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Euclidean gravity provides an interesting test system for an analysis of cosmological perturba-
tions in an effective Hamiltonian constraint with holonomy modifications from loop quantum gravity.
This paper presents a discussion of scalar modes, with a specific form of the holonomy modifica-
tion function derived from a general expansion in a connection formulation. Compared with some
previous models, the constraint brackets are deformed in a different and more restricted way. A
general comparison of anomaly-free brackets in various effective and operator versions shows overall
consistency between different approaches.

PACS numbers:

I. INTRODUCTION

Loop quantum gravity [1–4], implements non-
perturbative and background-independent features in an
approach to quantizing general relativity. It could there-
fore provide models of quantum space-time structure. To
this end, one should address the long-standing anomaly
problem of space-time gauge transformations in order
to shed light on consistent versions. Without such a
derivation, assuming certain properties of solutions, for
instance in the form of an effective line element, amounts
to postulating a background space-time. Although over-
all consistency of the theory remains to be shown, there
are now several encouraging results which indicate that
a well-defined quantum space-time structure may be re-
alized. If this is the case, one could potentially use the
theory to derive possible effects for instance in cosmolog-
ical observations.

In addition to a consistent theory, a systematic ef-
fective framework is required for a reliable evaluation
of physical phenomena. In the background-independent
context of loop quantum gravity, such methods have been
explored by both the canonical [5–10] and the path inte-
gral perspective [11–14] in homogeneous models. For in-
homogeneous modes of cosmological perturbations, one
encounters new questions related to the consistency of
coupled partial differential equations, or the anomaly-
problem of quantum gravity.

In order to understand cosmological structure forma-
tion and anisotropies of the cosmic microwave back-
ground in models of loop quantum gravity, one needs to
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consider a cosmological perturbation theory with modifi-
cations including quantum-gravity effects. In the canon-
ical setting of loop quantum gravity, quantum-gravity
effects appear in an effective Hamiltonian constraint,
rather than an effective action whose covariance could be
checked directly. If the corrections implied by a canoni-
cal theory of quantum gravity are not covariant, Hamil-
tonian (and diffeomorphism) constraints obey constraint
brackets which do not close but rather contain anomaly
terms AIJ : Poisson brackets of two constraints would
not weakly vanish but be of the form

{CI , CJ} = KK
IJCK +AIJ (1)

with AIJ 6= 0. If there is such an anomaly, the quantum
corrected perturbation equations cannot be expressed
solely in terms of gauge-invariant variables [15]. There-
fore, how to obtain anomaly-free constraints of cosmo-
logical perturbations including loop quantum effects has
become an important question.
Several promising results have been obtained in this

direction, exploring the commutators of constraint oper-
ators [16–22] or Poisson brackets of effective constraints
[15, 23–30]. In models analyzed so far, it seems possi-
ble to have closed brackets (AIJ = 0), but usually with
modifications of the structure functions KK

IJ in (1), in
particular for real connections. The classical brackets
corresponds to a canonical version of space-time coor-
dinate transformations, represented as deformations of
spatial hypersurfaces in space-time [31]. If the brack-
ets are modified (and not just its generators), the gauge
transformations generated by the constraints are not bro-
ken but differ from coordinate transformations, so that
a new space-time model is obtained. Only in some cases
may it be possible to map the effective geometry to one
of classical type by applying a field redefinition [32, 33].
The most dramatic effect found in this context is the
possibility of signature change [34–37] at large density
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or curvature, indicated by a change of sign in some of
the structure functions. Such an effect is interesting, but
also dangerous owing to the indeterministic behavior that
it may imply [38]. In this article, we consider a model
which turns out to lead to different implications in situa-
tions that would give rise to signature change in previous
models. In this respect, our results are related to those of
[28–30], but qualitatively they are obtained in a different
way.

In general, there are two main quantum-gravity effects
in loop-quantized models, so-called inverse-triad correc-
tions [39, 40] and holonomy modifications [41, 42]. In
addition to these two, there are generic quantum back-
reaction effects which occur in all interacting quantum
theories but have not been explored much in inhomo-
geneous models of loop quantum gravity. We will con-
tinue this tradition and mostly ignore these terms in the
present paper, focussing on the two types of corrections
directly related to quantum geometry. (As shown in [43],
under certain conditions quantum back-reaction terms
from moments do not appear in structure functions of
constraint brackets.) For the case of inverse-triad cor-
rections, anomaly-free constraints and the correspond-
ing gauge-invariant cosmological perturbation equations
have been obtained for scalar modes [15, 44], vector
modes [45] and tensor modes [46], respectively. (For ten-
sor modes, anomaly-freedom of the constraints is auto-
matically fulfilled.) A characteristic feature, shared with
spherically symmetric models, is that the Poisson bracket
of two Hamiltonian constraints is modified by a factor of
the square of the inverse-triad correction function. As
this function is positive, signature change does not hap-
pen. Some relevant applications, including potentially
observable effects in the primordial power spectrum and
non-Gaussianity, have already been studied [47–50].

Holonomy modifications have been implemented in
consistent versions slightly more recently. The first pa-
pers used a partial gauge fixing to longitudinal gauge
[51, 52] and therefore could not show all effects with
full confidence. Without gauge fixing, a consistent ver-
sion has been obtained in [53] for vector modes and [24]
for scalar modes. A combined treatment of holonomy-
modified scalar, vector and tensor perturbations has been
given in [54]. Again, anomaly-free constraints can be ob-
tained by a rather simple quantum correction for all types
of perturbations. In the presence of holonomy modifica-
tions, the constraint brackets are modified in such a way
that structure functions may change sign, corresponding
to a transition between Lorentzian and Euclidean signa-
ture in the sense that either hyperbolic or elliptic mode
equations are implied [34–36]. There is agreement with
consistent constraint brackets in spherically symmetric
models [23, 26, 27] even at the operator level [20]. (See
[55] for a comparison.) Signature change is not always
realized in self-dual variables [28–30] because the Hamil-
tonian constraint has a different formal structure in its
dependence on spatial derivatives of the fields.

Anomaly-free constraints for both inverse-triad and

holonomy modifications have been studied for all types
of perturbative modes. The corresponding equations of
motion are derived in [25], providing so far the most
complete treatment of consistent cosmological perturba-
tions in models of loop quantum cosmology. However,
in a certain sense, holonomy modifications so far have
been considered after rather than before perturbing the
classical Hamiltonian constraint: One modifies the back-
ground constraint by replacing the classical quadratic de-
pendence on the connection q̄ (or Hubble parameter) by
a bounded function, q̄2 7→ ℓ−2 sin2(ℓq̄), as it has been
found by effective equations of isotropic models [41], and
then looks for a possible anomaly-free theory of perturba-
tive modes on such a background model. If one perturbs
a modified constraint, additional terms may appear. In
particular, there could be derivative corrections, even at
or below the classical derivative order, which happen to
be absent in the classical constraints but might be in-
duced by quantum-geometry effects. (See [27] for a dis-
cussion in spherical symmetry.) In covariant effective
actions, all quantum corrections are expected to be of
higher-derivative (or higher-curvature) type, but lower-
order terms may appear if the space-time structure is
modified as in certain canonical approaches. An effective
treatment should include all terms, up to a given order,
consistent with what is known about symmetries. If the
precise form of quantum space-time is unknown, one can-
not assume much about symmetries and should include
all possible terms in an ansatz for an effective Hamilto-
nian. Symmetries will then be implemented by the con-
dition of anomaly freedom, and their possible form can
be derived from the effective system rather than being
assumed. By including additional derivative terms, we
therefore fill in a gap in existing treatments.

In a canonical setting, the treatment of spatial and
temporal derivatives is different. The former appear di-
rectly in an effective Hamiltonian while the latter would
result in an adiabatic approximation of quantum back-
reaction [56–58]. Although both types of derivatives
should usually be considered in combination, holonomy
modifications suggest a larger role for spatial derivatives
because holonomies are spatially non-local functions of
the connection. If holonomy modifications can be con-
sistent in cosmological perturbation theory, one should
therefore be able to find anomaly-free constraints with
holonomy modifications of the background and a set of
higher spatial derivative terms.

In order to explore the perturbations in a frame-
work including holonomy modifications of loop quan-
tum gravity, allowing for more general derivative terms
than considered in [25], an effective holonomy-modified
Hamiltonian in Euclidean general relativity was first pro-
posed in [59], where the corresponding perturbative con-
straint brackets were studied for vector modes. The
Poisson brackets between the modified Hamiltonian and
diffeomorphism constraints restricted to vector modes
were calculated, and a specific form of the holonomy-
modification function f i

cd giving rise to anomaly-free con-
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straints was found. This result indicates that in a per-
turbative framework it is indeed possible to have non-
trivial and anomaly-free holonomymodifications with ad-
ditional derivative terms up to first order, as suggested
by non-local holonomies in the full theory. In this paper,
we shall extend the study to scalar modes in the same
framework.
A brief review of the modification function of the full

theory and some basic elements of scalar modes will
be presented in section II. Then, in section III, the
constraint brackets, including those between the modi-
fied Hamiltonian constraint and the diffeomorphism con-
straint as well as between the two modified Hamiltonian
constraints, are derived. Subsequently, a specific form
of the holonomy modification function is obtained from
its general expression in section IV. We compare the
results with those of [25] on one hand, and those of [28–
30] on the other, and discuss implications for signature
change in section V. Results from operator approaches
are briefly discussed as well.
At a formal level, the difference between [25] and our

present treatment is that we use a connection formula-
tion and include additional derivative terms of the con-
nection. Interestingly, the outcome does not seem to be
the same. Our calculations lead to an intermediate set
of deformed constraint brackets which may show a way
to avoid signature change and the associated indetermin-
istic behavior, but we have not been able to produce a
fully consistent non-classical system: While the brack-
ets of Hamiltonian and diffeomorphism constraints can
be closed, the expressions are not SU(2)-covariant unless
there are no holonomy corrections (while inverse-triad
corrections may be possible). We interpret this result as
an indication that non-local modifications are essential
in SU(2)-invariant connection theories.

II. HOLONOMY MODIFICATION FUNCTIONS
AND SCALAR MODES

In the connection formulation of Euclidean general rel-
ativity [3, 4], the gravitational Hamiltonian constraint
can be written as

H [N ] =
1

16πG

∫

Σ

d3xNǫ jk
i

Ec
jE

d
k√

| detE|
F i
cd , (2)

where Eb
j is the densitized triad, and the curvature of the

Ashtekar–Barbero connection Ai
a = Γi

a +Ki
a is given by

F i
cd = 2∂[cA

i
d] + ǫimnA

m
c An

d . (3)

In the expression for Ai
a, Γ

i
a is the spin connection com-

patible with the triad, and Ki
a = KabE

bi/| detEc
j | is ob-

tained from extrinsic curvature Kab. More generally, one
can define Ai

a = Γi
a + γKi

a with the Barbero–Immirzi
parameter γ [60, 61]. If γ 6= 1, there will be additional
terms in the Hamiltonian constraint which contain spa-
tial derivatives of the densitized triad, on whose relevance

we will comment later. We use the value γ = 1 in order
to work with the simplified expression (2).

In loop quantum gravity, the local dependence on the
connection Ai

a is replaced by a dependence on non-local
(in space) holonomies

he(A) = P exp

∫

e

Ai
aτidx

a (4)

for suitable choices of spatial curves e, where the symbol
P represents path ordering, and τj = − i

2σj is a basis of
the Lie-algebra su(2) with σj being the Pauli matrices.
Holonomies, unlike connection components, can be rep-
resented as operators on the kinematical Hilbert space of
loop quantum gravity, and therefore appear in candidates
for the quantized Hamiltonian constraint [62, 63].

However, it is difficult to find anomaly-free versions
because the operators and their commutators are compli-
cated expressions depending sensitively on factor order-
ings and other quantization choices. There has been some
progress in particular but not only in 2 + 1-dimensional
models [16–19, 21, 22], with consistent commutators on
a subset of states which partially solve the spatial diffeo-
morphism constraint (introduced in [64, 65]). Attempts
to go beyond the restricted set of states [21, 22] in Eu-
clidean gravity indicate that closed commutators of con-
straint operators may be possible more generally. Un-
fortunately, the complicated semiclassical limit of such
theories makes it difficult to see the full implications of
holonomy modifications, in particular those related to
potential deformations of the constraint brackets and sig-
nature change.

An effective approach to constraints has proven to be
more powerful [8, 43, 66], in which one does not directly

compute commutators [ĈI , ĈJ ] of constraint operators
but rather Poisson brackets

{〈ĈI〉, 〈ĈJ 〉} :=
〈[ĈI , ĈJ ]〉

i~
(5)

of effective constraints 〈ĈI〉. Methods have been devel-
oped by which one can evaluate the left-hand side in
an expansion by quantum moments, which turns out to
be more feasible than computing quantum commutators.
These methods, applied to a fixed order in ~, cannot
show whether a consistent operator version exists. But
they can rule out certain choices, or provide indications
of necessary deformations of the brackets when certain
modifications, such as holonomy terms, are to be imple-
mented. (For a general discussion, see [43].) So far, the
expansions used in the context of cosmological perturba-
tions have been done to lowest order in ~, which means
that one ignores quantum back-reaction but allows for
some quantum-geometry effects.

In order to include holonomy modifications in an ef-
fective theory of this form, we could, in general, consider
the following ansatz of holonomy modifications to the
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Euclidean Hamiltonian [59]

δHQ = ǫjki
Ec

jE
d
k√

| detE|
f i
cd(A, ∂A, ∂

2A, · · · , ∂nA, ǫ) , (6)

where f i
cd(A, ∂A, ∂

2A, · · · , ∂nA, ǫ) + O(∂n+1A) =

F̃ i
cd(he(A)) − F i

cd(A) is a function of Am
a and its deriva-

tives up to order n. (If the Hamiltonian is classical,
we have f i

cd = 0.) It is obtained by expanding the cor-

responding function F̃ i
cd(he(A)) that should appear in

place of the classical F i
cd(A) in an effective Hamiltonian

computed for a loop-quantized operator. There may also
be a dependence on Ea

i and its spatial derivatives if there
is lattice refinement [67, 68], in which case properties of
the curves e used to construct a quantum Hamiltonian
would depend on the spatial geometry. For simplicity,
we ignore such a dependence for a first analysis.
It is sufficient to assume that the holonomy-

modification function f i
cd(A

m
a , ǫ) is an antisymmetric ten-

sor, just as F i
cd, because it is contracted with the anti-

symmetric combination ǫjkiE
c
jE

d
k of triad components.

We write the modified Hamiltonian constraint as

HQ[N ] =
1

16πG

∫

Σ

d3xN(H + δHQ) = H [N ] + δHQ[N ] .(7)

After this modification, motivated by full loop quan-
tum gravity, we may perturb the Hamiltonian in order to
describe cosmological inhomogeneity. We use the split-
tings into background and inhomogeneity as given in [15]
(see also [55]). Considering perturbations around a spa-
tially flat, homogeneous and isotropic metric, the con-
nection variables Ai

a and the densitized triad Ea
i can be

expanded as

Ai
a = Āi

a + δAi
a := q̄δia + δAi

a (8)

Ea
i = Ēa

i + δEa
i := p̄δai + δEa

i (9)

where the homogeneous mode is defined by

q̄ :=
1

3V0

∫

Σ

Ai
aδ

a
i d

3x , p̄ :=
1

3V0

∫

Σ

Ea
i δ

i
ad

3x (10)

with V0 =
∫
Σ
d3x (integrated over some fixed region, or

all of space if it is compact). We will assume p̄ > 0, fixing
the spatial orientation. In order to avoid over-counting
the degrees of freedom, the perturbations δEa

i and δAi
a

do not have homogeneous modes:
∫

Σ

δEa
i δ

i
ad

3x = 0 ,

∫

Σ

δAi
aδ

a
i d

3x = 0 . (11)

Therefore, the Poisson brackets of the background and
perturbed variables can be constructed as

{q̄, p̄} =
8πG

3V0
, {δAi

a(x), δE
b
j (y)} = 8πGδijδ

b
aδ

3(x−y) .

(12)
We note [55] that there is a single inhomogeneous per-

turbation δf for any field component f , instead of a whole

tower δ(1)f , δ(2)f and so on, as often used for linear
perturbation equations at all orders. The latter decom-
position would be convenient when one tries to solve a
given set of equations of motion. In our context, how-
ever, we first need to derive consistent forms of equa-
tions of motion using canonical methods, which requires
a well-defined Poisson or symplectic structure. Since lin-
earized perturbations δ(1)f , δ(2)f and so on would not
provide independent degrees of freedom, one cannot de-
fine a Poisson structure for them. The decomposition (8),
by contrast, gives a well-defined Poisson structure (12).
The background variables of the lapse function and

shift vector can be chosen as

N̄ =
√
p̄ (13)

for conformal background time, and

N̄a = 0 (14)

for an isotropic background. Moreover, the perturbed
lapse δN does not have homogeneous modes:

∫

Σ

δNd3x = 0 , (15)

just as (11).
In order to restrict attention to scalar modes, we shall

parameterize the basic perturbed phase space variables
(δAi

a, δE
b
j ) in terms of suitable independent functions. As

discussed in [15], δEb
j and the extrinsic-curvature pertur-

bation δKi
a can be parameterized as

δKi
a = δiaκ1 + ∂a∂

iκ2 , δEa
i = δai ε1 + ∂i∂

aε2 (16)

in terms of two pairs of scalar functions. In addition, the
spin connection is

Γi
a = −1

2
ǫijkEb

j

(
2∂[aE

k
b] + Ec

kE
l
a∂cE

l
b − Ek

a

∂b(detE)

detE

)
.

(17)
Perturbing this equation at the linear level, one obtains

δΓi
a =

1

2p̄
ǫ ij
a ∂j(ε1 +∆ε2) , (18)

where ∆ε2 := ∂a∂
aε2. The connection variables δAi

a can
therefore be expressed as

δAi
a = δKi

a + δΓi
a

= δiaκ1 + ∂a∂
iκ2 +

1

2p̄
ǫ ij
a ∂j(ε1 +∆ε2) . (19)

It is easy to see that the Gauss constraint

G[Λ] =
1

8πGγ

∫

Σ

d3xΛiGi (20)

=
1

8πGγ

∫

Σ

d3xΛi(∂aE
a
i + ǫ k

ij Aj
aE

a
k )
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is automatically satisfied for the scalar modes. However,
there is still a non-trivial gauge flow generated by the
Gauss constraint, so that we will have to make sure that
all expressions are invariant under SU(2) transformations
of the connection and densitized triad. The latter can
be done easily without computing the extended brackets
including the Gauss constraint. We will therefore first
focus on the brackets between Hamiltonian and diffeo-
morphism constraints.

III. CONSTRAINTS

We now perturb the constraints to second order in in-
homogeneity, so that non-trivial constraints are obtained
which govern the gauge system of linear perturbations.
We will not restrict the inhomogeneity to scalar modes
right away, but only when doing so entails crucial simpli-
fications.

A. Perturbative constraints

The diffeomorphism constraint of Euclidean general
relativity can be expressed as

D[Na] :=
1

8πG

∫

Σ

d3xN c(−F k
cdE

d
k) (21)

≈ 1

8πG

∫

Σ

d3xN c[(−∂cA
k
d + ∂dA

k
c )E

d
k +Ai

c∂aE
a
i ] ,

where in the second line the Gauss constraint (20) has
been used. Since (20) vanishes for scalar modes, we do
not need to distinguish between the diffeomorphism and
vector constraints, and either expression in (21) is good
for our purposes. Perturbing the first expression (usually
identified as the vector constraint), we have

D[Na] =
1

8πG

∫

Σ

d3xδN c[−p̄∂c(δ
d
kδA

k
d) + p̄(∂kδA

k
c )− q̄p̄ǫdcnδA

n
d − q̄2ǫkcdδE

d
k ] . (22)

The perturbative expression of the Hamiltonian density up to the second order has been derived in the appendix
of [59] as H = H(0) +H(1) +H(2) with

H(0) = 6q̄2
√
p̄, (23)

H(1) = 4q̄
√
p̄δcjδA

j
c +

q̄2√
p̄
δjcδE

c
j + 2

√
p̄ǫ cd

i ∂cδA
i
d, (24)

H(2) = −√
p̄δAj

cδA
k
dδ

c
kδ

d
j +

√
p̄(δAj

cδ
c
j)

2 +
2q̄√
p̄
δEc

jδA
j
c +

q̄2

2p̄3/2
δEc

j δE
d
kδ

k
c δ

j
d

− q̄2

4p̄3/2
(δEc

j δ
j
c)

2 +
1√
p̄

(
4ǫ ck

i δEd
k − ǫ cd

i δEa
j δ

j
a

)
∂[cδA

i
d] . (25)

For a Hamiltonian constraint of the form (6), we write

f i
cd = f

i(0)
cd + f

i(1)
cd + f

i(2)
cd (26)

expanded up to second order in inhomogeneity, and obtain the modification terms

δH(0)
Q =

√
p̄f

i(0)
cd ǫ cd

i , (27)

δH(1)
Q =

√
p̄f

i(1)
cd ǫ cd

i +
f
i(0)
cd√
p̄

(
2ǫ ck

i δEd
k − 1

2
ǫ cd
i δEa

j δ
j
a

)
, (28)

δH(2)
Q =

√
p̄f

i(2)
cd ǫ cd

i +
f
i(1)
cd√
p̄

(
2ǫ ck

i δEd
k − 1

2
ǫ cd
i δEa

j δ
j
a

)

+
f
i(0)
cd

p̄3/2

[
ǫ jk
i δEc

j δE
d
k − ǫ ck

i δEd
kδE

a
j δ

j
a +

1

8
ǫ cd
i (δEa

j δ
j
a)

2 +
1

4
ǫ cd
i δEa

j δE
b
kδ

j
bδ

k
a

]
. (29)

For later convenience, we denote F (0) = f
i(0)
cd ǫ cd

i , F (1) =

f
i(1)
cd ǫ cd

i and F (2) = f
i(2)
cd ǫ cd

i .

At this stage, we pause and compare the parameteriza-
tion with the one used in [25] and related work. In these
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papers, δKi
a was used instead of δAi

a, and the deriva-
tive term present in the classical constraint (25) could be
eliminated using the Gauss constraint. The Hamiltonian
constraint then contains no derivatives of the field con-
jugate to δEa

i . However, even if such terms can be elim-
inated from the classical Hamiltonian, they may appear
in an effective constraint with a derivative expansion of
non-local holonomy modifications. Here, we assume that

they may be induced via the terms f
i(1)
cd and f

i(2)
cd , up to

a certain order in derivatives.

B. Brackets

For computational purposes, it is convenient to split
the perturbed Hamiltonian and its modification terms
into two parts each,

H [N ] =
1

16πG

∫
d3xNH = H [N̄ ] +H [δN ] , (30)

δHQ[N ] =
1

16πG

∫
d3xNδHQ = δHQ[N̄ ] + δHQ[δN ] .(31)

According to Eqs. (11) and (15), the integrals∫
Σ d3xN̄H(1),

∫
Σ d3xδNH(0),

∫
Σ d3xN̄δH(1)

Q and
∫
Σ
d3xδNδH(0)

Q are zero. Therefore, the explicit ex-
pressions for the perturbed Hamiltonian constraint are
[15]

H [N̄ ] =
1

16πG

∫
d3xN̄ [H(0) +H(2)] (32)

H [δN ] =
1

16πG

∫
d3xδNH(1) , (33)

δHQ[N̄ ] =
1

16πG

∫
d3xN̄ [δH(0)

Q + δH(2)
Q ] (34)

δHQ[δN ] =
1

16πG

∫
d3xδNδH(1)

Q . (35)

In a perturbative treatment, one may fix the back-
ground gauge so that H [N̄ ] would generate equations of
motion of background and perturbation variables, while
H [δN ] generates gauge transformations for the modes.
However, for consistency in the form of a closed set of
gauge-invariant observables, the constraints must be pre-
served by evolution. Both types of generators must then
come from a closed bracket of constraints H [N̄ + δN ]
together with D[Na]. As we have the explicit expres-
sion for the perturbed Hamiltonian constraint at hand,
we can calculate the Poisson brackets between Hamil-
tonian and diffeomorphism constraints and between two
Hamiltonian constraints, and check whether they can be
closed.
Before proceeding, we shall assume that the holonomy-

modification function f i
cd is a function of the connec-

tion variable Am
a up to first-order derivative, that is

f i
cd ≡ f i

cd(A, ∂A, ǫ), as used for vector modes in [59].
Higher spatial derivatives require a more-involved treat-
ment by a systematic expansion as developed and applied

to spherically symmetric systems in [27]. Here we assume
the classical derivative order but allow for all coefficients
to be modified, thereby extending the treatment of [25].
In this case, the holonomy-modification function can be
expanded as

f i
cd(A, ∂A, ǫ)

= f i
cd(A, ∂A, ǫ)

∣∣
Ām

a

+
∂f i

cd(A, ∂A, ǫ)

∂Am
a

∣∣∣∣
Ām

a

δAm
a

+
∂f i

cd(A, ∂A, ǫ)

∂(∂eAm
a )

∣∣∣∣
Ām

a

∂eδA
m
a

+
1

2

∂2f i
cd(A, ∂A, ǫ)

∂Am
a ∂An

b

∣∣∣∣
Ām

a

δAm
a δAn

b

+
∂2f i

cd(A, ∂A, ǫ)

∂Am
a ∂(∂eAn

b )

∣∣∣∣
Ām

a

δAm
a ∂eδA

n
b

+
1

2

∂2f i
cd(A, ∂A, ǫ)

∂(∂eAm
a )∂(∂fAn

b )

∣∣∣∣
Ām

a

∂eδA
m
a ∂fδA

n
b + · · ·

= f
i(0)
cd (q̄, ǫ) +Ai(1)

cd (q̄, δA, ǫ) + Bi(1)
cd (q̄, ∂δA, ǫ)

+Ai(2)
cd (q̄, δA, ǫ) + Bi(2)

cd (q̄, δA, ∂δA, ǫ)

+Ci(2)
cd (q̄, ∂δA, ǫ) + · · · (36)

For later convenience, we have denoted f
i(1)
cd ≡ Ai(1)

cd +

Bi(1)
cd and f

i(2)
cd ≡ Ai(2)

cd +Bi(2)
cd + Ci(2)

cd , where superscripts
indicate orders of inhomogeneity, and A, B, C derivative
orders. We note that specific expressions for coefficients
in a derivative expansion could be derived, for instance,
by using expectation values in coherent states as done
for spherically symmetric models in [69]. This paper also
shows that the Lorentzian constraint may have further
derivative corrections compared with the Euclidean term.
Since we expand the Hamiltonian and diffeomorphism

constraints up to second order in inhomogeneity, higher-
order terms in a power-series expansion by Ai

a of the
holonomy-modification function will not provide inde-
pendent contributions of products of δAi

a but just mod-
ify the background dependence of coefficients included
here. Therefore, it is enough to consider the holonomy-
modification function up to the second order in inhomo-
geneity, even if it may come from non-polynomial func-
tions such as the sine used in the usual background mod-
ification. As already stated, our only assumption is that
no spatial derivatives of Ai

a of orders higher than the
classical one appear.
We first consider the Poisson bracket between Hamil-

tonian and diffeomorphism constraints,

{H [N ], D[Na]} = {H [N̄ ], D[Na]}+ {H [δN ], D[Na]} .(37)
It is straightforward to show that the Poisson bracket
{H [N̄ ], D[Na]} vanishes, and hence we have

{H [N ], D[Na]} = {H [δN ], D[Na]} = H [δN c∂cδN ] .(38)

Note that in Euclidean signature one commonly em-
ploys the diffeomorphism constraint with a sign oppo-
site to that in Lorentzian general relativity, so that
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there is a sign difference between the above Poisson
bracket and corresponding one in Lorentzian signature.
There are similar results in the following Poisson brack-
ets, including the classical case and that with holonomy
modifications. Thus the Poisson bracket between per-
turbed classical Hamiltonian and diffeomorphism con-
straints agrees with the bracket between the original
classical constraints. This indicates the consistency be-
tween the perturbed constraint expressions and elemen-
tary Poisson brackets including the background and per-

turbed basic variables.
We shall now derive the Poisson bracket between the

Hamiltonian and the diffeomorphism constraints when
the former includes holonomy modifications. It should
be noted that for vector modes in [59], there is no lapse
perturbation, that is δN = 0, and δHQ[δN ] vanishes.
But for scalar modes we have δN 6= 0, so that we need to
calculate both Poisson brackets, {δHQ[N̄ ], D[Na]} and
{δHQ[δN ], D[Na]}.
We calculate the first Poisson bracket:

{δHQ[N̄ ], D[Na]}

=
1

16πG

∫
d3xδN c

[
−1

2
q̄δic

∂A(1)

∂(δAi
a)
∂a(δE

d
kδ

k
d) + f

i(0)
bc ǫ bj

i ∂j(δE
d
kδ

k
d)−

2

3
F (0)δkc (∂dδE

d
k)

−2f
i(0)
cd ǫ jk

i ∂jδE
d
k + 2q̄

∂Aj(1)
bd

∂(δAi
a)
ǫ bk
j δic∂aδE

d
k +

q̄

2

∂B(1)

∂(∂eδAi
a)
δic∂a∂e(δE

d
kδ

k
d)

−2q̄
∂Bj(1)

bd

∂(∂eδAi
a)
ǫ bk
j δic∂a∂eδE

d
k +

1

3
p̄
∂F (0)

∂q̄
∂kδA

k
c + q̄p̄δic∂a

∂A(2)

∂(δAi
a)

+ q̄p̄δic∂a
∂B(2)

∂(δAi
a)

−q̄p̄δic∂a∂e
∂B(2)

∂(∂eδAi
a)

− q̄p̄δic∂a∂e
∂C(2)

∂(∂eδAi
a)

+ p̄∂cA(1) + p̄∂cB(1)

−2p̄ǫ bj
i ∂jAi(1)

bc − 2p̄ǫ bj
i ∂jBi(1)

bc − p̄

3

∂F (0)

∂q̄
∂c(δ

d
kδA

k
d)
]
. (39)

Hence in contrast to the classical case, the Poisson bracket {HQ[N̄ ], D[Na]} does not vanish identically due to the
introduction of holonomy effects. The second Poisson bracket is

{δHQ[δN ], D[Na]} =
1

16πG

∫
d3x
[
(δN i∂aδN)

(
q̄
√
p̄
∂A(1)

∂(δAi
a)

− 2
√
p̄f

k(0)
di ǫ da

k

)

+(δN c∂cδN)
√
p̄F (0) − (δN i∂a∂eδN)q̄

√
p̄

∂B(1)

∂(∂eδAi
a)

]
. (40)

The Poisson bracket we are looking for is the sum of Eqs. (38), (39) and (40),

{HQ[N ], D[Na]} = {H [δN ], D[Na]}+ {HQ[N̄ ], D[Na]}+ {HQ[δN ], D[Na]} . (41)

We will discuss possible anomaly-free versions in the next section.
We now calculate the Poisson bracket between two Hamiltonian constraints, smeared with different functions

N1 = N̄ + δN1 and N2 = N̄ + δN2. We have {H [δN1], H [δN2]} = 0 because the absence of a background term in the
diffeomorphism constraint implies that the leading non-zero contribution would be of third order, which is eliminated
in our second-order expansion. We therefore have

{H [N1], H [N2]} = {H [δN1], H [N̄ ]}+ {H [N̄ ], H [δN2]}

= {H [δN1 − δN2], H [N̄ ]} = −D

[
N̄

p̄
∂c(δN2 − δN1)

]
. (42)

Again, Eq. (42) confirms the consistency between the perturbed constraint expressions and elementary Poisson brack-
ets including the background and perturbed basic variables.
With holonomy modifications, we similarly have

{HQ[N1], HQ[N2]} = {HQ[δN1 − δN2], HQ[N̄ ]}
= {H [δN1 − δN2], H [N̄ ]}+ {H [δN1 − δN2], δHQ[N̄ ]}

+{δHQ[δN1 − δN2], H [N̄ ]}+ {δHQ[δN1 − δN2], δHQ[N̄ ]} (43)
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where

{H [δN1 − δN2], δHQ[N̄ ]} =
1

8πG

∫
d3x(δN1 − δN2)

{[ q̄

24
√
p̄

(
8F (0) + q̄

∂F (0)

∂q̄

)
+

q̄2

8
√
p̄

∂A(1)

∂(δAi
a)
δia

]
δEd

kδ
k
d

−
[ q̄√

p̄
f
i(0)
cd ǫ ck

i +
q̄2

2
√
p̄

∂Aj(1)
cd

∂(δAi
a)
δiaǫ

ck
j

]
δEd

k +

√
p̄

6

(
F (0) − q̄

∂F (0)

∂q̄

)
δAk

dδ
d
k

+
1

2
q̄
√
p̄F (1) − q̄2

√
p̄

4
δia

(
∂A(2)

∂(δAi
a)

+
∂B(2)

∂(δAi
a)

)}

+
1

8πG

∫
d3x∂e(δN1 − δN2)

{[ 1

2
√
p̄
f
i(0)
cb ǫ cj

i ǫ eb
j +

q̄2

8
√
p̄

∂B(1)

∂(∂eδAi
a)
δia

]
δEd

kδ
k
d

+
1√
p̄

[
−F (0)

4
− f

i(0)
bd ǫ jk

i ǫ eb
j +

q̄2

2
δiaǫ

ck
j

∂Bj(1)
cd

∂(∂eδAi
a)

]
δEd

k +

√
p̄

12

∂F (0)

∂q̄
ǫ ed
i δAi

d

−f
i(1)
db ǫ dj

i ǫ eb
j +

√
p̄q̄2

4

(
∂B(2)

∂(∂eδAi
a)

+
∂C(2)

∂(∂eδAi
a)

)
δia

}
(44)

for the first non-classical bracket,

{δHQ[δN1 − δN2], H [N̄ ]} =
1

8πG

∫
d3x(δN1 − δN2)

{
− q̄2

8
√
p̄

(
∂F (0)

∂q̄
+

∂A(1)

∂(δAi
a)
δia

)
δEd

kδ
k
d −

√
p̄

2
F (0)δAk

dδ
d
k

+
[ q̄√

p̄

(
f
i(0)
cd +

q̄

4

∂f
i(0)
cd

∂q̄

)
+

q̄2

4
√
p̄

∂A(1)

∂(δAi
a)
δkaδ

i
d

]
δEd

k +

(
1

2
q̄
√
p̄
∂A(1)

∂(δAi
a)

+
√
p̄f j(0)

ca ǫ cd
j δak

)
δAk

d

+
q̄
√
p̄

4

(
q̄
∂F (1)

∂q̄
− 2F (1)

)}

+
1

8πG

∫
d3x∂e(δN1 − δN2)

{[ q̄2

8
√
p̄

∂B(1)

∂(∂eδAi
a)
δia +

1

2
√
p̄
f
j(0)
ba ǫ bi

j ǫ ea
i

]
δEd

kδ
k
d

+
[
− q̄2

4
√
p̄

∂B(1)

∂(∂eδAi
a)
δkaδ

i
d +

1

4
√
p̄
F (0)ǫ ek

d − 1√
p
f
j(0)
bd ǫ bi

j ǫ ek
i +

1√
p
f
j(0)
ba ǫ bi

j ǫ ak
i δed

]
δEd

k

+
1

4
√
p̄

∂A(1)

∂δAi
a

ǫ ed
a δAi

d +
1

4
√
p̄

∂B(1)

∂(∂eδAi
a)
ǫ cd
a ∂cδA

i
d

}
(45)

for the second non-classical bracket, and

{δHQ[δN1 − δN2], δHQ[N̄ ]}

=
1

8πG

∫
d3x(δN1 − δN2)

{
− 1

24
√
p̄
F (0) ∂F (0)

∂q̄
δEd

kδ
k
d +

[ 1

12
√
p̄
F (0) ∂f

i(0)
cd

∂q̄
ǫ ck
i +

1

12
√
p̄
f
i(0)
cd

∂F (0)

∂q̄
ǫ ck
i

+
1

8
√
p̄
F (0) ∂A(1)

∂(δAi
a)
δidδ

k
a − 1

4
√
p̄
f
j(0)
cd ǫ ck

j

∂A(1)

∂(δAi
a)
δia +

1

2
√
p̄
f
j(0)
ad ǫ ik

j

∂A(1)

∂(δAi
a)

− 1

2
√
p̄

(
−1

2
F (0)δia + 2fk(0)

ca ǫ ci
k

)
∂Aj(1)

cd

∂(δAi
a)
ǫ ck
j

]
δEd

k +

√
p̄

24

(
F (0) ∂F (1)

∂q̄
−F (1) ∂F (0)

∂q̄

)

−
√
p̄

8
F (1) ∂A(1)

∂(δAi
a)
δia +

√
p̄

2
fk(1)
ca ǫ ci

k

∂A(1)

∂(δAi
a)

−
√
p̄

4

(
−1

2
F (0)δia + 2fk(0)

ca ǫ ci
k

)(
∂A(2)

∂(δAi
a)

+
∂B(2)

∂(δAi
a)

)}

+
1

8πG

∫
d3x∂e(δN1 − δN2)

{√p̄

4

(
−1

2
F (0)δia + 2fk(0)

ca ǫ ci
k

)
∂B(1)

∂(∂eδAi
a)

+
[
− 1

8
√
p̄
F (0) ∂B(1)

∂(∂eδAi
a)
δidδ

k
a +

1

4
√
p̄
f
j(0)
cd ǫ ck

j

∂B(1)

∂(∂eδAi
a)
δia −

1

2
√
p̄
f
j(0)
ad ǫ ik

j

∂B(1)

∂(∂eδAi
a)

− 1

2
√
p̄

(
−1

2
F (0)δia + 2f

l(0)
ba ǫ bi

l

)
ǫ ck
j

∂Bj(1)
cd

∂(∂eδAi
a)

]
δEd

k +

√
p̄

8
F (1)δia

∂B(1)

∂(∂eδAi
a)

−
√
p̄

2
fk(1)
ca ǫ ci

k

∂B(1)

∂(∂eδAi
a)

−
√
p̄

4

(
−1

2
F (0)δia + 2f

l(0)
ba ǫ bi

l

)(
∂B(2)

∂(∂eδAi
a)

+
∂C(2)

∂(∂eδAi
a)

)}
(46)
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for the last bracket.

IV. HOLONOMY MODIFICATION FUNCTION
AND ANOMALY FREEDOM

We can now check whether there are some specific
forms of the holonomy modification function which imply
that the constraints are anomaly free. The general form
[59]

f i
cd = σ(q̄)ǫicd + /σ(q̄)ǫicdA

j
aδ

a
j + µ(q̄)Ai

bǫ
b
cd

+ν(q̄)(ǫimdA
m
c + ǫicnA

n
d ) + /̃σ(q̄)ǫicd(A

j
aδ

a
j )

2

+/µ(q̄)A
i
bǫ

b
cdA

j
aδ

a
j + /ν(q̄)(ǫimdA

m
c + ǫicnA

n
d )A

j
aδ

a
j

+ρ(q̄)ǫimnA
m
c An

d + τ(q̄)∂[cA
i
d] , (47)

of holonomy modification functions satisfies our previous
assumptions: antisymmetry in c and d as well as up to
first-order derivatives of Ai

a. At this point, there is no
term of the form Ai

a∂bA
j
c because on shell Ai

a appears as
a first-order (time) derivative. The omitted term would
therefore be considered to be of second total derivative
order and should not be included in a first-order deriva-
tive expansion. This treatment of derivatives has been
shown to be consistent in [27]. The dependence of coef-
ficients on the background connection q̄ is unrestricted,
as it may result from an expansion of a non-quadratic
function of the connection. However, if f i

cd is expected
to result from a function of holonomies, expanded up to
n-th order in a dependence on Ai

a, the perturbation ex-
pansion implies that σ(q̄) is a polynomial of the same
degree n, while /σ(q̄), µ(q̄), ν(q̄) and τ(q̄) are polynomi-

als of degree n − 1, and /̃σ(q̄), /µ(q̄), /ν(q̄) and ρ(q̄) are
polynomials of degree n− 2.
In the notation of (36), the expressions of the holonomy

modification function f i
cd up to first order can be found

as

f
i(0)
cd = (σ + 3/σq̄ + µq̄ + 2νq̄ + ρq̄2 + 9/̃σq̄2

+3/µq̄
2 + 6/νq̄2)ǫicd ,

Ai(1)
cd = (ν + ρq̄ + 3/νq̄)(ǫimdδA

m
c + ǫicnδA

n
d )

+(/σ + 6/̃σq̄ + /µq̄ + 2/νq̄)δAj
aδ

a
j ǫ

i
cd

+(µ+ 3/µq̄)δA
i
bǫ

b
cd ,

Bi(1)
cd = τ∂[cδA

i
d] ,

Ai(2)
cd = ρǫimnδA

m
c δAn

d + /̃σ(δAj
aδ

a
j )

2ǫicd

+/ν(ǫimdδA
m
c + ǫicnδA

n
d )δA

j
aδ

a
j + /µδA

i
bǫ

b
cdδA

j
aδ

a
j ,

Bi(2)
cd = 0 ,

Ci(2)
cd = 0 . (48)

Note that for vector modes, with δbjδA
j
b = 0, these equa-

tions reduce to Eq. (35) in [59]. We list the following
relations for later convenience,

F (0) = 6(σ + 3/σq̄ + µq̄ + 2νq̄ + ρq̄2 + 9/̃σq̄2 + 3/µq̄
2 + 6/νq̄2) ,

A(1) = (4ν + 6/σ + 2µ+ 4ρq̄ + 24/νq̄ + 36/̃σq̄ + 12/µq̄)δA
k
dδ

d
k ,

A(2) = (ρ+ 6/̃σ + 2/ν + 2/µ)(δA
k
dδ

d
k)

2 − ρδAm
c δAn

dδ
c
nδ

d
m ,

f
i(0)
cd =

F (0)

6
ǫicd ,

B(1) = τ∂c(δA
i
dǫ

cd
i ) . (49)

A. Hamiltonian and diffeomorphism constraints

Substituting Eq. (48) into the expression of the Poisson
bracket (39) and using the relations in Eq. (49), we have

{δHQ[N̄ ], D[Na]} =
1

16πG

∫
d3xδN c

[
−2

(
σ

q̄
+ 3/σ + 2µ+ ν + 9q̄ /̃σ + 6q̄/µ+ 3q̄/ν

)
q̄δkc (∂dδE

d
k)

+2

(
∂σ

∂q̄
+ 3q̄

∂/σ

∂q̄
+ q̄

∂µ

∂q̄
+ 2q̄

∂ν

∂q̄
+ 3q̄2

∂/µ

∂q̄
+ q̄2

∂ρ

∂q̄
+ 9q̄2

∂/̃σ

∂q̄
+ 6q̄2

∂/ν

∂q̄

+3/σ + 2µ+ ν + 18q̄ /̃σ + 9q̄/µ+ 9q̄/ν

)
p̄∂kδA

k
c

−2

(
∂σ

∂q̄
+ 3q̄

∂/σ

∂q̄
+ q̄

∂µ

∂q̄
+ 2q̄

∂ν

∂q̄
+ 3q̄2

∂/µ

∂q̄
+ q̄2

∂ρ

∂q̄
+ 9q̄2

∂/̃σ

∂q̄
+ 6q̄2

∂/ν

∂q̄

+2/σ + µ+ ν + 3q̄/µ+ 5q̄/ν + 6q̄ /̃σ

)
p̄∂c(δ

d
kδA

k
d)

+(/σ + 6q̄ /̃σ + µ+ 4q̄/µ+ 2q̄/ν)q̄∂c(δE
d
kδ

k
d)
]
. (50)
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For scalar modes (16) and (19), we have the relations

δkc (∂dδE
d
k) = ∂cε1 + ∂c(∆ε2),

∂c(δE
d
kδ

k
d) = 3∂cε1 + ∂c(∆ε2),

∂kδA
k
c = ∂cκ1 + ∂c(∆κ2),

∂c(δA
k
dδ

d
k) = 3∂cκ1 + ∂c(∆κ2),

ǫkcdδE
d
k = 0,

ǫdcnδA
n
d = −1

p̄
∂cε1 −

1

p̄
∂c(∆ε2) (51)

The diffeomorphism constraint in term of the scalar func-
tions (ε1, ε2) and (κ1, κ2) is

D[Na] =
1

8πG

∫

Σ

d3xδN c[−2p̄∂cκ1 + q̄∂cε1 + q̄∂c(∆ε2)] .(52)

Using these relations, the Poisson bracket (50) is

{δHQ[N̄ ], D[Na]} =
1

16πG

∫
d3xδN c

{
−
(
2
σ

q̄
+ 3/σ + µ+ 2ν

)
q̄∂cε1

−
(
2
σ

q̄
+ 5/σ + 3µ+ 2ν + 12/̃σ + 8q̄/µ+ 4q̄/ν

)
q̄∂c(∆ε2)

−2
[
2

(
∂σ

∂q̄
+ 3q̄

∂/σ

∂q̄
+ q̄

∂µ

∂q̄
+ 2q̄

∂ν

∂q̄
+ 3q̄2

∂/µ

∂q̄
+ q̄2

∂ρ

∂q̄
+ 9q̄2

∂/̃σ

∂q̄
+ 6q̄2

∂/ν

∂q̄

)

+3/σ + µ+ 2ν + 6q̄/ν
]
p̄∂cδκ1 + 2(/σ + µ+ 12q̄ /̃σ + 6q̄/µ+ 4q̄/ν)p̄∂c(∆κ2)

}
. (53)

This contribution would vanish classically, but may be
non-zero here as long as the scalar modes can be com-
bined in the right form to produce a multiple of the
diffeomorphism constraint (52). Comparing the Poisson
bracket (53) with the expression of the diffeomorphism
constraint (52), we observe that the conditions

/σ = −µ− 2q̄/µ , (54)

/̃σ = −1

3
(/µ+ /ν) , (55)

∂σ

∂q̄
+ 3q̄

∂/σ

∂q̄
+ q̄

∂µ

∂q̄
+ 2q̄

∂ν

∂q̄
+ 3q̄2

∂/µ

∂q̄
+ q̄2

∂ρ

∂q̄

+9q̄2
∂/̃σ

∂q̄
+ 6q̄2

∂/ν

∂q̄

= −σ

q̄
− 6/σ − 4µ− 2ν − 27q̄ /̃σ − 15q̄/µ− 12q̄/ν (56)

imply a closed Poisson bracket:

{HQ[N̄ ], D[Na]} = −
(
σ

q̄
− µ+ ν − 3q̄/µ

)
D[Na] . (57)

Substituting Eqs. (54) and (55) into Eq. (56),

∂σ

∂q̄
− 2q̄

∂µ

∂q̄
+ 2q̄

∂ν

∂q̄
− 6q̄2

∂/µ

∂q̄
+ q̄2

∂ρ

∂q̄
+ 3q̄2

∂/ν

∂q̄

= −σ

q̄
+ 2µ− 2ν + 12q̄/µ− 3q̄/ν . (58)

Similarly to the case of vector modes [59], we find that
the form of the Poisson bracket {HQ[N̄ ], D[Na]} may be
modified by holonomy terms. One of the conditions for
scalar modes, Eq. (56), is the same as that for vector

modes (Eq. (38) in [59]). For scalar modes, however,
we need the additional conditions (54) and (55). The
requirement of having anomaly-free constraints there-
fore imposes tighter restrictions on the parameters of the
holonomy-modification function (47) when we consider
scalar modes.
Moreover, for the contribution (40) to the Poisson

bracket, we have

{δHQ[δN ], D[Na]} = δHQ[δN
c∂cδN ] (59)

− 1

16πG

∫
d3x(δN c∂cδN)4q̄

√
p̄

(
σ

q̄
− µ+ ν − 3/µq̄

)

using Eqs. (54) and (55). The condition of anomaly-free
constraints requires

σ

q̄
− µ+ ν − 3/µq̄ = 0 , (60)

so that {δHQ[N ], D[Na]} in (57) vanishes. Therefore,
when the conditions (54), (55), (58) and (60) are satis-
fied, the Poisson bracket between the holonomy-modified
Hamiltonian and diffeomorphism constraints becomes

{δHQ[N ], D[Na]} = δHQ[δN
c∂cδN ], (61)

which is identical to the classical case. The conditions
(54), (55), (58) and (60) can be combined as

σ = q̄µ− q̄ν + 3q̄2/µ ,

/σ = −µ− 2q̄/µ ,

/̃σ = −1

3
(/µ+ /ν) , (62)

−q̄
∂µ

∂q̄
+ q̄

∂ν

∂q̄
− 3q̄2

∂/µ

∂q̄
+ q̄2

∂ρ

∂q̄
+ 3q̄2

∂/ν

∂q̄
= 3q̄/µ− 3q̄/ν .
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B. Two Hamiltonian constraints

We now turn to the study of the Poisson bracket be-
tween two holonomy-modified Hamiltonian constraints.

Using Eq. (62), the terms of the holonomy modification
function (48) can be rewritten as

f
i(0)
cd = (−µq̄ + νq̄ − 3/µq̄

2 + 3/νq̄2 + ρq̄2)ǫicd ,

Ai(1)
cd = (ν + ρq̄ + 3/νq̄)(ǫimdδA

m
c + ǫicnδA

n
d )− (µ+ 3/µq̄)δA

j
aδ

a
j ǫ

i
cd + (µ+ 3/µq̄)δA

i
bǫ

b
cd ,

Bi(1)
cd = τ∂[cδA

i
d] ,

Ai(2)
cd = ρǫimnδA

m
c δAn

d − 1

3
(/µ+ /ν)(δAj

aδ
a
j )

2ǫicd + /ν(ǫimdδA
m
c + ǫicnδA

n
d )δA

j
aδ

a
j + /µδA

i
bǫ

b
cdδA

j
aδ

a
j ,

Bi(2)
cd = 0 ,

Ci(2)
cd = 0 . (63)

In terms of

F (0) = 6(−µq̄ + νq̄ − 3/µq̄
2 + 3/νq̄2 + ρq̄2) ,

A(1) = (−4µ+ 4ν − 12/µq̄ + 12/νq̄ + 4ρq̄)δAk
dδ

d
k =

2

3

F (0)

q̄
δAk

dδ
d
k ,

A(2) = ρ(δAk
dδ

d
k)

2 − ρδAm
c δAn

dδ
c
nδ

d
m ,

∂F (0)

∂q̄
= 6(−µ+ ν − 3/µq̄ + 3/νq̄ + 2ρq̄) =

F (0)

q̄
+ 6ρq̄ ,

f
i(0)
cd =

F (0)

6
ǫicd , B(1) = τ∂cδA

i
dǫ

cd
i ,

∂A(1)

∂q̄
= 4ρδAk

dδ
d
k , (64)

the sum of the holonomy-modified Poisson brackets, (44), (45) and (46) is

{H [δN1 − δN2], δHQ[N̄ ]}+ {δHQ[δN1 − δN2], H [N̄ ]}+ {δHQ[δN1 − δN2], δHQ[N̄ ]}

=
1

8πG

∫
d3x∂c(δN2 − δN1)

N̄

p̄

{
−(

1

4
τ2 + τ)

[
p̄∂kδA

k
c − p̄∂c(δA

k
dδ

d
k)
]

+

[
− 1

24
(F (0) + 6q̄2)

∂τ

∂q̄
+ (1 +

τ

2
)(µ+ 3/µq̄) +

1

6

F (0)

q̄
+

1

2
τ q̄ +

1

4
τ2q̄

]
p̄δAn

d ǫ
d
cn

− 1

12
(τF (0) + 2F (0) + 6τ q̄2)ǫkcdδE

d
k

}

+
1

8πG

∫
d3x(δN2 − δN1)

1

72
(F (0) + 6q̄2)(F (0) − 6ρq̄2)

(
1

q̄
√
p̄
δEd

kδ
k
d − 2

√
p̄

q̄2
δAk

dδ
d
k

)
. (65)

By using Eqs. (51), we express the Poisson bracket (65) in terms of the scalar modes (ε1, ε2) and (κ1, κ2) as

{H [δN1 − δN2], δHQ[N̄ ]}+ {δHQ[δN1 − δN2], H [N̄ ]}+ {δHQ[δN1 − δN2], δHQ[N̄ ]}

=
1

8πG

∫
d3x∂c(δN2 − δN1)

N̄

p̄

{
(
1

2
τ2 + 2τ)p̄∂cκ1

−
[
− 1

24
(F (0) + 6q̄2)

∂τ

∂q̄
+ (1 +

τ

2
)(µ+ 3/µq̄) +

1

6

F (0)

q̄
+

1

2
τ q̄ +

1

4
τ2q̄

]
∂c(ε1 +∆ε2)

}

+
1

8πG

∫
d3x(δN2 − δN1)

1

72
(F (0) + 6q̄2)(F (0) − 6ρq̄2)

[
1

q̄
√
p̄
(3ε1 +∆ε2)− 2

√
p̄

q̄2
(3κ1 +∆κ2)

]
.

(66)

Equation (66) implies that, in order to have a closed Pois-
son bracket, we should impose the conditions

(ρ+ 1)q̄
∂τ

∂q̄
− 4

(
1 +

τ

2

)(µ

q̄
+ 3/µ

)
+ 2τ − 4ρ = 0,

µ = ν − 3/µq̄ + 3/νq̄ . (67)

The Poisson bracket (66) can then be expressed as

{H [δN1 − δN2], δHQ[N̄ ]}+ {δHQ[δN1 − δN2], H [N̄ ]}
+{δHQ[δN1 − δN2], δHQ[N̄ ]}

= −
(
1

4
τ2 + τ

)
D[N̄ p̄−1∂c(δN2 − δN1)] . (68)
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Using (67), we obtain

−q̄
∂µ

∂q̄
+q̄

∂ν

∂q̄
= q̄

∂

∂q̄

(
3q̄(/µ− /ν)

)
= 3q̄2

∂(/µ− /ν)

∂q̄
+3q̄(/µ−/ν)

(69)
such that (62) simplifies to q̄2∂ρ/∂q̄ = 0. We arrive at
the conditions

ρ = c1 ,

(c1 + 1)q̄
∂τ

∂q̄
− 4

(
1 +

τ

2

)(µ

q̄
+ 3/µ

)
+ 2τ − 4c1 = 0 ,

σ = 3q̄2/ν ,

/σ = −ν + q̄/µ− 3q̄/ν ,

/̃σ = −1

3
(/µ+ /ν) ,

µ = ν − 3/µq̄ + 3/νq̄ , (70)

on anomaly-free constraints, where ρ = c1 is now a con-
stant independent of q̄. In these conditions, there are
three free functions of q̄: ν, /µ and /ν.
In [59], a different-looking equation, (38), has been

derived for anomaly-freedom of vector modes. Slightly
adapted to our notation, this condition reads

0 =
∂σ

∂q̄
+ 3q̄

∂/σ

∂q̄
+ 9q̄2

∂/̃σ

∂q̄
+ q̄

∂µ

∂q̄
+ 2q̄

∂ν

∂q̄
+ 3q̄2

∂/µ

∂q̄

+6q̄2
∂/ν

∂q̄
+ q̄2

∂ρ

∂q̄
+

σ

q̄
+ 6/σ + 27q̄ /̃σ + 4µ+ 15q̄/µ

+2ν + 12q̄/ν . (71)

If we insert (70), this equation is identically satisfied,
such that the formulations for scalar and vector modes
are consistent with each other.
We have found a candidate for a non-trivial holonomy-

modified function f i
cd, which satisfies anomaly-free con-

straint brackets for both scalar and vector modes up to
second order. This non-trivial function can be written as

f i
cd = 3q̄2/νǫicd + (−ν + q̄/µ− 3q̄/ν)ǫicdA

j
aδ

a
j

+(ν − 3/µq̄ + 3q̄/ν)Ai
bǫ

b
cd + ν(ǫimdA

m
c + ǫicnA

n
d )

−1

3
(/µ+ /ν)ǫicd(A

j
aδ

a
j )

2 + /µA
i
bǫ

b
cdA

j
aδ

a
j

+/ν(ǫimdA
m
c + ǫicnA

n
d )A

j
aδ

a
j + c1ǫ

i
mnA

m
c An

d

+τ∂[cA
i
d] . (72)

Here, τ is determined by the second equation in Eq. (70).
When ν = /µ = /ν = 0, τ = 2c1, the modification function

returns to the form of classical curvature as f i
cd = c1F

i
cd,

in which ρ = c1 is a constant and can be absorbed in the
definition of G.

C. SU(2)-covariance

It remains to check the SU(2)-covariance of the
holonomy-modification function f i

cd in (72). To this end,
we calculate the Poisson bracket between the holonomy
modifications of the Hamiltonian constraint, δHQ[N ],
and the Gauss constraint G[Λ]:

{δHQ[N ], G[Λ]} =
1

16πG

∫
d3xN

√
| detE|

[
4q̄/ν(3 −Ak

b δ
b
k)DlΛ

l + (τ − 2c1)(A
k
b e

b
kDlΛ

l −Ak
b e

b
lDkΛ

l)

+2Λl
(
(2ν − 3/µq̄ + 3q̄/ν)Ak

b ǫ
b
lk + (/µ+ /ν)Aj

aδ
a
jA

k
b ǫ

b
lk +

(
c1 −

1

2
τ
)
ǫdmnA

m
c An

de
c
l

)]
. (73)

We have introduced the covariant derivative defined as

Dav
i = ∂av

i − ǫijkA
j
av

k . (74)

From Eq. (73), it is easy to conclude that the Poi-
son bracket {δHQ[N ], G[Λ]} vanishes only if the param-
eters satisfy ν = /µ = /ν = 0, τ = 2c1. The mod-
ification function then returns to the classical case of
f i
cd ∝ F i

cd. Therefore, if we now combine the constraint
brackets with the condition that all expressions be in-
variant under SU(2) transformations, the system turns
out to be strongly restricted: In (72), only the last two
terms (with coefficients ρ and τ) can appear in an SU(2)-
covariant expression, as is well known from the possible
covariant combinations of connection components. More-
over, the combination of the last two terms is covariant
only if τ = 2ρ = 2c1. All other terms in (72) which are
quadratic in δAi

a must be zero, so that /µ = /ν = ν = 0,

and also the first background contribution is ruled out.
In particular, background holonomy modifications are
ruled out in this model, which would give rise to a func-
tion /ν(q̄) = (ℓq̄)−2 sin2(ℓq̄) − 1 6= 0. This result is in
contrast to [25], where a consistent version with back-
ground holonomy modifications has been found using an
extrinsic-curvature formulation instead of a connection
formulation. (If there were background holonomy mod-
ifications similar to [25], they should contribute to (68)
a factor of ∂2/ν/∂q̄2 in addition to τ2.) The only allowed
correction here is a function τ which would multiply the
classical F i

cd. Such a modification resembles the results
from inverse-triad rather than holonomy modifications.

The appearance of this modification, however, shows
an interesting analogy with the results of [25]: A crucial
factor in the deformation function found in this paper is
called 1 + τ3 there, which is the coefficient of ∂c∂

jδEc
j
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in the linear term of the Hamiltonian constraint. Such a
second derivative of the triad perturbation also appears
here, when one writes ∂[cδA

i
d] in terms of the spin con-

nection and extrinsic curvature, and this term in (72)
has the coefficient that appears in the deformation func-
tion in (68). Also the deformed brackets (68) resemble
those found for inverse-triad corrections: The deforma-
tion function in the full contraint H + δHQ is one plus
a correction function which does not necessarily change
sign. There is an indication that signature change may
be avoided in the presence of holonomy modifications be-
cause the deformation function in (68) does not depend
on /ν, but then holonomy modifications are ruled out al-
together in this model.

V. CONCLUSIONS

We have extended the investigation of inhomogeneous
perturbations of the effective Hamiltonian constraint
with holonomy modifications in Euclidean models of loop
quantum gravity to include scalar modes. The Poisson
brackets between a holonomy-modified Hamiltonian con-
straint and the diffeomorphism constraint as well as that
between the two holonomy-modified Hamiltonian con-
straints have been calculated. It turns out that anomaly-
free scalar modes impose stronger restrictions on the pa-
rameters of the holonomy-modification function than vec-
tor modes, but non-trivial modifications remain possi-
ble such that the Poisson brackets of Hamiltonian and
diffeomorphism constraints are anomaly-free. If SU(2)-
covariance is implemented, however, the modifications
are much more tightly restricted, even ruling out back-
ground holonomy modifications. These results have sev-
eral new implications and help to clarify relationships
between previous studies.

A. Spatial derivatives

The main new ingredient used here, compared with
existing models which allow background holonomy mod-
ifications, is the possibility of new corrections even at
the classical form of at most first-order derivatives of the
connection. We have motivated these new terms by start-
ing with a connection rather than extrinsic-curvature for-
mulation, in which case the derivative structure of the
Hamiltonian constraint is different. The appearance of
derivatives, in turn, affects possible modifications of con-
straint brackets derived using integration by parts.
If one does not implement SU(2)-covariance, one does

not obtain a physical model but may still consider alge-
braic aspects of the system of Hamiltonian and diffeo-
morphism constraints, which turns out to be quite non-
trivial. In this case, there are several free coefficients
in (72), including background holonomy modifications
/ν. However, the resulting bracket (68) does not show
the characteristic form found in other such cases, which

have led to signature change at high density: Structure
functions in the classical bracket would be multiplied by
1
2∂

2/ν/∂q̄2 for this form to be realized, but we have seen
no such factor.

Although our results do not provide a physical model
in this case, they may indicate that it is possible to
avoid signature change and the associated indetermin-
istic behavior, provided one starts with a connection
formulation. The appearance of spatial derivatives in
the Hamiltonian constraint is then different from an
extrinsic-curvature formulation, which can affect the con-
straint brackets when integrating by parts. An extrinsic-
curvature formulation has a classical Hamiltonian con-
straint without derivatives of the extrinsic curvature,
while the densitized triad appears with up to second-
order derivatives. In a connection formulation, the con-
nection appears with up to first-order derivatives, while
the densitized triad does not have derivative terms in the
version used here, that is with γ = 1. The fact that sig-
nature change appears in the former but not in the latter
case is consistent with the simple 1-dimensional model of
[38].

In a comparison with results from self-dual variables
[28–30], we see similar properties in that signature change
or, more generally, modifications of the constraint brack-
ets do not seem generic. Also at a formal level there
are similarities, in particular the appearance of spatial
derivatives of the connection in the constraint, which do
not appear in extrinsic-curvature versions, and a more
important role played by the Gauss constraint. The
latter is usually solved explicitly in extrinsic-curvature
formulations, which automatically ensures compatibility
with its flow but also leads to less ambiguity in identifying
the Hamiltonian constraint. In a connection formulation,
by contrast, the Hamiltonian constraint is defined only
up to multiples of the Gauss constraint. The form (2)
used here is conventional, but not unique. One could use
the Gauss constraint in order to eliminate spatial deir-
vatives of the connection, which may bring the structure
closer to an extrinsic-curvature formulation. Such brack-
ets, however, are beyond the scope of the present paper.

Since SU(2)-covariance leads to significant restrictions
of the allowed modifications, the form of holonomies as
covariant functionals of the connection gives further in-
dications as to how a fully anomaly-free system could be
found in a connection formulation. Holonomies are non-
local in space because they are computed by integrating
the connection over a curve. In an effective theory, such
an expression appears in the form of a derivative expan-
sion that does not end at any finite order. Therefore,
SU(2)-covariant formulations may require higher spatial
derivatives beyond the classical order. Holonomies as
used in kinematical constructions of loop quantum grav-
ity suggest that higher spatial derivatives are unaccom-
panied by higher time derivatives because one uses only
spatial curves in holonomies. However, this picture sug-
gests problems with space-time covariance because it is
difficult to maintain different orders of space and time
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derivatives in a covariant formulation or, alternatively,
because a spatial curve embedded in space-time may no
longer be spatial after a general coordinate transforma-
tion.

B. Comparison between effective and operator
approaches

The preceding arguments provide intuitive reasons why
it seems difficult to have space-time covariance and SU(2)
covariance in the same holonomy-based theory. At a for-
mal level, these difficulties have been confirmed in spher-
ically symmetric models [27]. On the other hand, [21, 22]
suggest that very careful routings of loops used to con-
struct holonomies for a quantization of the Hamiltonian
constraint could lead to a full anomaly-free quantum the-
ory. A comparison between these results therefore seems
useful.
The operator constructions of [21, 22] so far have not

given indications about possible deformations of the con-
straint brackets. Since they have been obtained in Eu-
clidean gravity, our present results help to reconcile this
outcome with those of effective derivations based on real
variables, which generically lead to deformed constraint
brackets. In the present paper, we used Euclidean grav-
ity with a derivative structure of the Hamiltonian con-
straint that is more similar to the constraints quantized
in [21, 22] than those of effective approaches in real vari-
ables. And here, as in the case of self-dual connections
[28–30], the constraint brackets are subject to different
modifications compared with Lorentzian models in real
variables, and no deformations are possible if SU(2)-
covariance is imposed.
While these are qualitative similarities, we emphasize

that a comparison of constraint brackets in effective and
operator approaches is not straightforward. Effective ap-
proaches, by construction, lead to constraints and brack-
ets of classical type, and therefore implicitly assume that
there is an underlying semiclassical state in which one
has taken expectation values. Using the systematic treat-
ment of canonical effective constraints [8, 43, 56, 57, 66],
one can derive properties of such a semiclassical state
within the effective formalism, but not much has been
done in this direction in spherically symmetric or per-
turbed cosmological models. The operator treatment, on
the other hand, results in commutators instead of brack-
ets. A detailed comparison would therefore require an
understanding of the semiclassical limit of loop quantum
gravity, perhaps with input from effective results about
semiclassical states. Consistent versions of effective con-
straint brackets should then be compared with expecta-
tion values of consistent commutators of constraint oper-
ators computed in a semiclassical state. Only the latter
step of computing semiclassical expectation values would
give unambiguous results about possible deformations
of constraint brackets in operator approaches. Unfortu-

nately, no such results are available owing to the compli-
cated nature of the semiclassical limit of loop quantum
gravity.

C. Space-time structure

The question whether it is possible to avoid indeter-
ministic behavior in effective models of loop quantum
gravity remains open, but at least the present results
have confirmed the indications of [28–30] pointing to an
affirmative answer. The form of signature change ap-
pears to depend on the specific formulation used, so that
its absence would provide an additional restrictive con-
dition together with anomaly-freedom alone. However,
existing results need to be extended in several directions
before a firm conclusion can be drawn. First, the deriva-
tive nature of the Hamiltonian constraint and therefore
the constraint brackets are different for γ 6= 1, even if one
still considers Euclidean gravity. Second, spatial deriva-
tives in an effective constraint may be generated by quan-
tum corrections even if they are absent from the classical
constraint. All such derivatives should be included un-
less they are prohibited by symmetries. In background-
independent quantum theories of gravity, symmetries of
space-time are to be derived and do not restrict the terms
in effective constraints used before anomaly-free brackets
have been obtained. For the same reason, our calcula-
tions should be extended by including a general deriva-
tive expansion not just of Ai

a but also of Eb
j . In the

same vein, one should extend our setup in this paper to
the Lorentzian case, where the construction of the effec-
tive holonomy-modified Hamiltonian of full loop quan-
tum gravity and the calculation of constraint brackets
would be more complicated, as even the classical con-
straint would contain spatial derivatives of Eb

j via Γi
a.

Matter terms added in an anomaly-free way provide an-
other large question, as do the possible forms of higher-
derivative corrections in both space and time.
There are therefore several extensions of existing cal-

culations which should be completed before reliable con-
clusions about the potential consistency of loop quantum
gravity can be drawn. Our present results differ in some
crucial respects from previous calculations and should
therefore help to provide a better estimate of the options
realized in models of cosmological perturbations within
this framework.
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D’Ambrosio, Phys. Rev. D 94, 104032 (2016),
arXiv:1610.08355.

[33] M. Bojowald, S. Brahma, and D.-H. Yeom,
arXiv:1803.01119.

[34] M. Bojowald and G. M. Paily, Phys. Rev. D 86, 104018
(2012), arXiv:1112.1899.

[35] J. Mielczarek, Springer Proc. Phys. 157, 555 (2014),
arXiv:1207.4657.

[36] M. Bojowald and J. Mielczarek, JCAP 08, 052 (2015),
arXiv:1503.09154.

[37] M. Bojowald, Physics Today 66, 35 (2013), .
[38] M. Bojowald, Front. Phys. 3, 33 (2015), arXiv:1409.3157.
[39] M. Bojowald, Phys. Rev. D 64, 084018 (2001), gr-

qc/0105067.
[40] M. Bojowald, Class. Quantum Grav. 19, 5113 (2002),

gr-qc/0206053.
[41] G. Date and G. M. Hossain, Class. Quantum Grav. 21,

4941 (2004), gr-qc/0407073.
[42] K. Vandersloot, Phys. Rev. D 71, 103506 (2005), gr-

qc/0502082.
[43] M. Bojowald and S. Brahma, J. Phys. A: Math. Theor.

49, 125301 (2016), arXiv:1407.4444.
[44] M. Bojowald, G. Hossain, M. Kagan, and S.

Shankaranarayanan, Phys. Rev. D 79, 043505 (2009),
arXiv:0811.1572.

[45] M. Bojowald and G. Hossain, Class. Quantum Grav. 24,
4801 (2007), arXiv:0709.0872.

[46] M. Bojowald and G. Hossain, Phys. Rev. D 77, 023508
(2008), arXiv:0709.2365.

[47] M. Bojowald and G. Calcagni, JCAP 1103, 032 (2011),
arXiv:1011.2779.

[48] M. Bojowald, G. Calcagni, and S. Tsujikawa, Phys. Rev.
Lett. 107, 211302 (2011), arXiv:1101.5391.

[49] M. Bojowald, G. Calcagni, and S. Tsujikawa, JCAP 11,
046 (2011), arXiv:1107.1540.

[50] L.-F. Li, R.-G. Cai, Z.-K. Guo, and B. Hu, Phys. Rev. D
86, 044020 (2012), arXiv:1112.2785.

[51] J.-P. Wu and Y. Ling, JCAP 1005, 026 (2010),
arXiv:1001.1227.

[52] E. Wilson-Ewing, Class. Quant. Grav. 29, 085005 (2012),
arXiv:1108.6265.

[53] J. Mielczarek, A. Cailleteau, Barrau, T. and J. Grain,
Class. Quant. Grav. 29, 085009 (2012), arXiv:1106.3744.

[54] T. Cailleteau, A. Barrau, J. Grain, and F. Vidotto, Phys.
Rev. D 86, 087301 (2012), arXiv:1206.6736.

[55] A. Barrau et al., JCAP 05, 051 (2015), arXiv:1404.1018.
[56] M. Bojowald and A. Skirzewski, Rev. Math. Phys. 18,

713 (2006), math-ph/0511043.
[57] M. Bojowald and A. Skirzewski, Int. J. Geom. Meth.

Mod. Phys. 4, 25 (2007), hep-th/0606232.proceedings of
“Current Mathematical Topics in Gravitation and Cos-
mology” (42nd Karpacz Winter School of Theoretical
Physics), Ed. Borowiec, A. and Francaviglia, M.

[58] M. Bojowald, S. Brahma, and E. Nelson, Phys. Rev. D
86, 105004 (2012), arXiv:1208.1242.

[59] J.-P. Wu and Y. Ma, Phys. Rev. D 86, 124044 (2012),
arXiv:1209.2766.

[60] J. F. Barbero G., Phys. Rev. D 51, 5507 (1995), gr-
qc/9410014.



16

[61] G. Immirzi, Class. Quantum Grav. 14, L177 (1997), .
[62] C. Rovelli and L. Smolin, Phys. Rev. Lett. 72, 446 (1994),

gr-qc/9308002.
[63] T. Thiemann, Class. Quantum Grav. 15, 839 (1998), gr-

qc/9606089.
[64] J. Lewandowski and D. Marolf, Int. J. Mod. Phys. D 7,

299 (1998), gr-qc/9710016.
[65] R. Gambini, J. Lewandowski, D. Marolf, and J. Pullin,

Int. J. Mod. Phys. D 7, 97 (1998), gr-qc/9710018.
[66] M. Bojowald, B. Sandhöfer, A. Skirzewski, and
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