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The Brown-York quasi-local energy of a rotating black hole described by the Kerr metric and
enclosed by a fixed-radius surface is calculated by direct computation. No special assumptions
on the angular momentum or the radial coordinate in Boyer-Lindquist coordinates were placed.
The arbitrary reference term has been set to zero. The result may be relevant for applications in
astrophysics, for modeling elementary particles or for extensions of the framework of quasi-local
quantities. An analytic expression in terms of incomplete elliptic integrals is given.

I. INTRODUCTION

It is well understood why energy density cannot be de-
fined locally in general relativity. Due to the equivalence
principle the influence of gravity can always be gauged
away at any chosen point. However, this is only possible
at a single point and not throughout an extended region,
so a meaningful expression for energy can only be defined
on the quasi-local level. A viable candidate which can be
derived from an action principle is the Brown-York QLE
[1] which will be the subject of this paper.

So far the QLE has been computed only for few prac-
tical metrics. In this paper we extend the well-known
result for the Schwarzschild metric to the Kerr metric for
spinning black holes. Since exact solutions to the Ein-
stein field equations are in short supply [2] the few that
do exist describing black holes are highly relevant for
astrophysical considerations. With the recent direct ob-
servation of gravitational waves a measure of energy and
its loss may help to simplify calculations pertaining to
the energy lost due to gravitational waves. Previous re-
sults have been obtained for slowly rotating black holes in
ordinary general relativity [3] and in teleparallel gravity
[4]. Because of the difficulties arising from the reference
term in the Brown-York QLE for certain non-embeddable
spacetimes including the Kerr metric the latter has been
investigated using alternative definitions recently [5, 6].

Black holes have been proposed as models for elemen-
tary particles [7, 8]. For a thorough understanding the
values which can be assigned to mass and (self-)energy
of the particle described by a spacetime metric is crucial.

Finally, there is still basic research being done on the
framework of quasi-local quantities. Attempts are be-
ing made to find a boost-invariant version of QLE [9].
Since a spinning black hole observed by an observer at
rest should result in the same energy as seen by a rotat-
ing observer watching a static Schwarzschild black hole
the expressions presented in this paper may help to find
suitable boost-invariant quantities.

Extensive use of computer algebra has been made in
order to compute the results in this paper with most of

∗Electronic address: bss28@cornell.edu

the work being done with Maple 17 for Solaris 10 and
the add-on package GRTensor II [10, 11]. Some results
were double-checked with Mathematica 7 and the add-on
package MathTensor 2.2.2 [12]. A very recent upgrade
to GRTensor III 2.1.11 [13] running on Maple 18 under
Linux yields the same results.
The paper is organized as follows: First, the framework

of the Brown-York quasi-local energy is reviewed. In sec-
tion III issues regarding the background subtraction term
are discussed and a justification for omitting this term is
given. In section IV the quasi-local quantities are com-
puted for the Kerr metric and a fixed radius surface in
Boyer-Lindquist coordinates followed by a discussion of
the results in section V.

II. BROWN-YORK QUASI-LOCAL ENERGY

A spacetime M with metric gµν , covariant derivative
∇µ and intrinsic curvature Rµν consists of timeslices Σ
whose induced metric, intrinsic and extrinsic curvature
as embedded in M are denoted by hij , Rµν and Kµν ,
respectively. 3B is the time evolution of the boundary B
as shown in Fig. 1. The induced metric of the former is
labeled γij and its extrinsic curvature as embedded in M
is denoted by Θµν = −γλ

µ∇λnν . The unit normals of Σ

and 3B are uµ and nµ, respectively. They are assumed
to satisfy the orthogonality condition u · n|3B = 0. We
consider the energy contained in a region bounded by the
two-dimensional boundary B. The Brown-York surface
stress-energy-momentum tensor is defined as

τ ij ≡ 2√−γ

δScl

δγij
(1)

where Scl is the action consisting of the Einstein-Hilbert
term, a potential matter term and boundary terms [14]

S =
1

2κ

∫

M

d4x
√−gR+

1

κ

∫ tf

ti

d3x
√
hK

− 1

κ

∫

3B

d3x
√−γΘ− S0[γij ] + Sm (2)

evaluated at a classical solution of the Einstein field equa-
tions. This effectively suppresses the bulk term and the
matter action and the definition of τ ij is based on the
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FIG. 1: The time evolution of B is 3B. Their unit normal is
nµ in both cases. The unit normal of a time-slice Σ embedded
in the four-dimensional manifold M is denoted by uµ. Note
that one dimension has been suppressed, i.e. the boundary
B which is shown as a one-dimensional line represents a two-
dimensional boundary.

presence of the boundary terms. S0 is an arbitrary func-
tional of γij . Its inclusion does not alter the equations of
motion and is a source of ambiguity. Finally, energy can
be defined as a surface integral

E =
1

κ

∫

B

d2x
√
σuiujτ

ij =
1

κ

∫

B

d2x
√
σ (k − k0) (3)

where kµν = −σα
µDαnν is the extrinsic curvature of

B embedded in a time-slice Σ and the surface gravity is
denoted by κ. For spatial vectors the covariant derivative
Dµ is defined as Dµt

ν = hα
µh

ν
β∇αt

β. The subtraction
term k0 depends solely on the induced metric σµν on the
boundary B. Its presence is due to the undetermined
functional S0. Alternatively,

τ ij = τ ij1 + τ ij0 = − 1

κ

(

Θγij −Θij
)

− 2√−γ

δS0

δγij
(4)

In general the index ”0” refers to reference terms whereas
unreferenced quantities are denoted by the index ”1”.
Note that τ ij includes both the energy due to the gravi-
tational field and the matter fields.

III. BACKGROUND SUBTRACTION TERM

A. Choice of S0

The presence of the functional S0 in the action which
in subsequent equations shows up as k0 and finally as a
reference energy has been source of intense discussion. In
the original paper by Brown and York [1] this reference
term was determined by an embedding into flat space
with the latter being assigned zero energy. While this is a
sensible and natural choice it should be emphasized that

it is nonetheless arbitrary. Any choice for S0[γij ] includ-
ing zero will reproduce the correct equations of motion.
This is important because not every metric including the
Kerr metric which is used in this paper allows such an
embedding [15]. Whether there is a sensible procedure
which uniquely determines the background subtraction
term for any given metric is an intriguing question with
progress being made recently [5, 6]. Other methods may
yield a unique reference term as well. For instance, the
reference term used for the Schwarzschild metric may
equally be recovered from divergence cancelation argu-
ments at large values of r. For more sophisticated ap-
proaches to divergence cancelation arguments by intro-
ducing counterterms to the action cf. [16]. Counterterms
may also be necessary in the study of certain metrics, e.g.
the Taub-NUT family of metrics, with ui chosen to be a
timelike Killing vector to ensure the existence of proper
conserved quantities [17].
Even though the question of the subtraction term may

not be finally settled this shall not prevent us from using
the QLE for real applications. In physics only energy
differences are relevant quantities as long as the vac-
uum itself is not subject of the investigation. For any
other calculation describing an observable measurement
the subtraction term will drop out.

B. Conserved Quantities

As an example consider the energy loss of a black hole
spinning down. The surface stress-energy-momentum
tensor satisfies the constraint [1]

Diτ
ij = −T µνnµγ

j
ν (5)

In order to compute the normal flux we compute the
difference of the QLE contained in the considered region
at two different times. Employing eqn. 5 and the product
rule

Di

(

τ ijuj

)

= ujDiτ
ij + τ ijDiuj (6)

where Dµt
ν = γα

µγ
ν
β∇αt

β we obtain [18]

∫ tf∩
3B

ti∩3B

d2x
√
σuiujτ

ij = −
∫

3B

d3x
√−γτ ijDiuj

+

∫

3B

d3x
√−γuµnνT

µν(7)

If uj is a Killing field with D(iuj) = 0 the first term on the
right hand side is absent [1]. Even though this will not be
the case in general for the Kerr metric and our choices of
normal vectors τ ij1 Diuj vanishes. Thus, assuming a gµν
exists which describes the process of a black hole spinning
down particles have to be created (”Penrose process”).
We interpret the difference of the QLE at two instances

of time as the energy difference due to a flow of stress-
energy plus an additional contribution which we interpret
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as the energy loss or gain due to gravitational effects and
/ or changes in the background geometry in time.
In general a non-zero S0 will lead to an additional con-

tribution on the left hand side from uiujτ
ij
0 even for a

surface with constant r because of a possible change of
the metric in time. This contribution is picked up by the
first term on the right hand side from a term containing
τ ij0 Diuj .
Therefore, for the remainder of this paper the back-

ground subtraction term will be omitted setting S0 to
zero.

C. QLE and Pseudotensors

For yet another viewpoint on the subtraction term con-
sider the Landau-Lifshitz pseudotensor which has been
successfully used in linearized gravity to compute the
energy contained in a spacelike slice and the radiation
loss. As previously discussed and suggested by their
name pseudotensors are not gauge-invariant. However, to
linear order the resulting integral expressions are gauge-
invariant [19]. Under the assumption ∇µuν ≈ 0 recasting
the QLE for a metric which changes slowly in time gives

E1 ≈ 1

κ∆T

∫

3B

d3x
√−γuµuν (γ

µνγρ
σ∇ρn

σ − γρµ∇ρn
ν)

=
1

κ∆T

∫

3B

d3x
√−γuµuν (γ

µνγρσ − γνσγρµ)∇ρnσ

= − 1

κ∆T

∫

M

d4x
√−g∇σ∇ρ [uµuν (γ

µνγρσ − γνσγρµ)]

≈ − 1

κ

∫

Σ

d3x
√
huµuν∇σ∇ρ [(γ

µνγρσ − γνσγρµ)]

(8)

where ∆T = tf − ti. The structure of the last expres-
sion resembles the Landau-Lifshitz pseudotensor [20] in
vacuum which is given by

2κtµνLL = (−g)−1 [(−g) (gµνgρσ − gµρgνσ)],ρσ (9)

Hence, to linear order the Brown-York and the pseu-
dotensor treatment in Cartesian Minkowski coordinates
agree with the perturbed metric taking over the role of

the induced metric [21]. Previous authors have pointed
out that QLE and approaches based on pseudotensors
may be equivalent [22]. Other pseudotensors may give
the same result up to a total divergence term which can
be converted into a surface integral. One example is the
pseudotensor constructed from the terms of the Einstein
tensor which are second order in the perturbation of flat
space [19]. This residual surface term can simply be ab-
sorbed by the subtraction term in the Brown-York QLE.
Therefore, the arbitrariness of the Brown-York subtrac-
tion term is equivalent to the arbitrary choice of a suit-
able pseudotensor.

IV. EVALUATION OF QUASI-LOCAL

QUANTITIES

We use the Kerr metric in modified Boyer-Lindquist
coordinates

ds2 = −
(

1− 2mr

r2 + a2 cos2(θ)

)

dt2 +

r2 + a2 cos2(θ)

r2 − 2mr + a2
dr2 +

(

r2 + a2 cos2 θ
)

dθ2 +

sin2 θ

(

r2 + a2 +
2mra2 sin2 θ

r2 + a2 cos2 θ

)

dφ2 −

4amr sin2 θ

r2 + a2 cos2 θ
dφdt (10)

This representation of the metric is highly efficient for use
with symbolic computer algebra systems [23] and reduces
the number of off-diagonal elements.

As stated before the evaluation of energy and momen-
tum densities at a single point is meaningless. Comput-
ing energy and momentum contained in a finite region in-
stead the results will depend on the chosen boundary. For
the remainder of this paper boundaries with r = const.
will be used. The following unit vectors are chosen

uµ =

√

r2 + a2 cos2 θ

r2 − 2mr + a2 cos2 θ
δµt (11)

nµ =

√

r2 + a2 − 2mr

r2 + a2 cos2 θ
δµr (12)

which satisfy the conditions nµn
µ = 1, uµu

µ = −1 and
uµn

µ = 0.

Evaluating with GRTensor yields

detσ = −
(

a2 − 2mr + r2
) (

a4χ4 + 2χ2a2r2 + r4
) (

χ2 − 1
)

a2χ2 − 2mr + r2
(13)

ǫ ≡ uiujτ
ij =

a4χ4m − a4χ4r − a4χ2m − a4χ2r + 5 a2χ2mr2 − 3 a2χ2r3 + 3 a2mr2 − a2r3 − 8m2r3 + 8mr4 − 2 r5

(χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)κ (a2χ2 − 2mr + r2)

√

a2 − 2mr + r2

a2χ2 + r2
(14)
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jφ ≡ −σaiujτ
ij =

ma
(

a2χ2 − r2
) (

χ2 − 1
)√

a2 − 2mr + r2

κ (a2χ2 − 2mr + r2)
3/2

(a2χ2 + r2)
sgn

(

1− 2m

r

)

(15)

Eqn. 14 has been verified with MathTensor as well. In-
termediate results for Θµ

ν and τµν can be found in the
appendix. Great care must be taken when simplifying
expressions obtained during the course of this treatment.
Because of the square root possessing branch cuts an ex-
pression like

√

a/b/
√

a/c does not simplify to
√

c/b in
general when a, b and c are taken from the complex plane.
We try to stay as general as possible. Only the presented
analytical result for the integral in eqn. 16 is valid for real
values of a, m and r only. Using the variable substitution
χ = cos θ the integration over dθ giving the QLE

E = 2π

∫ π

0

dθ
√
σǫ = 2π

∫ 1

−1

dχ
dθ

dχ

√
σǫ (16)

succeeds using Maple 17. This results in a complex ex-
pression which can be expressed in terms of the incom-
plete elliptic integrals

E(z, k) ≡
∫ z

0

√

1− k2ζ2
√

1− ζ2
dζ (17)

F(z, k) ≡
∫ z

0

1
√

1− ζ2
√

1− k2ζ2
dζ (18)

With

ΞE ≡ E

(

|a|
√

1

r (2m− r)
,

√

1− 2m

r

)

(19)

ΞF ≡ F

(

|a|
√

1

r (2m− r)
,

√

1− 2m

r

)

(20)

we obtain

+
i |r|

[

(6m− 2r) |r|2 −
(

4m2 + a2
)

r + a2m
]

4 |a| r
(

m− r
2

) ΞE

+
i |r|

[

(5m− r) |r|2 −
(

6m2 + a2
)

r + 3a2m
]

4 |a| r
(

m− r
2

) ΞF

− (m− r)
√
a2 + r2

[

r (2m− r)− a2
]

4r
(

m− r
2

)√
a2 − 2mr + r2

= E (21)

unless
√

r(2m− r) < |a| and r ≤ 2m. If this condi-
tion is met the QLE diverges. Eqn 21 may be used to
analytically continue the QLE into this undefined region
if analyticity can be imposed on the QLE. Nonetheless,
the resulting expression is suitable for numerical evalua-
tion. Maple input code of eqn. 21 can be found in the
appendix. Direct numerical integration of eqn. 16 may
also be possible, but the singular nature of the integrand
makes numerical integration a challenging task.

The unreferenced quasi-local momentum in φ-direction

Jφ = 2π

∫ π

0

dθ
√
σφ̂µjµ (22)

with

φ̂
µ
=

[

sin2 θ
(

2ma2r sin2 θ + a4 cos2 θ + a2r2 cos2 θ + a2r2 + r4
)

r2 + a2 cos2 θ

]

−1/2

δ
µ
φ

(23)

can only be evaluated numerically. Results for different
angular momenta are shown in fig. 6. As suggested in [1]
we use a single topologically spherical surface surround-
ing the hole making use of the same boundary B again.

V. RESULTS AND CONCLUSION

For a = 0 we recover the well-known result of the un-
referenced QLE for the Schwarzschild metric [1]. With

κ = 8π eqn. 16 yields

E1(r) = −r

√

1− 2m

r
(24)
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FIG. 2: Absolute value of the QLE given by eqn. 16 for m = 1 and various values of a

FIG. 3: Real part of the QLE given by eqn. 16 for m = 1 and various values of a



6

FIG. 4: Imaginary part of the QLE given by eqn. 16 for m = 1 and various values of a

FIG. 5: Comparison of the absolute value of the QLE for m = 1 and a = 0.3 given by eqn. 16 and the approximated result
eqn. 25 derived by Martinez [3], respectively
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FIG. 6: Quasi-local momentum in φ-direction given by eqn. 22 for m = 1 and various values of a

In the slow rotation regime, i.e. |a|/m ≪ 1, the results
agree with the approximation given by Martinez [3], cf.
fig. 5

E1 ≈
√

1− 2m

r

(

1 +
a2

r4
(

1− 2m
r

)

)

(25)

Since eqn. 16 may attain complex values, e.g. inside
the event horizon, the absolute value as well as the real
and imaginary part are plotted in fig. 2, fig. 3 and fig. 4,
respectively. One may feel uneasy about the energy be-
coming complex in certain regions wondering about the
physical interpretation of this behavior. In classical me-
chanics energy is a useful quantity because it is conserved
and satisfies an additivity property in the sense that the
field energy of two disjoint regions is equal to the sum of
the energies contained in the respective regions. These
properties still hold with eqn. 7 being the closest ana-
log to a conservation law there is. Both sides of eqn. 7
can become complex. In particular

√−γ can turn com-
plex when spacelike and timelike coordinates commute.
It is possible to define QLE in a way that it remains real
even after an interchange of timelike and spacelike coor-
dinates [8]. However, for the present purpose we find no
advantage in doing so.
For small values of mr−1 both eqn. 16 and the ener-

gies plotted in fig. 2 approach the value m − r. If one
subtracted the reference term −r for the Schwarzschild
metric the ADM mass m [24] would be obtained for large
values of r which is a consequence of the QLE measuring

the gravitating mass of the black hole. In this case the
reference term cancels a divergence which would appear
otherwise as r −→ ∞. As pointed out earlier, though,
the reference term is arbitrary and may even be omitted.
For a 6= 0 a singularity near r = 2m appears in fig. 2.
Also, the QLE diverges very slowly for certain values of
constant m and a as r approaches zero.

As another simple example consider the QLEs of a
spinning black hole with two different angular momenta.
At infinity the difference of the two energies gives zero
since the QLE does not explicitly depend on a in this
limit as we would have expected.

As expected the quasi-local momentum in φ-direction
shown in fig. 6 increases with increasing |a| apart from
a small region in the vicinity of the ”forbidden region”
where

√

r(2m− r) < |a| and r ≤ 2m. For r = 0 and
r −→ ∞ the momentum drops off to zero. All plotted
values are real if the integral exists.

In this paper the quasi-local energy and momentum
have been computed for the Kerr metric and a surface
with r = const. in Boyer-Lindquist coordinates with fo-
cus on the former. The QLE which satisfies all relevant
limits could be expressed in terms of incomplete ellip-
tic integrals. Energy differences of a spinning black hole
with two different angular momenta were considered and
shown to give sensible results. The arbitrary reference
term S0 is not needed in this case.

In future work the presented computations should be
repeated for the Kerr-Newman metric to account for the
charge of an object. Preliminary results suggest that the
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charge of an object may help to attenuate the singularity
of the QLE at r = 0.
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Appendix A: Intermediate Results

In the listing below χ = cos θ has been used.

Θt
t =

m
(

χ2a4 + χ2a2r2 − a2r2 − r4
)

(a2χ2 + r2) (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2 − 2mr + r2

a2χ2 + r2
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Θθ
θ = − r

a2χ2 + r2

√

a2 − 2mr + r2

a2χ2 + r2

Θφ

φ =
a4χ4m− a4χ4r − a4χ2m+ a2χ2mr2 − 2 a2χ2r3 + a2mr2 + 2mr4 − r5

(a2χ2 + r2) (χ2a4
− 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2
− 2mr + r2

a2χ2 + r2

Θφ
t =

(

χ2a4 − χ2a2r2 − a2r2 − 3 r4
)

ma
(

χ2 − 1
)

(a2χ2 + r2) (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2 − 2mr + r2

a2χ2 + r2

Θt
φ =

ma
(

a2χ2 − r2
)

(a2χ2 + r2) (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2 − 2mr + r2

a2χ2 + r2

τ tt =
a2χ2m− a2χ2r − a2m− a2r − 2 r3

κ (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2 − 2mr + r2

a2χ2 + r2

τθθ = − m− r

κ (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2 − 2mr + r2

a2χ2 + r2

τφφ = − m− r

κ (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4) (1− χ2)

√

a2 − 2mr + r2

a2χ2 + r2

τ tφ = τφt = − ma

κ (χ2a4 − 2 a2χ2mr + χ2a2r2 + a2r2 − 2mr3 + r4)

√

a2 − 2mr + r2

a2χ2 + r2

Appendix B: Maple input code

−2∗Pi∗(−2∗ pi e c ewi se ( ( r ∗(2∗m−r ) ) ˆ(1/2) /abs ( a ) < 1 , i n f i n i t y ∗( signum((−1/( r ∗(2∗m−r ) ) ˆ(1/2) ) ˆ(1/2) ∗signum (aˆ2−2∗m∗ r+r ˆ2) ∗ (( a
ˆ2−2∗m∗ r+r ˆ2) /m/ r ) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗( r ∗(2∗m−r ) ) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r ) /kappa)−signum (( r ∗(2∗m−r ) ) ˆ(1/4) ∗signum
(aˆ2−2∗m∗ r+r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2) /m/r ) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r ) /kappa ) ) , 0) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗(aˆ2−2∗m∗ r
+r ˆ2) ˆ(1/2) ∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗ r∗kappa∗m∗abs ( a )+p ie c ew i se ( ( r ∗(2∗m−r ) ) ˆ(1/2) /abs ( a ) < 1 , i n f i n i t y ∗( signum((−1/( r ∗(2∗m−r )
) ˆ(1/2) ) ˆ(1/2) ∗signum (aˆ2−2∗m∗ r+r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2) /m/ r ) ˆ(1/2) ∗(aˆ2−2∗m∗r+r ˆ2) ˆ(1/2) ∗( r ∗(2∗m−r ) ) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r
) /kappa )−signum (( r ∗(2∗m−r ) ) ˆ(1/4) ∗signum (aˆ2−2∗m∗ r+r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2) /m/r ) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗m∗(m−r ) /(2∗m−

r ) /kappa ) ) , 0) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗ r ˆ2∗kappa∗abs ( a )−2∗p ie c ewi se (−1 < −(r ∗(2∗m−r ) )
ˆ(1/2) /abs ( a ) , i n f i n i t y ∗( signum((−1/( r ∗(2∗m−r ) ) ˆ(1/2) ) ˆ(1/2) ∗signum (aˆ2−2∗m∗ r+r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2) /m/ r ) ˆ(1/2) ∗(aˆ2−2∗m∗

r+r ˆ2) ˆ(1/2) ∗( r ∗(2∗m−r ) ) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r ) /kappa )−signum (( r ∗(2∗m−r ) ) ˆ(1/4) ∗signum (aˆ2−2∗m∗r+r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2) /m
/ r ) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r ) /kappa ) ) , 0) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗(aˆ2−2∗m∗r+r ˆ2) ˆ(1/2) ∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗ r∗
kappa∗m∗abs ( a )+p ie c ew i s e (−1 < −(r ∗(2∗m−r ) ) ˆ(1/2) /abs ( a ) , i n f i n i t y ∗( signum((−1/( r ∗(2∗m−r ) ) ˆ(1/2) ) ˆ(1/2) ∗signum (aˆ2−2∗m∗ r+
r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2) /m/r ) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗( r ∗(2∗m−r ) ) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r ) /kappa)−signum (( r ∗(2∗m−r ) )
ˆ(1/4) ∗signum (aˆ2−2∗m∗ r+r ˆ2) ∗ (( aˆ2−2∗m∗ r+r ˆ2)/m/ r ) ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗m∗(m−r ) /(2∗m−r ) /kappa ) ) , 0) ∗(aˆ2+r ˆ2)
ˆ(1/2) ∗(aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) ∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗ r ˆ2∗kappa∗abs ( a )+6∗E l l i p t i cF ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r ) )
ˆ(1/2) )∗aˆ2∗m∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r )−2∗E l l i p t i cF ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r
∗(2∗m−r ) ) ˆ(1/2) )∗aˆ2∗ r∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r )−12∗E l l i p t i cF ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a
) ,(−1/ r ∗(2∗m−r ) ) ˆ(1/2) )∗mˆ2∗ r∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r )+10∗m∗(−(aˆ2−2∗m∗r+r ˆ2) / r /(2∗m−r
) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r ) ˆ3∗ E l l i p t i cF ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r ) ) ˆ(1/2) )−2∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m
−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r ) ˆ3∗ r∗ E l l i p t i cF ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r ) ) ˆ(1/2) )+2∗E l l i p t i cE ((1/ r /(2∗m−

r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r ) ) ˆ(1/2) )∗aˆ2∗m∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r )−2∗E l l i p t i cE ((1/ r
/(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r ) ) ˆ(1/2) )∗aˆ2∗ r∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r )−8∗
E l l i p t i cE ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r ) ) ˆ(1/2) )∗mˆ2∗ r∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs
( r )+12∗m∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r ) ˆ3∗ E l l i p t i cE ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗m−r )
) ˆ(1/2) )−4∗(−(aˆ2−2∗m∗ r+r ˆ2) / r /(2∗m−r ) ) ˆ(1/2) ∗(aˆ2+r ˆ2) ˆ(1/2) ∗abs ( r ) ˆ3∗ r∗E l l i p t i cE ((1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ,(−1/ r ∗(2∗

m−r ) ) ˆ(1/2) )−2∗m∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a )ˆ5+2∗ r ∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a )ˆ5+4∗ r∗mˆ2∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a )ˆ3−8∗m
∗ r ˆ2∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a )ˆ3+4∗ r ˆ3∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a )ˆ3+4∗mˆ2∗ r ˆ3∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a )−6∗m∗ r ˆ4∗(1/ r
/(2∗m−r ) ) ˆ(1/2) ∗abs ( a )+2∗r ˆ5∗(1/ r /(2∗m−r ) ) ˆ(1/2) ∗abs ( a ) ) /( aˆ2+r ˆ2) ˆ(1/2) /( aˆ2−2∗m∗ r+r ˆ2) ˆ(1/2) /(1/ r /(2∗m−r ) ) ˆ(1/2) / r
/(2∗m−r ) /kappa/abs ( a )


