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The kinetic Sunyaev Zel’dovich (kSZ) and polarized Sunyaev Zel’dovich (pSZ) effects are tem-
perature and polarization anisotropies induced by the scattering of CMB photons from structure
in the post-reionization Universe. In the case of the kSZ effect, small angular scale anisotropies
in the optical depth are modulated by the cosmic microwave background (CMB) dipole field, i.e.
the CMB dipole observed at each spacetime point, which is sourced by the primordial dipole and
especially the local peculiar velocity. In the case of the pSZ effect, similar small-scale anisotropies
are modulated by the CMB quadrupole field, which receives contributions from both scalar and
tensor modes. Statistical anisotropies in the cross correlations of CMB temperature and polariza-
tion with tracers of the inhomogeneous distribution of electrons provide a means of isolating and
reconstructing the dipole and quadrupole fields. In this paper, we present a set of unbiased mini-
mum variance quadratic estimators for the reconstruction of the dipole and quadrupole fields, and
forecast the ability of future CMB experiments and large scale structure surveys to perform this re-
construction. Consistent with previous work, we find that a high fidelity reconstruction of the dipole
and quadrupole fields over a variety of scales is indeed possible, and demonstrate the sensitivity of
the pSZ effect to primordial tensor modes. Using a principle component analysis, we estimate how
many independent modes could be accessed in such a reconstruction. We also comment on a few
first applications of a detection of the dipole and quadrupole fields, including a reconstruction of
the primordial contribution to our locally observed CMB dipole, a test of statistical homogeneity
on large scales from the first modes of the quadrupole field, and a reconstruction technique for the
primordial potential on the largest scales.

I. INTRODUCTION

The secondary Cosmic Microwave Background (CMB), temperature anisotropies induced by the scattering of CMB
photons by mass or free charges, is becoming an important new frontier in observational cosmology. Unlike the primary
CMB temperature anisotropies, which are mostly sourced by inhomogeneities near the time of last scattering, CMB
secondaries are induced by inhomogeneities through much of the volume of the observable Universe. Therefore, CMB
secondaries can in principle be a far more powerful direct probe of the large-scale homogeneity of the Universe than
the primary CMB (see e.g. [1–9]), and possibly shed light on a number of outstanding low-significance large-scale
anomalies in the primary CMB (see e.g. [10] for a recent review). The rapid development of detector technology in
CMB experiments and the deployment of redshift surveys of increasing size and quality has in recent years driven the
first detections of a variety of CMB secondaries (directly and in cross correlation) such as CMB lensing [11–15] (the
scattering of CMB photons from mass [16–18]), the thermal Sunyaev Zel’dovich effect [19–23] (spectral distortions
of the CMB from scattering CMB photons off hot gas [24]), and the kinetic Sunyaev Zel’dovich effect [25–30] (the
scattering of CMB photons from the bulk motion of free electrons [31]). Excitingly, next-generation CMB experiments
(e.g. CMB Stage 4 [32]) in cross correlation with next-generation redshift surveys (e.g. LSST [33]) will yield a drastic
improvement in the measurement of these and other secondary effects.
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In this paper, we focus on two CMB secondaries: the kinetic Sunyaev Zel’dovich (kSZ) effect and the polarized
Sunyaev Zel’dovich (pSZ) effect. The kSZ effect is a temperature anisotropy induced by the bulk motion of free
electrons during and after reionization relative to the CMB rest frame. The contribution from a given location at a
given redshift is proportional to the locally observed CMB dipole. The pSZ effect is a polarization anisotropy induced
by the scattering of CMB photons in the presence of a quadrupolar radiation field. The contribution from a given
location at a given redshift is proportional to the locally observed CMB quadrupole. In the CMB, both of these effects
are given by line-of-sight integrals. However, the redshift dependence can be extracted by direct cross correlation with
tracers of large scale structure. This technique is known as kSZ [4, 29, 34–42] and pSZ tomography [43, 44]. In both
kSZ and pSZ tomography, the remote dipole and remote quadrupole fields, respectively, are encoded in characteristic
statistical anisotropies in the cross correlation.

In the case of the pSZ effect, previous work has assessed the ability of polarization measurements in the direction
of clusters to reconstruct the quadrupole field and underlying primordial potential [1, 45–51]. In other previous
work [42, 44], the authors introduced a set of estimators to assess the promise of kSZ and pSZ tomography to measure
the remote dipole and quadrupole fields. These estimators did not include the full correlation structure of the signal,
and therefore missed some of the available signal-to-noise.

In this paper, we extend this previous work by defining a set of quadratic estimators for the remote dipole and
quadrupole fields. Similar quadratic estimators have been defined for the lensing potential [52–54], where they played
a key role in the first detections of CMB lensing. Other applications have included patchy screening and patchy
reionization [55–57]. A set of quadratic estimators for the pSZ effect first appeared in Ref. [43], where the primary
goal was to assess how useful pSZ tomography is for the detection of primordial gravitational waves. A set of optimal
estimators for kSZ tomography was developed for several specific scenarios including the detection of large bulk
flows [40] and cosmic bubble collisions [41]. The main contribution of this work is to present a completely general set of
quadratic estimators for the remote dipole and quadrupole fields within a unified framework including scalar and tensor
perturbations, to discuss the information content of the reconstructed fields using a principal component analysis,
and to discuss a few first applications of measurements of the remote dipole and quadrupole fields to fundamental
questions in cosmology. This paper also lays the foundation for a complete forecast of parameter constraints from
measurements of the remote dipole and quadrupole fields, which we present elsewhere.

The plan of the paper is as follows. In Sec. II we first review the cross correlation between CMB and large scale
structure induced by the kSZ effect. Then we derive the quadratic estimator for the dipole field. Finally we forecast
the signal-to-noise for a representative set of experimental configurations. In Sec. III we apply the same methodology
to the pSZ effect, deriving optimal estimators for the remote quadrupole field based on CMB E-modes and B-modes
and forecasting the signal-to-noise. In Sec. V we give an initial discussion of cosmological applications of these
estimators, including the reconstruction of the primordial potential on large scales. We conclude in Sec. VI. A set of
appendices summarize the properties of the dipole and quadrupole fields.

II. QUADRATIC ESTIMATOR FOR THE REMOTE DIPOLE FIELD

The kSZ effect is determined by the locally observed CMB dipole, and can therefore be used to measure the remote
CMB dipole field, e.g. the locally observed CMB dipole as a function of space and time. While the total kSZ signal is
dominated by the Doppler effect from local velocity perturbations, on large scales it can reveal bulk flows, statistical
anisotropies, and information about the local primordial CMB dipole. The kSZ is therefore an interesting probe to get
more information about the largest scales in the universe. We have studied the different small-scale and large-scale
contributions to the kSZ in detail in [42]. Here we adapt the well-known quadratic estimator methodology to the
reconstruction of the remote CMB dipole field via the kSZ effect. The quadratic estimator is optimal (in the sense that
it is unbiased and gives the minimum variance reconstruction) and better suited for data analysis than the estimator
presented in [42].

A. Cross correlation induced by the kSZ effect

The temperature perturbation due to the kSZ effect along the line of sight n̂ is given by

T (n̂)
∣∣
kSZ

= −σT
∫
dχ a ne(n̂, χ)veff(n̂, χ), (1)
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where veff(n̂, χ) is the CMB dipole projected along the line of sight, χ is comoving distance, and ne(n̂, χ) is the
electron number density. We bin this equation in red shift shells (bins) α as

T (n̂)
∣∣
kSZ

= −σT
∑
α

∫ χαmax

χαmin

dχα a ne(n̂, χα)veff(n̂, χα), (2)

We split up the dipole field into its mean over each bin v̄αeff(n̂) and the small-scale dipole field δveff(n̂, χα), which
varies over the bin

veff(n̂, χα) = v̄αeff(n̂) (1 + δveff(n̂, χα)) (3)

where

v̄αeff(n̂) =
1

∆χα

∫ χαmax

χαmin

dχαveff(n̂, χα) (4)

We discuss the bin averaged dipole field and its power spectrum in detail in Appendix B. We also write the electron
density ne(n̂, χ) as its angular average plus a fluctuation term:

ne(n̂, χ) = n̄e(χ) (1 + δe(n̂, χ)) (5)

From Eq. (2) it follows that there is a contribution to the kSZ temperature anisotropies due to the mean field v̄eff

given by

T (n̂)
∣∣
kSZ,v̄eff

=
∑
α

τα(n̂)v̄αeff(n̂). (6)

where we defined anisotropies in the optical depth of the redshift bin by

τα(n̂) = −σT
∫ χαmax

χαmin

dχ a n̄e(χ) (1 + δne(n̂, χ)) . (7)

There is an additional contribution from the isotropic optical depth which does not contribute significantly to the
cross correlation we study below, and hence forward neglect.

Our estimator is based on the cross-correlation of the CMB temperature multipoles aT`m with the red shift binned
galaxy distribution

δαg (n̂) =

∫
dχ Wα(χ) δg(n̂, χ) (8)

where the normalized window fuction Wα(χ) selects the bin range (χαmin, χ
α
max) and can take into account observational

effects like a varying number density within the bin. Within a redshift bin, the average dipole field induces the cross
correlation, since the small-scale variations in the dipole field will cancel along the line of sight. The kSZ induced
cross correlation of the CMB temperature and the binned galaxy distribution is

〈
aT`1m1

δαg,`2m2

〉
=

〈∫ dn̂1 Y
∗
`1m1

(n̂1)
∑
β

∑
L1M1

v̄βeff,L1M1
YL1M1(n̂1)

∑
L2M2

τβL2M2
YL2M2(n̂1)

 δαg,`2m2

〉

=
∑

β,L1,M1,L2,M2

(−1)m1

√
(2`1 + 1)(2L1 + 1)(2L2 + 1)

4π

(
`1 L1 L2

0 0 0

)(
`1 L1 L2

−m1 M1 M2

)
(9)

×
〈
τβL2M2

δαg,`2m2

〉
v̄βeff,L1M1

We are interested in broad redshift bins, so that to good approximation
〈
τβ`1m1

δαg,`2m2

〉
=

(−1)m2 C
τδg
α`1

δαβδ`1`2δm1−m2
. With this simplification we obtain〈

aT`1m1
δαg,`2m2

〉
=
∑
`,m

(−1)m1+m2ΓkSZ
`1`2`α

(
`1 `2 `
−m1 −m2 m

)
v̄αeff,`m. (10)

where we defined the coupling

ΓkSZ
`1`2`α =

√
(2`1 + 1)(2`2 + 1)(2`+ 1)

4π

(
`1 `2 `
0 0 0

)
C
τδg
α,`2

. (11)

Therefore, from Eq. (9), the statistics of the small-scale field are modulated by the bin-averaged dipole field.
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B. Estimator and variance of the dipole field

The induced cross correlation of CMB temperature and matter allows a quadratic estimator of the mean dipole
field v̄αeff,`m of form

v̂αeff,`m =
∑

`1m1`2m2

W`m`1m1`2m2α a
T
`1m1

δαg,`2m2
. (12)

To find the optimal weights, we need to minimize the variance with respect to the weights, subject to the constraint〈
v̂αeff,`m

〉
= v̄αeff,`m. The variance is

Var(v̂αeff,`m) =
∑

`1m1`2m2

W`m`1m1`2m2αW
∗
`m`1m1`2m2αC̃

TT
`1 C̃

δgδg
α,`2

, (13)

where we considered the leading Gaussian contribution to the variance, where C̃TT` includes the relevant contributions

to CMB temperature, foregrounds, and instrumental noise, and where C̃
δgδg
α,` includes the galaxy power spectrum and

shot noise. This optimization can be implemented using a Lagrange multiplier and gives the optimal estimator

v̂αeff,`m = N v̄v̄
α`

∑
`1m1`2m2

(−1)m ΓkSZ
`1`2`α

(
`1 `2 `
m1 m2 −m

)
aT`1m1

δαg,`2m2

C̃TT`1 C̃
δgδg
α`2

, (14)

where

1

N v̄v̄
α`

=
1

(2`+ 1)

∑
`1`2

ΓkSZ
`1`2`α

ΓkSZ
`1`2`α

C̃TT`1 C̃
δgδg
α`2

. (15)

The signal and noise in our analysis are defined as follows (see [55] for a similar discussion in the case of the patchy-τ
estimator). The two-point function of v̂eff,`m is the sum of two terms:〈

v̂∗αeff,`mv̂
β
eff,`′m′

〉
=
〈
v̂∗αeff,`mv̂

β
eff,`′m′

〉
noise

+
〈
v̂∗αeff,`mv̂

β
eff,`′m′

〉
signal〈

v̂∗αeff,`mv̂
β
eff,`′m′

〉
noise

= N v̄v̄
α` δαβδ``′δmm′〈

v̂∗αeff,`mv̂
β
eff,`′m′

〉
signal

= C v̄v̄αβ`δ``′δmm′ (16)

The first term
〈
v̂∗αeff,`mv̂

β
eff,`′m′

〉
noise

is obtained by summing the Gaussian terms in the estimator variance. It is the

power spectrum of the estimator in the absence of any large scale dipole field and is diagonal in red shift space. The

second term
〈
v̂∗αeff,`mv̂

β
eff,`′m′

〉
signal

is due to the expectation value
〈
v̂αeff,`m

〉
= v̄αeff,`m and is our signal. It is an excess

power in the reconstruction due to the presence of v̂eff fluctuations. This part is not diagonal in redshift because large
scale modes of the dipole field are correlated. Assuming a large-scale dipole field power spectrum C v̄v̄αβ`, the expected
signal-to-noise per mode is

(S/N)`m =

[
fsky

2

(
C v̄v̄αα`
N v̄v̄
α`

)2
]1/2

(17)

This is the expected “number of sigmas” for a detection of a dipole field modulation of this mode. To make a map
(as opposed to an overall detection), one roughly needs a mode-by-mode signal-to-noise bigger than unity. To get
the signal-to-noise in all modes combined, one has to take into account the signal correlation in redshift space (see
Appendix B).

C. Signal-to-noise forecast

We now forecast the signal-to-noise of the estimator Eq. (14) for a cosmic variance limited experiment that traces
∆τα`m and aT`m up to `max for the signal and noise models specified below.
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1. Dipole field signal model

We use the expression for the ΛCDM dipole field from [42], which we recall here briefly. The primordial potential
Ψi(k) is related to the multipole moments of the dipole field as a function of comoving distance by

veff,`m(χ) =

∫
d3k

(2π)3
∆v
` (k, χ)Ψi(k)Y ∗`m(k̂). (18)

An explicit expression for the transfer function ∆v
` (k, χ) is given in Appendix A, and an extended discussion can be

found in [42]. The mean dipole field signal power spectrum C v̄v̄` is then given by

C v̄v̄αβ` =

∫
dk

(2π)3
k2P (k)∆̄v

α`(k)∆̄v
β`(k) (19)

where we have defined the bin averaged transfer functions

∆̄v
α`(k) =

1

∆χα

∫ χαmax

χαmin

dχα ∆v
` (k, χ) (20)

In Appendix B, we study the effect of binning by comparing the averaged and un-averaged dipole field power spectra.
For the lowest multipoles, where mostly long-wavelength modes are already extracted from the spherical harmonic
transform, the correlation length of the un-averaged dipole field is significant (see Fig. 7), and there is little difference
between the power in the averaged and un-averaged dipole fields even for wide redshift bins (see the left panel of
Fig. 8). For higher multipoles, where the correlation length of the un-averaged dipole field is not as long, the signal
can be significantly affected by binning, unless a fine binning is chosen (see the right panel of Fig. 8).

2. Noise model

The expression for the noise power spectrum N v̄v̄
` has been given in Eq. (15). It depends on the measured CMB and

galaxy power spectra C̃TT` and C̃
δgδg
` as well as the cross-power C

τδg
α` . The CMB power spectrum includes primary

CMB, lensing and small scale kSZ. The mass binned δg power spectrum is given by:

C
δgδg
α` =

∫
dχ1 W

α(χ1)

∫
dχ2 W

α(χ2) C
δgδg
` (χ1, χ2) (21)

Using the Limber approximation we find

C
δgδg
α` =

∫
dk

`+ 1
2

(Wα(χ))2Pgg(k, χ)
∣∣∣
χ→(`+1/2)/k

(22)

where the window function selects the redshift bin (χαmin, χ
α
max). Here Pgg is the galaxy power spectrum including

shot noise.
We also need the cross power spectrum of τ and δg given by

C
τδg
α` = σT

∫ χαmax

χαmin

dχ1 a(χ1) n̄e(χ1)

∫
dχ2 W

α(χ2) C
δeδg
` (χ1, χ2). (23)

Using the Limber approximation we find

C
τδg
α` = σT

∫
dk

`+ 1
2

(a(χ)n̄e(χ))Wα(χ)Pge(k, χ)
∣∣∣
χ→(`+1/2)/k

. (24)

We assume that Pgg = b2Pmm and Pge = bPmm where Pmm is the nonlinear matter power spectrum and b is the
galaxy bias. This approach neglects baryonic feedback effects (which cause the electron distribution to differ from
the dark matter distribution) and scale dependence of the galaxy bias. A more precise calculation that incorporates
these features using the halo model is deferred to future work.
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3. Forecast

Armed with expressions for the signal and noise power spectra, we can calculate the signal-to-noise per mode from
Eq. (17) in each redshift bin. In this work, following [42], we consider six redshift bins of equal width in χ covering
the range 0 < z < 6 as given in table I. For the CMB experiment we choose experimental properties in the range of
the proposed CMB S4 mission. We assume the noise is Gaussian and given by

N` = NT exp

(
`(`+ 1)θ2

FWHM

8ln2

)
. (25)

with a beam θFWHM = 1.0 arcminutes and an effective white noise level of NT = 1.0µK-arcmin. The total measured

CMB signal is then Ctot` = CCMB,lensed
` + CkSZ

` + N`. We compute the lensed CMB power spectrum using CAMB
and the kSZ power spectrum using the results of Ref. [42]. The measurement of the galaxy density is limited by shot
noise due to discrete sampling of galaxies Ngg

α` = 1/Nαg, where Nαg is the number of galaxies per square radian in
the redshift bin α. We assume a predicted galaxy sample for Large Synoptic Survey Telescope (LSST) ([33]), where
the number density n per arcmin2 is described by

n(z) = ngal
1

2z0

(
z

z0

)2

exp(−z/z0) (26)

with z0 = 0.3 and ngal = 40 arcmin−2. The bias for the LSST data set is predicted to be

b(z) = 0.95/D(z) (27)

with the growth factor normalized as D(z = 0) = 1. We assume full sky coverage in this forecast for simplicity. A more
realistic overlap between CMB S4 and LSST might be fsky ∼ 0.5. Finally, we use a range in ` for the reconstruction
noise of 100 ≤ ` ≤ 104, which saturates the signal to noise for the experimental parameters considered here.

With these parameters, we obtain the cosmic variance limited signal to noise per mode in Fig. 1. We conclude
that the large-scale dipole field could be reconstructed with extremely high fidelity using our technique, with next
generation experimental data, over most of the red-shift range. At high red shifts, the dropping number density of the
LSST sample makes the dipole reconstruction impossible, but a deeper galaxy survey would recover these modes. By
choosing more redshift bins in the same range 0 < z < 6, it is possible to gain access to information about the remote
dipole field on smaller scales. We therefore also show a 12 bin configuration in Fig. 1 with the same experimental
parameters.

α (χα
min, χ

α
max) (zαmin, z

α
max)

1 (0.00, 0.32) (0.00, 0.35)

2 (0.32, 0.64) (0.35, 0.78)

3 (0.64, 0.96) (0.78, 1.37)

4 (0.96, 1.28) (1.37, 2.22)

5 (1.28, 1.60) (2.22, 3.59)

6 (1.60, 1.92) (3.59, 6.00)

TABLE I: We adopt the redshift binning of [42] with six equally spaced redshift bins from the observer (z = 0) to
reionization (z = 6). The comoving distance is given in units of H−1

0 .

III. QUADRATIC ESTIMATOR FOR THE QUADRUPOLE FIELD

The same methodology that we used above for kSZ tomography can be used to reconstruct the CMB quadrupole
field from the polarized SZ effect. The pSZ effect induces a correlation of the E-mode and B-mode CMB signal
with the matter distribution. The CMB quadrupole field receives contributions from both scalar and tensor modes,
which we forecast separately. The estimator described here has been previously presented in the context of detecting
gravitational waves in [43].
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FIG. 1: Left: Signal to noise per dipole field mode v̄eff,`m for a full sky experiment with experimental sensitivity
oriented at CMB S4 and LSST (see main text), using the redshift binning given in table I. Right: Same with 12

bins, dividing each previous bin in two.

A. Polarization from the CMB quadrupole field

Polarization is generated by the line-of-sight integral of the local CMB temperature quadrupole, i.e.

(Q± iU)(n̂) = −
√

6

10

∫ ∞
0

dχ τ̇e−τ(n̂,χ)q̃±eff(n̂, χ) (28)

q̃±eff(n̂, χ) =
∑
m

[
qm,Seff (n̂, χ) + qm,Teff (n̂, χ)

]
±2Y2m(n̂),

where qm,Seff and qm,Teff are the scalar and tensor contributions to the components of the temperature quadrupole moment
at each position in space, respectively. If we expand (Q± iU)(n̂) [55], in complete analogy with what was done above
for the kSZ effect, we find that the CMB polarization due to the pSZ effect from the inhomogeneous distribution of
electrons is

(Q± iU)(n̂)
∣∣
pSZ

= −
√

6

10
σT

∫
dχ a ∆ne(n̂, χ)q̃±eff(n̂, χ). (29)

Now we redshift bin the equation in the same way as above to obtain

(Q± iU)(n̂)
∣∣
pSZ,L = −

√
6

10

∑
α

∆τα(n̂)q̃±αeff (n̂) (30)

Formally, q±α(n̂) should be interpreted as the average components of the quadrupole in each bin. However, since the
correlation length for the quadrupole field is larger than any reasonable bin choice (see Appendix B), unlike in the
kSZ case here we do not discriminate between the averaged and un-averaged field. The binned equation Eq. (30) is
the starting point for the quadratic estimator of the quadrupole field q±(n̂, χ).

B. CMB to matter cross power spectrum due to pSZ

From Eq. (30), it follows that the pSZ contribution to the CMB polarization is given by

±2a
pZS
`m =−

√
6

10

∑
α

∑
L1,M1,L2,M2

(−1)m aq,±αL1M1
∆ταL2M2

√
(2`+ 1)(2L1 + 1)(2L2 + 1)

4π

×

(
` L1 L2

∓2 ±2 0

)(
` L1 L2

−m M1 M2

)
(31)
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We decompose the CMB perturbations from pSZ in E- and B-modes,

aE`m = −1

2
(2a`m +−2 a`m) (32)

aB`m = − 1

2i
(2a`m −−2 a`m) (33)

and equivalently for the remote quadrupole field

aq,Eα`m = −1

2
(aq,+α`m + aq,−α`m ) (34)

aq,Bα`m = − 1

2i
(aq,+α`m − aq,−α`m ) (35)

Note that if the remote quadrupole field is sourced only by scalar perturbations then aq,+α`m = aq,−α`m and aq,Bα`m = 0,
but still aB`m 6= 0. That is, a purely E-mode type quadrupole field gives rise to both E-mode and B-mode power due
to the spatial variations in optical depth [56]. The PSZ contribution to the CMB is then [43]

aE`m = −
√

6

10

∑
α

∑
L1,M1,L2,M2

(−1)m

(
` L1 L2

−m M1 M2

)
F`,L1,L2

×
(
aq,EαL1M1

α`,L1,L2
− aq,BαL1M1

γ`,L1,L2

)
∆ταL2M2

(36)

aB`m = −
√

6

10

∑
α

∑
L1,M1,L2,M2

(−1)m

(
` L1 L2

−m M1 M2

)
F`,L1,L2

×
(
aq,EαL1M1

γ`,L1,L2
+ aq,BαL1M1

α`,L1,L2

)
∆ταL2M2

(37)

where we defined

F`,L1,L2
=

√
(2`+ 1)(2L1 + 1)(2L2 + 1)

4π

(
` L1 L2

2 −2 0

)
(38)

α`,L1,L2 =
1

2
(1 + (−1)`+L1+L2) (39)

γ`,L1,L2 =
1

2i
(1− (−1)`+L1+L2) (40)

We can now calculate the cross correlation of CMB E- and B-modes with the τ field as〈
aE`1m1

∆τα`2m2

〉
= −

√
6

10

∑
β,L1,M1,L2,M2

(−1)m1

(
`1 L1 L2

−m1 M1 M2

)
F`,L1,L2

×
(
aq,EβL1M1

α`,L1,L2 − a
q,Bβ
L1M1

γ`,L1,L2

)〈
∆τβL2M2

∆τα`2m2

〉
(41)

〈
aB`1m1

∆τα`2m2

〉
= −

√
6

10

∑
β,L1,M1,L2,M2

(−1)m1

(
`1 L1 L2

−m1 M1 M2

)
F`,L1,L2

×
(
aq,EβL1M1

γ`,L1,L2 + aq,BβL1M1
α`,L1,L2

)〈
∆τβL2M2

∆τα`2m2

〉
(42)

We pulled aq,EL1M1
and aq,BL1M1

out of the correlators because they are the background fields that we want to estimate,
not statistical quantities. Again, since we are considering large red shift bins, we can assume that〈

∆τα`1m1
∆τβ`2m2

〉
= (−1)m2C∆τ∆τ

α,`1 δαβδ`1`2δm1−m2
(43)

and obtain〈
aE`1m1

∆τα`2m2

〉
=

∑
L1,M1

(−1)m1+m2

(
`1 L1 `2
−m1 M1 −m2

)
ΓpSZ
`1L1`2α

(
aq,EαL1M1

α`,L1,`2 − a
q,Bα
L1M1

γ`,L1,`2

)
(44)

〈
aB`1m1

∆τα`2m2

〉
=

∑
L1,M1

(−1)m1+m2

(
`1 L1 `2
−m1 M1 −m2

)
ΓpSZ
`1L1`2α

(
aq,EαL1M1

γ`,L1,`2 + aq,BαL1M1
α`,L1,`2

)
(45)
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where we defined the coupling

ΓpSZ
`1L1`2α

= −
√

6

10
F`,L1,`2 C

∆τ∆τ
α,`2 . (46)

The sum in L1,M1 is dominated by very low `, since the quadrupole field has only low multipole contributions.

C. Estimator and variance of the quadrupole field

Based on Eq.(44) and (45), we can construct an estimator of form

âq,Xα`m =
∑

`1m1`2m2

(
WX,E
`m`1m1`2m2

aE`1m1
+WX,B

`m`1m1`2m2
aB`1m1

)
∆τα`2m2

, (47)

where X = {E,B}. In analogy with the case above we find

âq,Eα`m = NEα
`

∑
`1m1`2m2

(−1)m ΓpSZ
``1`2α

(
`1 `2 `

m1 m2 −m

) (
α`,`1,`2a

E
`1m1

− γ`,`1,`2aB`1m1

)
∆τ∗α`2m2(

|α`,`1,`2 |2C̃EE`1 + |γ`,`1,`2 |2C̃BB`1
)
C̃∆τ∆τ
α`2

(48)

âq,Bα`m = NBα
`

∑
`1m1`2m2

(−1)m ΓpSZ
``1`2α

(
`1 `2 `

m1 m2 −m

) (
γ`,`1,`2a

E
`1m1

+ α`,`1,`2a
B
`1m1

)
∆τ∗α`2m2(

|γ`,`1,`2 |2C̃EE`1 + |α`,`1,`2 |2C̃BB`1
)
C̃∆τ∆τ
α`2

, (49)

where

1

NEα
`

=
1

(2`+ 1)

∑
`1`2

ΓpSZ
``1`2α

ΓpSZ
``1`2α(

|α`,`1,`2 |2C̃EE`1 + |γ`,`1,`2 |2C̃BB`1
)
C̃∆τ∆τ
α`2

(50)

1

NBα
`

=
1

(2`+ 1)

∑
`1`2

ΓpSZ
``1`2α

ΓpSZ
``1`2α(

|γ`,`1,`2 |2C̃EE`1 + |α`,`1,`2 |2C̃BB`1
)
C̃∆τ∆τ
α`2

. (51)

The definition of signal and noise is the same as in the case of kSZ tomography discussed above, i.e. NE,B
` is

the contribution we would get from statistical fluctuations if there were no remote quadrupole field. The expected
signal-to-noise per quadrupole field mode is

(S/N)`m =

fsky

2

(
C
E/B
αα`

N
E/B
α`

)2
1/2

. (52)

which corresponds to the expected number of ”sigmas” of a detection.

D. Signal-to-noise forecast

1. Quadrupole field signal and noise

Our signal is the projected quadrupole field aq,E`m (χ) and aq,B`m (χ). In [44], we calculated aq,E`m (χ) from scalar
perturbations in terms of the primordial potential Ψi(k):

aq,E`m (χ) =

∫
d3k

(2π)3
∆q
`(k, χ) Ψi(k) Y ∗`m(k̂) , (53)

The transfer function ∆q
`(k, χ) is reviewed in Appendix C and discussed in detail in [44]; it is dominated by the Sachs-

Wolfe effect. In this case, there is a pure E-mode component of the quadrupole field. In the presence of primordial
gravitational waves, there will also be a contribution to both the E-mode and B-mode components of the quadrupole
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field. This was first explored in Ref. [43]. We present a derivation of these contributions in Appendix D, where the
final result is:

aq,E`m (χ) =

∫
d3k

(2π)3
5i`B`(k, χ)

{
GqT,+(k, χ)

[
2Y
∗
`m(k̂) + −2Y

∗
`m(k̂)

]
+ i GqT,×(k, χ)

[
2Y
∗
`m(k̂)− −2Y

∗
`m(k̂)

]}
, (54)

aq,B`m (χ) =

∫
d3k

(2π)3
5i`A`(k, χ)

{
−GqT,+(k, χ)

[
2Y
∗
`m(k̂)− −2Y

∗
`m(k̂)

]
− i GqT,×(k, χ)

[
2Y
∗
`m(k̂) + −2Y

∗
`m(k̂)

]}
. (55)

Here, A`(k, χ) and B`(k, χ) encode projection effects, and have the limiting values of A`(k, χ→ 0)→ 0 and B`(k, χ→
0)→ −1/5. The functions GqT,(+,×)(k, χ) fix the amplitude of the effect from the two gravitational wave polarization

states. Definitions of these functions can be found in Appendix D.
From the multipoles, assuming equal amplitudes for the two gravitational wave polarization states we obtain the

signal power spectra: 〈
aEα∗`m aEβ∗`′m′

〉
signal

=
(
CS,Eαβ` + CT,Eαβ`

)
δ``′δmm′ , (56)〈

aBα∗`m aBβ∗`′m′

〉
signal

=
(
CT,Bαβ`

)
δ``′δmm′ , (57)〈

aEα∗`m aBβ∗`′m′

〉
signal

= 0. (58)

where

CS,Eαβ` =

∫ kmax

0

k2dk

(2π)3
PΨ(k)∆q

L(k, χα)∆q
L(k, χβ)∗ , (59)

CT,Eαβ` = 2

∫
k2 dk

(2π)3
50 Ph(k) IqT (k, χα)IqT (k, χβ) B`(k, χα)B`(k, χβ), (60)

CT,Bαβ` = 2

∫
k2 dk

(2π)3
50 Ph(k) IqT (k, χα)IqT (k, χβ) A`(k, χα)A`(k, χβ). (61)

The τ field is given in terms of its power spectrum C̃∆τ∆τ
` as in the previous section. The polarization field has the

CMB power spectra C̃EE` and C̃BB` , which includes primary CMB and lensing.

2. Forecast

We forecast the remote quadrupole field from scalar perturbations, a guaranteed signal, as well as that of tensor
perturbations assuming a tensor ratio of r = 0.1, the upper limit of current experimental constraints. Scalar pertur-
bations induce only an E-type remote quadrupole field, while tensor perturbations source both E-type and B-type.
Our experimental configuration is as above in the kSZ case with the same 6-bin setup up to red-shift 6, using the
LSST galaxy sample and CMB S4 oriented noise values, as well as a hypothetical experiment with 10 times reduced
noise.

In Fig. 2, we show the per-mode signal to noise for the scalar sourced E-mode quadrupole field. In the left panel,
we include information both from the E- and B-mode polarization anisotropies in the CMB. Here, it can be seen that
a reconstruction of the quadrupole field can be made up to about ` = 4. The lower signal to noise in the high red
shift bins is due to the falling galaxy density. For comparison, in the right panel we show the per-mode signal to noise
including only (small scale) E-mode polarization anisotropies. The signal to noise is considerably smaller in this case
due to the smaller amplitude of the lensed B-modes which enter the noise.

In Fig. 3, we show the per-mode signal to noise for the tensor sourced E-mode (left) and B-mode (right) components
of the quadrupole field for NBB,EE ' 1.0 µK-arcmin (top) and NBB,EE ' 0.1 µK-arcmin (bottom), both using the
LSST galaxy density. Here we assumed a fiducial value r = 0.1. The signal to noise ratio scales linearly with r.
For the CMB S4 type noise a combined detection may be possible, but not a mode by mode reconstruction. On the
other hand for the 10 times lowered noise, tensor modes would be detected easily and a noisy large scale map could
be constructed. An interesting effect is that because the B-mode component of the quadrupole field vanishes at low
redshift (see Eq. (55)), there is little signal in the first bin in the plots on the right. A measurement of the B-mode
component of the quadrupole field therefore benefits from relatively high redshift surveys.
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FIG. 2: Signal to noise from scalar perturbations per quadrupole field mode aq,E`m for a full sky experiment with
experimental sensitivity oriented at CMB S4 and LSST, using the redshift binning in table I. Left: using E- and

B-modes. Right: using only E-modes. This illustrates the power of B-modes for this application.
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FIG. 3: Top: Signal to noise for tensors with r = 0.1 per quadrupole field mode aq,E`m (left) and aq,B`m (right) for a full
sky experiment with experimental sensitivity oriented at CMB S4 and LSST, using the redshift binning in table I,

using E- and B-modes. Bottom: Using the same configuration but reducing the CMB noise by a factor of 10.
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FIG. 4: Explained variance as a function of the number of principal components. Left: dipole field v̄LM with

`max = 50 and 6 redshift bins. Right: quadrupole field aq,ELM with `max = 4 and 6 redshift bins.

IV. PRINCIPAL COMPONENT ANALYSIS

Our signal, the effective dipole field and the remote quadrupole field, is correlated between different red shift bins.
This correlation is in particular strong for the remote quadrupole field, i.e. there is a modest number of independent
quadrupoles contained in the observable universe. To quantify how much degenerate information we obtain from our
estimators, we performed a principal component analysis (PCA). The PCA for the dipole and quadrupole fields are
based on the signal covariance matrices Eq. 19 and 59 respectively, which areN×N matrix whereN = Nbins

∑
`(2`+1),

of which most elements are zero. Here, we consider only scalar contributions to the quadrupole field. Based on the
covariance matrix, we plot the “explained variance” as a function of the number of PCA components, which is the
usual diagnostic for the number of components in a PCA. For the kSZ case we choose `max = 50 and for the pSZ case
`max = 4, motivated by the signal-to-noise forecasts above. The results are shown in Fig. 4. As expected, in the case
of the quadrupole field most of the structure is described by a very small number of modes, due to the large correlation
length. This is consistent with previous observations to this effect [1, 48]. A much greater number of independent
modes is available from the dipole field, which is sensitive to peculiar velocities with a small correlation length. We
stress, however, that the modes probed by the remote dipole and quadrupole are different than those probed by the
primary CMB on large angular scales, as they involve information from the volume enclosed by the past light cone,
as opposed to a projection onto the past light cone.

V. PROBES OF HOMOGENEITY

Above, we have established that the largest modes of the dipole and quadrupole fields can be measured with the
highest signal to noise. This suggests that for a set of experiments with significant sky overlap, the largest scale modes
will be the first to be detected. What might we learn from the measurement of these modes? Below, we explore two
possible applications that might be addressed with a first measurement: reconstructing the primordial CMB dipole
and testing statistical homogeneity of the observable Universe using the quadrupole field. Beyond the first detected
modes, with more information it becomes possible to use observations of the remote dipole and quadrupole fields to
reconstruct the primordial gravitational potential on large scales, as we also outline here.

A. Reconstructing the primordial CMB dipole

In contrast to the higher multipole moments of the CMB, the observed CMB dipole is determined almost entirely by
structure on non-linear scales, e.g. the peculiar velocity induced by solar-system, galactic, group, and cluster scales.
This is the kinematic CMB dipole. There is, however, a contribution from linear scales which we refer to here as the
“primordial dipole”. Note that there exists some ambiguity in the precise definition of the kinematic and primordial
dipole because the overall observed dipole can be boosted to any desired value, at the price of inducing aberration
of the primary CMB anisotropies (among other effects such as the moving lens effect; see Ref. [18] for an extended
discussion). Moreover, different observables will be sensitive to different components of the dipole. For example, the
lensing reconstruction method introduced in Ref. [58] and the spectral method described in [59, 60] are sensitive to
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the CMB dipole observed in a frame with vanishing aberration of the primary CMB anisotropies. In any case, the
various primordial dipoles can be unambiguously related back to the underlying inhomogeneities in one’s favourite
gauge (see e.g. [42]).

The first modes we might hope to reconstruct using kSZ tomography, v̄1
eff,1m at low redshift, provide a direct

measurement the local primordial dipole. To see this, first decompose the dipole field veff , defined by

veff(n̂e, χ) =
3

4π

∫
d2n̂ Θ(n̂e, χ, n̂) (n̂ · n̂e), (62)

into a weighted sum of local dipole components

veff(n̂e, χ) =

1∑
m=−1

vmeff(n̂e, χ)Y1m(n̂e), vmeff(n̂e, χ) ≡
∫
d2n̂ Θ(n̂e, χ, n̂)Y ∗1m(n̂) (63)

The m = −1, 0, 1 components of the locally observed CMB dipole are defied by vmeff(0) ≡ vmeff(n̂e, χ → 0). At
χ 6= 0, from this definition and Eq. 18 we see that veff,1m(χ) is an angular average of each component of the locally
observed dipole at fixed redshift. The bin-averaged dipole field v̄1

eff,1m introduces an additional smoothing of small-
scale velocities due to cancelation along the line of sight. In a redshift bin large enough to encompass linear scales,
the kinematic dipole components average out, and the estimator for the averaged dipole field is a measure of the
average primordial dipole in the volume. Because the correlation length of the averaged field is, by definition, large
on the scales of the redshift bin, a measurement of v̄1

eff,1m can be used as an estimate of the components of the locally
observed primordial CMB dipole. As we have seen in Sec. II C 3, it is possible to achieve a very high signal to noise
detection of v̄1

eff,1m, and therefore a high signal to noise detection of the local primordial dipole.

B. Testing statistical homogeneity using the CMB quadrupole

Using the Commander approach, the Planck 2015 data yield a central value for the power in the CMB quadrupole
of Cmeasured

2 = 253.6 µK [61]. This can be compared with the theoretical prediction for the best-fit ΛCDM model [62]
of CΛCDM

2 = 1123.6 ± 355.393 µK, where we have included the theoretical cosmic variance error bar. The measured
value is a factor of roughly 4 smaller than the theoretical prediction, and the degree to which the measured value for
the CMB quadrupole is anomalously low has been debated since it’s first measurement by the COBE satellite [63].
Although it is still entirely consistent to take the position that we simply inhabit a rare realization [64], the low
quadrupole may be a hint of new physics on ultra-large scales.

The first modes measured by pSZ tomography can be used to test the hypothesis that observers at other locations
measure a quadrupole consistent with our own, and therefore that we do not inhabit a special location in the Universe.

Because of the large correlation length of the quadrupole field (see appendix B), a measurement of aq,Eα2m , the ` = 2
moments of the E-mode type quadrupole field throughout most of the observable Universe, should closely match our
observed CMB quadrupole. However, the large correlation length is a consequence of the assumption of statistical
homogeneity on large scales. Therefore, this first measurement will provide an check of this assumption.

To quantify our ability to test statistical homogeneity in this way, we calculate the correlation coefficient in each
bin α between the CMB temperature quadrupole and the E mode remote quadrupole within ΛCDM. The correlation
coefficient is defined as:

rα` =
CTS,Eα`√

CTT` (CS,Eαα` +N v̄v̄
αα`)

(64)

where CTT` is the CMB temperature power spectrum, CS,Eαα` is the E mode remote quadrupole power spectrum (defined

in Eq. (59)), and CTS,Eα` is the cross power. We can forecast the expected error on the measurement of the correlation
coefficient in each bin using the Fisher matrix. A short calculation yields

Frr = (2`+ 1)
(1 + r2

α`)

(1− r2
α`)

2
(65)

where the one sigma error bar is estimated as σr =
√
F−1
rr . The expected correlation coefficient for ` = 2, as

well as the forecasted error (using the fiducial 6-bin configuration with CMB noise/beam and galaxy shot noise as
discussed above), is shown in Fig. 5. The large magnitude of the correlation coefficient demonstrates the high degree
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FIG. 5: The correlation coefficient Eq. (64) between the CMB temperature quadrupole and the E-mode type remote
quadrupole as a function of bin. We assume a 6 bin configuration with reconstruction noise on the remote

quadrupole expected by CMB S4 combined with LSST. The error bars are computed from the Fisher estimate in
Eq. (65).

of correlation between the CMB quadrupole and remote quadrupole in the first few redshift bins (reaching 94% in
the first bin). The small errors further indicate that the correlation can be reasonably precisely measured, at least in
the first few bins. A significant deviation from the expected correlation would be strong evidence for the violation of
statistical homogeneity. This idea can be explored further in the context of specific models, which we defer to future
work.

C. Primordial potential from the remote dipole and quadrupole fields

Above, we estimated a map of the remote CMB dipole and quadrupole fields, we now show how such a measurement
can be transformed into an estimate of the primordial potential at the same scales. This was first worked out in [65]
which we review and generalize here. To reconstruct the primordial potential Ψ, the appropriate coordinates for Ψ
are spherical harmonics with the observation point at the origin, i.e. Ψ(n̂, χ) =

∑
`m ψ`m(χ)Y`m(n̂). The dipole

and quadrupole fields depend primarily on linear scales, and one can therefore find a linear transformation between
a`m and the reconstructed underlying ψ`m. Assuming statistical isotropy and homogeneity, the transformation OX,α
is a function of ` and χ only, where X = v̄, q the dipole and quadrupole fields, and α labels the redshift bin. The

reconstructed primordial field is thus of form ψ̂`m(χ) =
∑
X,αO

X,α
` (χ)aX,α`m . One can find the transformation OX,α` (χ)

analytically by minimizing the expected deviation of the reconstructed field from the true ψ`m(χ) as

∂

∂OX,α` (χ)

〈
|
∑
X,α

OX,α` (χ)aX,α`m − ψ`m(χ)|2
〉

= 0 (66)

which is solved by
Oq,1` (χ)

Ov,1` (χ)
...

Oq,Nbins

` (χ)

Ov,Nbins

` (χ)

 =


C v̄v̄11` C v̄q11` C v̄v̄12` . . . C v̄q1Nbins`

Cqv̄11` Cqq11` Cqv̄12` . . . Cqq1Nbins`
...

...
...

. . .
...

Cqv̄Nbins1`
CqqNbins1`

Cqv̄Nbins2`
. . . CqqNbinsNbins`


−1


βq,1` (χ)

βv,1` (χ)
...

βq,Nbins

` (χ)

βv,Nbins

` (χ)

 (67)

where the CXYαβ` are the possible auto and cross power spectra of the binned dipole and quadrupole fields and

βX,α` (χ) = 〈ψ`m(χ)aXα`m
∗〉 =

2

π

∫
k2dkP (k)∆X,α

` (k)j`(kχ) (68)
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where ∆X,α
` (k) are the transfer functions for X = q, v̄ in redshift bin α and P (k) is the primordial scalar power

spectrum. Applying these equations, one can in principle assemble a 3d map of the primordial potential on large
scales. One can incorporate the measurements of the low multipole temperature and polarization moments of the
primary CMB with the information from the dipole and quadrupole fields to improve the reconstruction. We explore
this reconstruction problem further in future work.

VI. CONCLUSIONS

In this paper we presented a method to extract large-scale information about the universe from the kinetic and
polarized Sunyaev Zel’dovich effects in a unified way. We constructed optimal quadratic estimators for the remote
dipole and quadrupole fields using the cross correlation of CMB and large scale structure. For the calculation of the
signal we used the results from our previous publications [42, 44], except for the tensor contribution to the quadrupole
field which we added in appendix D. This gives a complete description of these large-scale observables which we will
explore further for cosmological applications in the future. In the case of the kSZ effect, we found that the dipole
field can be reconstructed mode by mode over a variety of scales with high fidelity using next generation experiments
such as CMB S4 and LSST.

In the case of the remote quadrupole field an equivalent experiment in polarization can reconstruct the remote
quadrupole field from scalar perturbations mode by mode on the largest scales with a signal to noise of order 1 to 10.
Although the pSZ signal is far smaller, this is possible because the noise from the primary and lensing B-mode CMB
polarization is correspondingly small. For the remote quadrupole field from tensors we found that the same setup is
not enough for a mode by mode reconstruction (but might be enough for a first detection), even with the optimistic
assumption of r = 0.1. However a ten times reduced CMB noise level would provide a mode by mode reconstruction
of the remote B-mode quadrupole field from tensors for ` <∼ 4.

We have also presented some of the first applications of a measurement of the remote dipole and quadrupole fields.
In particular, it should be possible to measure the local CMB dipole sourced by linear scales (what we refer to as the
”primordial dipole”) and to test the statistical homogeneity of the Universe with the first modes detected at the lowest
redshifts reconstructed using kSZ and pSZ tomography respectively. A high fidelity reconstruction of the dipole and
quadrupole fields also opens the possibility of reconstructing a 3-D map of the primordial potential and the tensor
field, and we presented a generalization of the reconstruction methods of Ref. [65] that would be well-suited to this
task.

The results of this paper illustrate the exciting opportunity to learn more about the largest observable scales from
the statistics of small-scale fluctuations. The next generation of CMB experiments is well-poised to take advantage
of the this opportunity, motivating a more realistic suite of forecasts tailored to these efforts, and further exploration
of the range of early-Universe and large-scale physics that can be probed with new observables. We hope that our
results can contribute to a new sense of optimism for the prospects of learning a great deal more about the early
Universe in the not too distant future.
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Appendix A: Transfer function for the dipole field

In this appendix, we summarize the contributions to the transfer function for the dipole field ∆v
` (k, χ) appearing

in Eq. 18. From Ref. [42], we have:

∆v
` (k, χ) ≡ 4π i`

2`+ 1
Kv(k, χ) [` j`−1(kχ)− (`+ 1)j`+1(kχ)]T (k). (A1)
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FIG. 6: Ratio of the binned power spectrum C v̄v̄l of the dipole field computed using only the peculiar velocity term
(the third term in Eq. (A3)) to the full remote dipole power spectrum.

Here, we encorporate the transfer function T (k) for the Newtonian potential (e.g. evaluated using the BBKS fitting
function [66]), and the dipole field receives contributions from the Sachs Wolfe (SW), Integrated Sachs Wolfe (ISW),
and Doppler effects through the kernel Kv(k, zχ):

Kv(k, χ) ≡ [KD(k, χ) +KSW(k, χ) +KISW(k, χ)] . (A2)

where

KD(k, χ) ≡ kDv(χdec)j0(k∆χdec)− 2kDv(χdec)j2(k∆χdec)− kDv(χ), (A3)

KSW(k, χ) ≡ 3

(
2DΨ(χdec)− 3

2

)
j1(k∆χdec), (A4)

KISW(k, χ) ≡ 6

∫ ae

adec

da
dDΨ

da
j1(k∆χ(a)). (A5)

Here, χdec is the total distance to decoupling and ∆χdec = χdec−χ is the distance from χ to decoupling. Dv(χ) is the
velocity growth function, and DΨ(χ) is the potential growth function for long-wavelength modes, which are defined
as:

Ψ(x, t) = DΨ(t)Ψi(x), v = −Dv(t)∇Ψi(x). (A6)

Approximate forms for these growth functions can be found in Refs. [41, 42]. The leading order behavior of Kv(k, χ)
in the limit where k → 0 is cubic in k, not linear as would be expected from the individual kernels Eq. A3-A5. This
is a consequence of diffeomorphism invariance, as discussed in Ref. [42].

The dominant contribution to the remote dipole field on all but the very largest scales is the local doppler contribu-
tion in Eq. (A3). In this limit, the remote dipole field reduces to the line-of-sight peculiar velocity field. To illustrate
this, we have calculated the remote dipole power spectrum including all the terms above, as well as only using only
the peculiar velocity term (the third term in Eq. (A3)). The ratio of these two power spectra is shown in Fig. A4. We
see that the peculiar velocity term constitutes the majority of the signal, with the additional components contributing
at the ∼ 10% level on the largest scales.

Appendix B: Red shift correlations and bin averaging

Our quadratic estimators are sensitive to the bin-averaged multipole moments of the dipole field and quadrupole
field. To understand the physical meaning of these quantities and their power spectra, it is helpful to examine the
redshift correlation function of the un-averaged fields; several examples are show in Fig. 7. The top plot shows the un-
averaged correlation function of the L = 2 mode of the remote quadrupole field from scalar perturbations. It is clear
from this plot that the quadrupole field at L = 2 within a redshift bin (here we used 6 bins) is essentially constant.
This property holds over a variety of multipoles, as discussed in Ref. [44]. Therefore the bin-average quadrupole field
for all practical purposes can be identified with the un-averaged field.
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FIG. 7: The correlation function of the dipole and quadrupole field is plotted at (χα, χα + δχ), where χα is fixed to
be the midpoint of a redshift bin. The redshift values are given across the top axis, and the corresponding comoving
distance values along the bottom axis, consistent with the binning in table I. Specifically, the different curves from

left to right fix χα = 0.16, 0.48, 0.79, 1.11, 1.43, 1.75, in units of H−1
0 . Top: Correlation of the quadrupole field

q2M (χ), which has a very large correlation length. Middle: Correlation of the dipole field v1M (χ). The correlations
are smaller than in the quadrupole case because the effective velocities are dominated by the Doppler effect.
Bottom: Correlation of the dipole field v5M (χ). The correlation length is much smaller than the bin size, in

particular for low redshift bins.

The second plot shows the un-averaged L = 1 moment of the dipole field. Here the correlation length is much
smaller, due to the Doppler contribution from small-scale velocities. If the correlation length is smaller than the
bin size then, due to cancellations within the bin, the averaged field will have substantially smaller power than the
un-averaged field. The bottom plot shows that for L = 5, in particular for the low red shift bins, this condition is
strongly violated, and we expect a much smaller signal in the mean field. We quantify this effect on the signal in
Fig. 8 by comparing the un-averaged and averaged power spectra. Here, it can be seen that at L = 1, the power in
the averaged and un-averaged dipole field is comparable for both a 6-bin and 24-bin configuration, while for L = 5
there is a substantial difference, especially for the 6-bin case. This effect was also seen in the simulations performed
in Ref. [42]. These results illustrate the importance of distinguishing the bin-averaged and un-averaged power when
characterizing the dipole field signal.
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FIG. 8: Power spectrum Cvvl of the dipole field as a function of red shift χ. We compare Cvvl , the power evaluated
in the bin center, with C v̄v̄l , the power of the average field. At L = 1 the average field is comparable in size to the

unaveraged field, while for L = 5 the cancellations are important. The effect of cancelations is expectedly larger for
larger bins.

Appendix C: Scalar contributions to the remote quadrupole

In this appendix, we review the contributions to the quadrupole field transfer function ∆q
`(k, χ) appearing in Eq. 53.

From Ref. [44], we have

∆q
`(k, χ) = −5i`

√
3

8

√
(`+ 2)!

(`− 2)!

j`(kχ)

(kχ)2
T (k) [GSW(k, χ) + GISW(k, χ) + GDoppler(k, χ)] , (C1)

Note that this expression is zero for ` = 0 and ` = 1. The various doppler kernels are given by

GSW(k, χ) =− 4π

(
2DΨ(χdec)− 3

2

)
j2(k∆χdec),

GISW(k, χ) =− 8π

∫ ae

adec

da
dDΨ

da
j2(k∆χ(a)),

GDoppler(k, χ) =
4π

5
kDv(χdec) [3j3(k∆χdec)− 2j1(k∆χdec)] . (C2)

where the growth functions DΨ and Dv are as defined in Appendix A.

Appendix D: Tensor contributions to the remote quadrupole

We present here the detailed derivation of the primordial tensor modes contributions to the CMB temperature
quadrupole, used in Sec. III D 1. The CMB quadrupole as seen by an electron along our past light cone in the n̂e
direction at comoving distance χ is given by

qmeff(n̂e, χ) =

∫
d2n̂

[
ΘS(χ, n̂e, n̂) + ΘT (χ, n̂e, n̂)

]
Y ∗2m(n̂). (D1)

Let us focus on the anisotropy due to tensors, ΘT (χ, n̂e, n̂), and define

qm,Teff (n̂e, χ) =

∫
d2n̂ ΘT (χ, n̂e, n̂) Y ∗2m(n̂). (D2)

It will be helpful to go to Fourier space,

ΘT (χ, n̂e, n̂) =

∫
d3k

(2π)3
ΘT (k, n̂)eiχn̂e·k̂, (D3)
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and then decompose into + and × components

ΘT (k, µ, φ) = ΘT
+(k, µ)(1− µ2) cos (2φ) + ΘT

×(k, µ)(1− µ2) sin (2φ), (D4)

where µ ≡ k̂ · n̂. These two components can further be expanded into multipoles using

ΘT
(+,×)(k, µ) =

∑
`

(−i)`(2`+ 1)P`(µ)ΘT
`,(+,×)(k), (D5)

where P` are the Legendre polynomials. The latter can be expressed in terms of spherical harmonics as

P`(n̂ · k̂) =
4π

2`+ 1

∑̀
m=−`

Y ∗`m(n̂) Y`m(k̂). (D6)

For k̂ = ẑ, µ is simply equal to cos θ with (θ, φ) being the angles associated with the n̂ vector. In this case, the
decomposition (D4) can be easily rewritten in terms of spherical harmonics using the following relations

(1− µ2) cos (2φ) = sin2 θ cos (2φ) = 2

√
2π

15
[Y2,2(n̂) + Y2,−2(n̂)], (D7)

(1− µ2) sin (2φ) = sin2 θ sin (2φ) =
2

i

√
2π

15
[Y2,2(n̂)− Y2,−2(n̂)]. (D8)

For a general wavenumber k, this result can be actively rotated using the Wigner rotation operator D̂. The rotation

of spherical harmonics satisfies D̂Y`m =
∑
m′′ D`

m′′mY`m′′ , where the Wigner rotation matrix is related to the spin-
weighted spherical harmonics according to

D`
ms(φk, θk, 0) = (−1)m

√
4π

2`+ 1
sY`,−m(k̂). (D9)

The expressions in Eqs. (D7)-(D8) generalize to

(1− µ2) cos (2φ) =
4π

5

√
2

3

∑
m′′

(−1)m
′′
[2Y2,−m′′(k̂) + −2Y2,−m′′(k̂)]Y2m′′(n̂), (D10)

(1− µ2) sin (2φ) =
4π

5i

√
2

3

∑
m′′

(−1)m
′′
[2Y2,−m′′(k̂)− −2Y2,−m′′(k̂)]Y2m′′(n̂). (D11)

This allows for ΘT (k, n̂) to be expressed entirely in terms of spherical harmonics:

ΘT (k, n̂) =
(4π)2

5

√
2

3

∑
`′,m′,m′′

(−i)`
′
(−1)m

′′
Y ∗`′m′(k̂) Y`′m′(n̂)

×
[(

2Y2,−m′′(k̂) + −2Y2,−m′′(k̂)
)
Y2m′′(n̂) ΘT

`′,+(k)

− i
(

2Y2,−m′′(k̂)− −2Y2,−m′′(k̂)
)
Y2m′′(n̂) ΘT

`′,×(k)
]
. (D12)

Our interest is determining the contribution of ΘT
(+,×)(k, n̂) to the effective quadrupole qm,Teff (n̂e, χ). One can verify

that when Eq. (D12) is replaced into Eq. (D3) and then into Eq. (D2), there will be a product of 5 spherical harmonics:

three with argument n̂ and two with argument k̂. The integral over n̂ is performed using the triple product identity
for the Wigner 3-j symbols. This gives∫

d2n̂ Y`′m′(n̂)Y2m′′(n̂)Y ∗2m(n̂) = (−1)m
√

(2`′ + 1)(5)(5)

4π

(
`′ 2 2

m′ m′′ −m

)(
`′ 2 2

0 0 0

)
. (D13)

Note that the selection rules for the 3-j symbols above imply that we need `′ = 0, 2, 4 and m′ + m′′ −m = 0. The

products of spherical harmonics with argument k̂ can be simplified using the identity,

s1Y`1m1
(n̂) s2Y`2m2

(n̂) =
∑
S,L,M

(−1)`1+`2+L

√
(2`1 + 1)(2`2 + 1)(2L+ 1)

4π

×

(
`1 `2 L

m1 m2 M

)(
`1 `2 L

s1 s2 S

)
SY
∗
LM (n̂),

(D14)
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which when applied on the + component results in,

Y ∗`′m′(k̂)
[

2Y2,−m′′(k̂) + −2Y2,−m′′(k̂)
]

= (−1)m
′ ∑
S,L,M

(−1)`
′+L

√
(2`′ + 1)(5)(2L+ 1)

4π

(
`′ 2 L

−m′ −m′′ M

)

×

[(
`′ 2 L

0 2 S

)
+

(
`′ 2 L

0 −2 S

)]
SY
∗
LM (k̂).

(D15)

Here the selection rules imply S = ±2. The sum over the first Wigner 3-j symbol in Eq. (D13) and the first Wigner
3-j symbol in Eq. (D15) can be simplified using orthogonality relations, yielding

∑
m′,m′′

(
`′ 2 2

m′ m′′ −m

)(
`′ 2 L

−m′ −m′′ M

)
=(−1)`

′ δL2δMm

5
. (D16)

Eqs. (D13), (D15), (D16) lead to the following expression for the + component of the tensor contribution to the
effective quadrupole

qm,Teff,+(n̂e, χ) =

∫
d3k

(2π)3
eiχn̂e·k̂

(4π)2

5

√
2

3

∑
`′=0,2,4

(−i)`
′ (2`′ + 1)(5)

4π
ΘT
`′,+(k)

×

(
`′ 2 2

0 0 0

)(
`′ 2 L

0 2 −2

)[
2Y
∗
2m(k̂) + −2Y

∗
2m(k̂)

]
=

∫
d3k

(2π)3
eiχn̂e·k̂ 4π

√
6

[
1

15
ΘT

0,+(k) +
2

21
ΘT

2,+(k) +
1

35
ΘT

4,+(k)

] [
2Y
∗
2m(k̂) + −2Y

∗
2m(k̂)

]
, (D17)

where we evaluated the non-zero 3-j symbols at `′ = 0, 2, 4. The expression for the × component is obtained with the

replacements ΘT
`,+(k)→ ΘT

`,×(k) and
[

2Y
∗
2m(k̂) + −2Y

∗
2m(k̂)

]
→ i

[
2Y
∗
2m(k̂)− −2Y

∗
2m(k̂)

]
.

The next step is to express the `th moment due to tensor perturbations as

ΘT
`,(+,×)(k) = −1

2

∫ ae

adec

da
dh(+,×)

da
j`(k∆χ(a)), (D18)

where ∆χ(a) = −
∫ a
ae
da′[H(a′)a′2]−1 and the metric perturbations, h(+,×), are defined as

gij = a2

 1 + h+ h× 0

h× 1− h+ 0

0 0 1

 . (D19)

When the result in Eq. (D18) is replaced into the quadrupole (D17), the recursion relations for the spherical Bessel
functions, (2` + 1)j`(x) = xj`−1(x) + xj`+1(x), allow for a simplification. If applied twice, the recursion relations
imply,

j`+2(x)

(2`+ 1)(2`+ 3)
+ 2

j`(x)

(2`+ 3)(2`− 1)
+

j`−2(x)

(2`+ 1)(2`− 1)
=
j`(x)

x2
, (D20)

which yields a simple expression for the quadrupole,

qm,Teff (n̂e, χ) = qm,Teff,+(n̂e, χ) + qm,Teff,×(n̂e, χ)

=

∫
d3k

(2π)3
eiχn̂e·k̂

{
GqT,+(k, χ)

[
2Y
∗
2m(k̂) + −2Y

∗
2m(k̂)

]
+ iGqT,×(k, χ)

[
2Y
∗
2m(k̂)− −2Y

∗
2m(k̂)

]}
, (D21)

with the kernel defined as

GqT,(+,×)(k, χ) ≡ 2π
√

6

∫ adec

ae

da
dh(+,×)

da

j2(k∆χ(a))

[k∆χ(a)]2
. (D22)



21

It will be convenient to define a total effective quadrupole as the sum of the projections on the spin-weighted basis:

q̃±,Teff (n̂e, χ) ≡
2∑

m=−2

qm,Teff (n̂e, χ) ±2Y2m (n̂e) . (D23)

We also will make use of the multipolar expansion of this quantity

q̃±,Teff (n̂e, χ) =
∑
`m

(
aq,E`m (χ)± iaq,B`m (χ)

)
±2Y`m (n̂e) . (D24)

This relationship can be inverted to solve for the multipole coefficients,

aq,E`m (χ)± iaq,B`m (χ) =

∫
d2n̂e q̃

±,T
eff (n̂e, χ) ±2Y

∗
`m(n̂e) . (D25)

Using the result from Eqs. (D21) and (D23), Eq. (D25) becomes

aq,E`m (χ)± iaq,B`m (χ) =

∫
d2n̂e

2∑
m′=−2

∫
d3k

(2π)3
eiχk·n̂e

{
GqT,+(k, χ)

[
2Y
∗
2m′(k̂) + −2Y

∗
2m′(k̂)

]
+ i GqT,×(k, χ)

[
2Y
∗
2m′(k̂)− −2Y

∗
2m′(k̂)

]}
±2Y2m′ (n̂e) ±2Y

∗
`m (n̂e). (D26)

Expanding the exponential with the identity,

eiχk·n̂e =
∑
L,M

4π iL jL(kχ) Y ∗LM (k̂)YLM (n̂e), (D27)

there will be five spherical harmonics: three with argument n̂e and two with argument k̂. The former yield∫
d2n̂e ±2Y2m′ (n̂e) ±2Y

∗
`m (n̂e)YLM (n̂e) = (−1)m

√
(5)(2`+ 1)(2L+ 1)

4π

×

(
` 2 L

−m m′ M

)(
` 2 L

±2 ∓2 0

)
.

(D28)

For the remaining two spherical harmonics with argument k̂, we can use the identity in Eq. (D14) to express them as
just one spherical harmonic:[

2Y
∗
2m′(k̂)± −2Y

∗
2m′(k̂)

]
Y ∗LM (k̂) =(−1)M+m′ ∑

L′,M ′

√
5(2L+ 1)(2L′ + 1)

4π

[
2Y
∗
L′M ′(k̂)± (−1)L+L′

−2Y
∗
L′M ′(k̂)

]

×

(
L 2 L′

−M −m′ M ′

)(
L 2 L′

0 2 −2

)
. (D29)

When the results of equations (D28) and (D29) are combined in (D26), the four Wigner 3-j symbols can be simplified
as follows: ∑

M,m′

(−1)M+m′+m

(
` 2 L

−m m′ M

)(
L 2 L′

−M −m′ M ′

)
=
δ`L′δmM ′

2`+ 1
, (D30)

where we used the selection rule of the 3-j symbols M +m′ −m = 0, and(
` 2 L

±2 ∓2 0

)(
L 2 `

0 2 −2

)
= (−1)`+L

(
` 2 L

±2 ∓2 0

)(
` 2 L

−2 2 0

)
=

(
` 2 L

±2 ∓2 0

)(
` 2 L

2 −2 0

)
. (D31)

The result thus far reads,

aq,E`m (χ)± iaq,B`m (χ) =

∫
d3k

(2π)3

∑
L

5iL(2L+ 1)

(
` 2 L

2 −2 0

)(
` 2 L

±2 ∓2 0

)
jL(kχ)

×
{
GqT,+(k, χ)

[
2Y
∗
`m(k̂) + (−1)L+`

−2Y
∗
`m(k̂)

]
− iGqT,×(k, χ)

[
2Y
∗
`m(k̂)− (−1)L+`

−2Y
∗
`m(k̂)

]}
. (D32)
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This expression can be further simplified with the selection rule | `− 2 |≤ L ≤ `+ 2. This implies that for all ` ≥ 2,
only the terms L = `−2, `−1, `, `+ 1, `+ 2 will contribute. The 3-j symbols can then be expressed in each case as:

iL(2L+ 1)

(
` 2 L

2 −2 0

)(
` 2 L

±2 ∓2 0

)
jL(kχ)

∣∣∣∣∣
L=`+2

=− i` `(`− 1)

4(2`+ 1)(2`+ 3)
j`+2(kχ) (D33)

iL(2L+ 1)

(
` 2 L

2 −2 0

)(
` 2 L

±2 ∓2 0

)
jL(kχ)

∣∣∣∣∣
L=`+1

=± i`+1 (`− 1)

2(2`+ 1)
j`+1(kχ) (D34)

iL(2L+ 1)

(
` 2 L

2 −2 0

)(
` 2 L

±2 ∓2 0

)
jL(kχ)

∣∣∣∣∣
L=`

= i`
3(`− 1)(`+ 2)

2(2`− 1)(2`+ 3)
j`(kχ) (D35)

iL(2L+ 1)

(
` 2 L

2 −2 0

)(
` 2 L

±2 ∓2 0

)
jL(kχ)

∣∣∣∣∣
L=`−1

=∓ i`+1 (`+ 2)

2(2`+ 1)
j`−1(kχ) (D36)

iL(2L+ 1)

(
` 2 L

2 −2 0

)(
` 2 L

±2 ∓2 0

)
jL(kχ)

∣∣∣∣∣
L=`−2

=− i` (`+ 1)(`+ 2)

4(2`+ 1)(2`− 1)
j`−2(kχ) (D37)

Some recursion relations are now required:

j`(x) =
x

2`+ 1
[j`−1(x) + j`+1(x)] , (D38)

j′`(x) =
1

2`+ 1
[`j`−1(x)− (`+ 1)j`+1(x)] , (D39)

j`(x)

x2
=

j`−2(x)

(2`+ 1)(2`− 1)
+ 2

j`(x)

(2`+ 3)(2`− 1)
+

j`+2(x)

(2`+ 1)(2`+ 3)
, (D40)

j′`(x)

x
=

`j`−2(x)

(2`+ 1)(2`− 1)
+

j`(x)

(2`+ 3)(2`− 1)
− (`+ 1)j`+2(x)

(2`+ 1)(2`+ 3)
, (D41)

j′′` (x) =
`(`− 1)j`−2(x)

(2`+ 1)(2`− 1)
− (2`2 + 2`− 1)j`(x)

(2`+ 3)(2`− 1)
+

(`+ 1)(`+ 2)j`+2(x)

(2`+ 1)(2`+ 3)
. (D42)

The first two relations allow for the L = `± 1 terms to be written as

∓ i`+1 (`+ 2)

2(2`+ 1)
j`−1(kχ)± i`+1 (`− 1)

2(2`+ 1)
j`+1(kχ) = ∓ i

`+1

2

[
2j`(kχ)

kχ
+

1

k

dj`(kχ)

dχ

]
. (D43)

A simplification occurs for the L = `− 2, `, `+ 2 terms relying on the last three recursion relations,

− `(`− 1)

4(2`+ 1)(2`+ 3)
j`+2 −

(`+ 1)(`+ 2)

4(2`+ 1)(2`− 1)
j`−2(kχ) +

3(`+ 2)(`− 1)

2(2`− 1)(2`+ 3)
j`(kχ) (D44)

= − 1

4k2

d2j`(kχ)

dχ2
− 1

k2χ

dj`(kχ)

dχ
+ j`(kχ)

(
1

4
− 1

2(kχ)2

)
.

Combing the above relations one finds:

aq,E`m (χ)± iaq,B`m (χ) =

∫
d3k

(2π)3
5i`
{
GqT,+(k, χ)

[
∓ iA`(k, χ)

[
2Y
∗
`m(k̂)− −2Y

∗
`m(k̂)

]
+B`(k, χ)

[
2Y
∗
`m(k̂) + −2Y

∗
`m(k̂)

] ]
+ i GqT,×(k, χ)

[
∓ iA`(k, χ)

[
2Y
∗
`m(k̂) + −2Y

∗
`m(k̂)

]
+B`(k, χ)

[
2Y
∗
`m(k̂)− −2Y

∗
`m(k̂)

] ]}
,

(D45)

where

A`(k, χ) ≡ 1

2

(
2j`(kχe)

kχe
+

1

k

d

dχe
j`(kχe)

)
, (D46)

B`(k, χ) ≡ − 1

4k2

d2j`(kχ)

dχ2
− 1

k2χ

dj`(kχ)

dχ
+ j`(kχ)

(
1

4
− 1

2(kχ)2

)
. (D47)
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FIG. 9: Power spectra of primordial tensor modes contributions to the CMB temperature quadrupole from E-modes

(CT,E` (χ, χ′), plain lines) and B-modes (CT,B` (χ, χ′), dashed lines), evaluated at the same redshift, χ = χ′ = χα,
taken to be the midpoints of the bins given in table I. The power increases with redshift, and is roughly similar for

E- and B-modes.

From Eq. (D45) one easily infers the expressions for aq,E`m and aq,B`m

aq,E`m (χ) =

∫
d3k

(2π)3
5i`B`(k, χ)

{
GqT,+(k, χ)

[
2Y
∗
`m(k̂) + −2Y

∗
`m(k̂)

]
+ i GqT,×(k, χ)

[
2Y
∗
`m(k̂)− −2Y

∗
`m(k̂)

]}
, (D48)

aq,B`m (χ) =

∫
d3k

(2π)3
5i`A`(k, χ)

{
−GqT,+(k, χ)

[
2Y
∗
`m(k̂)− −2Y

∗
`m(k̂)

]
− i GqT,×(k, χ)

[
2Y
∗
`m(k̂) + −2Y

∗
`m(k̂)

]}
. (D49)

It follows from these definitions that

CT,E` (χ, χ′) =〈aq,E`m (χ)aq,E,∗`′m′ (χ′)〉 δ``′δmm′

= 2

∫
k2 dk

(2π)3
50 Ph(k) IqT (k, χ)IqT (k, χ′) B`(k, χ)B`(k, χ

′) δ``′δmm′ (D50)

CT,B` (χ, χ′) =〈aq,B`m (χ)aq,B,∗`′m′ (χ′)〉 δ``′δmm′

= 2

∫
k2 dk

(2π)3
50 Ph(k) IqT (k, χ)IqT (k, χ′) A`(k, χ)A`(k, χ

′) δ``′δmm′ (D51)

CT,EB` (χ, χ′) =〈aq,E`m (χ)aq,B,∗`′m′ (χ′)〉 = 0. (D52)

Fig. 9 shows CT,E` (χ, χ), in plain lines, and CT,B` (χ, χ), in dashed lines, evaluated in the same redshift bin
(see table I). In deriving these expressions we have used the fact that the + and × polarizations do not mix
(〈GqT,+(k, χ) GqT,×(k′, χ′)〉 = 0), and we have rewritten the kernel explicitly in terms of the primordial tensor power

spectrum Ph. To this end, one can define a tensor growth function, DT , as

h(+,×)(k, a) ≡ DT (k, a)hi,(+,×)(k) (D53)

where hi,(+,×)(k) is the primordial tensor perturbation. This allows for the kernel in Eq. (D22) to be rewritten as

GqT,(+,×)(k, χ) = 2π
√

6 hi,(+,×)(k)

∫ adec

ae

da
dDT (k, a)

da

j2(k∆χ(a))

[k∆χ(a)]2
≡ hi,(+,×)(k) IqT (k, χ), (D54)
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hence one finds

〈GqT,(+,×)(k, χ) GqT,(+,×)(k
′, χ′)〉 = (2π)3δ(3) (k− k′) Ph(k) IqT (k, χ) IqT (k, χ′). (D55)
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