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In anticipation of a LIGO detection of a black hole/neutron star merger, we expand on the
intriguing possibility of an electromagnetic counterpart. Black hole/Neutron star mergers could be
disappointingly dark since most black holes will be large enough to swallow a neutron star whole,
without tidal disruption and without the subsequent fireworks. Encouragingly, we previously found a
promising source of luminosity since the black hole and the highly-magnetized neutron star establish
an electronic circuit – a black hole battery. In this paper, arguing against common lore, we consider
the electric charge of the black hole as an overlooked source of electromagnetic radiation. Relying on
the well known Wald mechanism by which a spinning black hole immersed in an external magnetic
field acquires a stable net charge, we show that a strongly-magnetized neutron star in such a binary
system will give rise to a large enough charge in the black hole to allow for potentially observable
effects. Although the maximum charge is stable, we show there is a continuous flux of charges
contributing to the luminosity. Most interestingly, the spinning charged black hole then creates its
own magnetic dipole to power a black hole pulsar.

I. INTRODUCTION

The LIGO collaboration recently announced the first
detection of gravitational waves from a neutron star (NS)
collision [1]. Stepping on the heels of the gravitational
wave train, all manner of fireworks are anticipated when
the dense neutron-star matter crushes together. Antici-
pations were beautifully confirmed since the FERMI and
INTEGRAL satellites detected a gamma-ray burst from
the same direction [2–4]. Over the next two weeks, dozens
of instruments and a significant fraction of the astro-
nomical community directed their focus and witnessed
pyrotechnics in the aftermath across the electromagnetic
(EM) spectrum [5]. The era of multi-messenger astron-
omy has begun spectacularly.

At the other extreme, black hole (BH) collisions are ex-
pected to be spectacularly dark. The LIGO BH mergers
exhibited no detectable electromagnetic counterpart, al-
though there were intriguing gamma-ray signatures from
near GW150914 and GW170104 ([6–8, and see D’Orazio
and Loeb [9] and references therein], that may or may not
have been correlated with the gravitational-wave events.
BHs are empty space and their merger will be invisible,
unless dressed in ambient debris. The BH collisions were
the most powerful events detected since the big bang and
yet it is possible that none of the energy came out in the
electromagnetic spectrum. All of the energy emanated
in the darkness of gravitational waves.

Next in the compact object combinatorics will in-
evitably be black hole/neutron star (BH/NS) collisions.
While the tidal disruption of the NS in these systems
could occur for the smallest BH partners, resulting in

a short gamma-ray burst [e.g., 10, 11], BHs larger than
∼ 8M�, will swallow the NS whole – an expectation fur-
ther endorsed by the large BHs LIGO observed [12–15].
Without tidal disruption, there is not an obvious source
of light.

Fortunately, there is another mechanism for the sys-
tem to light up: the Black Hole Battery [16–18]. NSs are
tremendous magnets. As they whip around a BH com-
panion, the orbiting magnet creates a source of electric-
ity. How this electricity is channeled into a light element
remains somewhat uncertain although we have suggested
several viable channels, including synchro-curvature ra-
diation, a fireball, and a fast radio burst [19, 20].

In this article we argue that another largely overlooked
EM channel requires further exploration: BH charge.
Historically, a dismissive argument has been made that a
charged BH will discharge essentially instantaneously, the
electromagnetic force being so excessively strong. Any
errant charges will easily and swiftly be absorbed from
the interstellar medium to counter the charge of the BH,
the argument goes. However, as shown in an elegant pa-
per by Wald in 1974 [21], a BH immersed in a magnetic
field actually favors charge energetically. In other words,
the BH simply will acquire stable charge if it spins in
a magnetic field. We therefore expect a BH battery –
a BH pierced by the field lines of an orbiting NS mag-
net – to acquire a significant charge of the Wald value,
QW = 2BoaM where Bo is the strength of the NS dipole
field at the location of the BH of mass M and a is the
spin of the hole. Since magnetic dipoles drop off quickly,
by r−3, the Wald charge is small until the final stages
of merger. See refs. [22–24] for interesting recent stud-
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ies of electromagnetic counterparts in charged BH/BH
mergers, ref. [25] for work on gravitational collapse to
a charged BH, and ref. [26] which considered the Wald
mechanism applied to the central galactic BH.

The no-hair theorem is often misinterpreted as enforc-
ing zero magnetic fields on a BH in vacuum. Actu-
ally, and more sensibly, the no-hair theorem ensures that
the only magnetic field a BH can support is consistent
with a monopole of electric charge. A spinning electric
charge naturally creates a magnetic dipole. So a spinning
charged BH has all of the attributes of a pulsar: spin, a
magnetic field, and a strong electric field to create a mag-
netosphere. We predict the formation of a short-lived and
erratic BH pulsar prior to merger that could well survive
briefly post-merger before the magnetosphere and charge
dissipate.

The characteristics of the BH pulsar follow from the
NS magnetic field. The Wald charge on a BH immersed
in an external NS dipole field, which drops off as the
cubed distance between the two, r−3, would be

QW ≈ 10−7M
( a
M

)( M

10M�

)2(
BNS

1012G

)(
RNS
r

)3

.

(1)
Here BNS is the NS’s magnetic field at the surface of
the NS and RNS is the radius of the NS. Note that r ≥
RNS . At it’s maximum, QW,max ∼ 10−7M (which comes
to ≈ 1024 statCoulombs), so we can still use the Kerr
solution. Assuming a NS with a mass of 1.4M� and
angular spin frequency of ΩNS = 0.1 seconds, we find
that when the BH enters the light cylinder of the NS,
r = RLC = c/ΩNS, the charge is 10 billion times smaller,
QLC ∼ 10−10QW,max. Over the next tmerger − tLC ∼ 3
years the charge increases. In the final minute of inspiral,
when the binary is emitting at >∼ 17 Hz, in the LIGO
band, the charge increases by a factor of a million. As
r → RNS , Q → 1033e which is only about 103 kgs of
electrons.

For reassurance that the black hole actually has time
to acquire charge, we estimate the charging timescale.
While there are lots of uncertainties in such an assess-
ment, we consider an initially vacuum configuration that
siphons charge from the magnetosphere of the NS. Then
the charging timescale can be estimated as the light
crossing time of the BH/NS system, r/c. The ratio of
GW inspiral time to the charging time is tGW/(r/c) ≈
1.5(r/(2GM/c2))3 for the fiducial binary values chosen
here, which confirms that the charging timescale is much
shorter than the inspiral timescale until merger. Longer
charging timescales could arise in non-vacuum, force-free
magnetospheres [e.g., 27]. However, because of the r3

dependence in the timescale ratio above, one would need
the charging timescale to beO(103) times longer than the
light crossing time to mitigate the BH charge in the last
second of inspiral. This estimate is encouraging, suggest-
ing that the black hole would have time to charge before
merger.

Once charged, the spinning black hole supports a mag-

netic dipole field. Take the magnetic dipole moment of
the BH to be of order m ∼ QWM . The BH B-field is
comparable to, though of course less than, the field in
which it’s submerged. We can estimate the magnitude of
the B-field as BBH ∼ m/r3. Then using QW = 2BoaM
with Bo given by the dipole field of the NS at the location
of the BH,

BBH =
1

2

( a
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)2
BNS
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RNS
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)3(
2M

r

)3

(2)

One factor of a determines the magnitude of the Wald
charge while the other determines the magnitude of the
magnetic moment sourced by the spinning, charged BH.
Pulsars are hard to see far away (i.e. outside of the
galaxy), so we consider other channels for luminosity
than just the BH pulsar.

In addition to the BH pulsar, we suggest that the flux
of charge around the BH will create significant luminosi-
ties potentially detectable for the range of instruments
in the LIGO network. There are two clear opportunities
for particle acceleration: At the moment the BH charges
up pre-merger and the moment the BH discharges post-
merger. A third interesting possibility is the continual
fluxing of charges within the magnetosphere. Although
the Wald charge appears to be stable, negative and pos-
itive charges continue to course along field lines since in
vacuum E ·B 6= 0. And, as we discuss in §V, there is no
value of the charge for which E ·B = 0 everywhere.

As an order of magnitude estimate, we calculate the
total power that could be released if a fraction f of the
power associated with the Wald charge in the Wald elec-
tric field, EW , were released,

fQWEW c ≈ 2×1045erg s−1f

(
BNS

1012G

)2(
RNS
r

)6(
M

10M�

)2

.

where, for the electric field, we use the horizon Wald
electric field at the poles, within an immersing magnetic
field corresponding to a NS with surface mangetic feld
BNS , at a distance of 3RNS ,

EW ≈ 3.3× 1010statV/cm

(
BNS

1012G

)
. (3)

This is of order the largest electric field achievable in
the system and will decrease for larger BHs that cannot
approach as closely the magnetic field of the NS.

Now, it’s fair to expect that given the large electric
fields involved, the BH will create its own magnetosphere
[e.g., 28, 29], as well as enter the magnetosphere of the
NS. As the system transitions from vacuum to force-free,
the Wald argument no longer holds. Do force-free BH
systems also have charge and regions of particle acceler-
ation, as a neutron star pulsar does? That remains an
open question that we intend to investigate in full numer-
ical general relativity. Compellingly, we do show that
even the classic Blandford-Znajek solution has a small
charge. It’s also worth noting that the Goldreich-Julian
pulsar [30] is force-free and charged [31].
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Before we proceed, a quick comment on notation.
Where unambiguous, we’ll suppress index notation and
use a · to indicate a sum over 4-indices. Between vec-
tors this is unambiguous. For tensors, the order de-
termines the index to be summed. By example, for 2-
tensors (or pseudo-tensors) H and K, H · K sums the
final index of H over the first index of K. Explicitly
H ·K = HαµK

µβ . The placement of the free indices up
or down is ambiguous in this notation. A double ·· means
H · ·K = Hαµ ·Kµβ = HαµK

µα. We’ll resort to explicit
indices as required in context.

We’ll work as generally as possible but when the time
comes to restrict to the particular Kerr metric, we use
Boyer-Linquist coordinates:

ds2 =−
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2

− 4Mar sin2 θ

Σ
dtdφ , (4)

with

Σ = r2 + a2 cos2 θ ,

∆ = r2 + a2 − 2Mr . (5)

There are a number of useful metric quantities that
greatly ease calculations and that we compile in Ap-
pendix A.

The paper is outlined as follows. In Section II, we
review Wald’s argument for the charging up of a Kerr
BH in a uniform magnetic field (the Wald solution). In
Section III we present the equations of motion for test
charges in the Wald solution. In Section IV we consider
charge accretion in the Wald solution, at the poles of the
BH, and its need for generalization to charge accretion
in the global spacetime. Section V presents numerical
solutions to the equations of motion for test charges in
the Wald fields addressing the question of global charge
accretion. Section V also considers EM emission from the
acceleration of test charges in the Wald field. Section VI
briefly considers BH charge in the force free limit. Section
VII concludes.

II. REVIEW OF WALD’S ARGUMENT

We begin with Wald’s elegant EM solution around a
spinning BH immersed in a magnetic field that is uniform
at infinity [21]. The generalization including the backre-
action of the EM field on the geometry has been studied
in [32, 33]; see also [34] for a related analysis of a moving
BH. The vacuum Maxwell equations are

D · F = 0 (6)

for F = dA, where d is the usual exterior derivative and
A is the vector potential. Imposing the Lorentz gauge

D · A = 0, Maxwell’s equations for the vector potential
become

(D ·D)A = 0 . (7)

Wald’s solution leverages the Killing vectors ψ and η that
correspond to the axial symmetry and the stationarity of
the Kerr spacetime respectively. Killing vectors satisfy
Killing’s equation D(µψν) = 0, which we massage into a
new form after taking another covariant derivative

DµD(µψν) = DµDµψν +DµDνψµ = 0 . (8)

We swap the order of the derivatives in the second term
on the LHS using

DµDνψ
µ = DνDµψ

µ +Rµνψ
µ . (9)

For the vacuum Kerr solution Rµν = 0 and Killing’s
equation ensures D · ψ = 1

2g
µνD(µψν) = 0, which to-

gether render DµDνψ
µ = 0. Consequently, Eq. (8) is

just

(D ·D)ψ = 0 , (10)

which is precisely Eq. (7), Maxwell’s equations for the
EM vector potential in Lorentz gauge. Beautifully, the
Killing vectors are automatically solutions of Maxwell’s
equations. The vector potential is then a linear sum of
the Killing vectors ψ and η with constant coefficients.

Using Gauss’s Law and the geometric interpretation of
the Killing vectors [21], the coefficients can be chosen to
find the uncharged solution that asymptotes to a uniform
magnetic field Bo,

A =
1

2
Bo

(
ψ +

2a

M
η

)
. (11)

And in a few short steps we have the full EM solution
for an uncharged BH of spin a aligned with an otherwise
uniform magnetic field Bo.

III. EQUATIONS OF MOTION

To track the motion of charged particles we begin with
the super-Hamiltonian in terms of the canonical momen-
tum π [35]

H =
1

2
(π − qA) · (π − qA) . (12)

The 4-velocity is defined as u = ẋ, where a dot denotes
differentiation with respect to proper time τ so that u ·
u = −1. We also define p = mu so that p ·p = −m2. The
first of Hamilton’s equations gives

p =
∂H

∂π
= (π − qA) . (13)

The other of Hamilton’s equations yields the equations
of motion

(p ·D) p = qF · p , (14)
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where the RHS is the relativistic Lorentz force.
For a stationary, axisymmetric spacetime with a sta-

tionary, axisymmetric electromagnetic field, there are
two immediate constants of the motion. More formally,
for any Killing vector ψ, if the Lie derivative of the elec-
tromagnetic field vanishes,

LψA = ψ ·DA−A ·Dψ = 0 , (15)

then the quantity π · ψ is conserved along the worldline:

p ·D(π · ψ) =
d

dτ
(π · ψ) = 0 . (16)

Our two Killing vectors yield a conserved energy ε and a
conserved angular momentum `:

ε = −π · η ,
` = ψ · π . (17)

As Carter usefully showed, for a Killing tensor K there
is an associated conserved quantity in the absence of an
electromagnetic field, the Carter constantK··uu. Naively
we would expect that when A 6= 0, that K · ·ππ is con-
served, if the field respects some suitable restrictions. It
is not clear what these restrictions are, as there is no ob-
vious analogue of Lie derivative with respect to a rank-2
tensor. In fact, using a method developed by Van Holten
[36], Ref. [37] established that there is no conserved quan-
tity associated with the Killing tensor of the Kerr space-
time whenever the external magnetic field is nonzero (see
also [38] for a more recent and general analysis). This is
further supported by numerical studies of charged parti-
cle motion around a magnetized Kerr BH, which evidence
chaotic behavior and hence the non-integrability of the
equations of motion [39, 40].

A. Carter constant

Although a proof of the absence of a Carter constant
exists in the references cited above, we present a simple
little argument here that suggests another route to the
proof.

Carter showed that for a Hamiltonian of the form

H =
Hr +Hθ

2(Ur + Uθ)
, (18)

where Ur is solely function of r, Uθ is solely a function of
θ, Hr is a function of r and all π’s except πθ, and Hθ is
a function of θ and all π’s except πr, there exists a

K =
UrHθ − UθHr

(Ur + Uθ)
(19)

such that the Poisson bracket vanishes:

{K,H} =
∂K

∂xi
∂H

∂πi
− ∂K

∂πi

∂H

∂xi
= 0 . (20)

In other words, K is a constant of motion. The proof
goes like this. We rewrite

K = 2UrH −Hr (21)

Then

{H,K} = 2{H,Ur}H − {H,Hr} . (22)

By design

{Hr, Hθ} = 0 ,

{Ur, Uθ} = 0 .
(23)

We also note that

{H,Hr} = − H

(Ur + Uθ)
{Ur, Hr} = −2H{Ur, H} . (24)

Using these in the original Poisson bracket, we quickly
get that

{H,K} = 0 , (25)

and K is conserved. We could equally well have written
K = −2UθH + Hθ and followed through to the same
conclusion.

For a charged, Kerr BH, the vector potential is just

A = − Q

2M
η (26)

and the Hamiltonian becomes

H =
1

2
(π−qA)·(π−qA) =

1

2
(π·π−2qπ·A+q2A·A) , (27)

which this has the form of Eq. (18) with

Hr = ∆π2
r−

(r2 + a2)2

∆
π2
t −

a2

∆
π2
φ+

−4Mar

∆
πtπφ +

qQ

M
r2πt −

q2Q2

4M2
∆

Hθ = π2
θ+a2 sin2 θπ2

t +
1

sin2 θ
π2
φ

+
qQ

M
a2 cos2 θπt +

q2Q2

4M2
a2 sin2 θ

Ur + Uθ = Σ.

(28)

So the charged, Kerr solution has a conserved K.
However, when the vector potential has the form

A = ctη + cφψ, (29)

as it does in our setting, then the Hamiltonian has the
form

H =
Hr +Hθ +H×

2(Ur + Uθ)
, (30)

where we replace

− Q

2M
→ ct

Hr → Hr − 2qr2cφπφ

Hθ → Hθ − 2qa2 cos2 θcφπφ,

(31)
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and

H× = q2Σ
(
c2φψ · ψ + 2cφctη · ψ

)
(32)

= q2 sin2 θ
(
c2φ
(
(r2 + a2)2 −∆a2 sin2 θ

)
− cφct4Mar

)
,

and H× is a function of (r, θ) that is no longer separable.
Suppose we try to find a new constant, K̄, by examining
the non-vanishing piece of {H,K} for K = 2UrH −Hr.
If we can rewrite {H,K} = {H,Z} then we can subtract
Z to find a new constant, K̄ = K−Z. The non-vanishing
piece comes explicitly from the term {H,Hr},

{H,K} = − 1

2(Ur + Uθ)
{H×, Hr} . (33)

We can in fact manipulate this into the form {H,Z}:

{H,K} = − 1

2(Ur + Uθ)
{H×, Hr}

= { Hr

2(Ur + Uθ)
, H×}

= {H − Hθ

2(Ur + Uθ)
, H×}

= {H,H×}+
1

2(Ur + Uθ)
{H×, Hθ}

= {H,H×}+ {H,Hθ}+
H

2(Ur + Uθ)2
{Uθ, Hθ}

= {H,H×}+ {H,Hθ} − 2H{H,Uθ}
= {H,H× +Hθ − 2UθH} = {H,Z}

(34)

Notice that the Poisson bracket with Z is not zero unless
H× = 0. Subtracting Z from K gives our new constant

K̄ = K − Z = 2(Ur + Uθ)H − (Hr +Hθ +H×) (35)

but this is identically zero. In other words, we have lost
our Carter constant and the equations are anticipated to
be non-integrable, permitting chaotic behavior.

Granted, the above argument lacks the compelling fea-
ture of the uniqueness of K̄, which we haven’t proven.
And this might even seem like a slight of hand. But no-
tice that this method would have led to the correct form
for K in the charged Kerr solution. Start with −Hr.
Take {H,−Hr} with H× = 0 and re-express as {H,Z}:

{H,−Hr} =
H

(Ur + Uθ)
{Ur, Hr}

= −2H{ Hr

2(Ur + Uθ)
, Ur}

= −2H{H,Ur}
= {H,−2UrH} = {H,Z}

(36)

to find K = −Hr − Z = 2UrH − Hr, which is Eq. (20)
as promised.

Notice, we do have a Carter constant in the equatorial
plane because H× becomes separable when θ is constant
at π/2 and for radial motion along the poles because
H× = 0 when θ is constant at 0 and π.

IV. CHARGE ACCRETION

Now here is where the situation gets interesting for
us in the astrophysical context. The uncharged solution
is unstable to the acquisition of charge. Wald demon-
strates that a positive charge released from infinity along
the pole will be accreted onto the BH and a negative
charge will be repelled (if the BH spin aligns with Bo,
and the reverse if the spin is anti-aligned). Without loss
of generality, we assume aligned spin in the discussions.

Wald’s argument, based on energetics, as interesting
as it is, restricts to the poles and is not transparently
covariant. Carter showed that the electrostatic poten-
tial for a ZAMO (zero angular momentum observer) is
constant on the horizon, which means Wald’s argument
applies off the poles if you ask a ZAMO [41]. However,
as we show that does not equate to E · B = 0. We’ll
run through the dynamics on the symmetry axis before
delving into the implications of generalizing off the poles.

Lower a charged test particle with charge q down the
axis of symmetry along the poles (θ = 0, π) from infinitely
far away to the horizon at r = r+. The conserved energy
is

ε = −π · η = −(p · η + qA · η) . (37)

The first term is the kinetic energy, according to an ob-
server on the worldline u = η, and the second term is
an electrostatic potential energy. Focusing on the sec-
ond term, the change in the electrostatic energy of the
particle at the horizon versus at infinity is

δε = −qA · η|r+ + qA · η|∞ . (38)

From this and the electromagnetic four-potential for the
fields around an uncharged BH (Eq. 11) we find a so-
called injection energy

δε = −qA · η|r+ + qA · η|∞

= −q
[

1

2
Bo (ψ · η + 2aη · η)

]∣∣∣∣r+
∞

= −q
[

1

2
Bo (gtφ + 2agtt)

]∣∣∣∣r+
∞

. (39)

On the poles gtφ = 0, and on the horizon gtt = 0 while
gtt = −1 at infinity giving

δε = −qBoa . (40)

Since δε/q < 0 for a positive charge, the potential is
higher at infinity and lower at the horizon. Intuitively,
the electric field, and therefore the electric force on a
positive charge, will point from high to low potential. So
we therefore expect the BH to accrete positive charges
until δε/q = 0.

A BH of charge Q in a uniform field Bo has electro-
magnetic four potential

A =
1

2
Boψ +

1

2M
(2BoaM −Q) η . (41)
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Running through the same argument for a test charge q
lowered from infinity to the event horizon of a charged
BH, the change in the electrostatic energy is

δε = q

[
Q

2M
−Boa

]
. (42)

For Q = QW ≡ 2BoaM , the energy difference vanishes
and the BH has charged up to a stable value.

However, this argument is not explicitly covariant.
Only an observer on the worldline u = η measures the
electrostatic potential as

V = −A · η . (43)

The set of such (non-inertial) observers cannot fire rock-
ets hard enough when too near the event horizon. In
other words, close enough to the BH, there is no such
timelike worldline. A stronger argument, which we’ll pur-
sue in a subsequent section would be to look for force-free
solutions, which require the covariant condition

1

4
Tr(F · F̃ ) = E ·B = 0 . (44)

And, in fact, E · B = 0 along the poles only when the
BH has acquired the Wald charge. This confirms the
argument that when the BH is charged to QW = 2BoaM
particles will no longer experience EM forces along the
poles.

However, this argument does not generalize off the
poles. Away from the poles, A ·η 6= 0 since both ψ ·η and
η · η are non-zero and theta dependent. Consequently,
there’s no value of Q which kills δε.

Off the poles, we could ask a ZAMO what she sees
in terms of the electrostatic energy. A particle has zero
angular momentum when ` = 0. If we take the particle
off a geodesic, set θ̇ = 0 and fire rockets so that ṙ = 0,
then

uZ = ut(η + Ωψ) , (45)

and for q = 0,

`/m = 0 = uZ · ψ = uZφ = ut(ψ · η + Ωψ · ψ) , (46)

which fixes Ω to the ZAMO’s angular velocity:

Ω = − ψ · η
ψ · ψ

= − gtφ
gφφ

=
2Mar

(r2 + a2)2 −∆a2 sin2 θ
. (47)

Then u · u = −1 fixes ut,

(ut)2
(
η2 + Ω2ψ2 + 2Ωη · ψ

)
= (ut)2

(
η2 + Ωη · ψ

)
= −1 .

Expressing this in terms of metric components, and using
the useful relations in Appendix A, we have

ut =
g
1/2
φφ

(−gttgφφ + gtφgtφ)
1/2

= (−gtt)1/2 .

The ZAMO would also conclude that at the Wald
charge δε vanishes. But this argument is pretty weak,
given its reliance on a particular observer.

Furthermore, there is no value of Q for which the co-
variant quantity E · B = 0 everywhere. In other words,
although charges along the pole will not experience EM
forces when the BH has the Wald charge, particles ev-
erywhere else will experience forces and will continue to
flux around, creating regions of particle acceleration and
therefore also the potential for EM radiation. To make
unambiguous claims about the flow of charges requires
we examine the dynamical equations, which we do next.

V. PARTICLE ACCELERATION

Considering the equations of motion again,

(p ·D) p = qF · p. (48)

Notice that the Lorentz force, on the RHS, is proportional
to the electric field, Eq = F · u, as perceived by the
charged particle with 4-velocity u since in the particle’s
own frame there is no motion and so no magnetic force.

Now, the Lorentz force does vanish on the poles at the
Wald charge, but does not vanish off the poles. Further-
more,

1

4
Tr(F · F̃ ) = E ·B 6= 0 (49)

off the poles so particles can slide along the field lines
as we now show. Since E · B is a covariant quantity, we
choose to examine E ·B = EZ ·BZ , in terms of the fields
as measured by a ZAMO. The electric field is

EZ = F · uZ
= utZ (∂A · (η + Ωψ) + (η + Ωψ) · ∂A) . (50)

The last term vanishes because of symmetries, giving

EZ = ∂A · uZ
= −∂V − ∂uZ ·A, (51)

where

V ≡ −A · uZ (52)

is the electrostatic potential as seen by a ZAMO. At the
Wald charge V = 0 everywhere, but as Eq. (51) shows,
EZ is not necessarily zero everywhere when V is.

Meanwhile, since uφ = 0,

BZ = −1

2
ε̃µναβFαβuν

= −1

2
ε̃µtαφ∂αAφut (53)

With ε̃trθφ = 1√
−g εtrθφ and the Levi-Civita symbol is

defined by permutations of εtrθφ = 1. Since ε̃µtαφ =
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−ε̃t ijφ, we can write

EZ ·BZ =
1

2
ε̃ijφ (∂iA) · uZ (∂jAφ)ut

=
1

2
ε̃ijφ (∂iAt) (∂jAφ)utu

t

=
1

2
√
−g

∂[rAt∂θ]Aφ = E ·B (54)

using utu
t = −1. The final expression no longer depends

on the velocity of the observer, which is gratifying. The
expression is valid for all Q and for all θ and actually
only relies on the axisymmetry and stationarity of the
spacetime and the vector potential.

And here we get to the crux, there is no value of Q for
which E · B = 0 for all θ as evidenced by the sequence
of plots in Fig. 1. This is also apparent explicitly on
substitution of the expressions for EZ and BZ in the
above equation. At the Wald charge, E · B = 0 at the
poles and on the equator, but at no other values of θ.

Since the Wald charge cannot kill E or E · B, it must
be that charges are accelerated along the B-lines. At first
we wondered if this suggested that the charge on the BH
is not stable. But investigating the flow of charges in
the following section reveals that the BH continues to
absorb positive and negative charges in equal measure,
maintaining Q = QW .

A. Orbits of test charges

If we could analytically calculate a current density J ,
then we could compute a flux across the horizon

Φ ∝
∮
H
J · dA, (55)

and determine if the flux is overall positive, negative, or
zero.

The current density is given by the product of the
charge density and its four velocity J = ρu. For the pur-
pose of computing the sign of the horizon charge flux, we
can follow single charges and compute the quantity qu,
for test-charge q. We won’t be concerned about the EM
fields due to these test charges. So if we can generally
solve for u, for any value of the BH charge and initial
conditions of the charged test particle, then we can com-
pute the sign of the horizon charge flux and answer our
question.

If we could determine an analogue to the Carter con-
stant, we would also know πθ = muθ. Then we could
use

u · u = −1 (56)

to solve for ur. We would then know the current and
the flux. However, as we’ve already argued we do not in
general have a Carter constant and so we cannot calculate
u analytically in general.

We can easily calculate the 4-velocity and thereby the
flux at the poles. Start a particle at rest at ri along the
poles

ui =

√
(r2i + a2)

∆i
η . (57)

To find the orbit from this initial condition we use the
constant of motion ε (` = 0) evaluated at θ = 0. The
energy is fixed by the initial conditions:

εi = m

(
∆i

r2i + a2

)1/2

+
q

2M
(2BoaM −Q)

(
∆i

r2i + a2

)
.

Since this energy is conserved, we can set ε =
− (mutgtt + qAt) equal to its initial value εi to solve for
ut

mut =
εi(r

2 + a2)

∆
− q

2M
(2BoaM −Q) . (58)

Notice that ut blows up at the horizon confirming infinite
time dilation at the horizon. Then from u · u = −1, we
have the remaining component of the 4-velocity

ur = ±
(
−1 +

∆

r2 + a2
(ut)2

)1/2(
∆

Σ

)1/2

. (59)

At the poles the current into the event horizon, which
has a radial normal, is just J = qu and clearly this cur-
rent is independent of charge only at the Wald value of
Q because ε becomes independent of q, as does ut and
therefore ur.

To find the charge flux across the horizon anywhere
else, we numerically integrate the orbits of oppositely
charged particles.

As initial data we are free to set the clock to τ = 0 and
the initial φ(0) = 0 due to the symmetry of the metric.

We choose to start orbits at rest uri = uθi = uφi = 0 at
the radius ri = 40M (unless specified). We then vary
the initial θi over the range 0 ≤ θi ≤ π/2. The timelike

condition u · u = −1 fixes uti =
√
−1/gtt. The energy

and angular momentum are then found from Eq. (17),
and will depend on θi through the metric components:

ε = m
√
−gtt − qAt

` = m
gtφ√
−gtt

+ qAφ. (60)

Notice that each orbit has a different ε and ` depending
on its initial θi and charge.

For each initial value of θi we numerically compute
the trajectories of a test mass with positive and negative
charge. While we do not extensively explore all possible
initial conditions, we note that the at-rest initial condi-
tion orbits considered here have a similar quality in that
they all orbit at a constant cylindrical radius and rotate
azimuthally around the BH. The charges stay very close
to their starting cylindrical radius because they are con-
fined to the vertical magnetic field lines. The azimuthal
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FIG. 1. Shaded contours of E · B/B2
o for the specified BH charge. Yellow shading is where E · B > 0 and blue shading

represents where E ·B < 0. Magnetic field vectors, as seen by ZAMOs, are drawn as blue triangles while ZAMO electric field
vectors are drawn as red triangles. Each panel, from left to right, top to bottom is drawn for an increasing value of the BH
charge Q, in units of the Wald charge, QW . The black sphere sphere represents the BH horizon.

rotation is due to the E×B drift, in the same direction
for both signs of test charge.

This simple qualitative behavior can lead to a number
of different fates for the test charge for which we plot
examples in Figure 2, and categorize into four types:

• Expulsion from the system along B-field lines, when
E ·B is initially directed out of the system for the
given test charge sign (see the top-left panel of Fig-
ure 2).

• Plunge into the horizon for charges that start at
small values of θi, such that their initial cylindrical
radius ri sin θi is small (see Figure 3).

• Regular vertical oscillations (in the direction of the
magnetic field and BH spin axis) at fixed cylindrical
radius for BHs with charge below the Wald charge
(see the top-right panel of Figure 2).

• Non-regular vertical oscillations at fixed cylindrical
radius for BHs with charge above the Wald charge
(see the bottom-left panel of Figure 2).

These orbit types can be understood from the electric
and magnetic field structure of the Wald solution for dif-
ferent BH charges. The electric and magnetic field vec-
tors, along with contours of E ·B are plotted in Figure 1.
The primary change in field configuration with increasing
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 At 0.5 Wald Charge✓ = ⇡/6

 At 1.0 Wald Charge✓ = ⇡/6

 At 2.0 Wald Charge✓ = ⇡/6

FIG. 2. Examples of orbits of charged particles around the spinning BH in the Wald field, with at-rest initial conditions
(ri = 10M , θi = π/6). Red triangles are electric field vectors and blue lines represent the uniform immersing magnetic field,
aligned with the BH spin axis. The left column is for negatively charged test charges and the right column is for positively
charged test charges. The initial position of the charge is marked by a blue dot and the final position is marked by a red dot.

BH charge is the dominance of a quadrupolar electric field
below the Wald charge vs. a predominately monopolar
electric field above the Wald charge. This follows since
the electric field sourced by the monopole of charge on
the BH eventually dominates over the quadrupolar elec-
tric field generated by a Kerr BH in a uniform magnetic
field [ 42]. The transition occurs at the Wald charge, at
which point the electric field at the poles becomes zero,
having opposite sign in the z direction (direction of BH
spin) below and above the Wald charge. Across all cases
the x-component (direction perpendicular to BH spin) of
the electric field does not change appreciably.

For each of the panels for which Q 6= QW in Figure 1,
it is clear that there is a non-zero value of E ·B above the
poles of the BH. This means that in the top left panel, for
example, positive charges that start at an initial position
within the cylinder containing the BH horizon (x2+y2 <∼
r2+) will follow a trajectory directly into the BH (e.g.,
Figure 3). Test charges of the opposite sign of charge
will be expelled from the BH (e.g., the top left panel of
Figure 2).

Consider further the Q = 0 case displayed in the top
left panel of Figure 1. Moving farther in the x-direction
from the BH (a larger cylindrical radius), the charges
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FIG. 3. The same as Figure 2 but for a plunging orbit.

with negative charge are still expelled as long as they are
in the blue-shaded region of negative E · B in the top
hemisphere, or in the yellow-shaded region of positive E ·
B in the bottom hemisphere, where the E-field is aligned
to accelerate negative charges out of the system along the
z-directed B-field. The positive charges, however, are no
longer guided by the B-field into the BH horizon, rather
they move in the negative z-direction until crossing a line
where E ·B changes sign, and hence the direction of the
z-component of the E-field changes sign. This results in a
vertical oscillation of the test charge about the E ·B = 0
line at ∼ ±50o in the top hemisphere of the Q = 0 panel
(and also the analogue in the lower hemisphere). E×B
drift causes the orbit to rotate azimuthally. This type
of regularly-oscillating orbit can be seen in the top right
panel of Figure 2.

A similar vertical oscillation occurs around the equa-
tor (θ = π/2) for negative charges. To see why this is,
again consider the upper hemisphere of the BH magneto-
sphere in the Q = 0 panel of Figure 1. Negative charges
with initial conditions below the line where E · B be-
comes positive will be forced downwards initially along
magnetic field lines until they cross the equatorial plane,
where the E ·B reverses sign again, forcing the negative
charge back into the upper hemisphere. Hence negative
charges in the equatorial regions are not expelled.

A similar situation as described for the Q = 0 case
holds for Q < QW (e.g., the top right panel of Figure 1).
A difference being that the monopolar E-field sourced by
Q is added to the quadrupolar E-field of the Q = 0 case
and causes E · B to change sign at a smaller θ than for
Q = 0. This causes the region of stably orbiting positive
charges in the region between the poles and the equatorial
plane to shrink and move to higher latitudes until at the
Wald charge this region disappears because at Q = QW ,
E ·B changes sign only at the equator and goes to zero
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FIG. 4. The horizon charge flux (left column) and the final
cylindrical radius of a test charge (right column) as a function
of BH charge in units of the Wald charge, for the labeled
initial theta coordinate, θi of the test charge. When a charge
reaches spherical radius 250M we plot the final radius at this
maximum value to show that it has been expelled.

at the poles. Hence, at the Wald charge, test charges of
both signs fall in at the poles while in the equatorial re-
gion negatively charged test charges orbit stably around
the positively charged BH, tracing out cylinders oriented
along the z-axis.

For Q > QW , as illustrated in the bottom right panel
of Figure 1, the E-field is dominated by a monopole re-
sulting in an E ·B at the poles that is oppositely directed
from the Q < QW case. Hence, for Q > QW the BH
prefers to discharge back to the Wald charge along the
poles. In the equatorial region there still exist negative
charges on vertically oscillating orbits of nearly constant
cylindrical radius. However, as shown in the bottom and
middle left panels of Figure 2, the vertical oscillations
occur in much more complicated patterns than in the
Q > QW case. We leave investigation of these orbits for
future work.

This general description of orbits in the Wald field
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FIG. 5. The horizon charge flux (left column) and the final
cylindrical radius of a test charge (right column) as a function
of θi for a BH with the labeled charge in units of the Wald
charge. When a charge reaches spherical radius 250M we plot
the final radius at this maximum value to show that it has
been expelled.

leads to a global picture of charging and discharging of
a spinning BH in a uniform B-field that we summarize
with Figures 4 and 5. In Figures 4 and 5 we display
the fate of test charges for grids of initial conditions. In
the left columns of Figure 4 and 5, we display the total
flux evaluated at the horizon for positively charged parti-
cles (red-dashed line), negatively charged particles (blue
line), and the total from both charges (black-dashed line).
Because this is the flux at the horizon, the flux of posi-
tively charged particles (red) is always less than or equal
to zero while the flux of negatively charged particles is
always greater than or equal to zero. This is because
the flux is proportional to qur, and ur < 0 for a particle
falling into the horizon.

In the right columns of Figures 4 and 5 we show the fi-
nal cylindrical radius (rf sin θf ) of the positively charged
and negatively charged test particles with the same color
scheme as in the left column. The dotted black lines

shows the initial radial distribution, chosen to be at a
constant spherical radius. We stop numerical integra-
tion when a test charge either reaches r = 250M , at
which point we plot the spherical radius to show that
the charge has been expelled, or when the particle passes
within 0.01M of the horizon, or after a maximum time
chosen to be approximately the time for the particle to
orbit the BH.

Figure 4 displays the horizon flux and final radii vs.
the black hole charge in units of the Wald charge. Figure
5 displays these quantities vs. the initial starting position
θi.

The Wald argument on the poles can be readily seen
from the top row of Figure 4. In the left panel we see
that for Q < QW the net flux into the horizon at the pole
is negative, meaning the BH is charging up and that this
flux is due entirely to positive charges. Above the Wald
charge, the flux is the opposite sign and due entirely to
negative charges. The right panel in the top row of Figure
4 shows that the this is caused by positive charges falling
in below the Wald charge and negative charges falling
in above the Wald charge. The middle row of Figure 5
shows clearly that at the poles, when the BH is charged
to the Wald charge, both signs of charge fall in, resulting
in zero charge accretion. This is in agreement with the
observation from Figure 1 that E ·B changes sign at the
poles at the Wald charge.

The bottom two rows in Figure 4, as well as the top
and bottom rows of Figure 5 demonstrate that no charge
is accreted away from the poles, but for different rea-
sons. At the equator, particles orbit stably. In between
the poles and the equator, particles are expelled or orbit
stably depending on θi and the value of Q, as discussed
above.

It is interesting to note that at and above the Wald
charge, there exists a charged magnetosphere surround-
ing the BH in the equatorial regions. Below the Wald
charge, a region of opposite charges orbit at higher lati-
tudes than the equatorial charged region. The stability
and long term existence of these charged regions, how-
ever, is only determined here in the non-interacting test-
charge regime. The back reaction of this charged region
on the electromagnetic fields of the Wald solution must
be included to discuss the astrophysical importance of
the Wald magnetosphere. For example, charges being
accelerated along B-field lines as they orbit the BH could
be in high enough quantity to screen the accelerated elec-
tric fields, thus leading to the generation of a force-free
magnetosphere. We discuss this possibility in section VI.

B. Prospects for electromagnetic radiation

Consider the charging process. As discussed above, at
the poles, charges of one sign are accelerated into the BH
while charges of the opposite sign are expelled from the
BH. In the non-polar regions charges can orbit stably as
they are accelerated on oscillating orbits in the direction
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aligned with the magnetic field and BH spin, or they can
be continuously be expelled along B-field lines. All of
these accelerated charges will emit electromagnetic (EM)
radiation.

EM radiation from the charging/discharging process
could come from a few mechanisms: Dipole radiation
from acceleration of ingoing and outgoing charges and
synchrotron and curvature radiation of stable orbits and
ingoing and outgoing orbits. The most promising of these
processes for generating bright EM signals is synchro-
curvature radiation of particles expelled and beamed
away from the BH, as these experience the highest ac-
celerations.

Because positively charged particles, initially at rest,
stay on cylindrical orbits, there is a cylinder of initial co-
ordinates given by ri sin θi ≤ r+ that will accelerate into
the BH. There will also be particles continuously acceler-
ated away from the BH even at the Wald charge. This can
be seen in the right-middle panel of Figure 5. The red line
shows that away from the poles positive particles are con-
tinuously ejected from the system. While these particles
will not be accelerated at the poles at the Wald charge,
they can be accelerated near to the BH and could also
contribute to a continuous signal of synchro-curvature
radiation, if this is a stable configuration. Here we esti-
mate a maximum power in EM radiation that could be
emitted by these charges during the charging/discharging
process of a Kerr BH, or even while the BH is charged at
the Wald charge.

The power generated by curvature radiation is

Pc =
2

3
q2c

γ4q
R2
c

. (61)

As a charge is accelerated, radiation-reaction forces limit
the maximum velocity u of the particle to where curva-
ture radiation losses balance the power input from the
electric field, qE · u = −Pc(u). For |u| → c we approxi-
mate the radiation reaction condition as [18]

EZ =
2

3
q
γ4q
R2
c

. (62)

We use EZ of the QW = 0 Wald solution with a magnetic
field due to a magnetic dipole at a distance Rc = 20M
and pole strength of BNS = 1012G. Then at r ∼ 5M
above the pole, the radiation reaction limited Lorentz
factor of the charge is

γq = 6.7× 107
(

EZ
2.8× 109statVcm−1

)1/4(
Rc

20M

)1/2

,

(63)
which represents a maximum Lorentz factor in the mag-
netosphere that is only weakly dependent on EZ .

This large value of γ is in agreement with previous
studies that estimate maximum particle Lorentz fac-
tors in magnetospheres sourced by NS strength magnetic
fields [18, 19, 28]. It is physically justified by the large ac-
celerating electric field. If instead we were to solve for the

velocity of an electron uniformly accelerated with acceler-
ation ae = (q/m)EZ , then we find that the velocity of the

electron in units of c is βe = (aet/c)/
√

1 + (aet/c)2. This
results in the acceleration of the electron to γ = 107 in
approximately 10−10 seconds. Meaning that our approx-
imate radiation-reaction velocities are reached after the
electron moves by of order a centimeter, a very short dis-
tance compared to the scale of the system. For example,
this is ≈ 10−5(M/M�)× smaller then the gravitational
radius.

The maximum γq can tell us the maximum power ra-
diated by one charge via curvature radiation. The total
number of charges is given by the Wald charge divided
by the elementary charge,

Q

e
= 4.54× 1033

(
BNS

1012G

)(
RNS
r

)3(
M

10M�

)2

. (64)

For charging and discharging this is the obvious choice.
For a continual flux at the Wald charge, we choose this as
a characteristic value because the repelling charge on the
BH is likely comparable to the orbiting charge of opposite
sign and the expelled charge. This at least describes a
possible stable situation where the system remains elec-
trically neutral at large distance. Then the total power
from curvature radiation during charge or discharge, or
while the BH is charged at the stable Wald charge is,

Pc = 7.1× 1042ergs−1
(

BNS

1012G

)2(
Rc

20M

)−6(
M

10M�

)2

.

(65)
Curvature radiation of this energy will spark a pair cas-

cade filling accelerating regions with an electron-positron
pair plasma that will eventually screen the accelerating
fields [see 19, and references therein]. This may not be an
issue if we are only considering charging and discharging
of the BH because (dis)charging of the BH should take of
order the same time as the generation of the pair cascade
(a light crossing time of the system). For a continuous
signal due to ejection of charges at the Wald charge, how-
ever, the transition to a force-free magnetosphere may
occur before the near-merger separations needed for an
observable signal, and hence the stable fluxing scenario
may be altered.

This latter case, however, is similar to the that of a Pul-
sar magnetosphere, where particle production screens ac-
celerating electric fields everywhere except for gaps where
the force-free equations break down. In this case, the
accelerating vacuum electric field can be reduced, and
the region of acceleration is diminished to the size of the
accelerating gap. While we plan to study this effect for
the BHNS system with force-free and particle-in-cell sim-
ulations, for now we note that because our maximum
Lorentz factor is only weakly dependent on the acceler-
ating electric field, and because the gap height is likely
larger than the acceleration distance estimated above,
[estimated to be of order the gravitational radius in Ref.
43], we expect these approximate results to be on the
right track.
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In the case of charging and discharging, the important
question is when will such a large magnetic field suddenly
appear or disappear. For the case of the inspiral of a
BH and highly charged NS, the orbital decay timescale
should occur more slowly than the charging time of the
BH and hence the charge of the BH will increase at the
rate that the magnetic field immersing the BH increases.
For a dipole magnetic field at time dependent distance
a(t) from the BH, QWald(t) ∝ a3(t) ∝ t3/4 (assuming
GW decay of the binary [44]). At a critical separation
the E and B fields will become large enough for the pair
cascade to spark. Hence no sudden immersing of the BH
in the electro-vacuum field of the NS is expected.

The discharging case may only happen if the NS is
swallowed. In this case the destruction of the immersing
field will also occur at either the light crossing time of
the BH [45], or the resistive time of the force-free mag-
netosphere that has been generated by pair production
[27]. In the former case, powerful radiation from clean-
ing of the fields is generated, but at wavelengths of order
the horizon size. Such km wavelength radiation is not de-
tectable as it has a frequency below the plasma frequency
of the galaxy [see 19]. In the latter case, a possible EM
signature of a long-lived BH magnetosphere is discussed
in Refs. [19] and [27]. If the Wald solution is valid before
the NS is swallowed, then a discharging signature sim-
ilar to the one discussed here may also accompany the
merger.

In summary, a powerful EM signal with luminosity
given by Eq. (65) could be generated by rapid charg-
ing or discharging of a BH to or from the Wald charge,
at the BH poles. A similar luminosity could also be gen-
erated by a BH at the stable Wald charge from the con-
tinual expulsion of charges away from the poles. In a
related scenario, a magnetosphere sourced by the spin-
ning, charged BH could result in emission mechanisms
similar to that of a pulsar. A more refined prediction
for detection would benefit from an understanding of the
back reaction of charge acceleration in the Wald field.

VI. CHARGED FORCE-FREE SOLUTIONS

Force-free solutions are notoriously hard to come by,
and we reserve the attempt at a force-free set-up for an-
other work (see e.g. [46, 47] for formal aspects of force-
free electrodynamics, and [48–55] for studies of force-free
fields in BH spacetimes). However, the reader might be
concerned, as we were, that force-free solutions somehow
ensure an uncharged BH. Although this would not pro-
hibit the charge up during the vacuum phase, it would
be worth knowing if charge could be sustained. We con-
sider the Blandford-Znajek (BZ) split monopole on a BH
to show that the BH retains charge. A related analysis
for non-rotating BHs was performed in [56] based on a
force-free solution derived in [57].

A. Charge of the Blandford–Znajek split
monopole: Gauss’ law

Although our main interest is in computing the elec-
tric charge enclosed within the horizon of the BH, it is
instructive to do something slightly more general and cal-
culate the charge inside an arbitrary sphere of radius R,
defined as the 2-surface r = R in Boyer–Lindquist co-
ordinates. Applying Gauss’ law the charge Q is given
by

4πQ(R) =

∫
r=R

?F =

∫
r=R

(?F )θφ dθ ∧ dφ . (66)

The Maxwell equations and force-free (FF) conditions are

D · F = J , (67)

F · J = 0 , (68)

where the second equation clearly matches the case of a
test particle, for which J = qu, with zero Lorentz force
in Eq. (48). For an axisymmetric, stationary current, a
function ω(r, θ) can be defined through the FF conditions
[29]

At,r = −ωAφ,r , At,θ = −ωAφ,θ . (69)

The Hodge dual (?F )αβ = (1/2)εαβµνF
µν (with εtrθφ =

−
√
−g) gives

(?F )θφ = −1

2
εθφµνF

µν = −
√
−g F tr

= −
√
−g grrAφ,r(ωgtt − gtφ) .

(70)

The BZ split monopole solution corresponds to

ω =
a

8M2

(
1 +O

( a
M

)2)
,

Aφ = −C| cos θ|+ Ca2

M2
f(r) sin2 θ| cos θ|+O

( a
M

)4
,

(71)

where C is just a constant gauging the strength of the
split monopole and f(r) is the dimensionless function [58]

f(r) =
1 + 3(r/M)− 6(r/M)2

12
ln
( r

2M

)
+

11

72
+
M

3r
+

r

2M
− r2

2M2
+
r2(2r − 3M)

8M3
×[

Li2

(
2M

r

)
− ln

(
1− 2M

r

)
ln
( r

2M

)]
,

and

Li2(x) = −
∫ 1

0

ln(1− tx)

t
dt . (72)

Notice that the absolute value in Aφ is enforced so that
the radial magnetic field is odd upon reflection about the
equator,

Br = −1

2
εrναβFαβuν ∝ Aφ,θ (ut + ωuφ) (73)
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and Aφ,θ clearly changes sign under θ → π − θ. In other
words, it’s a split monopole. Another check one can make
is to compute the magnetic charge on the BH (using F
instead of ?F in Gauss’ law) and verify that it’s zero by
symmetry. If we ask an observer at rest very far from
the BH, they see a split monopole field that goes like
Br ∼ ±C/r2, so C has the meaning of a magnetic charge.

Substituting (71) in (70) we have

(?F )θφ =
Ca3

M4
r2f ′(r) sin3 θ| cos θ|

(
1

8
− 2M3

r3

)
×
(

1 +O
( a
M

)2)
.

(74)

Finally, the angular integral yields∫
sin3 θ| cos θ| dθdφ = π , (75)

and we arrive at

Q(R) =
Ca3

4M4
R2f ′(R)

(
1

8
− 2M3

R3

)(
1 +O

( a
M

)2)
.

(76)
Two interesting values of R are the horizon r+ ' 2M
and infinity. We find

Q(r+) =
Ca3

8M3

(
61

24
− π2

4

)(
1 +O

( a
M

)2)
,

Q(∞) = − Ca3

128M3

(
1 +O

( a
M

)2)
.

(77)

The standard application of Gauss’s law in an asymp-
totically flat spacetime is from far away. Interestingly,
the charge is not the same at infinity as at the horizon,
suggesting the magnetosphere is charged as well. This
suggests that the magnetosphere carries positive charge
QM ∼ −(5/4)Qr+ . Fig. 6 shows a plot of the charge as
a function of the Gaussian surface radius R at the order
in a/M to which we are working.

B. Which observer sees charge Q?

Notice that Eq. (66), can be related to the naive form
of Gauss’s Law:

4πQ =

∫
r=r+

?F =

∫
r=r+

(E · n)
√
g2D dθdφ , (78)

but does not necessarily correspond to any fields mea-
sured by timelike observers on the horizon. In other
words, with

E · n = (F · u) · n , (79)

we can use the results of the previous section to glean the
u required to measure the field for a normal to a sphere

nµ = g−1/2rr (0, 1, 0, 0) (80)

5 10 15 20

R

M

-0.005

0.005

0.010

M3 Q

a3 C

6 8 10 12 14 16

-0.0077

-0.0079

-0.0081

-0.0083

FIG. 6. Electric charge Q enclosed within a sphere of radius
R, plotted as a function of R/M and normalized by Ca3/M3.
The dashed horizontal line corresponds to the value −1/128
that the curve approaches to at infinity. The inset is a detail
of the same plot showing the minimum of Q at R ' 10M .

and then we equate the integrand on the RHS of Eq. (78)
using Eq. (79) to find

Erg
−1/2
rr = g−1/2rr Frµu

µ = NF tr

= −Ngrr
(
Frµg

µt
)
,

(81)

where we used Eq. (70) and

N =

√
−g
√
g2D

=
Σ

((r2 + a2)2 −∆a2 sin2 θ)1/2
. (82)

At the horizon,

N+ =
Σ+

2Mr+
. (83)

There is an observer that satisfies the above with 4-
velocity of the form

uµ = −Ng−1/2rr gµt

= Ng−1/2rr

(
−gtt, 0, 0,−gtφ

)
.

(84)

Mercifully, our observer has timelike norm at the hori-
zon. Exploiting relations Eq. (A5)

u · u = N2 ∆

Σ

(
gttgttgtt + 2gttgtφgtφ + gtφgtφgφφ

)
= N2 ∆

Σ

(
gtt
(
gttgtt + gtφgtφ

)
+ gtφ

(
gttgtφ + gtφgφφ

))
= N2 ∆

Σ
gtt = −1 , (85)

as desired.
Notice that we can neatly verify that E · B = 0. To

do so we note that for this u the non-zero E-field com-
ponents are E = (0, Er, Eθ, 0) and so

E ·B = ErB
r + EθB

θ = 0 (86)
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Now for this A we can also express Er as

Er = Frφ
(
−ωut + uφ

)
= Aφ,r

(
ωut − uφ

) (87)

Using that uφ = gφµu
µ = 0 according to Eqs. (A5), we

compare Er to

√
−gBθ = −1

2
εθναβFαβuν

=
1

2
εθijFijut

= −Aφ,rut ,

(88)

to find

Er = −
√
−gBθ

(
ωut − uφ

ut

)
. (89)

Similarly

Eθ =
√
−gBr

(
ωut − uφ

ut

)
. (90)

Putting these in Eq. (86) immediately yields 0.

C. Neutron-star pulsar charge

Although our goal was to provide evidence that a BH
surrounded by a force-free magnetosphere can support
charge, it is instructive to compare this situation with
that of a NS. As a crude model of a NS pulsar we consider
a magnetic dipole in the Goldreich–Julian set-up [30],
i.e. with a co-rotating magnetosphere within the light
cylinder and ignoring gravitational effects (see [31] for a
rigorous analysis of the same model; see also [59] for a
study of more general models of pulsar magnetospheres).

The vanishing of the Lorentz force for a charge with
3-velocity ~v relates the electric and magnetic fields as

~E = −~v × ~B . (91)

In a co-rotating magnetosphere the charge’s velocity is

given by ~v = ΩNSr sin θ φ̂, with ΩNS the star’s angular
velocity, and as we mentioned the magnetic field is ideal-
ized as that of a magnetic dipole with moment ~m ≡ mẑ.
Then

~E =
ΩNSm

r2
sin θ

(
sin θ r̂ − 2 cos θ θ̂

)
. (92)

Using Gauss’ law we obtain the following result for the
charge contained in the NS:

4πQNS =

∫
r=RNS

~E · r̂ r2 sin θ dθdφ

=
8π

3
ΩNSm,

(93)

which is in fact independent of the radius of the Gaussian
sphere. Thus, in contrast to the BH case we focused on,
the magnetosphere surrounding the star carries zero net
charge in this simplified model.

We can define the characteristic magnetic field
strength, BNS , of the NS via the relation m ≡ BNSR3

NS ,
so that

QNS =
2

3
ΩNSBNSR

3
NS . (94)

The numerical factor is of course rather meaningless
given the simplifications we have made, but we may ex-
pect this result to give a correct order of magnitude.

Comparing with an estimate of the peak Wald charge
expected before the merger with a maximally spinning
BH, QW ∼ BNSM2, we find,

QNS
QW

∼ 10−4
(

ΩNS
1 s−1

)(
RNS

106 cm

)3(
10M�
MBH

)2

. (95)

This shows that the increase in the charge of the BH upon
swallowing the NS is likely to be negligible compared to
the maximum charge accreted during the inspiral phase
as quantified by the Wald charge.

VII. SUMMARY

The wealth of information gained from the NS/NS
merger GW170817 and GRB170817 speaks compellingly
to the prodigious importance of electromagnetic coun-
terparts to gravitational-wave signals. Arguing against
convention, in this paper we have put forth the idea that
a valuable counterpart to a BH/NS merger may exist by
leveraging the charge BHs can support.

BH charge is typically dismissed in astrophysical set-
tings based on the expectation that charge will be both
negligibly tiny and/or extremely short- lived. The pre-
sumption that charge is short-lived is countered by the
Wald mechanism — a rotating BH embedded in an exter-
nal magnetic field will accrete a stable net charge. Fur-
ther, the charge need not be tiny given the magnitude of
strong NS B-fields and rather could be relevant to obser-
vations.

A simple estimate of the magnetic field created by the
BH as charge reaches its maximum value immediately
before the merger with a strongly magnetized NS gives
BBH ∼ (a/M)2BNS/2, comparable to the NS magnetic
field for highly spinning BHs. As found observationally,
and through theoretical investigation, whether or not a
NS can generate a magnetosphere and produce pulsar
emission depends on the spin period of the NS. For ex-
ample, Sturrock [60] and Ruderman and Sutherland [28]
calculate that a NS must have a period shorter than
∼ 1.7(BNS/1012)8/13 seconds to sustain charge acceler-
ation across a vacuum gap and hence the pulsar mag-
netosphere. The spin period of a maximally spinning,
10M� BH is of order milliseconds. Hence, if the anal-
ogy can be applied to the BH-pulsar case, this means
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that BHs sourcing magnetic fields above 107 − 108 G
should be able to sustain a magnetosphere, and possibly
drive an emission mechanism similar to that of the pulsar
case. Promisingly, recent numerical work has employed
particle-in-cell simulations of BH magnetospheres finding
that small polar gaps, analogous to the NS-pulsar case,
can be opened and result in particle acceleration [see 43,
and references therein]. For mergers involving NS surface
magnetic fields of BNS ∼ 1012 G, the final ∼ 20M of in-
spiral, would allow the BH to source a magnetic dipole
field of >∼ 108 G, above the pulsar limit.

It should be emphasized, however, that this “black hole
pulsar,” as we have called it, has an essential difference
relative to a NS: its magnetic field is created by a rotat-
ing electric charge, unlike the star’s intrinsic dipole field.
After all, a co-rotating observer sees only an electric field
due to the charge on the BH. Granted, the pulsar features
of such a BH may be hard to observe given its short life-
time and their scarcity within galactic distances. And
any detailed predictions would require an analysis of the
generalization to a time-dependent, non-uniform external
magnetic field.

Another source of luminosity can stem from the ac-
celeration of charges surrounding a BH, which we have
shown is not precluded by the stability of the net charge.
The vacuum situation we considered suggests some in-
teresting properties, as demonstrated in the complex,
likely chaotic, dynamics. And even though our estimates
for the emitted power via curvature radiation are large
enough to be interesting (of order kilonova luminosities
[e.g., 61]), a more accurate prediction would pose similar
difficulties that make the NS-pulsar studies so challeng-
ing.

We began with vacuum solutions, however the BH may
well create its own force-free magnetosphere. If that tran-
spires, we can ask whether a BH charge and its associated
effects should then be dismissed. Again, against expecta-
tion, we showed that a BH enclosed by a force-free mag-
netosphere does in fact carry charge. Still, the situation
we focused on — the Blandford–Znajek split monopole
— is an approximate force-free solution valid for small
a/M , leading to a correspondingly small electric charge.
We believe nonetheless that this outcome is interesting
enough to motivate a more thorough numerical study on
the existence of electric charge in force-free BH magneto-
spheres. We note that, without speculating on the origin
of charge on BH/BH pairs, the same mechanisms would
be at work to illuminate these systems if they exist.

Finally, it is interesting to speculate, should an elec-
tromagnetic counterpart to a BH/NS or BH/BH merger
be observed, about the prospects of testing fundamen-
tal physics. The no-hair theorem immediately comes to
mind, as the detection of a BH pulsar could in principle
be sensitive to an intrinsic magnetic (dipole or higher)
moment. A positive detection could also be used to con-
strain modified gravity theories in which the analogue of
the Wald mechanism [e.g., 62] might differ significantly
from that in general relativity.
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Appendix A

Calculations are greatly facilitated by a list of clean
relationships among metric quantities. We compile those
relations here.

Again, in Boyer-Lindquist coordinates:

ds2 =−
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2

− 4Mar sin2 θ

Σ
dtdφ , (A1)

with

Σ = r2 + a2 cos2 θ ,

∆ = r2 + a2 − 2Mr . (A2)

Useful metric quantities are

√
−g = Σ sin θ ,

grr =
∆

Σ
,

gθθ =
1

Σ
,

gtt = −
(

(r2 + a2)2 −∆a2 sin2 θ

∆Σ

)
,

gtφ = −2Mar

∆Σ
,

gφφ =
∆− a2 sin2 θ

Σ∆ sin2 θ
.

(A3)

Other useful equalities:

Σ = ∆ + 2Mr − a2 sin2 θ ,

gttgφφ − g2tφ = −∆ sin2 θ ,

gtt =
gφφ

(gttgφφ − g2tφ)
,

gtφ =
−gtφ

(gttgφφ − g2tφ)
,

gφφ =
gtt

(gttgφφ − g2tφ)
.

(A4)
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Also, by the definition of an inverse

gttg
tt + gtφg

tφ = 1 ,

gttg
tφ + gtφg

φφ = 0 ,

gttgtφ + gtφgφφ = 0 . (A5)
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