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We investigate the unequal mass relativistic bound state system, the Bc mesons, in a light-
front Hamiltonian formalism. We adopt an effective Hamiltonian based on soft-wall light-
front holography, together with a longitudinal confinement that was first introduced for heavy
quarkonium. We also include the one gluon-exchange interaction with a running coupling,
which produces the spin structure. We present the mass spectrum and light-front wave
functions. We also use the light-front wave functions to calculate decay constants, charge
and momentum densities, as well as distribution amplitudes. The results are compared with
experiments and other theoretical approaches, all of which are in reasonable agreement.

I. INTRODUCTION

The Bc system is the only known heavy meson family with unequal quark masses, which provides
an important testing ground for understanding strong interaction physics. While the spectra and
properties of the cc̄ and bb̄ mesons are extensively studied in experiments, data on bc̄ or cb̄ are
relatively scarce. Until now, only two states, the ground state and its first radial excitation, are
confirmed in experiments [1, 2]. Meanwhile, ongoing and forthcoming high energy experiments, e.g.
LHC and RHIC, are expected to generate a large ensemble of these particles. For these reasons,
there are renewed interests in theoretical investigations [3–6].

Light-front quantization is a natural relativistic framework to describe the intrinsic partonic
structure of hadrons [7]. Among various light-front approaches, light-front holographic (LFH)
models stand out as semi-classical approximations to QCD (see Ref. [8] and the references therein).
Meanwhile, a computational framework known as the basis light-front quantization (BLFQ), has
been established to tackle the many-body dynamics and has been applied to QED [9, 10] and QCD
[11, 12] bound states. In the latter case, LFH is embedded in the BLFQ formulation to model
the heavy quarkonium (charmonium and bottomonium) system. The results have shown good
agreement with experiments and other theoretical models.

In this work, we adapt the successful Hamiltonian of Refs. [11, 12] to the Bc system in the
BLFQ approach. In essence, this model implements the AdS/QCD soft-wall Hamiltonian [13] plus
a longitudinal confinement [11], both of which are of long range. In addition, we adopt the one-gluon
exchange with a running coupling [12]. This term controls the short-distance physics and embeds
the spin structure information. We solve the Bc system without introducing any additional free
parameter (other than the ones employed in charmonium and bottomonium). Therefore, it is also
a test of the predictive power of the model proposed in Ref. [12]. This work is a straightforward
yet necessary step for developing a relativistic model for hadrons based on light-front holography
and light-front dynamics.

We begin by introducing the effective light-front Hamiltonian and the basis function approach
in Sec. II, following Ref. [12]. Presented in Sec. III are results including the mass spectrum, wave
functions, decay constants, transverse charge and momentum density, and distribution amplitudes.
They are compared with experiments and other theories whenever available. We also discuss the
differences between Bc and heavy quarkonium. Sec. IV summarizes our current work and provides
a brief discussion of possible improvements.
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II. HAMILTONIAN FORMALISM AND THE BASIS FUNCTION REPRESENTATION

The light-front Hamiltonian formalism leads to an eigenvalue equation H |ψh〉 = M2
h |ψh〉. Here

we adapt the effective Hamiltonian of Refs. [11–13] for unequal quark masses:

Heff =
~k2
⊥ +m2

q

x
+
~k2
⊥ +m2

q̄

1− x
+ κ4~ζ2

⊥ −
κ4

(mq +mq̄)2
∂x
(
x(1− x)∂x

)
−CF 4παs(Q

2)

Q2
ūs′(k

′)γµus(k)v̄s̄(k̄)γµvs̄′(k̄
′),

(1)

where ~ζ⊥ ≡
√
x(1− x)~r⊥ is the holographic variable [8], CF = (N2

c − 1)/(2Nc) = 4/3 is the color
factor of the qq̄ color singlet state. In this paper, we investigate the Bc system as bc̄, i.e. B−c .
Therefore mq is the mass of the bottom quark and mq̄ the anti-charm quark. x and (1− x) are the
longitudinal momentum fractions of b and c̄, respectively. We incorporate a running coupling for
the one-gluon exchange potential, which is modeled as [12],

αs(Q
2) = 1/[β0 ln

(
Q2/Λ2 + τ

)
], (2)

where β0 = (33− 2Nf )/(12π), with the quark flavor number taken to be Nf = 4. We use Λ = 0.13
GeV and in order to avoid the pQCD IR divergence we use τ = 12.3 such that α(0) = 0.6. See Ref.
[12] for more details.

We adopt a Fock space limited to the |qq̄〉 sector where the state vector reads,

|ψh(P, j,mj)〉 =
∑
s,s̄

∫ 1

0

dx

2x(1− x)

∫
d2k⊥
(2π)3

ψ
(mj)

ss̄/h (~k⊥, x)

× 1√
Nc

Nc∑
i=1

b†si/b(xP
+,~k⊥ + x~P⊥)d†s̄i/c̄((1− x)P+,−~k⊥ + (1− x)~P⊥) |0〉 .

(3)

In the expression above, ψ(mj)

ss̄/h (~k⊥, x) represents the light-front wave functions (LFWFs), s and s̄
are the spins of the quark and anti-quark, respectively. The anti-commutation relations of cre-
ation operators and the orthonormal relation of state vectors in this work are similar as for heavy
quarkonium [12].

We use a basis function approach, BLFQ [14], and following Ref. [11], we represent the
LFWFs in terms of transverse and longitudinal basis functions φnm and χl, with basis coefficients
ψh(n,m, l, s, s̄),

ψ
(mj)

ss̄/h (~k⊥, x) =
∑
n,m,l

ψh(n,m, l, s, s̄)φnm(~k⊥/
√
x(1− x))χl(x). (4)

For the basis functions, we employ

φnm(~q⊥; b) =
1

b

√
4πn!

(n+ |m|)!

(
q⊥
b

)|m|
e−

1
2
q2⊥/b

2
L|m|n (q2

⊥/b
2)eimθq ,

χl(x;α, β) =
√

4π(2l + α+ β + 1)

√
Γ(l + 1)Γ(l + α+ β + 1)

Γ(l + α+ 1)Γ(l + β + 1)
x
β
2 (1− x)

α
2 P

(α,β)
l (2x− 1),

(5)

which are the analytical solutions of the effective Hamiltonian without the one-gluon exchange.
Here, φnm is the 2D harmonic oscillator function with n and m the principle and orbital quantum
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Nf κ (GeV) mc (GeV) mb (GeV) r.m.s (MeV) δjM (MeV) Nmax = Lmax Ref.
cc̄ 4 0.966 1.603 − 31 17 32 [12]
bb̄ 5 1.389 − 4.902 38 8 32 [12]
bc̄ 4 1.196 1.603 4.902 37 6 32 this work

TABLE I. Summary of the model parameters

numbers, respectively, with ~q⊥ = ~k⊥/
√
x(1− x), q⊥ = |~q⊥|, θq = arg ~q⊥, and L

|m|
n (z) is the

associated Laguerre polynomial. Note that the conserved total magnetic projection mj is the sum
of the orbital projection m, and the sum of the spin projections, mj = m + s + s̄. We adopt
b = κ for the scale parameter in the HO basis. For the longitudinal basis function χl, l is the
longitudinal quantum number, P (α,β)

l (z) is the Jacobi polynomial . The dimensionless parameters
α and β are associated with the quark masses: α = 2mc̄(mb +mc̄)/κ

2 and β = 2mb(mb +mc̄)/κ
2.

When the one-gluon exchange is implemented, one can solve the eigen-equation by diagonalizing
the Hamiltonian matrix. Hence the obtained eigenvalues represent the spectra as squared masses,
and the eigenvectors are the coefficients ψh(n,m, l, s, s̄).

III. NUMERICAL RESULTS

In this work, we adopt model parameters from those of the charmonium and bottomonium
calculations without doing further parameter fitting. In particular, we adopt the quark masses
from the charmonium and bottomonium applications [12] (See TABLE I). On the other hand, the
confining strength is taken as κbc̄ =

√
(κ2
cc̄ + κ2

bb̄
)/2, where κbb̄ and κcc̄ are the confining strength

of the charmonium and bottomonium system, respectively. This is in accordance with the heavy
quark effective theory (HQET) [15]. All the calculations in this paper, unless otherwise stated, are
based on Nmax = Lmax = 32, which is associated with UV and IR regulators ΛUV = b

√
Nmax ' 6.77

GeV and λIR = b/
√
Nmax ' 0.21 GeV.

A. Mass Spectroscopy

In order to identify the multiplet of magnetic substates belonging to a single angular momentum
j, the effective Hamiltonian is diagonalized for various mj ’s. One needs to perform the state
identification to deduce the full set of quantum numbers n2s+1`j or jP, where ` is the orbital angular
momentum, n is the radial quantum number (not to be confused with the basis quantum numbers
n and l). The reconstructed mass spectrum up to the BD open flavor threshold is presented in Fig.
1, where we use the dashed lines for the mean values of invariant masses:

M ≡

√
M2
−j +M2

1−j + ...+M2
j

2j + 1
. (6)

The boxes indicate the spread from different mj , i.e. δjM ≡ max(Mmj ) − min(Mmj ), which is
nonzero due to the violation of rotational symmetry arising from the Fock space and basis space
truncations. We also employ the mean spread to quantify the rotational symmetry violation from
all high spin states below their respective dissociation thresholds,

δjM ≡

√√√√ 1

Nh

j 6=0∑
h

(δjMh)2
(
Nh ≡

j 6=0∑
h

1
)
. (7)
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FIG. 1. The reconstructed Bc (bc̄) spectrum at Nmax = Lmax = 32. The horizontal axis is JP and vertical
axis is invariant mass in GeV. We compare with data from PDG [16] and Lattice [17–19], with central values
shown as solid lines and uncertainties as shades.

We provide the experimental values [16] and results from Lattice [17–19] for comparison. Note that
the r.m.s deviations in TABLE I are evaluated with respect to 8 and 14 states for charmonium and
bottomonium [12], but only with respect to two experimental states for Bc.

We note that the mean spread of bc̄, which is evaluated with a total of 12 states below the
threshold of this system, is smallest in TABLE I. We compare the mass spectrum of Bc and heavy
quarkonia in Fig. 2 for selected states. It is a challenge to visually ascertain which system exhibits
the best rotational symmetry. However, as evident from TABLE I, on the basis of the fraction of
the mean spread relative to the total mass, we can see that the violation of rotational symmetry
is larger for charmonium than for Bc and bottomonium. This suggests heavier systems retain
rotational symmetry in our approach better than lighter systems.

B. Light-Front Wave Functions

Obtaining the light-front wave functions is a major motivation for this formalism, as they pro-
vide direct access to hadron observables. We present some of the valence LFWFs with different
polarization and spin alignments for Bc states. Specifically, we have the relation mj = s1 + s2 +m,
where m is the orbital angular momentum projection. Since the phase exp(imθ) factorizes in the
wave function on the two-body level, we drop it while retaining the sign for negative ~k⊥, i.e. we
visualize the LFWFs at ky = 0 (θ = 0 and θ = π).

In Fig. 3, we show the ground state pseudoscalar LFWFs. There are two independent compo-
nents with different spin alignments for 0− state: ψ↑↓−↓↑(~k⊥, x) ≡ 1√

2
[ψ↑↓(~k⊥, x)− ψ↓↑(~k⊥, x)] and

ψ↓↓(~k⊥, x) = ψ∗↑↑(
~k⊥, x). The former is dominant and reduces to the non-relativistic wave function

in the heavy quark limit, while the latter is of pure relativistic origin.
Furthermore, Bc has another significant feature that distinguish from the quarkonium (equal-

mass mesons). For the heavy quarkonia, charge conjugation is a good symmetry, and is reflected
by states having components either even or odd in (m + l) [11]. There is no charge conjugation
symmetry of Bc, but we do observe that our solutions are dominated by either even or odd (m+ l).
TABLE II exhibits this dominance, along with the comparison with heavy quarkonia of the ground
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FIG. 2. The mass spectrum for charmonium, Bc, and bottomonium below their respective dissociation
thresholds. Note that, aside from an overall shift, the mass scales are similar. We only select the states with
J = 0 and 1 for comparison. Experimental results from PDG [16] are in red while our results are in black.
The spread in mj values, defined in Eq. 7, is indicated by a rectangular black box around the J = 1 theory
results. This is scarcely visible in many cases. The mean spread of charmonium is larger than the other
two. All the three systems have similar patterns in the spectrum while the heavier system has more states
below the threshold.

system

even/odd (m+ l)
∣∣∣ψ↑↓−↓↑(~k⊥, x)

∣∣∣2 ∣∣∣ψ↓↓(~k⊥, x)
∣∣∣2 +

∣∣∣ψ↑↑(~k⊥, x)
∣∣∣2

Odd Even Odd Even
cc̄ 88.01% 0 11.99% 0
bc̄ 91.62% 0.35% 7.98% 0.05%
bb̄ 96.61% 0 3.39% 0

TABLE II. The probabilities of finding the specified even or odd (m + l) in the ground state of heavy
mesons. The dominant spin alignment listed here are the components that persist in the non-relativistic
limit. Note the systematic increase of these dominant components with the increasing meson mass.

states. In a separate test calculation, we verified that, as the mass difference between quark and
anti-quark decreases, the contribution from even (m+ l) is getting smaller, and progresses smoothly
to the equal-mass limit.

The LFWFs of Bc do not have symmetry with respect to x = 1
2 in the longitudinal direction,

another feature distinguishing Bc from heavy quarkonium. The wave function peaks in x near the
bottom quark mass fraction, i.e. x = mb/(mb +mc̄) ≈ 0.75, as expected from the major role of the
kinetic energy terms in the Hamiltonian. This asymmetry will have interesting consequences for
other observables as discussed in the following subsections.
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b) ψ↓↓(kx, ky = 0, x) = ψ∗↑↑(kx, ky = 0, x). Left : (m+ l) = Even; Right : (m+ l) = Odd.

FIG. 3. LFWFs of the ground state Bc shown as plots of their magnitudes versus x and kx at ky = 0.
In general spin alignment a) is dominant and reminiscent of non-relativistic behavior, while b) is purely a
relativistic component.

C. Decay Constants

Meson decay constants, fh, are hadronic properties defined from the matrix element of the local
current that annihilates the meson. They are

〈0|c̄γµγ5b|P (p)〉 = ipµfP ,

〈0|c̄γµb|V (p, λ)〉 = eµλMV fV ,
(8)
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Constant (MeV) this work Lattice [3, 4] QCD sum rules [22, 23] LFQM [24] CCQM [25] BSE [27]
fBc 523(62) 427(6) 528(19) 551 489.3 578
fB∗

c
474(42) 422(13) 384(32) 508

TABLE III. Pseudoscalar and vector decay constants of the ground state Bc and its vector partner B∗c .
The uncertainties of this work indicate the sensitivity to basis truncation, which is taken to be ∆fbc̄ =
2|fbc̄(Nmax = 32)− fbc̄(Nmax = 24)|.

for pseudoscalar (P ) and vector (V ) states, respectively. Here p is the momentum of the meson,
and eµλ is the polarization vector:

eµλ(k) =
(
e−λ (k), e+

λ (k), ~e⊥λ(k)
)
,


(~k2
⊥ −M2

V

MV k+
,
k+

MV
,
~k⊥
MV

)
, λ = 0(2~ε⊥λ · ~k⊥

k+
, 0,~ε⊥λ

)
, λ = ±1

, (9)

where ~ε⊥± = (1,±i)/
√

2, and we adopt λ ≡ mj as the angular momentum projection. The de-
cay constant can be computed in the light-front representation in terms of LFWFs with different
polarizations and corresponding current components. In this work, we choose the “good current”
(µ = +) and the longitudinal polarization (λ = 0) for the calculations. Since for J = 0 states, +
and ⊥ currents lead to identical results; for J = 1 states, it has been illustrated that λ = 0 and
λ = 1 provide comparable results for S-waves [20]. This choice leads to the decay constant as:

fP,V

2
√

2Nc
=

∫ 1

0

dx

2
√
x(1− x)

∫
d2k⊥
(2π)3

ψ
(λ=0)
↑↓∓↓↑(

~k⊥, x), (10)

where the “minus” and “plus” signs correspond to pseudoscalar and vector states, respectively. Here,
calculations have been done with Nmax = 32, corresponding to ΛUV , κ

√
Nmax ≈ mb +mc̄, where

ΛUV is the ultraviolet regulator. This is to balance the needs for better basis resolution and lower
UV scale owing to the omitted radiative corrections. An early effort using QCD sum rules provided
300 MeV as an estimate for fBc and 500 MeV1 for fB∗c [21]. We present a survey of recent work
in TABLE III along with results from Lattice [3, 4] and other approaches (see Refs. [22–27]) for
comparison. Lattice results are systematically smaller than the other methods by about 20%, as
also discussed in other references (e.g. [22, 28]).

In Fig. 4, we compare the vector decay constants of Bc and heavy quarkonia [12]. We can see
a trend that decay constants within each meson system decrease with increasing radial quantum
numbers. This trend seems reasonable since increasing radial quantum numbers correspond to
less binding and a larger spread in the radial probability distributions. In addition, we note that
the vector decay constants increase with the mass of the system for corresponding states, e.g.
J/Ψ < Bc(1

3S1) < Υ. This trend correlates with decreasing size as the mass increases which is
discussed further in the next session.

D. Charge and Longitudinal Momentum Densities

The transverse density offers insight into the hadron structure. In this work, we study the
charge density in the transverse impact parameter space of Bc mesons. By definition, it is the

1 T. Aliev, private communication.
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FIG. 4. The decay constants for vector states of charmonium, Bc and bottomonium. Results of charmonium
and bottomonium are from previous work [12] and PDG [16].

two-dimensional Fourier transform of the Dirac form factor [29, 30],

ρc(~b⊥) =

∫
d2∆⊥
(2π)2

ei~∆⊥·~b⊥F1(q2 = −~∆2
⊥), (11)

where ~∆⊥ is the transverse momentum transfer, and~b⊥ can be interpreted as the conjugated position
of ~∆⊥ at which the current probes the charge density. Analogous to the charge distribution, we
can perform the two-dimensional Fourier transform of the gravitational form factor, which can
be interpreted as the longitudinal momentum density in the transverse plane [31]. In the LFWF
representation of the two-body (bc̄) approximation, they can be expressed as,

ρc(~b⊥) =
1

3

∑
s,s̄

∫ 1

0

dx

4π(1− x)2

∣∣∣∣∣ψ̃ss̄( −~b⊥1− x
, x
)∣∣∣∣∣

2

+
2

3

∑
s,s̄

∫ 1

0

dx

4πx2

∣∣∣∣∣ψ̃ss̄(~b⊥x , x)
∣∣∣∣∣
2

, (12)

ρg(~b⊥) =
∑
s,s̄

∫ 1

0

dx

4π

x

(1− x)2

∣∣∣∣∣ψ̃ss̄( −~b⊥1− x
, x
)∣∣∣∣∣

2

+
∑
s,s̄

∫ 1

0

dx

4π

1− x
x2

∣∣∣∣∣ψ̃ss̄(~b⊥x , x)
∣∣∣∣∣
2

. (13)

Each density is normalized to unity, as the unit charge and the mass of the meson, respectively. The
momentum density is more concentrated in the center than the charge density, where the difference
is a relativistic effect [12]. This pattern can be observed in Fig. 5, where we present the results of
pseudoscalar and scalar states. We compare the r.m.s radii of ρg(~b⊥) among heavy meson systems,
which are 0.84 GeV−1, 0.58 GeV−1, 0.57 GeV−1 for J/Ψ, Bc(13S1), and Υ, respectively. This result
is consistent with the trend of decay constants: for the heavier system, it has smaller the radii,
therefore it is easier to decay.

E. Distribution Amplitude

Distribution amplitudes (DAs) are defined from the light-like vacuum-to-meson matrix elements,
and can be written with LFWFs as,

fP,V

2
√

2Nc
φP,V (x) =

1√
x(1− x)

∫
d2~k⊥

2(2π)3
ψλ=0
↑↓∓↓↑(

~k⊥, x) (14)
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FIG. 5. The charge density and longitudinal momentum density on the transverse plane of the pseudoscalar
and scalar states.

with fP,V the decay constants for pseudoscalars and vectors, respectively. Note that DAs defined
here are normalized to unity. We compare the ground states pseudoscalar DAs of the charmonium,
Bc meson, and bottomonium in Fig. 6. The width of the DA decreases while the peak height
increases with the mass of the system, and approaches a δ-function in the non-relativistic limit.
For charmonium and bottomonium, peaks are at x = 1/2 due to the equal mass of the constituent
quark and anti-quark. While for Bc, the peak is close to the constituent quark mass fraction, i.e.
x = mb/(mb +mc̄) ≈ 0.75, which is consistent with the distribution of the LFWFs in the previous
section. We present the ground-state pseudoscalar and vector DAs and their excited states. Note
that the pseudoscalar and vector DAs have similar patterns but they are not identical. This is
due to the different configuration mixings as controlled by the one-gluon exchange interaction in
this model. The radial excited states have important distinctions: dips appear with the radial
excitations. This pattern also appears in charmonium and bottomonium in BLFQ and in other
methods [32, 33]. Wiggles near both extremes of x arise from the limited range of basis spaces
employed.

IV. SUMMARY

In this work, we investigated the unequal-mass meson system Bc (bc̄) with the BLFQ approach.
All model parameters are fixed by reference to charmonium and bottomonium systems. We found
reasonable agreement with existing experiments and with other theoretical calculations.

We carried out the calculations with the basis limit Nmax = Lmax = 32, which corresponds to the
specific UV (IR) regulator b

√
Nmax ≈ 6.77 GeV (b/

√
Nmax ' 0.21 GeV). We first predicted the Bc

mass spectrum and presented the LFWFs of some selected states. These results are obtained from
diagonalizing a light-front Hamiltonian based on light-front holography. We discussed a significant
difference between the LFWFs of Bc and heavy quarkonium: only the unequal-mass system Bc
allows both positive and negative charge parities in the wave functions, due to the absence of
charge conjugation symmetry.
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FIG. 6. The distribution amplitudes(DAs) of the ground states of charmonium, Bc, and bottomonium (left
panel). DAs of the pseudoscalar and vector Bc’s and their radial excitations (right panel). Vertical dashed
lines indicate the constituent quark mass fraction of the corresponding system. Specifically peaks of the
DAs of quarkonium occur at x = mc/(mc + mc̄) = mb/(mb + mb̄) = 1/2, and the peak of Bc is close to
x = mb/(mb +mc̄) ≈ 0.75.

We calculated other observables with LFWFs such as the decay constants of pseudoscalar and
vector states. As additional applications and tests of our model, we calculated transverse charge
and momentum densities.

Our successes here in applications of the model for heavy quarkonium to the unequal mass
heavy meson system provide support for further extensions to lighter systems. One anticipates
greater challenges to the model which are likely to require the inclusion of a dynamical gluon in a
higher Fock sector. This naturally incorporates self-energy processes and raises challenging issues
of renormalization [34, 35]. Additional significant physics should also be included such as chiral
symmetry breaking, etc.
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