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A new approach is described to help improve the foundations of relativistic viscous fluid dynam-
ics and its coupling to general relativity. Focusing on neutral conformal fluids constructed solely
in terms of hydrodynamic variables, we derive the most general viscous energy-momentum tensor
yielding equations of motion of second order in the derivatives, which is shown to provide a novel
type of generalization of the relativistic Navier-Stokes equations for which causality holds. We show
how this energy-momentum tensor may be derived from conformal kinetic theory. We rigorously
prove local existence, uniqueness, and causality of solutions of this theory (in the full nonlinear
regime) both in a Minkowski background and also when the fluid is dynamically coupled to Ein-
stein’s equations. Linearized disturbances around equilibrium in Minkowski spacetime are stable in
this causal theory. A numerical study reveals the presence of an out-of-equilibrium hydrodynamic
attractor for a rapidly expanding fluid. Further properties are also studied and a brief discussion of
how this approach can be generalized to non-conformal fluids is presented.

Keywords: Relativistic viscous fluid dynamics, causality, stability, existence of solutions, conformal fluids,
quark-gluon plasma, hydrodynamic attractor.

I. INTRODUCTION

Relativistic fluid dynamics is an essential tool in high-energy nuclear physics [1], cosmology [2], and
astrophysics [3]. For instance, it has been instrumental in the discovery of the nearly perfect fluidity of the
quark-gluon plasma formed in ultrarelativistic heavy ion collisions [4] and also in the modeling of complex
phenomena involved in binary neutron star mergers [5]. Its power stems directly from the conservation laws
and the presence of a hierarchy among energy scales, which allows one to investigate the regular macroscopic
motions of the conserved quantities without specifying the fate of the system’s microscopic degrees of freedom.
Thus, it is widely accepted that relativistic hydrodynamics may be formulated as an effective theory [6].

Absent other conserved currents, ideal relativistic fluid dynamics is described by the equations of motion
for the flow velocity uµ (with uµu

µ = −1) and the energy density ε obtained via the conservation law
∇µTµνideal = 0, where T idealµν = ε uµuν +P (ε)∆µν is the energy-momentum tensor. The pressure P (ε) is given
by an equation of the state, which is determined from the microscopic dynamics or phenomenologically, gµν
is the spacetime metric, and ∆µν = gµν + uµuν is the projector orthogonal to uµ. The fluid equations of
motion in this case are of 1st order in spacetime derivatives and the initial value problem is well-posed,
i.e., given suitable initial data for ε and uµ, one can prove that the system admits a unique solution (see
below for a precise definition and discussion of well-posedness); this is true both in the case of a Minkowski
background [7] as well as when the fluid equations are dynamically coupled to Einstein’s equations [8, 9]. In
both cases, the solutions are causal, i.e., the field values at a point x in spacetime are completely determined
by the region in spacetime that is in the past of and causally connected to x (see a precise definition below).
The physical meaning of causality is that information cannot propagate at superluminal speeds.
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As the concept of causality is central in this paper, here we recall its precise definition. Let (M, g) be a
globally hyperbolic Lorentzian manifold1 (both Minkowski spacetime and spacetimes that arise as solutions
to the initial-value problem for Einstein’s equations are globally hyperbolic, so this assumption covers most
cases of interest). Consider on M a system of (linear or non-linear) partial differential equations, which we
write as P IKϕ

K = 0, I,K = 1, . . . , N , where {ϕK}NK=1 are the unknowns. Let Σ ⊂ M be a Cauchy surface
where initial data is prescribed. The system is causal if for any point x in the future of Σ, ϕK(x) depends
only on the initial data on J−(x)∩Σ, where J−(x) is the causal past of x [10, page 620] [11, Theorem 10.1.3]
(see Fig. 1). In particular, causality implies that ϕK(x) remains unchanged if the initial data is altered2

only outside J−(x) ∩ Σ.
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FIG. 1: (color online) Illustration of causality. In curved spacetime J−(x) looks like a distorted light-cone opening to
the past (blue region); in flat spacetime the cone would be straight (dotted line). Points inside J−(x) can be joined
to a point x in spacetime by a causal past directed curve (e.g. the red line). The Cauchy surface Σ supports the
initial data and the value of the field ϕ(x) depends only on the initial data on J−(x) ∩ Σ.

Causality lies at the foundation of relativity theory, so the matter sector in Einstein’s equations (i.e., the
fluid) must be compatible with this general principle. Hence, in the regime where an effective hydrodynamic
theory is expected to provide an accurate description of the system’s dynamics, such a theory must be causal,
even in Minkowski background, if it is to describe fully relativistic phenomena.

To be more specific, in practice a given effective theory description may be allowed to violate causality if
these violations lead only to unobservable phenomena [12–16]. Such a scenario, however, poses undesirable
features. Firstly, one needs to have a precise and quantitative understanding of causality violations in order
to trace its consequences and prove that they are always unobservable. It is not clear how such a task may be
performed in hydrodynamics at the full nonlinear level. Secondly, the property that causality violations are
unobservable might depend on particular modeling choices, preventing one from drawing general conclusions.
Thus, the possibility of constructing a simple and robust formalism that can be applied to the study of
relativistic viscous fluids is seriously hindered when causality is lost. A safer and more straightforward path
is to devise effective theories that remain fully causal in their regime of applicability.

Despite its importance in relativity theory, causality has proven to be a difficult feature to accomplish

1 Global hyperbolicity forbids several pathologies that would otherwise complicate our analysis.
2 Causality can be equivalently stated in the following manner. If {ϕK0 }NK=1 and {ϕ̃K0 }NK=1 are two sets of initial data for

the system such that ϕK0 = ϕ̃K0 on a subset S ⊂ Σ, and ϕK and ϕ̃K are the corresponding solutions to the equations, then

ϕK = ϕ̃K on D+
g (S), where D+

g (S) is the future domain of dependence of S [11, Theorem 10.1.3].
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in standard theories of relativistic viscous hydrodynamics. The original relativistic Navier-Stokes (NS)
equations put forward by Eckart [17] and Landau [18] decades ago have been shown to be acausal both
at the linearized [19] and non-linear level [20]. Currently, the most widely used theoretical framework for
the study of relativistic viscous fluids is due to Israel and Stewart (IS) [21, 22], together with the so-called
resummed BRSSS theory [6], and formulations derived from the relativistic Boltzmann equation, such as
the DNMR equations [23]. While these theories have been instrumental in the construction of models that
provide us with great insight into the physics of viscous relativistic fluids, causality has been established
in these theories only in the case of linear disturbances around equilibrium and for certain values of the
dynamic variables [6, 24]. These observations, added to the fact that heat flow in IS theory is known to
display acausal behavior far from equilibrium [25], show that causality in IS-like theories is a delicate matter.
This leaves open the possibility of causality violations (even near equilibrium) when the the full non-linear
dynamics is studied or a wide range of field values is considered.

Furthermore, causality is not the only unsettled question in IS, BRSSS, and DNMR theories. Questions
regarding the existence (and uniqueness) of solutions, including the case when the fluid is dynamically
coupled to gravity3, remain open for these theories. We stress that this is not a mere academic question.
With exception of simple toy-model explicit solutions, the study of relativistic hydrodynamics relies widely on
numerically solving the equations of motion4. Without knowing that the equations of motion admit unique
solutions, the reliability of numerical results may be, depending on the situation, called into question5,6.
In contrast, other areas of physics that also rely heavily on numerical simulations, involving, for instance,
ideal relativistic hydrodynamics [3], typically deal with equations (e.g., Einstein or the relativistic Euler
equations) for which the problem of existence of solutions is already well understood. (We return to this,
giving a more precise definition of local existence and uniqueness and discussing its relevance for this work,
in section I A.)

Moreover, not only is the ability of coupling a theory to gravity essential from a foundational point of view
(effective theories must allow interaction with gravity in their regime of validity), but it is of course crucial
for the study of many astrophysical phenomena. This is equally true in the case of viscous hydrodynamics,
especially given increasing awareness of the importance of dissipative phenomena in the study of heavily
dense atrophysical objects such as neutron stars [3, 44–47].

Further properties usually required in a fluid theory are linear stability around equilibrium (in the sense of
[19]) and non-negative entropy production. For instance, IS, DNMR, and the resummed BRSSS theory satisfy
both of these conditions. In contrast, the relativistic NS equations have non-negative entropy production
but are linearly unstable [19].

Finally, it is also important to connect a given fluid model with a microscopic approach. More precisely,

3 With the exception of highly symmetric situations such as FRW cosmologies [26].
4 See [27] for a discussion of numerical approaches to relativistic hydrodynamics and Refs. [28–42] for examples of numerical

simulations where Israel-Stewart-like equations of motion were solved in the context of heavy-ion collisions.
5 Naturally, existence and uniqueness of solutions is not the only criteria to judge the reliability of numerical simulations. Issues

of discretization, numerical stability, etc., are also important.
6 A thorough discussion of the potential risks of simulating equations not known to be well-posed is beyond this paper. Here

we restrict ourselves to make a few remarks, referring to [43] and references therein for further discussions. Consider the
one-dimensional eikonal equation |u′(x)| = 1 on (0, 1) with boundary conditions u(0) = u(1) = 0. Clearly, any solution to this
boundary value problem must have points where it is non-differentiable. But we can still meaningfully talk about solutions
upon considering spaces that include non-differentiable functions (recall that well-posedness is always well-posedness in some
space). Once we make this concession, however, it turns out that there are infinitely many such “weak” solutions, although
there is a distinguished solution which is the physical one, namely, u(x) = 1/2− |x− 1/2|. But there is no guarantee that a
numerical algorithm will converge to the physical solution and, in fact, in many cases it will converge to some of the other
(infinitely many) “weak” (unphysical) solutions. This is an issue caused by the lack of uniqueness in that even if one is
highly confident that a numerical scheme will reproduce an actual solution to the equation, it might be wrong solution. An
example illustrating problems caused by lack of existence of solutions is provided by the inviscid Burgers equation: solutions
will typically develop a singularity in finite time after which a solution no longer exists in any classical sense (one can still
attempt to talk about “weak” solutions). But if one numerically solves Burgers’ equation with the Lax–Friedrichs scheme,
the numerical solution will keep running smoothly after the singularity for arbitrary large times. Had one not known about
the formation of a singularity from a theoretical point of view, one would be led to think that a nice, classical, solution
exists when in fact there is none. This is, however, not a problem of being careless with the numerical simulation as the
Lax–Friedrichs scheme has ample use in numerical analysis.
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we would like to show that a given fluid model arises from a microscopic description following some coarse
graining procedure. The reason to work with a fluid model is that one cannot in practice solve the full
microscopic dynamics. But the physics is ultimately determined by the latter, and the physical significance
of a fluid model becomes fuzzy absent a connection with this fundamental physical description. It is important
to point out that the aforementioned difficulties with theories of relativistic viscous fluids (possible lack of
causality or existence of solutions) are not present in standard microscopic descriptions such as kinetic theory
based on the Boltzmann equation7. We see, therefore, that these pathologies are an artifact of a particular
coarse graining method. In fact, both the IS and Landau’s theories are derivable from relativistic kinetic
theory using different methods [50], but their causality and stability properties are drastically distinct.

To the best of our knowledge, this manuscript gives the first example of a theory of viscous fluid dynamics
satisfying all of the above properties, i.e., the theory we shall present is causal, local existence and uniqueness
of its solutions have been established (in the full non-linear regime) both in Minkowski background and when
coupled to Einstein’s equations, the theory is linearly stable, derivable from microscopic theory, while also
satisfying the second law of thermodynamics, and at the same time producing meaningful physical results
in widely used test models such as the Gubser and Bjorken flows.

In Minkowski background, our theory is determined by four evolution equations of second order, which
can be rewritten as eight first order evolution equations. For comparison, conformal IS theory has nine
equations of motion. However, four of our eight equations are simple field redefinitions used to recast the
second order system as a first order one and, in this sense, are trivial. From a computational point of view,
the complexity of our theory is reduced to four first order equations, hence simpler than IS8.

Here, we focus on conformal fluids because of their simplicity and immediate relevance for applications
in the description of the quark-gluon plasma (see below). However, our constructions can be generalized to
non-conformal relativistic fluids. We shall return to this point at the end of this paper.

The discussion above focused on IS-like approaches because of their wide use in the high energy nuclear
physics and cosmology communities. Before we present our new approach, here we briefly mention other
theories of relativistic viscous fluids that attempt to overcome the acausality and instability issues present
in relativistic NS theory. One causal theory of relativistic viscous hydrodynamics, defined solely in terms
of the hydrodynamic fields and applicable, in particular to pure radiation fluids and ideal gases, has been
recently proposed in [51–53]. This theory is well-posed and linear stability has been verified in the fluid’s
rest frame. However, as far as we know, investigations addressing the stability of the equations of motion
in a Lorentz boosted frame and coupling to Einstein’s equations have not appeared in the literature for the
energy-momentum tensor introduced in [51–53]. It is not known whether [51–53] can be derived from kinetic
theory. Another proposal was put forward by Lichnerowicz back in the 50’s [54], but only recently it has
been shown to yield a theory that is causal and well-posed, including when dynamically coupled to gravity,
at least in the cases of irrotational fluids [55, 56] or with restrictions on the initial data [57]. Applications of
Lichnerowcz’s theory to cosmology appeared in [56, 58, 59]. It is not known whether Lichnerowicz’s theory
is linearly stable around equilibrium, nor whether it can be derived from kinetic theory.

A large class of fluid theories can be constructed from the formalism of divergence-type (DT) theories
[60–63]. While this formalism per se does not guarantee any of the aforementioned properties (causality,
linear stability, well-posedness, or coupling to gravity) [3], it has been successfully applied to the construction
of theories that are causal near equilibrium [64–66] (see also [67–69]). In fact, DT theories provide a very
general formalism for the study of fluid dynamics that can be showed to be compatible with kinetic theory,
but there is no prescription of how to determine a particular set of fields and equations of motion for the
study of concrete problems. Hence, despite their flexibility (or perhaps because of it), applications of DT
theories in the study of nuclear physics, astrophysics, and cosmology have so far been limited.

In Ref. [70] the authors construct a linearly stable theory involving only the hydrodynamic variables.
Their theory is derived from kinetic theory, although well-posedness and causality remain open. A similar
statement holds for the theory introduced in [71]. Last but not least, motivated by the rapid expansion and

7 In fact, the local Cauchy problem is well-posed for the Einstein-Boltzmann system, as proven by Bancel and Choquet-Bruhat
[48, 49].

8 In this paper we work with the equations written in second order form. The mention of reducing to a first order system was
for comparison with IS theory only.
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the highly anisotropic initial state of the quark-gluon plasma formed in heavy ion collisions, a new set of
fluid dynamic equations has been studied defining the so-called anisotropic hydrodynamics formalism [72, 73].
This subject is still under development [74] and statements regarding stability, causality, and existence of
solutions are not yet available.

A. About existence and uniqueness of solutions

Before continuing our discussion of relativistic viscous fluids, we recall the definition of local well-posedness
for a system of partial differential equations and discuss its significance. We chose to highlight the importance
of this concept, which captures the idea of existence and uniqueness of solutions, for the following reason.
For most traditional physical theories, existence and uniqueness of solutions has been long established9.
Therefore, we can extract physical consequences of the equations of motion without worrying whether such
consequences are based on a vacuous assumption (e.g., on equations without solutions). For relativistic
viscous fluids, however, this is not the case. As discussed above, very little is known about local well-
posedness for relativistic models with viscosity. Therefore, the question of working with equations that
admit solutions to begin with becomes of primary importance.

Consider in R× Rn a (linear or non-linear) kth order partial differential equation for a function ϕ, which
we write as Pϕ = 0 (for instance, P could be the wave operator). We think of R×Rn as a parametrization
of spacetime in terms of a time variable t ∈ R and spatial variables x ∈ Rn. Let X be a function space
(typically, but not necessarily, a Banach or Hilbert space) of functions defined on Rn. For example, one
could have X = C∞(Rn), the space of infinitely differentiable functions on Rn. We say that the partial
differential equation is locally well-posed in X if the following holds. Given k functions ϕ`, ` = 0, . . . k − 1,
there exist a T > 0 and a function ϕ defined on [0,T) × Rn, such that ϕ satisfies the differential equation

on [0,T) × Rn, ϕ(0, x) = ϕ0(x), . . . , ∂k−1
t ϕ(0, x) = ϕk−1(x) for all x ∈ Rn, where ∂t is differentiation with

respect to the first coordinate in R×Rn, and, for each t ∈ [0,T), ϕ(t, ·) ∈ X; moreover, ϕ is the only function
defined on [0,T) × Rn satisfying these properties. We considered a scalar partial differential equation in
R×Rn for concreteness, but the definition of local well-posedness, as well as the discussion below, naturally
generalizes to systems and equations defined on manifolds10; see, e.g., [75, Definition 1.2.2].

Naturally, the functions {ϕ`}k`=1 correspond to the initial conditions for the partial differential equation.
Thus, roughly speaking, local well-posedness says that given initial conditions, there exists a unique solution
to the equation taking the given initial data at time zero11. Since ϕ(t, ·) ∈ X and ϕ(0, x) = ϕ0(x), we
must have ϕ0 ∈ X. The condition ϕ(t, ·) ∈ X can be interpreted as saying that the solution does not “lose
information” with respect to the given initial conditions (e.g., if the initial conditions are square integrable,
so is the solution).

One can also consider variations of the above. For instance, considering that each ϕk belongs a priori to
some function space Xk (X0 ≡ X in the previous notation), we could demand that ∂kt ϕ(t, ·) ∈ Xk, and in this
case we talk about local well-posedness in X0 × · · · × Xk−1. Many authors include in the definition of local
well-posedness the requirement that solutions vary continuously with the initial data, meaning that the map
ϕ0 7→ ϕ is continuous12 with respect to the topology of X. One often talks about local well-posedness in
the sense of Hadamard (see, e.g., [76, 77] and references therein) when one wants to stress that continuity
with respect to the initial data is also taken into account in the definition of local well-posedness. Here,
for simplicity, we will not include such continuity requirement in the definition of local well-posedness, since

9 See, e.g., [10], for a discussion of several physical models that are locally well-posed.
10 For geometric equations such as Einstein’s equations, uniqueness is understood in a geometric sense, i.e., up to changes by

diffeomorphisms. See, e.g., [11, Theorem 10.2.2].
11 Strictly speaking, we are defining here local well-posedness of the initial value problem, which is the relevant notion of

existence and uniqueness for evolution problems. We can also define local well-posedness for boundary value problems, etc.
12 In the mathematical literature, continuity with respect to the initial data is sometimes also referred to as stability, but we

stress that this is entirely different from the notion of stability which is discussed in this paper (which follows the notion of
stability introduced in [19], see section V). For example, the ordinary differential equation ẋ = x, x(0) = x0 has solution
x(t) = x0et, which varies continuously with x0. However, the trivial solution xtrivial(t) ≡ 0 corresponding to x0 = 0 is
unstable in the terminology of this paper in that for any x0 6= 0, x(t) will diverge exponentially from xtrivial.
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establishing it usually requires substantial further technical work that would distract us from the main point
of local well-posedness, which is to guarantee that solutions exist, as we now discuss.

Local well-posedness furnishes the basic starting point for the validation of a theory from a theoretical
point of view, as it would be hard to imagine what it means to develop a formalism based on equations that
have no solution. It would be equally puzzling to work with equations that admit more than one solution
(for the same initial data). In this regard, it is extremely important to stress that local well-posedness is
always local well-posedness in X, i.e., it depends on the class of functions we choose to work with. For
instance, it can happen that an equation admits no solution for arbitrary initial data in certain function
space X, but that a solution exists and is unique if we restrict the initial data to lie in some subspace X′ ⊂ X
(see, for example, [78, Chapter 4]). It can also happen that solutions exist but are not unique for in initial
data in some function space but they exist and are unique for initial data in some other function space
(see, for instance, [79, 80]). The choice of X is typically tied to some physical requirement, e.g., functions
that are square integrable in quantum mechanics or vector fields that are divergence-free in the classical
incompressible Navier-Stokes equations. But as this discussion and the previous references indicate, the
choice of X may also be based on available mathematical techniques or in the plain fact that some equations
are not locally well-posed in some function spaces13.

Moreover, local well-posedness is also very important for the validation of numerical codes. Typically,
when constructing a numerical algorithm one would like to show that it converges. Broadly speaking, this
means that the sequence of numerical solutions obtained by discretization converges to the actual solution of
the differential equation when the “size” of the discretization approaches zero. Obviously, this is predicated
on the idea that the differential equation is locally well-posed.

Furthermore, local well-posedness guarantees a solution to exist and to be unique for a finite time interval
[0,T) and some function space X. It is natural to ask how large T can be, and in particular whether one
can have T = ∞, i.e., if solutions exist and are unique for all time. When the latter happens, we say that
the partial differential equation is globally well-posed. Questions of global well-posedness naturally arise for
non-linear equations since they tend to develop singularities. For example, one has the famous singularity
theorems for Einstein’s equations14 [88], or the formation of shock waves for fluid dynamic equations (see
[89, 90] and references therein), or yet blow-up phenomena for non-linear wave equations (see [91] and
references therein). From a physical perspective, when the equations are not globally well-posed it becomes
important to understand the nature of the singularity. For example, the presence of a singularity might simply
indicate a limitation of the effective description. On the other hand, absent a better effective description,
one may attempt to enlarge the function space X to allow for functions with singularities, e.g., distributions.
Questions of this type are typically very challenging and are beyond the scope of this work15. Henceforth,
we will refer to well-posedness to mean local well-posedness throughout, although we will make some brief
observations about global well-posedness in section VIII B.

B. Organization of the paper

The remaining of the paper is organized as follows. In section II we introduce conformal viscous hydro-
dynamics (starting from a discussion of the non-conformal case). In section III we introduce our new tensor
and discuss some of its properties. Causality and well-posedness are proved in section IV whereas linear
stability is established in section V. In section VI we show how our tensor can be derived from relativistic
kinetic theory. Section VII provides applications of this new theory and a brief discussion on the choice of
initial conditions. Section VIII discusses our results, including a critical analysis of the theory’s limitations
and open questions, and possible generalizations. Conclusions are presented in section IX.

13 For instance, the (non-relativistic) incompressible Euler equations are locally well-posed in the Sobolev spaces Hs for s > n
2

+1
[81], but are not locally well-posed in Hs for s = n

2
+ 1 [82].

14 Although, for initial data near Minkowski, Einstein’s equations are globally well-posed [83]. See [84–87] for related results.
15 As a matter of fact, the incompressible non-relativistic Navier-Stokes equations are locally well-posed but the question whether

global well-posedness also holds in this case is one of the Millennium Prize problems in mathematics.
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C. Conventions

For the rest of the paper, we work in units such that c = ~ = kB = 1. Our convention for the spacetime
metric is (− + ++). All indices are lowered and raised with the spacetime metric. Einstein’s summation
convention is adopted, Greek indices run from 0 to 3, and Latin indices from 1 to 3.

II. CONFORMAL VISCOUS HYDRODYNAMICS

For completeness, we begin this section with a discussion about the more general case of a non-conformal
relativistic fluid in the absence of conserved vector currents (e.g. the baryon number current). The corre-
sponding conformal limit, which is the focus of this paper, will be discussed in detail below.

In general, one may always decompose [50] the energy-momentum tensor of a fluid as follows16

Tµν = Euµuν + P∆µν + πµν , (1)

where πµν is the symmetric traceless viscous tensor contribution orthogonal to the flow, E = uµuνT
µν is

the energy density measured by a comoving observer, and P = ∆µνT
µν/3 is the fluid’s total pressure. In

the standard approach by Landau and Eckart, assumed upon writing (1) (see below), the quantity E in
an out-of-equilibrium state is matched to the equilibrium energy density of an auxiliary (fictitious) system,
with which one may define the local temperature T and the local equilibrium pressure of the system via
the thermodynamical equation of state P = P (E). In fact, for a non-conformal fluid the total pressure of
the out-of-equilibrium system may be defined as P = P + Π, where Π is the bulk scalar, which encodes all
the out-of-equilibrium corrections to the pressure. The fluid description only holds if, besides the condition
E ≥ 0, the out-of-equilibrium correction Π is such that the overall P is non-negative.

The original ten independent degrees of freedom in Tµν are thus parametrized in (1) by the quantities
{E ,Π, uµ, πµν}. In this case, the flow velocity of the system was defined by the condition uµT

µν = −Euν ,
which was first introduced by Landau [18]. However, differently than the case of an ideal fluid, for a system
that is out of equilibrium quantities such as local temperature and flow velocity are not uniquely defined
[22, 93]. As a matter of fact, different choices lead to local temperature and velocity fields that differ from
each other by gradients of the hydrodynamic variables, each particular choice being called a frame17. Several
frame choices have been pursued over the years, starting with Eckart [17], Landau [18], Stewart [94], and
others (for a discussion, see [95]). In section VI we discuss the role played by such frame choices in the
derivation of the hydrodynamic equations from kinetic theory.

An alternative decomposition for the energy-momentum tensor can be written using a different definition
of the flow velocity, namely

Tµν = (ε+A)uµuν + (P (ε) + Π) ∆µν + πµν +Qµuν +Qνuµ, (2)

where now ε is matched to the corresponding expression for the energy density in equilibrium, A is the
non-equilibrium correction to the energy density, P (ε) is the equilibrium pressure defined by the equilibrium
equation of state, Π is again the out-of-equilibrium correction to the pressure, and Qµ = −∆µ

νT
ναuα is the

flow of energy (heat flow)18. These dissipative contributions A, Qµ, Π, and πµν to the energy-momentum

16 Provided the weak energy condition is satisfied, see section VIII B and Ref. [92].
17 This meaning of the word frame has nothing to do with “rest” and “boosted frames.” Unfortunately, these terminologies are

too widespread to be changed here. Hence, we use the word frame to refer to both a choice of local temperature and velocity,
e.g., the Landau frame, and in the usual sense of relativity, e.g., the rest frame. The difference between both uses will be
clear from the context. We also note that frame, in the sense of a choice of local variables, has been used unevenly in the
literature. In [93], for instance, frame is used in the same sense as employed here. In [23], the authors employ frame, or, more
specifically, hydrodynamic frame, to refer solely to the choice that determines the local flow velocity, while the choices that
determine the local temperature and chemical potential are called matching conditions.

18 We note that even though we used the same variable for the flow velocity and Π in Eqs. (1) and (2), these quantities are not
the same.
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tensor are such that they vanish in equilibrium. And, in fact, in this description deviations from local
equilibrium to the energy density and pressure are treated in equal footing, with A playing a role in the
total energy density of the system analogous to what Π represents to the total pressure. This can lead to
further insight on how relativistic fluids behave out-of-equilibrium and we note that such a decomposition
was recently employed in Ref. [96] in applications to heavy-ion collisions. It is clear, however, that the
decomposition of the energy-momentum tensor in terms of new set of variables {ε,A,Π, uµ,Qµ, πµν} is
underdetermined, i.e., four extra conditions must be imposed to take into account the fact that there are
only ten independent variables in Tµν . Such conditions may be derived using either the guidance of a
microscopic description, such as kinetic theory, or via assumptions regarding the definition of the entropy
current out-of-equilibrium in the sense of Israel and Stewart [96].

In this paper we focus on the case of conformal hydrodynamics [6, 97], which provides the simplest set
of assumptions regarding the properties of the underlying microscopic theory that can be used to study
relativistic hydrodynamic phenomena. In this case Tµµ = 0 and, thus ε = 3P (i.e., ε ∝ T 4 with T being the
temperature), and the equations of motion∇µTµν = 0 change covariantly under a Weyl transformation of the
metric, i.e., under gµν → e−2Ωgµν , with Ω being an arbitrary Lorentz scalar. Since the quark-gluon plasma
is approximately conformal at sufficiently large temperatures [98], conformal fluids with their enhanced set
of symmetries provide a testbed for numerical investigations in relativistic hydrodynamics, as shown in [30].
However, we note that conformal invariance fixes the equation of state but it does not fully determine the
dissipative corrections to the energy-momentum tensor, which must be specified by further assumptions.
Nevertheless, conformal invariance allows us to write the most general energy-momentum tensor as

Tµν = (ε+A)

(
uµuν +

∆µν

3

)
+ πµν +Qµuν +Qνuµ. (3)

The conformal Tµν has 9 independent components and the decomposition above in terms of
{ε, uµ,A,Qµ, πµν} has 13 independent degrees of freedom at this level. Therefore, again a choice must
be made to eliminate 4 extra degrees of freedom and fully specify the system’s dynamics. In order to guaran-
tee a smooth transition to the ideal fluid limit, it is natural to assume that such a choice involves the variables
{A,Qµ, πµν}. For instance, as mentioned above Landau [18] defined the flow and the energy density out of
equilibrium in such a way that Qµ and A vanish.

To proceed, one must decide whether the fields {A,Qµ, πµν} that are absent in the ideal fluid limit are
to be treated as independent dynamical variables or are fully specified by the original hydrodynamic fields
{ε, uµ}. The former implies that 5 extra equations of motion must be given, in addition to the conservation
law of energy and momentum. This idea is pursued in the aforementioned IS theories and more generally in
extended irreversible thermodynamics theories [99]. In this case, it is natural to employ Landau’s definition
to define conformal hydrodynamics, with πµν being defined by its own set of equations of motion. The degree
of deviation from local equilibrium helps determine the equation of motion for πµν [21].

Another option consists in assuming that the set {A,Qµ, πµν} is constructed using derivatives of the
hydrodynamic fields {ε, uµ}, as in a gradient expansion [6]. In the standard gradient expansion approach,
dissipative effects are taken into account in the energy-momentum tensor via the inclusion of terms containing
higher order derivatives of the hydrodynamic variables [6], which are (formally) assumed to be small cor-
rections around local equilibrium. To a given order in the expansion, one includes in the energy-momentum
tensor all the possible terms compatible with the symmetries (e.g., conformal invariance), and this proce-
dure was carried out to second order in [6] assuming Landau’s definition of the hydrodynamic fields (i.e., the
Landau frame), and to third order in [100].

In a gradient expansion, to first order in derivatives, there is only one choice for πµν , namely, πµν =
−2ησµν , where σµν =

(
∇〈µ〉uν +∇〈ν〉uµ

)
/2− 1

3∆µν∇αuα is the shear tensor, ∇〈µ〉 = ∆ν
µ∇ν is the transverse

covariant derivative, and η is the shear viscosity transport coefficient (for a conformal fluid η ∝ s ∝ T 3, with
s = 4ε/(3T ) being the entropy density). Using the Landau frame and keeping terms up to first order in

gradients, one finds the conformal Navier-Stokes energy-momentum tensor TNSµν = ε
(
uµuν +

∆µν

3

)
− 2ησµν

[6, 97]. At the linear level, this theory accurately describes the long wavelength behavior of sound and
shear hydrodynamic disturbances around hydrostatic equilibrium: ωsound(k) = 1√

3
|k| − i 2

3T
η
sk

2 + O(k3),

ωshear(k) = −iηs
k2

T + O(k4) [101], in the sense that these dispersion relations can be directly matched
to microscopic calculations, a procedure that may be used to determine the value of η in a given system.
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However, as discussed above, the relativistic NS equations are plagued with instabilities and acausal behavior
that severely limit their application in fluid dynamic calculations.

Since the gradient expansion is used to derive the relativistic NS equations, it is believed that such an
approach is generally responsible for the aforementioned problems displayed by these equations, as the un-
derlying microscopic theory is widely expected to be free from pathologies. Therefore, one may be tempted
to conclude that the particular type of coarse-graining procedure defined by the gradient expansion is in-
herently incompatible with causality and stability. However, one may also argue that the general reasoning
behind the gradient expansion should be the most natural way to construct effective theories that describe
the hydrodynamic regime of a fluid that is sufficiently near local equilibrium. In this paper we show that
causality and stability are indeed compatible with the gradient expansion as long as one abandons the usual
definition of hydrodynamic variables in relativistic viscous fluid dynamics put forward by Landau and Eckart.

III. NEW CONFORMAL TENSOR

Here we investigate causality and stability in relativistic viscous hydrodynamics using only the usual
hydrodynamic fields in Tµν , thus without introducing new dynamical degrees of freedom as in IS-like theories.
In this section we limit ourselves to introducing our new conformal tensor and discuss some of its properties.
Its derivation will be given in section VI using the relativistic Boltzmann equation and a suitable perturbative
expansion in spacetime gradients.

Our new tensor corresponds to (3) with the choices A = 3χDTT and Qµ = λ
D〈µ〉T
T , where Dµ is the Weyl

derivative [102] and D〈µ〉 = ∆µ
νDν . Or, since ε ∝ T 4 and 3P (ε) = ε, we can alternatively write A = χ Dεε+P and

Qµ = λ
D〈µ〉ε
ε+P , where Dε = uµ∇µε + (4/3)ε∇µuµ and D〈µ〉ε = 4εuλ∇λuµ +∇〈µ〉ε, which is more convenient

for our purposes. Using these expressions for A and Qµ into (3) yields

Tµν =

(
ε+

3χ

4ε
Dε
)(

uµuν +
∆µν

3

)
− 2ησµν +

λ

4ε

(
uµD〈ν〉ε+ uνD〈µ〉ε

)
. (4)

This is the most general energy-momentum tensor one can write for a conformal fluid to first order in
gradients of the hydrodynamic fields {ε, uµ}. The coefficients χ/ε and λ/ε in (4) define timescales (∝ 1/T )
that control the behavior of the theory in the ultraviolet. They work as causal regulators because, as we
shall see, when λ and χ are different than zero and appropriately chosen, the equations of motion are causal,
whereas they become acausal when λ = 0 = χ (since then (4) reduces to NS). Furthermore, when these
coefficients are nonzero and causality holds the disturbances in the hydrodynamic fields are resummed in
the sense that the dispersion relations for sound and shear channels are not simple polynomial functions of
momenta (see the dispersion relations in section V). We note that conformal invariance implies that χ and
λ are proportional to η.

We remark that the dynamical variables of (4) are simply ε and the flow uµ, which obey second order
nonlinear partial differential equations determined by ∇µTµν = 0. Also, we note that the hydrodynamic
fields ε and uµ in this theory do not coincide with those in either Landau’s or Eckart’s frames. In fact, due to
the ambiguities in the definition of local temperature and velocity in the presence of dissipation (see above
discussion), the fields ε (or T ) and uµ in (4) can be thought as auxiliary fields used to parametrize Tµν [93].
We also stress that, regardless of how we think of the parametrization given by ε and uµ, once the equations
of motion have been shown to satisfy desired physical requirements (e.g., causality and stability), then one
can solve them and reconstruct Tµν , from which further physical quantities of interest can be derived. Also,
we note that for sufficiently small gradients the solutions for the fields ε and uµ in (4) will be near the
corresponding quantities obtained by solving the ideal fluid equations.

The non-relativistic limit of the conformal fluid introduced here may be computed in the same way as
in [103] and this yields the incompressible non-relativistic Navier-Stokes equations, with incompressibility
being a consequence of the conformal invariance. Following the steps in [103], we see that terms containing
λ and χ vanish in the non-relativistic limit since they are proportional to higher order terms. This shows
that the new tensor in (4) also has the correct non-relativistic limit.

The tensor in (4) provides a causal generalization of NS theory constructed without the introduction of
additional dynamical variables beyond those already present in the ideal fluid limit. We rigorously prove
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below local existence, uniqueness, and causality of solutions to this viscous theory (in the full nonlinear
regime) both in a Minkowski background and also when the fluid is dynamically coupled to Einstein’s
equations. In a later section, we establish the stability of the solutions to the equations of motion in the
linearized regime, and we show how (4) can be ultimately derived from kinetic theory. Moreover, we develop
applications in important known test-cases. This is the first time that such nontrivial statements can be
rigorously made about viscous fluid dynamics in the relativistic regime since Eckart’s first proposal in 1940.

IV. WELL-POSEDNESS AND CAUSALITY

In this section we consider Einstein’s equations Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , with energy-momentum

tensor given by (4). It is assumed that the equation uµuµ = −1 is also part of the system. An initial data
set I for this system consists of the usual initial conditions (Σ, g0, κ) for Einstein’s equations (Σ a three-
dimensional manifold endowed with a Riemannian metric g0 and a symmetric two tensor κ), two scalar
functions ε0 and ε1 on Σ (energy density and its time-derivative at the initial time), and two vector fields v0

and v1 on Σ (the initial values for the velocity and its time-derivative), such that the constraint equations
are satisfied [11, Chapter 10]. For a conformal theory all transport coefficients are ∝ T 3 so we can assume
χ = a1η, λ = a2η, with a1,2 constants. The meaning of “sufficiently regular” stated in the theorem is
explained below.

Theorem 1. Let I = (Σ, g0, κ, ε0, ε1, v0, v1) be a sufficiently regular initial data set for Einstein’s equations
coupled to (4). Suppose that Σ is compact with no boundary, ε0 > 0, and that η : (0,∞)→ (0,∞) is analytic.
Finally, assume that a1 ≥ 4 and a2 ≥ 3a1

a1−1 . Then:

(A) There exists a globally hyperbolic development M of I.
(B) Let (g, ε, u) be a solution of Einstein’s equations provided by the globally hyperbolic development M .

For any x ∈M in the future of Σ, (g(x), u(x), ε(x)) depends only on I|i(Σ)∩J−(x), where J−(x) is the causal

past of x and i : Σ→M is the embedding associated with the globally hyperbolic development M .

Statement (A) means the Einstein’s equations admit existence and uniqueness of solutions (uniqueness
up to a diffeomorphism, as usual in general relativity). Statement (B) says that the system is causal. Σ is
assumed compact and with no boundary for simplicity, as otherwise asymptotic and/or boundary conditions
would have to be prescribed. The assumption ε0 > 0 guarantees that the equations of motion are not
degenerate (see section VIII B for more details). Above, sufficiently regular means that the initial data
belongs to appropriate Gevrey spaces (which are subspaces of the space of smooth functions, see [104] for a
definition). It is crucial to point out, however, that the causality of the equations does not depend on the use
of Gevrey spaces, and it will automatically hold in any space of functions where existence and uniqueness
can be established.

Theorem 2. Under assumptions a1 ≥ 4 and a2 ≥ 3a1
a1−1 as above, a statement similar to Theorem 1, i.e.,

existence, uniqueness, and causality holds for solutions of ∇µTµν = 0, with Tµν given by (4), in Minkowski
background.

The conditions a1 ≥ 4 and a2 ≥ 3a1
a1−1 in Theorems 1 and 2 are technical, but they provide a wide range

of values for applications in different situations of interest. Note that these are sufficient conditions, i.e.,
we are not saying (and we do not know) whether causality is lost if one of these two conditions is not
satisfied. Moreover, these conditions are easily accommodated with those determined by kinetic theory for
the coefficients χ and λ (see section VI) and the stability conditions of section V.

The proofs of Theorems 1 and 2 will be an application of the combined theorems of Leray and Ohya [105,
§6, sec. 27] and Choquet-Bruhat [106, p. 381]. A statement of the result as needed here appears in [10, p.
624] and it can be summarized as follows. Suppose that the characteristic determinant [107, VI, §3.2] of the
system P IKϕ

K = 0 is a product of hyperbolic polynomials whose highest order is at least the order of the
equations (all equations in the system are assumed of the same order). Assume that the characteristic cones
determined by the hyperbolic polynomials are all contained in the light-cone in coordinate space and their
intersection has non-empty interior. Then, the system admits a unique causal solution in appropriate Gevrey
spaces. We recall that a polynomial p(ξ0, . . . , ξn) of order m is called hyperbolic if for every (ξ0, . . . , ξn) 6= 0,
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the equation p(ξ0, . . . , ξn) = 0 admits m real distinct solutions ξ0 = ξ0(ξ1, . . . , ξn) [107, VI, §3.7]. For brevity,
our proof will omit certain technicalities that might be of interest for more mathematically minded readers
but would obfuscate the main ideas. Those interested in such technical aspects can consult [108], where
proofs of Theorems 1 and 2 are given for an audience of mathematically inclined readers19.

Proof of Theorem 1. As usual in general relativity, we embed Σ into R × Σ and work in local coordinates
in the neighborhood of a point p ∈ Σ. We can assume that g(p) is the Minkowski metric. We consider
Einstein’s equations written in wave gauge, ∇µTµν = 0, and

uλu
αuµ∇µ∇αuλ + uα∇αuλuµ∇µuλ = 0, (5)

which follows from uµu
µ = −1 after twice differentiating and contracting with u (hence, 15 equations for the

15 unknowns gαβ , uα, ε). The characteristic determinant of the system equals p1(ξ)p2(ξ)p3(ξ)p4(ξ) where
p1(ξ) = 1

12εη
4(uµξµ)2, p4(ξ) = (ξµξµ)10,

p2(ξ) = [(a2 − 1)((u0)2ξ2
0 + (u1)2ξ2

1 + (u2)2ξ2
2

+ (u3)2ξ2
3)− ξµξµ + 2(a2 − 1)(u1u2ξ1ξ2

+ u1u3ξ1ξ3 + u2u3ξ2ξ3) + 2(a2 − 1)u0ξ0u
iξi]

2,

and

p3(ξ) = [4a1(a2 − 3)− 4a2](uµξµ)4

− 4[2a2 + a1(3 + a2)](uµξµ)2ξνξν

− (a1 − 4)a2(ξµξµ)2.

Here, ξ = (ξ0, . . . , ξ3) is an arbitrary element of the cotangent bundle at a fixed point in the spacetime
manifold (i.e., ξ are coordinates in momentum space), in accordance to the prescription to compute the
characteristic determinant [107, VI, §3.2]. The polynomials uµξµ and ξµξµ are hyperbolic polynomials if g is
a Lorentzian metric and u is time-like. Thus, p1(ξ) is the product of two hyperbolic polynomials (recall that
ε > 0 and η(ε) > 0) and p4(ξ) is the product of ten hyperbolic polynomials which stem from the principal
part of Einstein’s equations.

To analyze p2(ξ) we write p2(ξ) = (p̃2(ξ))2, where p̃2(ξ) is the polynomial between brackets in the definition
of p2(ξ). Note that the assumptions on a1 and a2 imply that a2 ≥ 3.

Let us investigate the roots ξ0 = ξ0(ξ1, ξ2, ξ3) of the equation p̃2(ξ) = 0. Consider first the case where
p̃2(ξ) is evaluated at the origin, in which case g is the Minkowski metric. Then the roots are ξ0,± =

− 1
1+(a2−1)(1+u2) ((a2 − 1)u · ξ

√
1 + u2 ±

√
(a2 + (a2 − 1)u2)ξ2 − (a2 − 1)(u · ξ)2), where u = (u1, u2, u3),

u2 = (u1)2 + (u2)2 + (u3)2, ξ = (ξ1, ξ2, ξ3), ξ2 = ξ2
1 + ξ2

2 + ξ2
3 , and · is the Euclidean inner product. We see

that if ξ = 0, then ξ0,± = 0 and hence ξ = 0. Thus, we can assume ξ 6= 0. The Cauchy-Schwarz inequality

gives u2ξ2 − (u · ξ)2 ≥ 0, hence ξ0,+ and ξ0,− are real and distinct for a2 ≥ 3. We conclude that p̃2(ξ) is a
hyperbolic polynomial at the origin. Since the roots of a polynomial vary continuously with the polynomial
coefficients, p̃2(ξ) will have two distinct real roots at any point near the origin, hence on the entire coordinate
chart (shrinking the chart if necessary). Therefore, p2(ξ) is the product of two hyperbolic polynomials.

We now move to analyze p3(ξ). First consider a1 = 4, in which case a2 ≥ 4. Then p3(ξ) reduces to
p3(ξ) = [12(−4+a2)(uµξµ)2−24(2+a2)ξµξµ](uνξν)2. The term (uνξν)2 can be grouped with p1(ξ), whereas
the term between brackets can be analyzed similarly to p2(ξ) above and we conclude, using a2 ≥ 4, that it
is a hyperbolic polynomial of degree two.

Consider now a1 > 4 and a2 = 3a1
a1−1 . Then the term coefficient of (uµξµ)4 in p3(ξ) vanishes. We can

then factor (uµξµ)2 and a direct algebraic computation, as above, reveals that the remaining polynomial is
hyperbolic of degree two for a1 > 4.

19 In [108], for simplicity, only the case a1 = 4, a2 ≥ 3a1
a1−1

= 4 is treated. The arguments there presented, however, are

essentially the same to cover the remaining cases. In fact, the only substantial difference for other values of a1 is the
computation of the characteristic determinant, which is presented in detail here.
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It remains to analyze the case a1 > 4 and a2 >
3a1
a1−1 . Note that in this case the coefficients of both (uµξµ)4

and (ξµξµ)4 in p3(ξ) are positive, while the middle coefficient, −4[2a2 + a1(3 + a2)], is negative. Under these
circumstances we can factor p3(ξ) as

p3(ξ) = X(ξµξµ − Y uµξµ)(ξνξν − Zuνξν)

with X,Y, Z > 0. But for any W > 0, the polynomial ξµξµ −Wuµξµ is a hyperbolic polynomial of degree
two, as it can be seen by a direct computation. Alternatively, we can note that if W > 0 then ξµξµ−Wuµξµ
is a non-zero multiple of the characteristic polynomial of the acoustical metric [89] with sound speed equal
to 1/(1 +W ).

Using the above explicit expression for the roots of p̃2(ξ) = 0, it is not difficult to verify that the cone defined
by p2(ξ) = 0 contains20 the light-cone gµνξµξν = 0. For p1(ξ) and p4(ξ) this condition is straightforward.
Finally, the same is true for p3(ξ) under all the above conditions (using again the acoustical metric as a
shortcut, note that ξµξµ−Wuµξµ = 0 defines a cone that contains the light cone if W > 0 in that the sound
speed in this case satisfies 0 < 1/(1 + W ) < 1). Moreover, the intersection of these cones has non-empty
interior.

Since the equations are of second order and the highest degree among the above hyperbolic polynomials is
two, we have verified all the conditions in [10, p. 624]. We conclude that Einstein’s equations in wave gauge
admit a unique and causal solution in a neighborhood of x. This gives a solution to Einstein’s equations
in arbitrary coordinates (near x) because, by assumption, the initial data satisfies the Einstein constraint
equations. Equation (5) implies that uµ remains normalized if it is normalized at time zero. A standard
gluing argument [11, p. 263] now produces a solution defined on the entire manifold. This completes the
proof.

Proof of Theorem 2. This is exactly as the proof of Theorem 1, except that now the polynomial p4(ξ), which
comes from Einstein’s equations, does not figure in the characteristic determinant.

V. LINEAR STABILITY ANALYSIS

We follow Hiscock and Lindblom [19] and consider the linearized version of the equations of motion for the
theory defined by (4). We perform linear perturbations Ψ→ Ψ(0) +δΨ around thermodynamical equilibrium

characterized by a constant flow u
(0)
µ and equilibrium energy density ε0 (i.e., ∇µu(0)

ν = 0 = ∇µε0), where
Ψ = uµ, ε, η, χ, λ. Our background is the Minkowski metric, which remains undisturbed, i.e., we work in
the Cowling approximation [109] where δgµν = 0. As in [19], we consider only the plane-wave solutions to

the perturbation equations δΨ(x)→ δΨ(k)eikµx
µ

with kµ = (ω, k, 0, 0). We begin our analysis in the fluid’s

rest frame so that u
(0)
µ = (−1, 0, 0, 0). The equations of motion separate into two independent channels, the

so-called sound and shear channels, whose modes are defined by the solutions of the following equations:

sound:A0 +A1Γ +A2Γ2 +A3Γ3 +A4Γ4 = 0,

shear: λ̄Γ2 + Γ + η̄k2 = 0,

where Γ = −iω [19], A0 = 3k2 + k4λ̄(χ̄− 4η̄), A1 = 3k2(4η̄+ χ̄+ λ̄), A2 = 9 + 6k2(2η̄+ λ̄)χ̄, A3 = 9(λ̄+ χ̄),
A4 = 9λ̄χ̄, momenta are rescaled by the background temperature T0, η̄ = η/s, λ̄ = λ/s, and χ̄ = χ/s. The
modes are stable if their solutions are such that Re Γ(k) ≤ 0 [19] and, in the rest frame, this occurs when η,
λ, χ > 0 and χ ≥ 4η.

20 By definition of the characteristic determinant, the polynomials pi(ξ) are defined in the cotangent bundle or, equivalently,
in momentum space. By duality, the characteristic cones associated with pi(ξ) = 0 in coordinate space will be inside the
light-cone gµνvµvν = 0, hence causal, if they are outside the light-cone in momentum space.
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Tighter constraints appear by analyzing the stability in a boosted fluid where u
(0)
µ = (−γ, γv), with

0 ≤ |v| < 1 constant [19, 110, 111]. For the shear channel, the previous rest frame conditions are sufficient to
guarantee stability also in a boosted frame. For the sound channel, stability in a boosted frame requires that
η > 0, χ = a1 η, λ ≥ 3η a1/(a1−1) with a1 ≥ 4. We note that these are precisely the same conditions needed
in Theorems 1 and 2, guaranteeing causality, local existence and uniqueness of solutions, and linear stability
around equilibrium. This is the first time that such general statement can be made rigorous in relativistic
viscous hydrodynamics21. We note that our theory has non-hydrodynamic modes22 in both channels even
in the rest frame (as does IS theory) and such modes are stable if λ and χ obey the conditions mentioned
above.

The linearized problem studied here shows that our conditions ensuring causality imply some type of
resummation. In fact, consider the dispersion relations of a theory (in the rest frame) that has the correct

NS limit at small momenta, i.e., ωsound(k) = 1√
3
|k|− i 2

3T0

η
sk

2 +O(k3) and ωshear(k) = −iηs
k2

T0
+O(k4), such

as the theory defined by (4) or IS theory. This should be the case in any theory of viscous hydrodynamics,
as it follows directly from gravitational Ward identities [112]. On the other hand, in the literature the limit
|k| → ∞ has been previously used as a simple test to investigate causality, namely, ωsound(k) and ωshear(k)
cannot grow faster than |k| [111], which implies that the dispersion relations for sound and shear channels
cannot be simple polynomial functions of |k| – hence, in this view causality implies a resummation of spatial
derivatives. Here we remark that such a connection between resummation and causality also holds for the
theory defined by Eq. (4). Indeed, from the above dispersion relations, we find that |ωsound(k)| ≤ |k| and
|ωshear(k)| ≤ |k| for |k| � T0.

We would like to finish this section emphasizing that this simple |k| → ∞ test of causality used before in
the literature may only suggest causality violation. As a matter of fact, there are well-known calculations in
causal microscopic theories where ω(k) ∼ β|k| with β > 1 for large |k|, as found for instance in Ref. [113].
This illustrates that simplified statements about causality derived in the linearized regime can be sometimes
misleading, which reinforces the idea that causality in viscous relativistic fluid dynamics should be treated
in a more comprehensive manner as done in the present paper.

VI. DERIVATION FROM KINETIC THEORY

Since the seminal work of Israel and Stewart [21, 22, 114–116], the relativistic Boltzmann equation has
been considered a good starting point to understand the emergence of fluid dynamic behavior in relativistic
systems. As usual in such treatments [50], we consider the Boltzmann equation in flat spacetime. By general
covariance, the same form of the energy-momentum tensor can then be obtained in curved spacetimes [117,
Chapter 5.4].

Often in kinetic theory one derives the fluid dynamic equations under simplifying assumptions that allow
explicit calculations to be carried out in a perturbative regime. In our case, we will consider a conformal
gas. Nevertheless, since this can be viewed as a limiting case of more complex scenarios, general features,
such as rough bounds on the transport coefficients or the functional form of the energy-momentum tensor,
are expected to hold for other types of fluids (provided the general features of the derivation, such as the
validity of a perturbative expansion, still hold). In fact, as we point out further below, much of what follows
is more general and the assumption of a single species conformal gas is only a useful simplification of the
analysis. Before presenting our kinetic theory derivation of (4), we begin the next section reviewing some
basic aspects of relativistic kinetic theory that will be needed in this paper.

21 At the linearized level, a similar statement was made for Israel-Stewart theory [24] - see also [110, 111] for related work.
22 These are modes in the linearized theory with dispersion relations such that limk→0 ω(k) 6= 0. In our theory, these non-

hydrodynamic modes are purely imaginary at zero spatial momentum.
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A. Relativistic kinetic theory

The Boltzmann equation for a dilute, single species relativistic gas of particles with constant mass M (in
flat spacetime) can be written as [118]

kµ∇µfk = C[fk, fk] (6)

where C[fk, fk] is the collision kernel, fk(x) = f(x, k) is the distribution function in phase space, which is a
(dimensionless) Lorentz scalar that depends on the spacetime coordinates xµ and the on-shell momenta kµ

(i.e., fk may depend on 7 variables altogether). From fk we can construct coarse-grained quantities such as
the particle current

Jµ(x) =

∫
p

pµfp(x)

and the energy-momentum tensor

Tµν(x) =

∫
p

pµpνfp(x),

where
∫
p

=
∫

d3~p
(2π)3 p0 =

∫ ∫ ∫
dp1dp2dp3
(2π)3 p0 and dp1dp2dp3

(2π)3 p0 is the Lorentz invariant measure [118], with p0 =√
~p 2 +M2 due to the on-shell mass condition pµpµ = −M2.
The collision kernel of the Boltzmann equation encodes the nonlinear behavior of this integro-differential

equation. In the limit of classical statistics, the collision kernel is given by [118]

C[fk, fk] =

∫
k′pp′

W (kk′|pp′)(fpfp′ − fkfk′)

where

W (kk′|pp′) =
1

2
|M |2 δ(4)(kµ + k′µ − pµ − p′µ) (7)

and M is the transition amplitude for particle scattering. For instance, for particles interacting with a
constant total cross section one finds |M |2 ∼ s [23], where s = −(kµ + k′µ)(kµ + k′µ) is the Mandelstam
variable.

We assume the collision kernel to be such that

∇µJµ =

∫
k

kµ∇µfk =

∫
k

C[fk, fk] = 0, (8)

and also

∇µTµν =

∫
k

kνkµ∇µfk =

∫
k

kνC[fk, fk] = 0. (9)

Eq. (8) defines the conservation of the particle current Jµ while (9) implies that the energy-momentum
tensor, constructed using the solution of the Boltzmann equation, is covariantly conserved. Also, we note
that the so-called equilibrium distribution

feqk = euµk
µ/T+µ/T (10)

is a zero of the collision kernel, i.e., C[feqk , f
eq
k ] = 0. This occurs regardless the values assumed for the flow

velocity uµ(x), chemical potential µ(x), and temperature T (x) that describe local equilibrium. We remark,
however, that feqk (x) is only a solution of the Boltzmann equation when uµ/T is a Killing vector of the
underlying spacetime [118].
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We assume that the collision kernel obeys the standard conditions necessary for the H-theorem to be valid
as in [50], i.e., we assume that the interactions are such that the general expression for the entropy current
(which is also valid out of equilibrium)

Sµ(x) = −
∫
k

kµ fk(x) (ln fk(x)− 1) (11)

obeys the second law of thermodynamics

∇µSµ = −
∫
k

C[fk, fk] ln fk ≥ 0, (12)

where the equality only holds in equilibrium. In fact, in equilibrium one finds that Sµeq = Suµ, with S being
the equilibrium entropy density obtained from the first law of thermodynamics TS = ε+P − µN , while the
equilibrium energy density and number density are given by

ε(x) =

∫
k

E2
kf

eq
k (x) and N(x) =

∫
k

Ekf
eq
k (x), (13)

respectively. The equilibrium pressure is given by

P (x) =
1

3

∫
k

∆µνk
µkνfeqk (x) =

1

3

∫
k

k〈µ〉k〈µ〉f
eq
k (x),

where k〈µ〉 = ∆µ
νk

ν , Ek = −uµkµ, and kµ = Eku
µ + k〈µ〉. From these definitions one can write down the

corresponding expressions for the equilibrium energy-momentum tensor T idealµν =
∫
k
kµkνf

eq
k = εuµuν+P∆µν

and particle current J idealµ = Nuµ [118].

B. Conformal kinetic theory dynamics

Here we will only consider the case of conformal kinetic dynamics, first discussed in Ref. [6] and later
explored in [119, 120], which emerges in the case of a massless gas pµpµ = 0 when the collision kernel
changes homogeneously under Weyl transformations [6], i.e., gµν → e−2Ωgµν ,

pµ∇µf(x, p) = C[fp, fp]→ e2Ω (pµ∇µf(x, p) = C[fp, fp]) . (14)

This is the case of a massless gas of scalar bosons with quartic interactions computed at tree level. Also,
an even simpler conformal kinetic theory can be constructed in the case of a massless gas with cross section
∼ 1/T 2. The collision term in this conformal theory (still assuming classical statistics) may be written as

C[fk, fk] =
σ0

2T 2

∫
k′pp′

s(2π)5 δ(4)(k + k′ − p− p′) (fpfp′ − fkfk′), (15)

where σ0 is a dimensionless constant that describes the magnitude of the interactions at fixed temperature.
We will use this particular conformal theory when explicit calculations become necessary later in this paper.

C. Perturbative expansion

The Boltzmann equation (6) is a nonlinear integro-differential equation for fk and, as such, exact solutions
are very rare [121]23. Perturbative methods have been pursued over the years exploring different limits of its

23 For instance, the first analytical solution of the Boltzmann equation for an expanding gas was only found recently, see Refs.
[122, 123].
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dynamics, as reviewed in [121]. The hydrodynamical regime is of particular interest due to its simplicity as
it describes the dynamics of small disturbances near local equilibrium. In this regard, the two most famous
perturbative methods are the Hilbert series [121] and the Chapman-Enskog expansion [124], whose relativistic
generalization are also known (see, for instance, Ref. [118]). The Hilbert series does not lead to the usual
equations of viscous fluid dynamics [121] though the Chapman-Enskog expansion, when truncated to first
order in deviations from local equilibrium, leads to the Navier-Stokes equations. A similar statement holds
in the relativistic regime [50, 118], but in this case the corresponding relativistic Navier-Stokes equations are
problematic because of their lack of causality and stability, as mentioned in Sec. I. In this paper we perform
a different type of perturbative expansion that yields equations of motion for the hydrodynamic fields that
describe a viscous relativistic fluid with causal and stable dynamics. This method is based on the technique
developed in Ref. [125], with the important distinction that here we are only focused on the hydrodynamic
regime.

We start from the Boltzmann equation (6) for a conformal fluid and use the fact that it is always possible
to write its solution as

fk(x) = feqk (x) + δfk(x), (16)

where feqk is a (fictitious) local equilibrium distribution (10), assumed to be the starting point of the pertur-
bative expansion soon to be developed, and δfk represents the deviations from equilibrium. The arbitrariness
in the definition of the local hydrodynamic fields {T, uµ, µ} in feqk must be fixed by imposing conditions on
δfk [118], which may be generally written as∫

k

Enk δfk = 0,

∫
k

Emk δfk = 0, and

∫
k

Erkk
〈µ〉δfk = 0 (17)

where n, m, r, are non-negative integers. In the literature, the most common choices for these numbers are
the Landau conditions n = 2, m = r = 1 and Eckart’s where n = 2, m = 1, and r = 0 [118]. In terms of
moments, Landau’s conditions are simply −Jµuµ = N and uµT

µν = −εuν , with N and ε defined by their
equilibrium values in (13). Since for both Landau and Eckart the number density and the energy density are
matched to their equilibrium expressions, the scalar conditions above are sometimes refereed as matching
conditions, with the vector equation in (17) being used to the define the so-called “frame” (i.e., r = 1 is the
Landau frame and r = 0 is the Eckart frame) [126]. However, such choices are certainly not unique (as they
reflect our choice in the definition of the hydrodynamic fields in feqk ) and other conditions may be used in
perturbative expansions [94, 95]. Thus, a choice of n, m, and r determines a choice of local temperature,
flow velocity, and chemical potential. In other words, a choice of n, m, and r in (17) corresponds precisely to
a choice of frame as discussed in section II. The role played by such a choice in the perturbative expansion
is discussed below.

We remark that the full solution of the Boltzmann equation does not depend on the choice of the hydro-
dynamic fields in feqk as different choices can always be accounted for in δfk. However, the moments of fk do
change with the frame when one employs the truncated solution for fk in the calculation of these quantities
(as we shall do in the following). In fact, it is well-known that Tµν and Jµ change when going from the
Landau to the Eckart frame in the usual Chapman-Enskog expansion truncated at first order [50]. Therefore,
one may use this freedom in the definition of the hydrodynamic fields in (17) to determine which choice is
more suited in practice to study the hydrodynamic regime of the Boltzmann equation. As a matter of fact,
frames different than Landau’s and Eckart’s have been already discussed and pursued in the literature, see
Refs. [71, 95, 96, 127–130].

We substitute (16) in the Boltzmann equation to find

kµ∇µfeqk + kµ∇µδfk =

∫
k′pp′

W (pp′|kk′)feqk f
eq
k′

(
δfp
feqp

+
δfp′

feqp′
− δfk
feqk
− δfk′

feqk′

)

+

∫
k′pp′

W (pp′|kk′) (δfpδfp′ − δfkδfk′) . (18)

Up to this point, no approximations in the Boltzmann dynamics were made. However, now we assume
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that the deviations from equilibrium are small [125] and linearize the equation above by neglecting24 the
contribution from terms that are quadratic in δfk. This gives

kµ∇µfeqk + kµ∇µ (feqk φk)− feqk L[φk] = 0, (19)

where we defined φk = δfk/f
eq
k and L is the linearized collision operator

L[φk] =

∫
k′pp′

W (pp′|kk′)feqk′ (φp + φp′ − φk − φk′) .

It will be useful for our analysis to know that the functions {1, kµ} span the kernel of this operator, i.e.,
L[1] = L[kµ] = 0 and that this operator is self-adjoint in the sense that∫

k

feqk hkL[zk] =

∫
k

feqk zkL[hk]

with hk(x) and zk(x) being arbitrary functions25. Also, this operator is non-positive∫
k

feqk φkL[φk] ≤ 0,

with the equality corresponding to the case where φk = {1, kµ}. A more detailed discussion of the mathe-
matical properties of L can be found, for instance, in Ref. [121].

Now our task is to solve Eq. (19) subject to the conditions (17). This problem can be solved [118] by
considering integral moments of (19) with respect to the tensorial basis kµ1 . . . kµj (j ≥ 0), i.e.,∫

k

kµ1 . . . kµj {kµ∇µfeqk + kµ∇µ (feqk φk)− feqk L[φk]} = 0,

which leads to an infinite set of (coupled) differential equations for the moments of the non-equilibrium
correction determined by φk. In this paper we truncate this set of equations and consider only the cases
where j = 0, 1, 2. This type of truncation is commonly used in the derivation of hydrodynamics from the
Boltzmann equation [22, 118]. For a more systematic approach that includes the contribution from higher
order moments, we refer the reader to Ref. [23].

Using that L is a self-adjoint operator, and the functions {1, kµ} are in its kernel, one can see that j = 0
simply gives the conservation law of particle number, ∇µJµ = 0, while j = 1 implies the conservation of
energy and momentum, ∇µTµν = 0, with both Jµ and Tµν being constructed using fk = feqk (1 + φk). We
now use the decomposition

kµkν =

(
uµuν +

∆µν

3

)
E2
k + Eku

µk〈ν〉 + Eku
νk〈µ〉 + k〈µkν〉

to show that the j = 2 term can be divided into three separate equations∫
k

E2
k

{
feqk E

2
k

DT
T 2

+ kµ∇µ (feqk φk)− feqk L[φk]

}
= 0, (20)

∫
k

Ekk
〈µ〉

{
feqk Ek

k〈ν〉D〈ν〉T
T 2

+ kµ∇µ (feqk φk)− feqk L[φk]

}
= 0, (21)

24 This perturbative solution can be performed systematically as follows. First, we introduce a book keeping parameter α on

the nonlinear term in (18) and then assume a power series behavior for δfk =
∑∞
n=0 α

nδf
(n)
k . The lowest order term in this

expansion gives Eq. (19).
25 These functions are assumed to be such that

∫
k f

eq
k hk and

∫
k f

eq
k zk are finite.
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and ∫
k

k〈αkβ〉
{
feqk

k〈µkν〉σµν
T

+ kµ∇µ (feqk φk)− feqk L[φk]

}
= 0 (22)

where the shear tensor is σµν = ∆µν
αβ∇αuβ and ∆µν

αβ =
(

∆µ
α∆ν

β + ∆µ
β∆ν

α

)
/2 −∆µν∆αβ/3 is the projection

tensor [50], and k〈µkν〉 = ∆µν
αβk

αkβ . For convenience, we have introduced the Weyl derivative notation [102]

DT = DT + θT/3 and D〈µ〉T = TDuµ + ∇〈µ〉T , with D = uµ∇µ, ∇〈µ〉 = ∆µ
α∇α, and the expansion rate

θ = ∇µuµ. Furthermore, since µ/T is constant in a conformal fluid, no gradients of this quantity appear
when computing kµ∇µfeqk in the equations above. Therefore, for convenience we set the chemical potential
µ = 0 in the following.

We are primarily interested in the case where the hydrodynamic fields are sufficiently slowly varying
functions of space and time, since this is the situation when the hydrodynamic limit is expected to be
a good approximation to the underlying kinetic theory, i.e., when a gradient expansion provides a good
representation of the dynamics of the system. Thus, only an approximate solution for φk valid in this limit
will be pursued. Since the source terms in the equations above are already of first order in derivatives of the
hydrodynamic fields, φk must be of first order in gradients at lowest order in a derivative expansion. But
the term kµ∇µ (feqk φk) only contributes at 2nd order26. Therefore, kµ∇µ (feqk φk) can be omitted in Eqs.
(20), (21), and (22) when determining φk to first order in gradients. In this case, the general solution for
φk, valid at first order in the derivative expansion, can be written as follows

φk = φA
k〈µkν〉σµν

T 3
+ φB

E2
kDT
T 4

+ φC
Ekk

〈ν〉D〈ν〉T
T 4

+ ξ + v
Ek
T

+ v〈µ〉
k〈µ〉

T
, (23)

where ξ, v and v〈µ〉 parametrize the kernel of the collision operator. Using Eqs. (20), (21), and (22) one can
show that φA, φB , and φC are determined by the equations

φA

(
1

T 8

∫
k

feqk k
〈αkβ〉L[k〈µkν〉]

)
σµν =

8

π2
σαβ , (24)

φB

(
1

T 8

∫
k

feqk E
2
kL[E2

k]

)
=

60

π2
, (25)

and

φC

(
1

T 8

∫
k

feqk Ekk
〈µ〉L[Ekk

〈ν〉]

)
D〈ν〉T =

20

π2
D〈µ〉T, (26)

where we used that∫
k

Enk f
eq
k = Tn+2 (n+ 1)!

2π2
and

∫
k

feqk k
〈µkν〉k〈αkβ〉 =

8T 6

π2
∆µναβ .

Since L is non-positive, the quantities φA, φB , and φC are negative and their specific values only depend
on the properties of the collision kernel. On the other hand, the coefficients {ξ, v, v〈µ〉} are fixed by our
definition of the hydrodynamic fields via the constraints in Eq. (17) (and the corresponding results for φA,
φB , and φC). Using (23) in (17) we find

ξ = φB
DT
T 2

(m+ 2)(n+ 2), v = −φB
DT
T 2

(m+ n+ 5), and v〈µ〉 = −φC
D〈µ〉T
T 2

(r + 4).

26 Recall that, in a gradient expansion for a field ψ, both ∇2ψ and (∇ψ)2 count as second order terms.
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One can see that these coefficients are nonzero for any choice of frame.
Now let us determine the energy-momentum tensor of the gas. A simple calculation reveals that

Tµν =

∫
k

kµkνfeqk (1 + φk) = (ε+A)

(
uµuν +

∆µν

3

)
+ πµν +Q〈µ〉uν +Q〈ν〉uµ. (27)

The non-equilibrium correction to the energy density is

A =

∫
k

E2
kf

eq
k φk = 3χ

DT
T

with

χ = φB
T 3

π2
(n− 2)(m− 2).

On the other hand, the heat flow in (27) is given by

Q〈µ〉 =

∫
k

Ekk
〈µ〉feqk φk = λ

D〈µ〉T
T

with

λ = φC
4T 3

π2
(1− r).

Finally, the shear stress tensor is given by

πµν =

∫
k

k〈µkν〉feqk φk = −2ησµν

where

η = −φA
4T 3

π2
(28)

is the shear viscosity transport coefficient [125]. It is interesting to notice that while η does not depend on
our choice of frame, the new coefficients χ and λ that appear in our perturbative expansion certainly do.
In fact, even their sign can change as different choices in (17) are made. For instance, in the Landau frame
n = 2, m = r = 1 and, thus, χ = λ = 0. On the other hand, for Eckart’s χ = 0 but λ 6= 0 and there is
nonzero heat flow.

Another property of the system that can be easily computed is the entropy production. Using the general
expression (23) in Eq. (12), we keep the lowest order terms in the expansion to find

∇µSµ = −
∫
k

feqk φkL[φk] =
2η

T
σµνσ

µν − φB
60

π2
(DT )

2 − φC
20

π2
D〈µ〉T D〈µ〉T,

which is non-negative since φB and φC are negative. We note that the production of entropy does not depend
on (17), being thus independent on the choice of frame.

Now we have to specify the interactions in the collision kernel to determine φA, φB , and φC . For simplicity,
in this paper we use the simple conformal gas defined in Eq. (15). Using the results from [122, 123, 125] in
Eqs. (24), (25), and (26), standard calculations give

φA = − 3π2

10σ0
, φB = −15π2

2σ0
, and φC = −5π2

2σ0
.

One can show that for this gas η = 6T 3/(5σ0), λ/η = 25(r − 1)/3, and χ/η = −25(n− 2)(m− 2)/4. Given
that positive values for these coefficients are preferred according to the well-posedness, causality, and stability
results derived in Sections IV and V, one can see that frames where r > 1 and n < 2, m > 2 provide a
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suitable definition of the hydrodynamic fields since in this case the propagation of energy and momentum is
causal and stable. A possible choice of frame would be, for instance, n = 0, m = 3, and r = 2 which gives
values for λ and χ that satisfy the conditions established for causality and stability of sections IV and V. In
terms of the following moments of fk

ρµ1...µj =

∫
k

kµ1 . . . kµj (feqk + δfk)

the choice frame mentioned above corresponds to setting

ρ = ρeq and ρµνλu
νuλ = ρeqµνλu

νuλ,

where ρeq and ρeqµνλ are computed using the equilibrium distribution. Therefore, we see that causality
and stability can be obtained in viscous relativistic hydrodynamics from a derivative expansion as long as a
judicious choice of frame involving the definition of hydrodynamic fields in feqk is made.

VII. APPLICATIONS

In this section we initiate an investigation of the immediate applications of the theory discussed in this
paper. We focus on problems of relevance to high energy nuclear physics, more specifically the space-time
evolution of the quark-gluon plasma formed in heavy ion collisions, where the conformal fluid approximation
has been already used [6, 30]. We solve our equations of motion for fluids undergoing Bjorken and Gubser
flows in VII A and VII B, respectively, where the flow velocity is completely determined by symmetry argu-
ments. A discussion about how to set up the initial value problem in more general situations is presented in
VII C.

A. Hydrodynamic attractor in Bjorken flow

Motivated by the hydrodynamic studies of the quark-gluon plasma formed in heavy ion collisions, we
first consider the case of the Bjorken flow [131] where uµ = (1, 0, 0, 0) in Milne coordinates defined as

xµ = (τ, x, y, ς), with τ =
√
t2 − z2 and ς = tanh−1(z/t). This configuration corresponds to a fluid rapidly

expanding in the longitudinal z direction (being homogeneous in the xy plane) and the only unknown is
ε = ε(τ) or equivalently T = T (τ), which is the solution of uν∇µTµν = 0 (we note that the term with λ in
(4) does not contribute to Bjorken flow dynamics).

The equation for the temperature T (τ) is

τ χ̄
∂2
τT

T
+ 2τ χ̄

(
∂τT

T

)2

+
7

3
χ̄
∂τT

T
+

χ̄

9τ
+ τ∂τT −

4

9

η̄

τ
+
T

3
= 0, (29)

where we used that∇µuµ = 1/τ and σµνσ
µν = 2/(3τ2). If χ = 0, (29) describes the well-known NS equations

for Bjorken flow [132]. Eq. (29) can be rewritten in a clearer form by defining the variables w = τT and
f = 1 + τ∂τT/T [133, 134], leading to

χ̄wf(w)
df(w)

dw
+ 3χ̄f(w)2 + f(w)

(
w − 14

3
χ̄

)
+

16χ̄

9
− 4η̄

9
− 2w

3
= 0. (30)

This equation is very similar to the one found in the case of Israel-Stewart theory first reported in [134] and,
as such, it shares the same qualitative features. In this system, the Knudsen number (i.e., the ratio between
micro and macroscopic length scales) KN ∝ 1/w and, thus, the NS limit should be recovered in the large w
(i.e., large τ) regime. This can be seen by considering the formal large w series solution f(w) =

∑∞
n=0 fnw

−n

for (30), which describes the gradient expansion series around equilibrium, and leads to the following equation
for its coefficients

fn+1 = χ̄

n∑
m=0

(n−m− 3)fn−mfm +
14

3
χ̄fn (31)
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for n > 1, while f0 = 2/3 and f1 = 4η̄/9. The exact result for NS corresponds to truncating the infinite
series as f0 + f1/w. However, such a truncation leads to acausal equations, which can only be resolved
by properly resumming the series. In fact, the series coefficients diverge as fn ∼ n! for large n, as shown
in Fig. 2. We remark that the divergence of the large τ expansion in Bjorken flow was previously found
in holography [135, 136], kinetic theory [137, 138], as well as in hydrodynamic theories involving extended
variables [134, 139–141] (for a review see [142]). Connections with resurgence theory have been investigated
in [134, 136, 139, 140].

In general, one expects that such a result indicates that new properties of the solutions of the equations
of motion, which do not appear at any finite order in the series expansion, may emerge after resummation.
As a matter of fact, linear disturbances around the series solution decay exponentially at large times [134]

FIG. 2: |fn|1/n as a function of n, computed using (31), for η/s = 0.08 and χ = 4η.

on a time scale controlled by the non-hydrodynamic mode that appears when χ̄ 6= 0, which indicates the
presence of a non-equilibrium structure called the hydrodynamic attractor. This is confirmed numerically
in Fig. 3 by investigating the behavior of the solutions of (30) generated using different initial conditions
for f(w). As noticed in [134], the attractor solution can be determined using the analogous of the slow-roll
expansion in cosmology [143], which here corresponds to setting df/dw → 0 (the red line in Fig. 3 shows the
result of this procedure taking into account first order corrections). One can see that already at very short
times the system rapidly “erases” its memory of the initial conditions and converges to the hydrodynamic
attractor (in solid red) before it reaches equilibrium (where f → 2/3). We also show the NS solution where
f(w) = 2/3 + 4η̄/(9w) for comparison.

We stress that in our case the only dynamic variables of the system are the original hydrodynamic fields
and, thus, the presence of a hydrodynamic attractor, even in this case, suggests that this may be a generic
feature of (causal) viscous relativistic fluids (at least in the case of Bjorken flow).

B. Gubser flow

Another important type of (conformal) hydrodynamic flow employed in the study of simple models of
heavy-ion collisions is the so-called Gubser flow [144]. In this case, the flow is invariant under SO(3) ⊗
SO(1, 1)⊗Z2, with the SO(3) being a particular sub-group of the SO(4, 2) conformal group which includes
the symmetry of the solutions under rotations around the z axis and two operations constructed using special
conformal transformations that replace the translation invariance in the xy plane present in Bjorken flow.
Full analytical solutions for the ideal fluid and NS approximations were derived in [144] and the geometrical
interpretation of SO(3)⊗ SO(1, 1)⊗ Z2 symmetry after Weyl rescaling was explained in [145].
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FIG. 3: (Color online) Hydrodynamic attractor solution for the causal tensor (4) with η/s = 0.08 and χ = 4η. The
black dashed lines represent solutions of (30) with different initial conditions and the solid red line corresponds to
the attractor solution. The NS solution is given by the purple dotted-dashed curve while the dotted blue line denotes
the equilibrium limit.

Ref. [146] went beyond the NS limit and studied the case of a fluid described by the conformal IS equa-
tions undergoing Gubser flow. The semi-analytical solutions obtained in [146] have since then become the
standard test of the accuracy of numerical schemes used in the large scale codes that realistically model
the hydrodynamic evolution of the quark-gluon plasma [37]. Moreover, they have also motivated a series of
studies on the emergence of hydrodynamic behavior in rapidly expanding fluids described by kinetic theory
models [119, 120, 122, 147, 148].

One interesting aspect of the NS solution for Gubser flow is that there are regions in space-time where the
temperature becomes negative as long as η/s > 0. Ref. [144] argued that in these regions the gradients are
so large that the NS equations do not apply and it was observed in [146] that the higher order resummed
dynamics included in IS theory (and kinetic theory [119, 120]) resolved this issue guaranteeing that T
remained positive-definite. In this section we show that the same occurs in the new theory in (4), which
provides a powerful consistency test of the formalism developed here.

The symmetry pattern that defines Gubser flow exactly determines [144] the flow velocity to be

uµ = (uτ (τ, r), ur(τ, r), 0, 0)

with

uτ = − cosh

[
tanh−1

(
2τrq

1 + q2τ2 + q2r2

)]
ur = sinh

[
tanh−1

(
2τrq

1 + q2τ2 + q2r2

)]
,

where we used Milne coordinates xµ = (τ, r, φ, ς), with r =
√
x2 + y2 and φ = tan−1(y/x). Above, q is an

arbitrary energy scale that describes the spatial extent of the solutions in the xy plane (we note that the
Bjorken solution is recovered in limit q → 0). Without loss of generality, we set q = 1 fm−1 [146]. Just as it
happened in the Bjorken flow case, since uµ is already known (and the momentum part of the conservation
laws is automatically satisfied) the only quantity left to characterize the hydrodynamic solution in our theory
is T = T (τ, r), which is obtained as a solution of uν∇µTµν = 0. In this case, the nonlinear 2nd order partial
differential equation for T depends on (τ, r), which makes the problem considerably more complicated than
the Bjorken flow case.

However, the underlying conformal invariance of the equations of motion allows one to perform a Weyl
transformation of the metric and rephrase this complicated flow pattern in terms of a locally static flow in
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the curved space-time dS3 ⊗ R [145], where dS3 denotes the 3-dimensional de Sitter space [117]. In fact,
starting with the line element written in Milne coordinates ds2 = −dτ2 + dr2 + r2dφ2 + τ2dς2, one may
rescale the flat space-time metric ds2 → ds2/τ2 to obtain a metric of dS3 ⊗ R, which may be written in
global coordinates as dŝ2 = −dρ2 + cosh2 ρ dθ2 + sin2 θ cosh2 ρ dφ2 + dς2, where

sinh ρ = −1− τ2 + r2

2τ
, tan θ =

2r

1 + τ2 − r2
.

After this procedure, the fluid is at rest ûµ = (−1, 0, 0, 0) and the temperature T̂ = T̂ (ρ), which now obeys
a 2nd order nonlinear ODE that can be easily solved. Once that is done, a simple Weyl transformation
gives T (τ, r) = T̂ (ρ(τ, r))/τ [145]. This approach to solve the conformal hydrodynamic equations was
applied in [149] to obtain axisymmetric exact solutions with nonzero vorticity, while other flow profiles were
systematically developed in [150].

In order to compare to the IS case studied in [146], it is convenient to write our 2nd order equation of

motion for T̂ in dS3 ⊗ R as a set of coupled 1st order differential equations

1

T̂

dT̂

dρ
+

2

3
tanh ρ = F̂(ρ),

χ̄
dF̂
dρ

+ 3χ̄F̂2 +
2

3
χ̄F̂ tanh ρ+ T̂ F̂ − 4

9
η̄(tanh ρ)2 = 0,

(32)

where we used that in dS3 ⊗ R the expansion rate is ∇µûµ = 2 tanh ρ, ûλ∇λûµ = 0, and the only nonzero

components of the shear tensor are σ̂ςς = −2 tanh ρ/3, σ̂φφ = σ̂θθ = tanh ρ/3. One can appreciate the similarity

between (32) and the IS equations (11) and (12) obtained in [146]. The NS limit (χ̄ = 0) gives the exact
solution [144]

T̂NS(ρ) =
T0

cosh2/3 ρ
+

4

27
η̄

sinh3 ρ

cosh2/3 ρ
2F1

(
3

2
;

7

6
;

5

2
;− sinh2 ρ

)
, (33)

where 2F1 is a hypergeometric function and T0 is a constant that characterizes the solution at ρ = 0. The
equation above shows that T̂ is positive-definite in the ideal fluid limit (η̄ = 0) but for NS limρ→±∞ T̂NS(ρ) =
±2η̄/3 [144], which implies that for any time τ there is an r for which the temperature turns negative (for any
value of η > 0). This pathology of NS does not occur in the solution obtained from Eq. (32), as illustrated

in Fig. 4. In this plot we used η̄ = 0.2, χ = 4η, T0 = 1.2 and F̂(0) = 0, to facilitate the comparison with
the results obtained for IS theory in [146]. The red line denotes our numerical solution, the black dashed
line corresponds to the ideal fluid limit and the NS solution, which becomes negative at sufficiently large
negative ρ, is shown in blue. One can see that our solution for the temperature is positive-definite, taking
values strikingly similar to the IS solution reported in Fig. 1 of Ref. [146] (in which η̄ = 0.2 was also used).
Also, just as it happened in the case of IS theory [146], the temperature profile found in our causal theory
is slightly above the one corresponding to the ideal fluid solution. We show in Fig. 5 the time evolution of
the new solution as a function of the transverse radius r, using the same parameters employed in Fig. 4.
The fluid rapidly expands in the transverse direction while also expanding in the longitudinal z direction,
similarly to what occurs with the IS solution [146]. We remark that hydrodynamic attractor solutions can
also be investigated in Gubser flow, as shown in Refs. [151, 152]. Since our equations of motion (32) are very
similar to the IS equations for Gubser flow [146], we expect that hydrodynamic attractor behavior will also
be present in our case. We leave such a study for future work.

C. Initial conditions

The equations of motion derived from (4) are second order evolution equations. Their initial value formu-
lation, therefore, requires a complete knowledge of eight quantities

ui
∣∣
t=0

, ε|t=0 , ∇0u
i
∣∣
t=0

, and ∇0ε|t=0 , (34)
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FIG. 4: (Color online) Temperature profile in dS3 ⊗ R as a function of de Sitter time ρ. The red line is the solution
of (32), the blue dotted-dashed line denotes the NS solution (33), and the ideal fluid case is shown in black (dashed).
In this plot, η̄ = 0.2, χ̄ = 4η, and T0 = 1.2.

FIG. 5: (Color online) Dependence of the temperature with the transverse radius r =
√
x2 + y2, evaluated at different

Milne times τ = 1, 2, 3 fm, for the viscous fluid defined by (4) undergoing Gubser flow. The fluid also expands in the
z direction (not shown). In this plot, η̄ = 0.2, χ = 4η, and T0 = 1.2.

where we assume to be working locally in coordinates (x0, xi) = (t, xi) such that initial data is given on
the hypersurface {t = 0}. Note that the u0 component and its time derivative at t = 0 are obtained
from the normalization uµuµ = −1. For a comparison, we note that the relativistic NS equations require
the knowledge of the same quantities as above, with the exception of ∇0ε|t=0 which is only needed in our
formulation.

Clearly, the choice of initial data depends on the particular problem at hand. In the study of the quark-
gluon plasma, one is often given an energy-momentum tensor Tµν at some initial time27, computed for
instance using the IP-Glasma model [153], that is expected to be matched to the corresponding energy-

27 As above, here we denote the initial time as t = 0. However, we note that in heavy-ion applications one initializes hydrody-
namics at some nonzero initial Bjorken time τ0.
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momentum tensor of the fluid. In principle, this matching can always be performed in IS-like approaches
since the ten independent quantities in Tµν can be directly mapped into the ten dynamical degrees of freedom
of IS theory defined, e.g., in the Landau frame. However, it is important to remark that this is not free from
problems. For instance, the initial state physics contained in Tµν in the case of the quark-gluon plasma,
which for instance involves solving the classical Yang-Mills equations in the case of IP-Glasma, may be such
that the solution of the Landau condition uµT µν = −E uν at the initial time gives regions in space where E
is not positive-definite [92]. Also, even if that is not the case, the deviations from local equilibrium at the
initial time may be so large that the extracted πµν of the fluid is larger than the equilibrium pressure, which
implies that the system is already outside the regime of applicability of the IS equations [22] and higher
order corrections become necessary. Furthermore, in extremely rapidly expanding systems depending on the
size of the bulk viscosity, it is possible that the bulk scalar Π in IS theory is such that the local total pressure
changes sign, which leads to phenomenon of relativistic cavitation [154, 155]. This possibility was already
found in realistic simulations of heavy-ion collisions in [156]. Moreover, since there is no proof of causality
and well-posedness for these equations in the nonlinear regime, it is not known if the spacetime evolution
of the fluid described by these equations is always well behaved in the case highly inhomogeneous initial
conditions. Therefore, even for the case of IS-like equations, it is not guaranteed that their use makes sense
in the extreme conditions that may occur in some heavy-ion collision events (such as in the case of small
collision systems formed in proton-nucleus or even proton-proton collisions). Thus, we limit our discussion
to consider the case where the system is close to local equilibrium and such issues do not appear.

If the system is close to equilibrium (though still nonlinear), it becomes then again meaningful to match
the initial Tµν to a fluid dynamic description. In this case, one can approach this problem considering
different levels of approximation. Assuming that the eigenvalue problem wµT µν = −αwν , with α > 0
and wµw

µ = −1 can be solved at the initial time, the first approximation consists in assuming that the
dynamics of the system can be described by the ideal fluid equations of motion with initial conditions given
by ε|t=0 = α and ui|t=0 = wi. This approximation may be locally improved by assuming that the system
evolves according to viscous fluid dynamics. However, besides the problems with causality and stability, the
NS equations contain less information than the general initial T µν and, thus, information about the initial
state is necessarily lost when setting up the initial conditions for ε, ui, and ∇0u

i. On the other hand, as
remarked above the initial values of the fields in the conformal IS equations can be directly matched to the
initial (traceless) T µν , though in this case there is no way to know a priori if causality violations (and other
theoretical issues) may appear in the nonlinear regime.

In comparison to the NS equations, the new tensor derived in this paper can in principle better detail the
system in the initial state since the number of input variables equals 8 in comparison to the 9 present in the
most general T µν (assuming conformal invariance). However, differently than IS theory, in our case some
amount of information about the initial condition is necessarily lost though causality and well-posedness have
been proven in the nonlinear regime. Given that currently the majority of the simulations of the quark-gluon
plasma employing IS theory do not fully take into account all the possible information in the initial T µν
computed from quantum chromodynamics, we believe that it is important to investigate which properties
are more important for the specific problems at hand by comparing the results for the evolution of Tµν

obtained using IS and the new theory proposed in this paper.
Such a comparison could be meaningfully performed as follows. Let us first assume that T µν models the

initial energy-momentum tensor of the quark-gluon plasma but this system is not very far from equilibrium,
being thus close to the NS regime28. One solves wµT µν = −αwν and uses these quantities to set ε|t=0 = α
and ui|t=0 = wi in our theory and, correspondingly, E|t=0 = α and ui|t=0 = wi in conformal IS theory
(where E is as in section II). Using NS theory as guidance, we set Dµε|t=0 = 0 in our equations. Projecting

28 This statement can be made more formal in the sense of Geroch’s work in Ref. [12]. We note that both IS equations and ours
can have the NS equations as a limit. For the former, this limit is well understood [6] while in the case of our tensor (4) this
occurs when the contribution from the terms A = χDε/(ε + P ) and Qµ = λD〈µ〉ε/(ε + P ) is neglected in the equations of
motion.
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this condition onto the flow one finds

∇0ε|t=0 =
4ε u0

3 + 2ū2

(
ulum∇lum

1 + ū2
−∇lul −

ul∇lε
2ε

)
,

where ū2 = (u1)2 + (u2)2 + (u3)2. The remaining conditions then give

u0∇0uj |t=0 =

(
u2

0∇lul − ulum∇lum −
ul∇lε

4ε

)
uj

3 + 2ū2
− ul∇luj −

∇jε
4ε

.

This sets up the initial value problem for our tensor. At the same time, we also use this last equation to
provide the remaining initial condition needed for NS. On the other hand, one can use the equations above
to determine all the components of σµν |t=0, which can then be used to set πµν |t=0 in IS theory. Therefore,
in this case all the different descriptions, i.e., NS, IS, and ours, would have the same initial Tµν |t=0. One
could then compare the solutions of the equations of motion for these different theories under heavy-ion
like conditions. Unfortunately, such a study requires solving the equations of motion in situations that are
significantly more complex than those presented in VII A and VII B. We intend to investigate this interesting
problem in our future work.

VIII. LIMITATIONS, OPEN QUESTIONS, AND DISCUSSIONS

Given the novelty of (4), it is natural that many questions remain open. In this section we will briefly
discuss some of them, tying the discussion with limitations and potential shortcomings of the theory here
presented.

A. Generalizations of Theorems 1 and 2 and other fluid theories

Theorems 1 and 2 establish well-posedness of Einstein’s equations coupled to (4) in Gevrey spaces. Such
spaces are commonly used in the study of fluid dynamic equations (see, e.g., [104, 157–160] and references
therein), and they have been used in the study of Einstein’s equations before [10, 161, 162]. In fact, in some
circumstances, Einstein’s equations coupled to ideal magneto-hydrodynamics appear to have been shown
to be well-posed only in the Gevrey spaces [10, 163]29. Nevertheless, it would be important to establish a
well-posedness result in larger function spaces, not only for the sake of generality but also because many
important questions, such as those concerning the long-time dynamics (see section VIII B) are better posed in
other function spaces such as Sobolev spaces (see [165] for an example in the context of Einstein’s equations).
The main difficulty to generalize Theorems 1 and 2 to Sobolev spaces is that the equations derived from (4)
are only weakly hyperbolic (for a1 ≥ 4 a2 ≥ 3a1

a1−1 ; it is not clear whether the equations are hyperbolic in any

sense if these conditions do not hold). This is manifest by the presence of repeated roots in the characteristic
determinant. Absent further structural properties, weakly hyperbolic systems are not, in general, well-posed
in Sobolev spaces [78]. A more refined analysis, therefore, has to be carried out in order to generalize our
Theorems to Sobolev spaces. This will be presented in a future work, since the proof is quite technical
(relying on delicate resolvent estimates and an in-depth study of the regularity properties of C0-semi-groups
in Banach spaces), and thus is beyond the scope of this work.

Generalizations of Theorems 1 and 2 notwithstanding, one should contrast our results with what is cur-
rently known about the IS and resummed BRSSS theories, for which no analogues of such theorems are
available, even in spaces more restrictive than Gevrey spaces such as the space of analytic functions. It
is also interesting to note the IS and resummed BRSSS theories posses multiple characteristics [24], which
would render the equations of motion weakly hyperbolic at best (unless, of course, the equations are rewritten

29 Although probably the formulation of [164] would carry over to the coupling with Einstein’s equations. A proof of this
statement, however, does not seem to be available in the literature.
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in terms of new “better” variables). Thus, it is likely that for such theories results beyond Gevrey spaces, if
available at all, will be difficult to be obtained.

The comments of the previous paragraph should by no means minimize the importance of the IS and
ressumed BRSSS theories, given their wide use in the study of relativistic fluids with viscosity. It remains
an extremely important open problem to find reasonable conditions that guarantee that these theories are
well-posed and causal in the non-linear regime, both in Minkowski space and when dynamically coupled to
gravity. Unfortunately, these are very difficult questions. The characteristic determinant of the IS theory
seems more complicated than the one we have here, and we were so far unable to find any structure that
would allow an application of techniques similar to the ones employed here. The situation becomes even
more complicated if the 2nd order terms proposed by [6, Eq. (3.11)] are included, as these terms turn the
causality and stability analysis significantly more complicated. The first reason for this is computational:
the equations will be of third order in derivatives, increasing the complexity of the system’s characteristics.
The second reason is structural. The coefficients of the principal part will now depend on derivatives of
the fields. In our case, the coefficients of the principal part depend on the fields but not on its derivatives
(e.g., terms of the form η(ε)gµν∂2

µνu
α and uµuν∂2

µνε), where ∂µ are coordinate partial derivatives, thus the
system characteristics can be understood solely in terms of the intrinsic properties of the fields, i.e., the
facts that g is a Lorentzian metric, u is time-like, and ε > 0. With a few exceptions (e.g., the property that
the acceleration is orthogonal to the velocity), this is no longer the case when the coefficients depend on
derivatives of the fields, and the geometric and physical meaning of the system’s characteristics become much
more obscure. Therefore, a systematic investigation of well-posedness and causality (in the full nonlinear
sense meant here) is extremely challenging when the 2nd order gradient terms proposed by [6, Eq. (3.11)]
are included.

We also mention that an important problem for applications in astrophysics is to understand the linear
stability of fluid theories beyond the Cowling approximation, not only for (4) but for other fluid theories as
well.

B. Energy conditions and positivity of ε

Because in our tensor Tµνuµuν = ε+χ∇µuµ+ 3χ
4ε u

µ∇µε = ε+A, the weak energy condition uµuνT
µν ≥ 0

[11] can be violated for sufficiently large dissipative contributions. This is not so much a limitation of (4)
but rather a consequence of the assumptions of the gradient expansion employed to derive (4) in section
VI, as the theory is not supposed to be valid for very large deviations from local equilibrium. In fact, in
applications (including numerical simulations) keeping track of the positivity of Tµνuµuν may provide a
criterion to determine when the limit of validity of the theory has been crossed. This can be useful because,
while we know the theory to be valid only for small gradients, in practice it is not always evident when
its regime of applicability has been reached. Note that by continuity, we know that Tµνuµuν will remain
positive for some time interval if positive initially. Therefore, whether or not the weak energy condition is
in fact violated depends on the long time behavior of the system. The latter, in turn, depends on particular
features of specific models, such as the values of χ/η and λ/η or the initial conditions chosen for the system.

Another question tied to the long term dynamics is that of the positivity of ε. Again by continuity, ε will
be strictly greater than zero if so initially. But the equations of motion degenerate if ε = 0, in which case
our causality and well-posedness results no longer apply. Such difficulties caused by ε = 0, however, are no
different than what happens already in other fluid theories. For the non-relativistic Euler equations, one has
∂tv

i + vj∇jvi + 1
ρ∇

ip = 0, where vi, ρ, and p are the fluid’s velocity, density, and pressure, respectively. We

see that ρ > 0 is needed; and if one writes the equations as ρ(∂tv
i+vj∇jvi)+∇ip = 0, the situation is hardly

better, since well-posedness, among other traditional results [166], no longer applies when ρ = 0 because the
equation degenerates. The same problem also arises in the non-relativistic Navier-Stokes equations when the
density vanishes, and, in fact, in the relativistic NS, IS, and resummed BRSSS theories as well. To see this,
note that uµ∇νT νµ = 0 can be written, for all such theories and ours, as

uµ∇µε+
4

3
ε∇µuµ + V = 0, (35)

where V represents the viscous contributions and we used P (ε) = 1
3ε. Assume that we know ε to be positive
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at certain time that we can take as t = 0. By continuity30 ε will be positive for some time interval [0,T).
The question of whether ε remains positive after T can be reduced to determine whether

lim
t→T−

ε(t, x) ≡ εT(x) > 0 (36)

for all x. For, if this is the case, we can then take εT as initial data for the equations on t = T. Solving
the corresponding initial value problem31 with εT as initial condition, we then obtain that the solution now
exists on a larger interval [0,T + T′), T′ > 0; again by continuity (and shrinking T′ a bit if necessary) we
conclude that ε is positive on [0,T + T′). We can now repeat the argument to obtain positivity after T + T′

and so on.
Thus, we need to obtain (36) to show that ε will remain positive. Given (t, x), t < T, we can integrate

(35) along an integral curve γ of uµ connecting (t, x) to some (0, x0), yielding

ε(t, x) = ε(0, x0)e−
4
3

∫
γ
∇µuµ−

∫
γ
V
ε . (37)

In producing this identity we had to use that ε > 0, which is the case for t < T. Consider first the case
without viscosity, i.e., V = 0. Then (36) clearly holds unless limt→T−

∫
γ
∇µuµ = ∞, i.e., unless ∇µuµ

becomes singular. However, the same argument does not work when V 6= 0 due to the presence of ε on the
RHS of (37). Indeed, in order to conclude (36) we need limt→T−

∫
γ
V
ε to remain finite. This limit depends on

the form of V. In particular, it will involve (for a conformal fluid) terms in η
ε ∝ ε

− 1
4 . Thus, for limt→T−

∫
γ
V
ε

to be finite we need ε to remain positive in the limit t→ T−, which is what we are trying to prove to begin
with.

The above shows that the mechanism that enforces ε to remain positive in an ideal fluid no longer holds
when viscosity is present. Moreover, if ε reaches the value zero, there is no a priori reason why it could not
become negative (assuming that we can guarantee solutions to still exist if ε = 0, see below), thus violating
the weak energy condition. Note that, as stressed, this is a potential issue in the NS, IS, and BRSSS theories
alike.

Upon closer inspection, it is not surprising that many difficulties arise when the fluid energy density
vanishes since zero energy/matter-density corresponds to a vacuum region. Thus, ε = 0 marks an interface
where the fluid is separated from the vacuum. A typical scenario where one has such an interface is in the
study of stars, where the star is modeled as a fluid body and the pressure vanishes at the boundary of the
star. In fact, in our case our equation of state would imply also that ε = 0. More generally, for gaseous
stars, where the equation of state is such that ε = 0 whenever the pressure vanishes [167], we see that the
density will vanish on the boundary of the star as well. The main difficulty in this case is that the interface
ε = 0 is not prescribed but rather it is dynamic, i.e., it changes with the motion of the fluid. Unfortunately,
establishing well-posedness and causality in such cases is extremely difficult. Even for the non-relativistic
Euler equations the problem has been solved only over the last decade or so [168–173], and it remains largely
open for the equations of relativistic ideal fluids32 [167, 174, 175].

It is, of course, possible that ε remains strictly greater than zero if initially so, in which case the issues of
previous paragraphs do not arise. But, as mentioned, whether or not ε remains positive requires understand-
ing the long term dynamics. The takeaway of this discussion is that to answer whether or not certain features
(positivity of ε, energy conditions, etc.) persist for longer times we need to go beyond well-posedness results
and understand problems such as the potential formation of singularities or degeneracy of the equations,
how large can the interval of existence be, and so on. Such questions, albeit very important, are typically
very challenging for non-linear equations (in fact, they are intimately tied to the problem of global existence
briefly mentioned in section I) and are beyond the scope of this work.

30 Assuming, say, that a solution exists and is continuous.
31 Assuming a well-posedness result to be available. Thus, even to discuss whether ε remains positive, we see that a well-

posedness theorem seems to be needed.
32 When ε is allowed to vanish, the relativistic Euler equations degenerate and standard well-posedness results [7] no longer

apply. As just showed, for an ideal fluid ε will remain positive if initially so (absent singularities). Thus, for ideal fluids we
only have ε = 0 if the initial data is chosen with regions of zero energy density. But, as remarked, this situation is important
in the study of stellar evolution and hence needs to be addressed.
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The difficulties discussed above essentially boil down to the question of whether properties that hold
initially persist for long times, e.g., whether ε > 0 or the weak energy condition remains valid for a long
time interval (beyond what is valid by a simple continuity argument). The challenges in answering these
questions reflect more on the difficulties common to the analysis of non-linear partial differential equations
than limitations of our model per se. In fact, as discussed above, similar difficulties are present in both the
IS and BRSSS theories.

C. The non-conformal case

Another important question is whether it is possible to generalize the ideas used to derive (4) to construct
more general causal and stable energy-momentum tensors, including theories with derivatives higher than
second order, theories with more conserved charges, and the non-conformal case. The short answer to most
of these questions is yes. The strategy leading to (4), namely, start with kinetic theory but leave the choice
of frame (i.e., the choice of m, n, and r in (17)) general, can be reproduced for other types of gases. The
main difficulty now is that we will have a larger number of transport coefficients and a more complicated
equation of state. Finding conditions for well-posedness, causality, and stability will then require determining
substantially more complex relations among these quantities. Moreover, such relations must be compatible
with the choices of hydrodynamic frames allowed by different values of m, n, and r.

Going beyond kinetic theory, it would be interesting to investigate how (4) may be derived using holo-
graphic techniques. In fact, it is known how to obtain the BRSSS equations (and the corresponding non-
conformal generalization) from the fluid/gravity duality [97] and it is possible that modifications of this
approach can be devised to obtain (4).

D. Choice of frames

A crucial element in the fluid theory introduced here that was essential for causality and stability (and
also for the possibility of extending our results to non-conformal theories as just mentioned) is the fact that
we have not adopted either the Landau or Eckart frame. In essence, our philosophy is that the fundamental
principle of causality should determine what frames are physically meaningful, and not the other way around.

Even if in practice causality and stability are determined a posteriori, i.e., one establishes conditions
guaranteeing these properties and then verify that they are compatible with the choices given by (17),
this would not have been possible had we imposed Landau or Eckart’s frames at the beginning (without
introducing new dynamic degrees of freedom). In this regard, it is interesting to notice that the causal
theories of [51–53] do not use Landau or Eckart’s frames either. In fact, any pre-determined choice of frame
at the beginning would probably prevent us from establishing causality for the full nonlinear system of
equations (i.e., fluid + Einstein’s) considered here.

We showed in this paper that the theory in (4) provides a causal generalization of conformal NS theory.
As an effective theory, our construction is rigorously well defined in the sense that it is causal and stable,
though admittedly not accurate in the ultraviolet (as it must be the case in any effective theory at sufficiently
large energy scales). While we considered the more general case where λ and χ are distinct, in practical
applications it may be more convenient to assume these quantities to be the same. For instance, the choice
λ = χ = 4η would satisfy our causality, well-posedness, and stability conditions. In this case, the only free
parameter needed to determine dissipative effects would be the value of η/s, just as in conformal NS theory.

IX. CONCLUSIONS

In this manuscript, we have presented what is, to the best of our knowledge, the first example of a viscous
relativistic fluid that is causal, stable, well-posed (in the non-linear regime with or without dynamic coupling
to gravity), that is derivable from kinetic theory and as such obeys the second law of thermodynamics, and
at the same time producing meaningful physical results in widely used test models. The equations of motion
involve only the hydrodynamic fields and are simpler than those from extended irreversible thermodynamics,
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including IS theory. We have solved numerically the equations of motion for the case of Bjorken flow and
found the presence of an out-of-equilibrium hydrodynamic attractor. Causality was identified here as the
root behind the resummation present in the dispersion relations obtained from the linear stability analysis
and also in the hydrodynamic attractor of the (fully nonlinear) Bjorken flow solution. We also investigated
the case of Gubser flow, where our approach was shown to also lead to meaningful results by resolving the
negative temperature problem found in NS equations in this case. Further properties were also discussed
together with some of the limitations and open questions surrounding this theory, and we briefly pointed
out how the general principles here employed can be used to construct causal and stable theories beyond
the conformal case, which may be later used in numerical simulations of astrophysical phenomena such as
binary neutron-star mergers.

Our work emphasizes the importance of critically analyzing the most basic assumptions involved in current
theories of relativistic fluid dynamics. As mentioned, a key element in our causality and stability results was
the avoidance of the Landau and Eckart frames. These seemingly harmless assumptions have been almost
universally employed for nearly 75 years, even when it is known that they are not necessary conditions for
the study of viscous hydrodynamics [3, 95]. We hope our work will lead to new insights in the study of the
quark-gluon plasma formed in heavy ion collisions and also in astrophysics applications where viscous fluid
dynamics is dynamically coupled to Einstein’s equations.
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[141] W. Florkowski, R. Ryblewski, and M. Spaliński, Phys. Rev. D94, 114025 (2016), 1608.07558.
[142] W. Florkowski, M. P. Heller, and M. Spalinski (2017), 1707.02282.
[143] A. R. Liddle, P. Parsons, and J. D. Barrow, Phys. Rev. D50, 7222 (1994), astro-ph/9408015.
[144] S. S. Gubser, Phys. Rev. D82, 085027 (2010), 1006.0006.
[145] S. S. Gubser and A. Yarom, Nucl. Phys. B846, 469 (2011), 1012.1314.
[146] H. Marrochio, J. Noronha, G. S. Denicol, M. Luzum, S. Jeon, and C. Gale, Phys. Rev. C91, 014903 (2015),

1307.6130.
[147] M. Nopoush, R. Ryblewski, and M. Strickland, Phys. Rev. D91, 045007 (2015), 1410.6790.
[148] J. Noronha and G. S. Denicol, Phys. Rev. D92, 114032 (2015), 1502.05892.
[149] Y. Hatta, J. Noronha, and B.-W. Xiao, Phys. Rev. D89, 051702 (2014), 1401.6248.
[150] Y. Hatta, J. Noronha, and B.-W. Xiao, Phys. Rev. D89, 114011 (2014), 1403.7693.
[151] A. Behtash, C. N. Cruz-Camacho, and M. Martinez, Phys. Rev. D97, 044041 (2018), 1711.01745.
[152] G. S. Denicol and J. Noronha (2018), 1804.04771.
[153] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012), 1202.6646.
[154] G. Torrieri and I. Mishustin, Phys. Rev. C78, 021901 (2008), 0805.0442.
[155] K. Rajagopal and N. Tripuraneni, JHEP 03, 018 (2010), 0908.1785.
[156] G. S. Denicol, C. Gale, and S. Jeon, PoS CPOD2014, 033 (2015), 1503.00531.
[157] H. Bae, A. Biswas, and E. Tadmor, Archive for Rational Mechanics and Analysis 205, 963 (2012).
[158] C. Cao, M. A. Rammaha, and E. S. Titi, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 50, 341

(1999).
[159] A. B. Ferrari and E. S. Titi, Communications in Partial Differential Equations 23, 424 (1998).
[160] C. Foias and R. Temam, J. Funct. Anal. 87, 359 (1989).
[161] A. Lichnerowicz, C. R. Acad. Sci. Paris 260, 4449 (1965).
[162] A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions

(W. A. Benjamin, New York, 1967).
[163] H. Friedrich and A. D. Rendall, Lect. Notes Phys. 540, 127 (2000).
[164] A. M. Anile and S. Pennisi, Ann. Inst. H. Poincaré Phys. Théor. 46, 27 (1987), ISSN 0246-0211, URL http:
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