelman-Rubin
convergence criterion R — 1 < 0.01 [34].

There are nine free parameters in our interacting cosmology: the DM particle mass m,, the fraction f, of the
interacting subcomponent of DM, the coefficient of the momentum-transfer cross section og, and the six standard
ACDM parameters (baryon density Q,h2, total DM density Qpyih?, the Hubble parameter h, the reionization optical
depth Tyeio, the amplitude of the scalar perturbations Ag, and the scalar spectral index ng). In most of our analysis
runs, we fix the fraction f, and the mass m,, and sample in the remaining seven free parameters using broad flat
priors. We also perform analysis runs in which we allow f, (or m, ) to be a free parameter, in which case we use broad
log-flat priors on f, (or m,) and oy to sample the parameter space effectively. Due to computational difficulties, we
do not investigate masses above a GeV. We analyze the data for the n=—4 and n=—2 interaction models.

B. Numerical results

We first assume that all of the DM matter is interacting (f, =1) and perform the likelihood analysis for n=—4 and
n=—2, sampling the likelihoods in oy and the six ACDM parameters, for seven fixed benchmark DM masses between
10 keV and 1 GeV (see Table I). Representative examples of the reconstructed marginalized posterior probability
distributions” are shown in Figure 6 for the case of n=—4 and m, =1 MeV. The general shape of the posteriors does
not significantly vary as a function of DM mass and is qualitatively similar for the n=—2 case. There is a prominent
(positive) degeneracy between oy and the scalar spectral index ns: DM interactions suppress power on small scales
in the CMB TT power spectrum, and an increase in ns; can counteract this suppression. The mild correlations with
A, and Tyei0 are also due to the suppression of power at high values of ¢, but arise from a combination of the TT" and
lensing likelihood. The value of A controls the overall amplitude of all power spectra, but it is modulated by a factor
exp(—2Tyeio) above £~20 in the TT power spectrum. Increasing Ag compensates for the power suppression in the
lensing power spectrum, but it also requires a larger value of Ty, in order to keep the combination Ag exp(—27eio)
fixed, so as not to affect the high-¢ normalization of the TT power spectrum. The mild anticorrelation with Qxh2
is due to the fact that a smaller value of €, h? leads to a change in the expansion history that compensates for the
shift of the peak positions produced by DM-baryon scattering. However, reducing Qxh2 also delays matter—radiation
equality, which boosts the amplitude of the EISW; thus, the degeneracy is very weak. Similarly, the shift in the
peak positions can be compensated by altering the value of the Hubble rate, resulting in a mild, positive correlation
between oy and h.

We find no evidence for DM—proton scattering in the Planck 2015 data—all marginalized probabilities for oy are
consistent with zero, and we use them to infer an upper limit on oy as a function of m,. We present our 95% C.L.

6 Potential issues with systematic effects in Planck high-multipole polarization could, in principle, affect parameter estimation [12, 13],
but Refs. [4, 5] have demonstrated that exclusion of high-¢ polarization degrades constraints on DM interactions by only a few percent.
7 Posterior probability distributions in this study were visualized using corner.py [35].
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FIG. 6. The posterior probability distribution for the ACDM parameters and the coefficient of the DM—proton momentum-
transfer cross section for n=—4 interaction and a DM mass of 1 MeV. We show the 68% and 95% C.L. contours obtained from a
joint analysis of Planck 2015 temperature, polarization, and lensing anisotropies for a cosmology with DM—proton interactions
(green) and for the standard ACDM cosmology (black). The one-dimensional, marginalized posteriors are shown at the top of
each column.

exclusion curves in Figure 7 and in the corresponding Table I. In Section III, we have demonstrated the importance
of accounting for the relative bulk velocity when computing the effects of scattering on CMB observables. Using
the results of our sampling runs, we show the limit (solid red) we obtain with our “main” prescription. Our limits
virtually have no mass dependence for m, <10 MeV (see also Ref. [11]): for m, < m,, m, appears in the Boltzmann
equations via the thermal term @y, in the momentum-transfer rate. As demonstrated in Figure 2, the DM temperature
is negligible for CMB calculations, such that the thermal velocity of the baryons dominates v¢,. Thus, the DM mass
dependence drops out of the momentum-transfer rate entirely. On the other hand, increasing the DM mass to become
comparable to or exceed the proton mass, the momentum-transfer rate scales as R, ~ oo(m, + my) !, while i,
continues to be dominated by the thermal velocity of the baryons and thus does not contribute to the mass scaling.
Hence, our limits on oy should scale as m, for m, >m,; a transition towards this behavior is visible at the high-mass
end of Figure 7.
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10 keV |1 MeV |10 MeV |100 MeV (200 MeV |500 MeV |1 GeV
n=—4|1.7e-41 | 1.7e-41 | 1.7e-41 1.9e-41 2.1e-41 2.6e-41 |3.5e-41
n=—2|2.3e33|2.3e-33 | 2.4e-33 2.6e-33 2.8e-33 3.6e-33 | 4.9e-33

TABLE I. A list of the 95% C.L. exclusion limits on coefficient of the DM—proton momentum-transfer cross section, oo, given
in units of cm? and obtained from Planck 2015 temperature, polarization, and lensing anisotropy measurements, for the n=—4
and n=—2 interactions. DM masses are listed along the top row. The limits correspond to those in Figure 7 and are computed
using our “main” prescription to account for the relative bulk velocity of the DM and baryon fluids.
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FIG. 7. The 95% C.L. upper limits for the coefficient of the DM-proton momentum-transfer cross section as a function of
DM particle mass, obtained from likelihood analysis of Planck 2015 temperature, polarization, and lensing anisotropies, for
the n = —4 (left panel) and n = —2 (right panel) interactions. Results are shown for our “main” treatment of the relative
bulk velocity between the DM and baryon fluids, described in Section II. Additionally, we show the inferred limit from an
“aggressive” assumption, which ignores the impact of the relative bulk velocity. For comparison, we plot the limit we obtain
using the prescription proposed in previous literature (denoted as “cdm”) [3]. We also show the projected sensitivity for a
future ground-based CMB-Stage 4 experiment (obtained using the “main” prescription).

For comparison, we also reproduce the limit obtained using the prescription from previous literature [3, 6, 11]
(dotted line, denoted as “cdm”).® Since the CMB constrains the cross section to be quite small, the amount of
interaction does not significantly alter the evolution of (szb> from its ACDM counterpart (V2). As we discuss at the
end of Section I B, this leads to our “main” treatment of the relative bulk velocity to yield similar limits to the “cdm”
prescription of previous work. Below, we consider the case of strongly-coupled DM, where the “cdm” prescription of
previous work is not valid.

For illustration only, in the same figure, we show “aggressive” constraints that are inferred when a vanishing relative
bulk velocity is assumed in Eqs. (1) and (2), and thus the momentum-transfer rate is completely unsuppressed by the
bulk motions. This assumption does not hold for the case of f, =1: at the level of the upper limit on oy, there is not
enough friction between the DM and baryon fluids to entirely dissipate the relative bulk velocity. The “aggressive”
constraint demonstrates the importance of properly incorporating the relative bulk velocity, especially for n = —4,
where the difference in the limit is more than an order of magnitude. Additionally, while we expect our “main”
prescription to well-represent the exact solution, the “aggressive” constraint gives an absolute floor on the possible
improvement that an exact treatment of the relative bulk velocity could potentially achieve.

We further perform a forecast of the sensitivity to n = —4 and n = —2 scattering for a future ground-based
CMB-Stage 4 experiment [14]. We consider (in combination with Planck data) an experiment with noise levels of
1 pK-arcmin and a beam size of 1 arcmin, with a survey covering 40% of the sky, assuming £y,;, =30 and £y, = 3000.
We do not consider CMB lensing in this analysis, which may substantially improve sensitivity [36]; thus, our result
is a conservative projection. For n=—4, we find an improvement over the current constraints from Planck 2015 by a
factor of ~2.9 for a DM mass of 1 MeV, giving 0¢ < 5.8 x 10742 at 95% C. L. For n=—2, we find 0y < 1.0 x 10733

8 We have verified that the residual spectra (calculated with respect to ACDM) we obtain by implementing the methods of Refs. [6, 11]
align with those from Ref. [11]. However, we note that we obtain constraints that are a factor of ~1.8 weaker for n=—4 than those in
Refs. [6, 11] (using the same likelihoods and sampling methods as Ref. [11]) and a factor of ~1.4 stronger for n=—2 than Ref. [6].
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for the same mass, which is a factor of ~2.3 improvement over Planck. In both cases, we use the “main” prescription
for the relative bulk velocity. We show the corresponding projected exclusion curves in Figure 7.

To investigate how the limits presented above may change when only a fraction of DM interacts with baryons, we
reanalyze Planck 2015 data for the case of n = —4. In the left panel of Figure 8, we show the upper limits on oq
as a function of the DM mass m,, fixing the interacting fraction to fy, =1, 0.1, and 0.01. The mass dependence
of the constraint for f, =1 differs from that for 0.1 and 0.01 at high masses. The temperature of the interacting
DM subcomponent is negligible compared to the baryon temperature for DM masses m, S10 MeV; the momentum-
transfer rate is essentially independent of the DM mass, and thus so is the limit on oy. At higher DM masses, however,
the heat-exchange rate becomes larger for a fixed og: still neglecting the DM mass dependence of oy, in the expression
for Ry, the heat-exchange rate coefficient scales as R} ~my /(my +my)?. Hence, at the higher end of the mass region
in the right panel of Figure 8, T}, is no longer negligible compared to T3, and the momentum-transfer rate scales as
Ry ~ao(my +my) " (Ty/my+T, /m,)~3/2. Tt is thus reasonable to expect the limit on o to strengthen over a range
of intermediate DM masses (i.e., near the proton mass).

To capture the f, dependence of the limits in further detail, we again reanalyze Planck 2015 data for the case
of n = —4, this time fixing the DM mass to m, =1 MeV and sampling the fraction f, as a free parameter. In the
right panel of Figure 8, we show the resulting marginalized 2d posterior probability distribution for oy versus fy; the
shaded region represents the outside of the 95% C.L. contour and is thus excluded. For f, 2 2%, the limit roughly
scales with f,, independent of the DM mass. This scaling no longer holds for smaller values of f,: as a smaller
fraction of DM particles s