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We build two families of inspiral waveforms for precessing binaries on eccentric orbits in the
Fourier domain. To achieve this, we use a small eccentricity expansion of the waveform amplitudes
in order to separate the periastron precession timescale from the orbital timescale, and use a shifted
uniform asymptotics transformation to compute the Fourier transform in the presence of spin-
induced precession. We show that the resulting waveforms can yield a median faithfulness above
0.993 when compared to an equivalent time domain waveform with an initial eccentricity of e0 ≈ 0.3.
We also show that when the spins are large, using a circular waveform can potentially lead to
significant biases in the recovery of the parameters, even when the system has fully circularized,
particularly when the accumulated number of cycles is large. This is an effect of the residual
eccentricity present when the objects forming the binary have non-vanishing spin components in the
orbital plane.

PACS numbers: 04.30.-w, 04.30.Tv

I. INTRODUCTION

The recent discoveries of gravitational wave (GW) sig-
nals by the LIGO and Virgo collaborations have opened
a new observation window on the universe [1–9], through
which the potential for new discoveries in astrophysics
is truly tremendous. So far, those events have been an-
alyzed with the assumption that the systems that pro-
duced them were evolving on circular orbits. Indeed, it
has been a well-known fact that the emission of gravita-
tional waves by binary systems have the tendency to cir-
cularize their orbits [10]. Nevertheless, it has been argued
that certain astrophysical scenarios could lead stellar-
origin black holes binaries to have high initial eccentrici-
ties [11–14], so that they would still be measurable when
the signal reaches the frequency window of the space-
based GW detector LISA [15–17]. Furthermore, recent
results have shown that eccentricity measurements by
LIGO could be used to constrain stellar-mass black hole
formation mechanisms [14, 18–22]. It has been estimated
that large biases in the recovery of the parameters of the
first direct detection GW150914 could have occured if
the initial eccentricity in the detector was e0 & 0.05 [23]
Supermassive black hole binaries could also have impor-
tant eccentricities in the late inspiral, if triple systems are
a significant ingredient of supermassive black hole evolu-
tion [24–29]. Furthermore, in some spin configurations, it
has been shown that the eccentricity of the system never
truly vanishes, but reaches a stationary value where it
ceases to decrease through the emission of GWs [30].

This has motivated the development of waveforms that
include the effects of a non-zero eccentricity in GW bi-
nary signals. The first steps towards this goal rely on the
derivation of quasi-Keplerian equations describing the or-

bits [31], the derivation of the evolution equations for
the orbital elements [32–36], and the derivation of GW
polarization amplitudes [37]. The effects of individual
spins were later added to this approach [30, 38–42]. Us-
ing these solutions, several waveforms have been devel-
oped. Yunes et al. [43] proposed an analytic eccentric
waveform in the post-Newtonian (PN) post-circular ap-
proximation, by solving for the Fourier phase of a binary
signal analytically at Newtonian order using a small ec-
centricity expansion. Cornish and Shapiro Key [44–46]
and Gopakumar and Schäfer [47] independently devel-
oped a numerical waveform in the time domain by solving
the 1.5PN equations of motion numerically together with
the spin-orbit precession equations, and using 1.5PN ac-
curate amplitudes. Huerta et al. [48] expanded the ana-
lytical work of Yunes et al. by including the most impor-
tant eccentricity dependent terms up to 3.5PN order and
at eight order in the initial eccentricity for non-spinning
systems. Tanay et al. [49] later computed the full 2PN
Fourier phase for non-spinning systems at second order
in the eccentricity. Moore et al. [50] then expanded this
result to 3PN order. Huerta et al. [51, 52] and Hinder et
al. [53] combined those results with numerical relativity
to produce an eccentric inspiral/merger/ringdown wave-
form for non-spinning binaries. Recently, Hinderer and
Babak [54] and Cao and Han [55] developed an eccentric
waveform using a new approach in the effective one-body
(EOB) formalism.

In this work, we further develop the formalism of post-
Newtonian eccentric waveforms to include the effects of
spin-induced precession in the Fourier domain. The ad-
vantage of Fourier domain waveforms over time domain
ones is that they provide a much more computationally
efficient way of computing a GW signal. Indeed, in order
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to produce a time-domain waveform, one has to compute
an equally-spaced time series of the signal before comput-
ing its Fourier transform to use in detection or parameter
estimation algorithms. The relevant timescale for this
time series is the inverse of the maximum orbital fre-
quency, which being very short makes this process com-
putationally very expensive. Having a waveform avail-
able directly in the Fourier domain circumvents this prob-
lem and greatly reduces the computational cost of GW
data analysis. In order to construct such a waveform,
we solve the evolution equations for the orbital elements
together with the orbit-averaged spin precession equa-
tions numerically at 3PN order, including spin effects at
2PN order. Using a quasi-Keplerian description of the
orbit, we use instantaneous non-spinning amplitudes to
construct the resulting GW polarizations. We then use
a shifted uniform asymptotics (SUA) technique [56] to
compute the waveforms in the Fourier domain. The re-
sulting waveform has the advantage that the phasing is
computed without any expansion for small eccentricities,
and thus can be be very faithful compared to correspond-
ing time-domain waveform for moderate to large eccen-
tricities (e . 0.4). However, the amplitudes require a
small-eccentricity expansion, and thus we do not expect
the present waveforms to be faithful for arbitrarily large
eccentricities.

In Sec. II, we derive two different families of eccentric
waveforms. Due to the similarity between the orbital
timescale and the periastron-to-periastron timescale, we
derive the first family by expanding the Fourier domain
waveform into combined harmonics of the mean orbital
phase and of the mean anomaly. We then derive the
second family by further expanding the resulting Fourier
phase and time-frequency relations for small differences
between the two similar phases. In Sec. III, we de-
scribe simulations that we performed to compute the
faithfulness between our Fourier domain waveforms and
a corresponding time domain waveform, including a de-
tailed summary of how these different waveforms are con-
structed. We also compare a circular waveform to probe
which domain of the parameter space allows for such cir-
cular waveforms to be effectively used for parameter es-
timation of binary signals. We give concluding remarks
in Sec. IV. Throughout this paper, we will use geometric
units where G = c = 1.

II. WAVEFORM

In the presence of spins, the orbit of a binary system is
in general not restricted to an orbital plane [57]. Indeed,
interactions between the spins and the orbit cause them
to precess. However, in the post-Newtonian regime, the
timescale on which this precession occurs is well sepa-
rated from the other timescales present in the problem.
We can therefore approximate the spin-orbital precession
to be occurring much more slowly than the orbit, which
allows us to describe it using a so-called quasi-Keplerian

parametrization inside an orbital plane that stays per-
pendicular to the orbital angular momentum as the lat-
ter precesses. A quasi-Keplerian parameterization of the
orbit of a spinning binary system is known at 3PN order
for the non-spinning part [31, 33], and at 2PN order for
the spin-dependent part [30]. In this work, we will re-
strict the quasi-Keplerian orbital description at 2PN for
the computation of the polarization amplitudes. We can
express the orbit at 2PN order as:

r = a(1− er cosu) + fr(v) , (1a)

φ = (1 + k)v + fφ(v) , (1b)

tan
v

2
=

√
1 + eφ
1− eφ

tan
u

2
, (1c)

l = u− et sinu+ ft(u, v) , (1d)

l̇ = n , (1e)

where (r, φ) is a polar representation of the separation
vector in the orbital plane, a is the semi-major axis, u
is the eccentric anomaly, v is the true anomaly, l is the
mean anomaly, n is the mean motion, er, eφ and et are
eccentricity parameters and the functions fi are general
relativistic corrections given by [30–32]

fr(v) =

2∑
i=0

br,i cos(2v − 2ψi) , (2a)

fφ(v) =

3∑
k=2

aφ,k sin(kv)

+

2∑
k=1

2∑
i=0

bφ,k,i sin(kv − 2ψi) , (2b)

ft(u, v) = gt(v − u) + at sin(v) , (2c)

where ψi is the angle between the periastron line and the
projection of spin i onto the orbital plane (see Fig. 1),
ψ0 = (ψ1 + ψ2)/2 and the constants aA, bA and gt are
listed in appendix B. We complemented the spinning so-
lution of [30] by including quadrupole-monopole terms
as described in appendix A.

The orbital phase φ and the mean anomaly l can be
decomposed as the sum of a linearly growing part and a
periodic part [32],

φ = λ+Wφ , (3a)

λ̇ = (1 + k)n , (3b)

l̇ = n , (3c)

Wφ = (1 + k)(v − l) + fφ(v) . (3d)

We choose to express our equations in terms of the post-
Newtonian parameter y and the eccentricity parameter e
defined by

y =
[M(1 + k)n]

1/3√
1− e2

t

, (4a)
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FIG. 1. Angles used in the definition of the relativistic correc-
tions defined in Eqs. (2). The orbital plane is perpendicular
to the Newtonian orbital angular momentum L, and the in-
variant plane is perpendicular to the conserved total angular
momentum J . The angle φe locates the periastron line with
respect to the fixed invariant plane, and the angles ψi are
subtended by the periastron line and the projections of the
spins onto the orbital plane.

e = et . (4b)

The constants in the quasi-Keplerian parametrization are
given in terms of these parameters in appendix B.

As the system emits gravitational waves, the orbital
frequency and the eccentricity will evolve according to
the following equations [30, 32]

M
dy

dt
=
(
1− e2

)3/2
νy9

(
a0 +

∑
n=2

any
n

)
, (5a)

M
de2

dt
= −

(
1− e2

)3/2
νy8

(
b0 +

∑
n=2

bny
n

)
, (5b)

where the constants ai and bi are given at 3PN order for
non-spinning systems and at 2PN order for spinning sys-
tems in appendix C. Here we also complemented the spin-
ning solution of [30] by including quadrupole-monopole
terms as described in appendix A. We found that the
minimum value for the eccentricity e2

min found in [30] is
unchanged by the addition of quadrupole-monopole ef-
fects, with

e2
min =

5y4

304
σ(−1, 1, 0, 2,−2, 0)

=
5y4

304

∣∣∣s(−)
⊥

∣∣∣2 , (6)

where the 2PN spin-spin coupling σ can be found in ap-
pendix A, and

s
(−)
⊥ =

[
s1 − L̂

(
L̂ · s1

)]
−
[
s2 − L̂

(
L̂ · s2

)]
, (7)

where L̂ is a normal to the orbital plane.

Note that we found a typo in [30], where the constant
factor in e2

min should read 5/304 instead of 5/340. This
minimum eccentricity depends on the spin orientations:
it is maximal when the spins lie inside the orbital plane
and are opposite to one another, and vanishes when the
projections of s1 and s2 onto the orbital plane are equal
to each other. The maximum value it can take is indepen-
dent of the mass ratio, and is e2

min = 5y4/304, which eval-

uates to emin ≈ 0.021 at the ISCO defined by y = 6−1/2,
and is multiplied by a factor (f/fISCO)2/3 earlier in the
inspiral. Note that this minimum eccentricity, being a
spin effect, is unrelated to a similar effect observed in
extreme mass-ratio inspirals around Schwarzschild black
holes in [58], and also unrelated to another effect due to
orbital effects derived in [59], which is of order e2

min ∼ y10

and is independent of the spins.
The 2PN orbit-averaged equations of precession are

given by [57, 60]

M
˙̂
L = −

(
1− e2

)3/2
y6 (Ω1 + Ω2) , (8a)

M ṡ1 =
(
1− e2

)3/2
µ2y

5Ω1 , (8b)

M ṡ2 =
(
1− e2

)3/2
µ1y

5Ω2 , (8c)

where we defined the reduced spins si = Si/mi, the re-
duced individual masses µi = mi/M , and the precession
vectors Ωi are given by

Ωi =

{[
2µi +

3

2
µj −

3

2
yL̂ · (s + (qi − 1)si)

]
L̂

+
1

2
ysj

}
× si , (9)

where i, j ∈ {1, 2}, i 6= j, and the qi are quadrupole
parameters defined in such a way that qi = 1 for black
holes.

The gravitational waveform emitted by a binary sys-
tem on such an orbit has been computed at 3PN order
for non-spinning binaries, omitting tail effects [37]. The
result has the following structure:

h(t) = F+(t)h+(t) + F×(t)h×(t) , (10a)

h+,×(t) =
∑
n∈Z

H
(n)
+,×(y, e, e cosu, e sinu)ein(φ+φT ) ,

(10b)

where F+ and F× are antenna pattern functions [61], and
the Thomas precession phase φT is given by [62]

φ̇T =
L̂ · N̂

1−
(
L̂ · N̂

)2

(
L̂× N̂

)
· ˙̂
L , (11)

with respect to a given sky location vector N̂ .
In order to compute the Fourier transform of this sig-

nal, we need to separate the orbital timescale from the
precessional one, and express the orbital timescale depen-
dence in terms of linearly growing phases. To do so, we
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follow [63] and compute an inversion of the PN-accurate
Kepler equation (1d) as

u = l +

∞∑
s=1

As sin(sl) , (12)

with the Fourier coefficients As given by

As =
2

s
Js(se) +

∞∑
j=1

αj [Js+j(se)− Js−j(se)] . (13)

The PN-accurate constants αj can be computed from [31]
and are given in Eq. (18) of [63]. Similarly, we can find a
Fourier expansion of the true anomaly v and the orbital
phase φ in terms of the mean anomaly l:

v = l +

∞∑
s=1

Bs sin(sl) , (14a)

φ = λ+

∞∑
s=1

Cs sin(sl) . (14b)

The Fourier coefficients As, Bs and Cs can be found up
to O

(
y4, e5

)
in appendix D. Using this solution, we can

then express

eiku =
∑
p∈Z

εkup e−ipl , (15a)

eikv =
∑
p∈Z

εkvp e−ipl , (15b)

eikφ = eikλ
∑
s∈Z
Pkφp e−ipl , (15c)

where the coefficients εkup , εkvp and Pkφp are given as a
Taylor expansion in both e and y. We refer to Eqs. (30,
34, E11) of [63] on how to calculate these Fourier coeffi-
cients.

This small eccentricity expansion allows us to express
the waveform as

h+,×(t) =
∑
n∈Z

∑
p∈Z

H
(p,n)
+,× e−i(nλ+pl) , (16)

where we included the Thomas phase φT into the ampli-

tudesH
(p,n)
+,× , which vary on the spin-precession timescale.

To separate the periastron precession timescale from the
orbital timescale, we define δλ = λ− l, such that

Mλ̇ =
(
1− e2

)3/2
y3 , (17a)

δλ̇ =
k

1 + k
λ̇ . (17b)

This new angle defines the periastron precession
timescale, which is similar to the spin precession
timescale since δλ̇/λ̇ = O

(
y2
)
.

Using this, we can then further simplify the waveform
with

h+,×(t) =
∑
n∈Z

H
(n)
+,×e

−inλ , (18a)

H
(n)
+,× =

Mνy2

dL

∑
m∈Z

G
(m,n)
+,× e−imδλe−i(n+m)φT . (18b)

The amplitudes G
(m,n)
+,× are given in appendix E at order

O
(
y2, e

)
1.

A. Fourier transform approximations

Before we set to compute an approximation of the
Fourier transform of our signal, let us introduce two use-
ful techniques.

Let us first assume that we have a signal of the form

h(t) = A(t)e−iφ(t) , (19)

with φ̇(t) a positive and monotonically increasing func-
tion of time, and that we want to compute its Fourier
transform

h̃(f) =

∫ ∞
−∞

h(t)e2πiftdt . (20)

The stationary phase approximation (SPA) of this
Fourier transform consists in Taylor expanding the am-
plitude A(t) and phase φ(t) around the stationary point
t0 defined by the relation

2πf = φ̇(t0) , (21)

keeping only the constant term in the expansion of the
amplitude and up to the quadratic order in the expansion
of the phase. We get

h(t) ≈ A(t0) exp

{
− i
[
φ(t0)

+ φ̇(t0)(t− t0) +
1

2
φ̈(t0)(t− t0)2

]}
. (22)

We can compute the Fourier transform of this approxi-
mate signal analytically, and we get

h̃(f) ≈
√

2π

|φ̈(t0)|2
A(t0)ei(2πft0−φ(t0)−π/4) . (23)

This approximation will be accurate if |Ȧ/A| � |φ̈|1/2
around the stationary point, and if the quadratic approx-
imation is accurate around the stationary point. For a
formal derivation, see e.g. [64].

Let us now suppose that our signal is of the form

h(t) = Ae−i[φC+B sin β] , (24)

1 A Mathematica version of all amplitudes to order O
(
y4, e10

)
is

available as supplemental material or upon request from boet-
zel@physik.uzh.ch.

mailto:boetzel@physik.uzh.ch
mailto:boetzel@physik.uzh.ch
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with Ȧ/A = O
(
y8
)
, φ̇C = O

(
y3
)
, B = O (y), β̇ =

O
(
y5
)
, and that each additional time derivative adds a

factor O
(
y8
)

to the various quantities present in the sig-
nal, with y a small expansion parameter. This is the
simplified form of a GW signal that we expect from a bi-
nary system undergoing spin-induced orbital precession,
with y being a PN expansion parameter. The SPA can-
not be directly used in this case, because the two terms
in the second time derivative of the signal phase

φ̈ = φ̈C −Bβ̇2 sinβ +O
(
y13
)

(25)

are of the same PN order and can cancel in each other.
The shifted uniform asymptotics (SUA) method [56] of-
fers an approximation of the Fourier transform of such a
signal by first expanding the signal using Bessel functions
as

h(t) = A
∑
k

Jk(B)e−i(φC+kβ) , (26)

so that its Fourier transform can be approximated by a
series of SPA, since β̈ � φ̈C . The Fourier transform then
becomes

h̃(f) ≈
∑
k

A

√
2π

φ̈C + kβ̈

× exp
[
i
(

2πftk − φC − kβ −
π

4

)]
, (27)

where the various functions are evaluated for each k ∈ Z
at the stationary time tk defined by

2πf = φ̇C(tk) + kβ̇(tk) . (28)

The different stationary times can be related to each
other by Taylor expanding their defining equations
around t0 and solving for the difference order by order:

tk − t0 = − kβ̇(t0)

φ̈C(t0)
+O

(
y−4

)
. (29)

By Taylor expanding Eq. (27) around t0, and keeping
only the leading PN order amplitude and the phase ac-
curate to order O

(
y0
)
, we obtain

h̃(f) ≈ h̃0(f)h̃corr(f) , (30a)

h̃0(f) =

√
2π

|φ̈(t0)|2
A(t0)ei(2πft0−φC(t0)−π/4) , (30b)

h̃corr(f) =
∑
k

Jk[B(t0)] exp

[
−kβ(t0) +

1

2
T 2k2β̇2(t0)

]
,

(30c)

T =

√
1

φ̈C(t0)
. (30d)

After some manipulation, we can resum the Bessel func-
tions in h̃corr(f) and express it as

h̃corr(f) =
∑
p≥0

(
−iT 2

)p
2pp!

∂2p
t e
−iB sin β , (31)

where the functions are evaluated at t = t0. Truncat-
ing this series at some order p = kmax and using a stencil
around t0 to approximate the different order time deriva-
tives, we obtain the SUA approximation

h̃corr(f) ≈
kmax∑

k=−kmax

ak,kmax
e−iB sin β(t0+kT ) , (32)

where the constants ak,kmax satisfy the following linear
system of equations:

kmax∑
k=1

ak,kmax +
1

2
a0,kmax = 1 , (33a)

kmax∑
k=1

ak,kmax

k2p

(2p)!
=

(−i)p

2pp!
, p ∈ {1, . . . , kmax} , (33b)

a−k,kmax
= ak,kmax

. (33c)

To summarize, if we are able to separate the spin-
precessional timescale effects from a carrier phase φC that
satisfies φ̇C > 0 and φ̈C > 0 as

h(t) = A(t)e−iφC(t) , (34)

where all spin-precessional timescale effects are included
in A(t), then we can write the SUA approximation of its
Fourier transform:

h̃(f) =

√
2π

φ̈C
ei(2πft0−φC(t0)−π/4)

×
kmax∑

k=−kmax

ak,kmax
A(t0 + kT ) , (35)

with the constants ak,kmax satisfying the linear system of

Eqs. (33), and T = [φ̈C(t0)]−1/2.

B. Periastron precession effects

Let us first derive a waveform in the Fourier domain
valid for non-precessing spins, and add the effects of spin-
orbit precession later. Putting aside spin-orbit preces-
sion, the signal in the time domain can be expressed as
in Eqs. (18):

h+,×(t) =
Mνy2

dL

∑
n∈Z

∑
m∈Z

G
(m,n)
+,× e−i(nλ+mδλ) . (36)

Using the SPA, we can approximate its Fourier transform
by

h̃+,×(f) =

∫
h+,×(t)e2πiftdt

=
Mνy2

dL

∑
n≥1

∑
m∈Z

√
2π

nλ̈+mδλ̈
G

(m,n)
+,×
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× ei[2πftn,m−nλ(tn,m)−mδλ(tn,m)−π/4] , (37a)

2πf = nλ̇(tn,m) +mδλ̇(tn,m) , (37b)

where each of the harmonics (n,m) has to be evaluated at
a different time. It is worth noting here that we assumed
that nλ̇ + mδλ̇ > 0, which is not necessarily true for
every (n,m) pair during the whole inspiral. However,
for this assumption to break down, one needs negative
and sufficiently large m, since δλ̇/λ̇ = O

(
y2
)
, and the

corresponding amplitude will be suppressed by a factor
em. We verified that ignoring this fact does not lead to
high inaccuracies, at least for initial eccentricities e0 .
0.4.

In order to simplify the expression of the Fourier-
domain waveform and to improve its computational effi-
ciency, we look for an expression of the following form:

h̃+,×(f) =
Mνy2

dL

∑
n≥1

h̃n,0(f)
∑
m∈Z

h̃PP
n,m(f) , (38a)

h̃n,0(f) =

√
2π

nλ̈
ei[2πftn−nλ(tn)−π/4] , (38b)

2πf = nλ̇(tn) , (38c)

where h̃n,0(f) is a waveform harmonic without any peri-

astron precession effects and h̃PP
n,m(f) are corrections to

it. In order to evaluate h̃PP
n,m(f), we define

∆tn,m = tn,m − tn , (39)

and Taylor expand Eq. (37b) around tn:

2πf =
∑
p≥0

∆tpn,m
p!

dp

dtp

(
nλ̇+mδλ̇

)∣∣∣∣
t=tn

. (40)

We can use this together with Eq. (38c) to solve for the
PN expansion of ∆tn,m order by order, and we obtain

∆tn,m =

P∑
p=1

1

p!

(
−m
n

)p
Dp−1

(
δλ̇p

λ̈

)
, (41)

where the differential operator D is given by

D =
1

λ̈

d

dt
, (42)

and every function of time is evaluated at t = tn. We
have checked that this expression remains valid at least
up to P = 6.

Using this, we can then Taylor expand the phase in
Eq. (37a) around tn to compute

h̃PP
n,m(f) = G

(m,n)
+,× ei∆Ψn,m , (43a)

∆Ψn,m = −mδλ+ n

P+1∑
p=2

1

p!

(
−m
n

)p
Dp−2

(
δλ̇p

λ̈

)
,

(43b)

where all functions are once again evaluated at the sta-
tionary time tn defined by Eq. (38c), and we checked
that the latter equation is valid at least up to P = 6.
Eqs. (41) and (43b) are PN expansions in the sense that
each increasing order in m is multiplied by a factor of PN
order (δλ̇/λ̈)(d/dt) = O

(
y2
)
, as both δλ̇ and λ̈ evolve on

the radiation reaction timescale. This implies that the
formal expansion in m in these two equations coincides
with a PN expansion at order 2P beyond leading order.

C. Complete waveform

We can now add spin-precession by using a SUA trans-
formation [56] instead of a SPA. We start by noting that
we can express the waveform in the time domain by

h(t) =
∑
n,m

An,m(t)e−i(nλ+mδλ) , (44)

where all spin-precession timescale effects are included in
the amplitudes

An,m(t) =
Mνy2

dL

[
F+(t)G

(n,m)
+ (t)

+ F×(t)G
(n,m)
× (t)

]
e−i(n+m)φT . (45)

This allows us to directly use a SUA transformation. If
we restrict the amplitudes to O

(
yN , eM

)
, we then obtain

h̃(f) =

2+N∑
n=max(1,2−N)

M∑
m=−M

h̃n,m(f) , (46a)

h̃n,m(f) = h̃(0)
n,m(f)h̃SP

n,m(f) , (46b)

h̃(0)
n,m(f) =

√
2π Tn,m exp

[
i
(
2πftn,m

− nλ(tn,m)−mδλ(tn,m)− π/4
)]
, (46c)

2πf = nλ̇(tn,m) +mδλ̇(tn,m) , (46d)

Tn,m =
[
nλ̈(tn,m) +mδλ̈(tn,m)

]−1/2

, (46e)

hSP
n,m(f) =

kmax∑
k=−kmax

ak,kmax
An,m(tn,m + kTn,m) , (46f)

where the constants ak,kmax satisfy the linear system of
equations defined in Eq. (33). This waveform is in the
Fourier domain and consistently includes the effects of
spin-induced precession and periastron precession. As we
will see in the next section, it allows for large matches
with time-domain waveforms with eccentricities e . 0.3
that we can consider as moderate in the modelling sense,
because the phasing has not been expanded for small
eccentricities and only the amplitudes have been.

The waveform defined by Eq. (46a) suffers from the
fact that it includes a double sum, and therefore its com-
putational cost rises quickly as the precision of the am-
plitudes increases. However, in order to increase its com-
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putational efficiency, we can use a similar strategy as de-
scribed in the previous subsection and expand the wave-
form in powers of δλ̇/λ̇.

First, we can approximate the SUA timescale in
Eq. (46e) by Tn,m ≈ Tn = Tn,0. Next, we can use
Eqs. (41) and (43b) to define ∆tn,m and ∆Ψn,m at order
P :

∆tn,m =

P∑
p=1

1

p!

(
−m
n

)p
Dp−1

(
δλ̇p

λ̈

)
, (47a)

∆Ψn,m = −mδλ+ n

P+1∑
p=2

1

p!

(
−m
n

)p
Dp−2

(
δλ̇p

λ̈

)
.

(47b)

We can use Eqs. (5a) and (5b) together with the chain
rule

d

dt
f(y, e2) =

∂f

∂y

dy

dt
+
∂f

∂e2

de2

dt
, (48)

to get the necessary derivatives of λ and δλ as PN ex-
panded functions. Thus, we can simplify the waveform
as

h̃(f) =

2+N∑
n=max(1,2−N)

h̃(0)
n (f)h̃PP

n (f) , (49a)

h̃(0)
n (f) =

√
2π Tn exp

[
i
(

2πftn − nλ(tn)− π

4

)]
,

(49b)

2πf = nλ̇(tn) , (49c)

Tn =
[
nλ̈(tn)

]−1/2

, (49d)

h̃PP
n (f) =

M∑
m=−M

ei∆Ψn,m

×
kmax∑

k=−kmax

ak,kmax
An,m(tn + ∆tn,m + kTn) .

(49e)

Eq. (49a) presents a further expanded waveform, and can
possibly be made more efficient than the one defined by
Eq. (46a), especially for amplitudes of high (N,M) or-
der. Thus we get a family of Fourier-domain gravitational
waveforms for spin-precessing binaries on eccentric orbits
characterized by the expansion orders (P,N,M).

III. COMPARISONS

We have run different sets of simulations in order to
probe under what circumstances our waveforms defined
in Eqs. (46a) and (49a) are sufficiently faithful to equiva-
lent waveforms obtained in the time domain. For all the
waveforms used in our comparisons, we use non-spinning
amplitudes at 2PN order omitting tail terms [37], and we

use evolution equations for y and e2 at 3PN non-spinning
order and 2PN spinning order, including tail terms, as de-
scribed in appendix C. For all Fourier domain waveforms,
we use a SUA transformation as in [56] with kmax = 3.

We use as a reference time-domain waveform hR one
obtained in the following way:

• Eqs. (5a-8c) are solved numerically together with
Eqs. (17a), (17b), and (11) in order to yield so-

lutions for y(t), e2(t), L̂(t), s1(t), s2(t), λ(t),
φT (t), and δλ(t), from an initial time t0 to a maxi-
mum time tmax defined by the ISCO-like condition
Mλ̇(tmax) = 6−3/2.

• Time is equally sampled between t0 and tmax using
a sampling time ∆t = 2π/[24λ̇(tmax)], in order to
ensure that the first 12 waveform harmonics fall be-
low the Nyquist frequency. Eqs. (1b-1d) are solved
at each step to get the orbital phase φ and the ec-
centric anomaly u. Eq. (1d) is inverted numerically
to yield u(l = λ− δλ, e = et).

• A waveform signal is constructed using Eqs. (10a)
and (10b), and the solutions for y(t), e(t), φ(t),
φT (t), and u(t). The antenna pattern functions are
chosen in the low-frequency limit, for a static de-
tector [61]. The waveform amplitudes are included
at 2PN order, with the omission of spin effects and
tail terms.

• A Tukey window is introduced in order to reduce
spectral leakage and a discrete Fourier transform
of the signal is taken to yield the waveform in the
Fourier domain.

We compare different waveforms to the reference one

• A non-expanded eccentric one (NEM ) defined by
Eq. (46a) and N = 4, M ∈ {0, . . . , 6}, i.e. with
amplitudes at N/2 = 2PN order and amplitudes
expanded at M -th order in e.

• An expanded eccentric one (EEM,P ) defined by
Eq. (49a) and N = 4, M ∈ {0, . . . , 6}, P ∈
{0, . . . , 3}, i.e. with amplitudes at N/2 = 2PN or-
der, amplitudes expanded at M -th order in e, and
the waveform expanded at P -th order in δλ̇/λ̇ as
in Eqs. (47).

• A circular one (C) with amplitudes at 2PN order,
taken from [56].

Note that Eqs. (47) imply that the waveforms NE0 and
EE0,P are identical for any P .

In order to make our comparisons, we compute the
faithfulness F = maxM, defined by the match M max-
imized over some of the waveform parameters, with

M =
(h, hR)√

(h, h)(hR, hR)
, (50a)
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(a, b) =

∫ fmax

fmin

ã(f)b̃∗(f)df , (50b)

where we chose a white detector noise in order to make
as few assumptions about the detector as possible. For
the eccentric waveforms, since they use the same phasing
as the reference one, we do not maximize over any pa-
rameters, while for the circular waveform, we maximize
the match over time and orbital phase shifts to obtain
the faithfulness. We compare the faithfulnesses obtained
this way to a fiducial value of F = 0.993, corresponding
to a faithfulness level at which we can estimate that the
errors in the recovered parameters due to mismodelling
are smaller than the statistical errors coming from the
detector noise, for D = 10 intrinsic parameters and a
signal-to-noise ratio (SNR) of ρ = 25 [65]. The relation
between the faithfulness and the SNR at which the mis-
modelling error becomes likely to exceed the statistical
error in a GW detection is [65]

F ≈ 1− D − 1

2ρ2
. (51)

We ran two different sets of simulations, one of them
to study systems in the late inspiral as observed by the
LIGO/Virgo network and by LISA in the case of massive
black hole binaries (denoted by (Xa)), and the other to
study systems in the early inspiral as observed by LISA
for stellar-origin black hole binaries (denoted by (Xb)).
We made six different runs in order to probe the faith-
fulness of our waveforms as a function of the starting
eccentricity in different situations:

(I) We randomize the initial eccentricity with a log-flat
distribution 10−5 < e0 < 0.5 and the spin magni-
tudes with a flat distribution 0 < χi < 1.

(II) We randomize the initial eccentricity with a log-flat
distribution 10−5 < e0 < 0.5 and spin magnitudes
with a flat distribution 0 < χi < 0.1.

(III) We randomize the initial eccentricity with a log-flat
distribution 10−5 < e0 < 0.5 and spin magnitudes
set to the maximum value χi = 1.

(IV) We start with zero initial eccentricity and spin mag-
nitudes with a flat distribution 0 < χi < 1.

(V) We start with zero initial eccentricity and spin mag-
nitudes with a flat distribution 0 < χi < 0.1.

(VI) We start with zero initial eccentricity and spin mag-
nitudes set to the maximum value χi = 1.

We have thus twelve runs, (Ia)-(VIa) in the late inspiral
case and (Ib)-(VIb) in the early inspiral case.

To get the binary parameters used in our runs, we ran-
domize all vector directions with a flat distribution on
the sphere. Since the distance does not affect the match

M in Eq. (50a), we fix it at some fiducial value. We ran-
domize the initial orbital phase and the initial periastron-
ascending node angle φe (see Fig. 1) with a flat distribu-
tion in [0, 2π]. Whenever the randomized initial eccen-
tricity is lower than the minimal value given in Eq. (6), we
set e0 = emin. Note that cases (IV) to (VI) correspond to
fully circularized binaries, but Eq. (6) prevents them from
having truly zero eccentricity unless the reduced spins
have exactly equal support in the orbital plane. In each
late inspiral run, we start our simulations with an initial
eccentricity e0 and at a frequency Mλ̇start = 6−3/2/10,

and stop atMλ̇stop = 6−3/2. We also randomize the mass
ratio q = m2/m1 with a log-flat distribution between 1
and 1/30, and use a fixed total mass M = 100M�, tak-
ing advantage of the white detector noise. In each early
inspiral run, we randomize the two masses with a log-
flat distribution 10M� < mi < 100M�. We then use
the Newtonian time-frequency relation and the initial ec-
centricity to determine the starting frequency such that
the system will evolve to have an orbital frequency of
fend = 1 Hz after T = 4 yr:

ystart =

[
5My8

end

5M + 32νT (1− e2
0)

3/2
(8 + 7e2

0) y8
end

]1/8

,

(52a)

yend =

[
2πMfend

(1− e2
0)

3/2

]1/3

. (52b)

We then let the system evolve and stop after four
years, and set the maximum frequency fmax = 1 Hz in
Eq. (50b).

A. Late inspiral systems

We present in Fig. 2 the results from late inspiral run
(Ia), with starting eccentricity 10−5 < e0 < 0.5 and
spin magnitudes 0 < χi < 1. In it, we compare the
mean faithfulness as a function of the initial eccentricity
for different waveforms. The top panel shows a com-
parison between the results for the circular waveform C,
the non-expanded eccentric waveform NE6, and the ex-
panded eccentric waveforms EE6,P , 0 ≤ P ≤ 3, and the
bottom panel shows a comparison between the expanded
eccentric waveforms EEM,2, 0 ≤ M ≤ 6. We can see
in the top panel that the circular waveform stays above
the fiducial faithfulness only for initial eccentricities of
e0 . 0.008. Furthermore, the results for the expanded ec-
centric waveform become very close to the non-expanded
version starting at 2nd order in δλ̇/λ̇, and leads to a
faithfulness above the fiducial threshold for eccentricities
below e0 . 0.3. On the bottom panel, we can see the
effects of the expansion of the waveform amplitudes for
small eccentricities. We can see that the largest start-
ing eccentricity for which the median faithfulness stays
above the threshold increases with increasing order in the
expansion. Furthermore, we can see that below a certain
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FIG. 2. Results from late inspiral run (Ia), with starting ec-
centricity 10−5 < e0 < 0.5 and spin magnitudes 0 < χi < 1.
On the top, median faithfulnesses as a function of the start-
ing eccentricity from bottom to top for the circular waveform
C, the expanded eccentric waveforms EE6,P , with amplitudes

at 6th order in the eccentricity and at P -th order in δλ̇/λ̇,
0 ≤ P ≤ 3 with increasing P from bottom to top, and the
non-expanded waveform with amplitudes at 6th order in the
eccentricity NE6. At the bottom, median faithfulnesses as a
function of the starting eccentricity for the expanded eccen-
tric waveforms EEM,2, with amplitudes at M -th order in the
eccentricity, 0 ≤ M ≤ 6 and increasing M from bottom to
top, and at 2nd order in δλ̇/λ̇. The left axis shows the un-
faithfulness 1−F , and the right axis shows the corresponding
threshold SNR ρ above which we can expect mismodelling er-
rors to exceed the accuracy in a measurement. In both panels,
the thin horizontal black line show a fiducial faithfulness of
0.993 or a corresponding SNR of 25.

starting eccentricity depending on the specific order, in-
creasing the expansion order has no effect on the faith-
fulness, as the errors due to this approximation become
subdominant.

We present in Fig. 3 the results from late inspiral run
(IIa), with starting eccentricity 10−5 < e0 < 0.5 and spin
magnitudes 0 < χi < 0.1. Those are very similar to the
results of run (Ia), but due to the reduced spin magni-
tudes the starting eccentricities reach smaller values. On
the top panel, we can see that below a starting eccentric-
ity of e0 . 10−3, the loss of faithfulness using circular
waveforms with respect to our eccentric models becomes
negligible.

FIG. 3. Same as Fig. 2, for late inspiral run (IIa) with starting
eccentricity 10−5 < e0 < 0.5 and spin magnitudes 0 < χi <
0.1.

We present in Fig. 4 the results from late inspiral run
(IIIa), with starting eccentricity 10−5 < e0 < 0.5 and
spin magnitudes χi = 1. The results are similar to the
ones shown in Figs. 2 and 3, but the increased magnitudes
of the spins slightly reduce the performanceof the circular
waveform. Comparing this figure to Figs. 2 and 3, we can
conclude that the value of the spin magnitudes has little
effect on the faithfulness other than the one it has on the
limiting residual eccentricity.

We present in Fig. 5 the results from late inspiral run
(IVa), with starting eccentricity e0 = emin and spin mag-
nitudes 0 < χi < 1. We can see here an effect due to the
residual eccentricity. Indeed, the circular waveform per-
forms poorly in some cases, even when the binaries are
fully circularized. In our simulations, 7 % of the faithful-
nesses for the circular waveform were below the threshold
line, while virtually no faithfulnesses were found below it
for waveforms that used eccentric phasing, even with the
lowest order amplitudes. While this is does not repre-
sent a large proportion of binaries, this number will only
increase when considering binaries with higher SNRs.

We present in Fig. 6 the results from late inspiral run
(Va), with starting eccentricity e0 = emin and spin mag-
nitudes 0 < χi < 0.1. Comparing with the results shown
in Fig. 5, we can see that assuming lower spins prevents
the circular waveforms from having faithfulnesses below
the threshold line. Thus, eccentricity effects in the in-
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FIG. 4. Same as Fig. 2, for late inspiral run (IIIa) with start-
ing eccentricity 10−5 < e0 < 0.5 and spin magnitudes χi = 1.

spiral can be safely ignored when only the last part of
it will be visible. This further shows that the starting
eccentricity is the most important factor to influence the
accuracy of our waveforms in the late inspiral.

We present in Fig. 7 the results from late inspiral run
(VIa), with starting eccentricity e0 = emin and spin mag-
nitudes χi = 1. The results here are similar to the ones
shown in Fig. 5, but more pronounced. The proportion
of binaries for which the circular waveform has a faithful-
ness lying below the threshold line raises to 25 %, indi-
cating that the inclusion of eccentricity effects might be
important even for fully circularized binaries in the last
stages of their inspiral when their spins are large.

B. Early inspiral systems

We present in Fig. 8 the results from early inspiral
run (Ib), with starting eccentricity 10−5 < e0 < 0.5 and
spin magnitudes 0 < χi < 1. We can see that, in this
case, using circular waveforms will likely result in large
biases even when the starting eccentricity is below 10−3.
The large number of orbital cycles accumulated is such
that the small difference in the frequency evolution in-
duce very low faithfulnesses even for very low eccentrici-
ties. On the other hand, the eccentric waveforms perform
better than in the late inspiral case. In the top panel, we

FIG. 5. Results from late inspiral run (IVa) with starting ec-
centricity e0 = emin and spin magnitudes 0 < χi < 1. The
systems simulated here correspond to highly spinning fully
circularized binaries. The blue line corresponds to the cir-
cular waveform C, the red line to the lowest-order expanded
eccentric waveform EE0,0, and the green line to the highly ac-
curate expanded eccentric waveform EE6,2. The bottom axis
shows the unfaithfulness 1 − F , and the top axis shows the
corresponding threshold SNR ρ above which we can expect
mismodelling errors to exceed the accuracy in a measurement.
The thin vertical line corresponds to a fiducial faithfulness of
0.993 or a corresponding SNR of 25. Note that due to the
eccentricity being taken into account in the phasing, even the
lowest-order eccentric waveform EE0,0 performs better than
the circular waveform C.

FIG. 6. Same as Fig. 5, for late inspiral run (Va) with starting
eccentricity e0 = emin and spin magnitudes 0 < χi < 0.1. The
systems simulated here correspond to slowly spinning fully
circularized binaries.

can see that the low-order EE6,0 waveform stays above
the faithfulness threshold for e0 . 0.05, while the high-
order one EE6,2 is above the threshold for the whole pa-
rameter space that we investigated. In the bottom panel,
we can see that the waveform with circular amplitudes
EE0,2 stays above the threshold for e0 . 0.1, while the
waveforms EEM,2, M ≥ 2 do for e0 . 0.3.

We present in Fig. 9 the results from early inspiral run
(IIb), with starting eccentricity 10−5 < e0 < 0.5 and
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FIG. 7. Same as Fig. 5, for late inspiral run (VIa) with
starting eccentricity e0 = emin and spin magnitudes χi = 1.
The systems simulated here correspond to maximally spin-
ning fully circularized binaries.

FIG. 8. Same as Fig. 2, for early inspiral run (Ib) with starting
eccentricity 10−5 < e0 < 0.5 and spin magnitudes 0 < χi < 1.

spin magnitudes 0 < χi < 0.1. We can see that, for
initial eccentricities e0 & 10−4, circular waveforms yield
a faithfulness below F = 0.9. Thus, even if they are
slowly spinning, the use of circular waveform for param-
eter estimation for such binaries is likely to yield impor-
tant biases. Using eccentric waveforms for early inspiral
systems is therefore crucial in order to ensure accurate
parameter recovery, even with initial eccentricities as low

FIG. 9. Same as Fig. 2, for early inspiral run (IIb) with
starting eccentricity 10−5 < e0 < 0.5 and spin magnitudes
0 < χi < 0.1.

as e0 ∼ 10−4. In the bottom panel, similarly to run (Ib),
we can see that the waveform with circular amplitudes
EE0,2 stays above the threshold for e0 . 0.1, while the
waveforms EEM,2, M ≥ 2 do for e0 . 0.3.

We present in Fig. 10 the results from early inspiral
run (IIIb), with starting eccentricity 10−5 < e0 < 0.5 and
spin magnitudes χi = 1. While the results for the eccen-
tric waveforms are similar to the ones shown in Fig. 8
and 9, the circular waveform never reached a median
faithfulness above the threshold line above an initial ec-
centricity of e0 = 3 × 10−5. This indicates that highly
spinning systems in the early inspiral will require the use
of an eccentric model irrespective of their initial eccen-
tricity.

We present in Fig. 11 the results from early inspiral
run (IVb), with starting eccentricity e0 = emin and spin
magnitudes 0 < χi < 1. We can see that for these sys-
tems, including the eccentricity in the phasing is impor-
tant, but that the order used in other effects matters
very little. Indeed, the faithfulness distributions for the
two eccentric waveforms EE0,0 and EE6,2 are indistin-
guishable and have support almost exclusively above the
faithfulness threshold, whereas the faithfulness distribu-
tion for the circular waveforms has 46 % support below
the threshold.

We present in Fig. 12 the results from early inspiral
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FIG. 10. Same as Fig. 2, for early inspiral run (IIIb) with
starting eccentricity 10−5 < e0 < 0.5 and spin magnitudes
χi = 1.

FIG. 11. Same as Fig. 5, for early inspiral run (IVb) with
starting eccentricity e0 = emin and spin magnitudes 0 < χi <
1. The systems simulated here correspond to highly spinning
fully circularized binaries.

run (Vb), with starting eccentricity e0 = emin and spin
magnitudes 0 < χi < 0.1. We can see that for these sys-
tems, circular waveforms have a faithfulness distribution
almost identical to those of eccentric waveforms, indicat-
ing that when the spins are small and the binaries have
fully circularized, the use of circular waveforms may be
sufficient for unbiased parameter estimation.

FIG. 12. Same as Fig. 5, for early inspiral run (Vb) with start-
ing eccentricity e0 = emin and spin magnitudes 0 < χi < 0.1.
The systems simulated here correspond to slowly spinning
fully circularized binaries.

FIG. 13. Same as Fig. 5, for early inspiral run (VIb) with
starting eccentricity e0 = emin and spin magnitudes χi = 1.
The systems simulated here correspond to maximally spinning
fully circularized binaries.

We present in Fig. 13 the results from early inspiral
run (VIb), with starting eccentricity e0 = emin and spin
magnitudes χi = 1. We observe in this figure that the
faithfulness distribution for the circular waveforms have
94 % support below the threshold line, indicating that for
highly spinning binaries, the use of eccentric waveforms
will be crucial for unbiased parameter estimation. How-
ever, the distributions for the two eccentric waveforms
EE0,0 and EE6,2 are indistinguishable also in this case,
indicating that the precision of the waveform amplitude
is of little importance. Thus, eccentricity and spins will
be important to include in the analysis of stellar-origin
black hole binaries with LISA to account for the pos-
sibility of high spins, even if the binaries to have fully
circularized. However, using accurate amplitudes might
be unnecessary for those sources.

Comparing the different results together, we find that
the median faithfulness for each waveform is mainly in-
fluenced by the initial eccentricity, and the stage in the
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Waveform emax,l
0 emax,e

0

C 0.0078 < 7 × 10−5

EE0,0 0.056 0.086

EE6,0 0.036 0.04

EE0,2 0.056 0.086

EE2,2 0.23 0.32

EE4,2 0.29 > 0.4

EE6,2 0.32 > 0.4

NE6 0.33 > 0.4

TABLE I. For a few select waveforms, maximum initial ec-
centricity emax,l

0 for which the median faithfulness in the late
inspiral runs stays above the faithfulness threshold, and the
same for the early inspiral runs emax,e

0 .

inspiral that they find themselves in. We summarized in
Table I the initial eccentricity below which the median
faithfulnesses falls above the threshold line for a few of
the waveforms compared in our simulations. Interest-
ingly, we find that waveform EE0,0 performs slightly bet-
ter than waveform EE6,0. We find the same to be true
comparing EE0,0 to any waveform EEM,0 or EEM,1 with
M > 0. We thus remark that in order for the inclusion of
beyond-circular effects in the amplitudes to increase the
accuracy of the waveform, one requires also to include
periastron precession effects at least at second order.

IV. CONCLUSION

We have constructed two families of Fourier domain
waveforms for spin-precessing binaries on eccentric or-
bits. These include phasing at third non-spinning post-
Newtonian order, including leading order spin-orbit and
spin-spin interactions. They include instantaneous am-
plitudes at second post-Newtonian order as small eccen-
tricity expansions. We have used in this work amplitudes
up to O

(
e6
)
, but the extension to higher orders in the

eccentricity would be trivial though lengthy. Through
comparisons with a complete time-domain waveform at
consistent post-Newtonian order, we find that our new
waveforms faithfully reproduce their Fourier transform
for initial eccentricities up to e0 ∼ 0.3 for systems in the
late inspiral, and at least up to e0 ∼ 0.4 for systems in
the early inspiral such as stellar-origin black hole binaries
as observed by LISA.

Comparing results, we find that using circular wave-
forms would likely lead to significant biases in parameter
recovery, even for fully circularized binaries with a signal-
to-noise ratio around 25, provided they are highly spin-
ning. Indeed, a 2PN spin effect prevents the eccentricity
of a binary system to vanish completely unless the projec-
tions of the reduced spins in the orbital plane are exactly
equal to each other. We find that the use of circular wave-
forms can cause biases if fully circularized systems with

large spin magnitudes and random orientations are ob-
served in the late inspiral, but not if the spin magnitudes
are small. This situation is made worse if binary systems
are observed in the early inspiral, and we expect large
biases with circular waveforms irrespective of the initial
eccentricity for highly spinning systems, even if they are
fully circularized. However, if the spins are sufficiently
small and the binaries have circularized below an eccen-
tricity of 10−4 when the observations start, we expect the
use of circular waveforms to be appropriate for parame-
ter estimation. Overall, we expect circular waveforms to
be safe to use for parameter estimation in the late inspi-
ral if the initial eccentricity falls below 10−2 and in the
early inspiral when it falls below 10−4, but we would rec-
ommend the use of eccentric phasing in the waveform to
describe highly spinning systems, even if they have fully
circularized.

Those waveforms provide a step towards the inclusion
of the eccentricity in gravitational wave data analysis
such as performed by the LIGO/Virgo community. We
argue from the simulations described in this paper that
the inclusion of spins and eccentricity might be of im-
portance for reducing potential biases in the parameter
recovery of binaries, even when they are fully circular-
ized. While circular templates might be appropriate to
describe slowly spinning systems, it can be important to
include in the modelling of highly spinning systems. It
is worth noting that the faithfulness measurements de-
scribed in this work are not suitable to estimate the loss
of events due to mismodelling, or the measurability of
binary parameters, including the initial eccentricity. We
leave those questions open for future work.

Some assumptions made in this work, particularly the
neglect of orbital timescale effects in the spin-orbit pre-
cession dynamics have to be more closely investigated.
Furthermore, the inclusion of the merger and ringdown
signals to our waveforms is also very important work for
the future, and will have to be taken into account in the
construction of waveform templates to use in current and
future detectors. The waveform that we have presented
in this work, while useful to describe inspiral-dominated
signals such as stellar-origin black hole binaries in LISA
or neutron star binaries in the LIGO/Virgo network,
is inspiral-only and therefore cannot be used alone in
the characterization of merger-dominated signals such as
black hole binaries as observed by the LIGO/Virgo net-
work.
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Appendix A: Quadrupole-monopole effects

The 2PN part of the quasi-Keplerian parametrization found in [30] is based upon the reduced Lagrangian

L
ν

=
ṙ2

2
+

1

r
+

1

r3
s1 · s2 −

3

r3
(r̂ · s1) (r̂ · s2) , (A1)

where the reduced spins si = Si/mi. The quadrupole-monopole part of the reduced Lagrangian is [42, 66]

LQM

ν
=

1

2r3

2∑
i=1

qi

[
s2
i − 3 (r̂ · si)2

]
, (A2)

where the quadrupole parameter qi is defined is such a way that qi = 1 for black holes. The total Lagrangian can
then be written as

L
ν

=
ṙ2

2
+

1

r
+

1

2r3
s2 − 3

2r3
(r̂ · s)

2
+

1

2r3

2∑
i=1

(qi − 1)
[
s2
i − 3 (r̂ · si)2

]
, (A3)

where s = s1 + s2.
Thus, a quasi-Keplerian description of the orbit including quadrupole-monopole terms can be found by adding the

2PN terms of [30], using the substitutions (s1 → s/
√

2, s2 → s/
√

2), (s1 → s1

√
(q1 − 1)/2, s2 → s1

√
(q1 − 1)/2),

and (s1 → s2

√
(q2 − 1)/2, s2 → s2

√
(q2 − 1)/2). It reads

r = a(1− er cosu) + fr(v) , (A4a)

φ = (1 + k)v + fφ,1(v) + fφ,2(v) , (A4b)

tan
v

2
=

√
1 + eφ
1− eφ

tan
u

2
, (A4c)

l = u− e sinu , (A4d)

l̇ = n , (A4e)

with

a =
1

(1− e2) y2

[
1 +

1

2

(
1 + e2

)
γ1y

4

]
, (A5a)

e2
r = e2

[
1 +

(
1− e2

)
γ1y

4
]
, (A5b)

k =
3

2
γ1y

4 , (A5c)

e2
φ = e2

[
1 + 2

(
1− e2

)
γ1y

4
]
, (A5d)

n =
(
1− e2

)3/2
y3

(
1− 3

2
γ1y

4

)
, (A5e)

γ1 =
1

2

{
3
(
L̂ · s

)2

− s2 +

2∑
i=1

(qi − 1)

[
3
(
L̂ · si

)2

− s2
i

]}
, (A5f)

fr(v) = −y
2

4

[∣∣∣L̂× s
∣∣∣2 cos(2v − 2ψ) +

2∑
i=1

(qi − 1)
∣∣∣L̂× si

∣∣∣2 cos(2v − 2ψi)

]
, (A5g)

fφ,1(v) = −y
4e

2

[∣∣∣L̂× s
∣∣∣2 sin(v − 2ψ) +

2∑
i=1

(qi − 1)
∣∣∣L̂× si

∣∣∣2 sin(v − 2ψi)

]
, (A5h)
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fφ,2(v) = −y
4

8

[∣∣∣L̂× s
∣∣∣2 sin(2v − 2ψ) +

2∑
i=1

(qi − 1)
∣∣∣L̂× si

∣∣∣2 sin(2v − 2ψi)

]
, (A5i)

where ψ is the angle subtended by the total reduced spin s and the periastron line, ψi is the angle subtended by the
individual reduced spin si and the periastron line (see Fig. 1), and the periastron line is defined by the equation
v = u = l = 2pπ, p ∈ Z. We can then use this representation of the orbit together with the orbit averaged evolution
equations for the energy and orbital angular momentum computed in [40] to find

M
dy

dt
= ν

(
1− e2

)3/2{(32

5
+

28

5
e2

)
y9 + σ

[
− 84

5
− 228

5
e2 − 33

5
e4,

242

5
+

654

5
e2 +

381

20
e4,−447

10
e2 − 93

10
e4,

88

5
− 16q +

(
48− 216

5
q

)
e2 +

(
69

10
− 63

10
q

)
e4,−244

5
+ 48q +

(
−132 +

648

5
q

)
e2 +

(
−96

5
+

189

10
q

)
e4,

(1− q)
(

447

10
e2 +

93

10
e4

)]
y13

}
, (A6a)

M
de2

dt
= − ν

(
1− e2

)3/2{(608

15
e2 +

242

15
e4

)
y8 + σ

[
2

3
− 1961

15
e2 − 2527

12
e4 − 157

8
e6,−2

3
+

5623

15
e2 +

2393

4
e4

+
447

8
e6,−5527

30
e2 − 10117

30
e4 − 5507

160
e6,−4

3
+

(
682

5
− 1876

15
q

)
e2 +

(
1337

6
− 595

3
q

)
e4 +

(
83

4
− 37

2
q

)
e6,

4

3
+

(
−5618

15
+

1876

5
q

)
e2 +

(
−1203

2
+ 595q

)
e4 +

(
−225

4
+

111

4
q

)
e6,(

2764

15
− 921

5
q

)
e2 +

(
1687

5
− 5056

15
q

)
e4 +

(
551

16
− 172

5
q

)
e6

]
y12

}
, (A6b)

where

σ(a, b, c, a1 + a2q, b1 + b2q, c1 + c2q) = as2 + b
(
L̂ · s

)2

+ c
∣∣∣L̂× s

∣∣∣2 cos 2ψ

+

2∑
i=1

[
(a1 + a2qi) s

2
i + (b1 + b2qi)

(
L̂ · si

)2

+ (c1 + c2qi)
∣∣∣L̂× si

∣∣∣2 cos 2ψi

]
.

(A7)

We thus find the residual eccentricity found in [30] unchanged by quadrupole-monopole effects.

Appendix B: Quasi-Keplerian parametrization

A full quasi-Keplerian parametrization of the orbit at 2PN order in harmonic coordinates is [30, 31]

r = a(1− er cosu) + fr(v) , (B1a)

φ = (1 + k)v + fφ(v) , (B1b)

tan
v

2
=

√
1 + eφ
1− eφ

tan
u

2
, (B1c)

l = u− e sinu+ ft(u, v) , (B1d)

l̇ = n , (B1e)

with

a =
1

(1− e2) y2

{
1 +

[
−1 +

ν

3
+
(

3− ν

3

)
e2
]
y2 + β

(
2

3
+ 2e2, 1 + e2

)
y3 +

[
5 +

11

4
ν +

ν2

9

+

(
21

2
− 73

6
ν − 2

9
ν2

)
e2 +

(
1 +

5

12
ν +

ν2

9

)
e4 +

(
1− e2

)3/2
(−5 + 2ν) +

γ1

2

(
1 + e2

) ]
y4 , (B2a)

e2
r = e2

{
1 +

(
1− e2

){
(8− 3ν) y2 + β (4, 2) y3 +

[
32− 467

12
ν + 4ν2 +

(
−40 +

371

12
ν − 4ν2

)
e2
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+
√

1− e2 (15− 6ν) + γ1

]
y4

}}
, (B2b)

k = 3y2 + β (4, 3) y3 +

[
27

2
− 7ν +

(
51

4
− 13

2
ν

)
e2 +

3

2
γ1

]
y4 , (B2c)

e2
φ = e2

{
1 +

(
1− e2

){
(8− 2ν) y2 + β (4, 4) y3 +

[
42− 113

12
ν +

11

12
ν2 +

(
−40 +

1043

48
ν − 89

48
ν2

)
e2

+
√

1− e2 (15− 6ν) + 2γ1

]
y4

}}
, (B2d)

n =
(
1− e2

)3/2
y3

{
1− 3y2 − β (4, 3) y3 +

[
−9

2
+ 7ν +

(
−51

4
+

13

2
ν

)
e2 − 3

2
γ1

]
y4

}
, (B2e)

where

β(a, b) = − [(aµ1 + bµ2) s1 + (bµ1 + aµ2) s2] · L̂ , (B3a)

γ1 =
1

2

{
3
(
L̂ · s

)2

− s2 +

2∑
i=1

(qi − 1)

[
3
(
L̂ · si

)2

− s2
i

]}
. (B3b)

The functions fr, fφ, ft, and fn are given by

fr(v) =

2∑
i=0

br,i cos(2v − 2ψi) , (B4a)

fφ(v) =

3∑
k=2

aφ,k sin(kv) +

2∑
k=1

2∑
i=0

bφ,k,i sin(kv − 2ψi) , (B4b)

ft(u, v) = gt(u− v) + at sin(v) , (B4c)

with

br,i = −y
2

4
Fi

∣∣∣L̂× si

∣∣∣2 , (B5a)

aφ,2 = e2

(
ν

8
− 3

8
ν2

)
y4 , (B5b)

aφ,3 = −e3 3

32
ν2y4 , (B5c)

bφ,1,i = −e
2
Fi

∣∣∣L̂× si

∣∣∣2 y4 , (B5d)

bφ,2,i = −1

8
Fi

∣∣∣L̂× si

∣∣∣2 y4 , (B5e)

gt =
(
1− e2

)3/2(15

2
− 3ν

)
y4 , (B5f)

at = e
(
1− e2

)3/2(−ν
2
− ν2

8

)
y4 , (B5g)

where we defined for convenience s0 = s, ψ0 = ψ, F0 = 1, F1 = q1 − 1, and F2 = q2 − 1.

Appendix C: Evolution equations

The evolution equations of y and e are given at 3PN order by [30, 34–36]

M
dy

dt
=
(
1− e2

)3/2
νy9

(
a0 +

6∑
n=2

any
n

)
, (C1a)

M
de2

dt
= −

(
1− e2

)3/2
νy8

(
b0 +

6∑
n=2

bny
n

)
, (C1b)
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where

a0 =
32

5
+

28

5
e2 , (C2a)

a2 = − 1486

105
− 88

5
ν +

(
12296

105
− 5258

45
ν

)
e2 +

(
3007

84
− 244

9
ν

)
e4 , (C2b)

a3 =
128π

5
φy + β

(
904

15
+

2224

15
e2 +

99

5
e4, 40 +

1916

15
e2 +

314

15
e4

)
, (C2c)

a4 =
34103

2835
+

13661

315
ν +

944

45
ν2 +

(
−256723

945
− 173587

315
ν +

147443

270
ν2

)
e2 +

(
2095517

7560
− 589507

504
ν +

34679

45
ν2

)
e4

+

(
53881

2520
− 7357

90
ν +

9392

135
ν2

)
e6 +

e2

1− e2

(
85

6
+

1445

6
ν

)
+

1−
√

1− e2

√
1− e2

[
16− 32

5
ν +

(
266− 532

5
ν

)
e2

+

(
−859

2
+

859

5
ν

)
e4 + (−65 + 26ν) e6

]
+ σ

[
− 84

5
− 228

5
e2 − 33

5
e4,

242

5
+

654

5
e2 +

381

20
e4,−447

10
e2 − 93

10
e4,

88

5
− 16q +

(
48− 216

5
q

)
e2 +

(
69

10
− 63

10
q

)
e4,−244

5
+ 48q +

(
−132 +

648

5
q

)
e2 +

(
−96

5
+

189

10
q

)
e4,

(1− q)
(

447

10
e2 +

93

10
e4

)]
, (C2d)

a5 = π

(
−4159

105
ψy −

756

5
νζy

)
, (C2e)

a6 =
16447322263

21829500
− 54784

525
γE +

512

15
π2 +

(
−56198689

34020
+

902

15
π2

)
ν +

541

140
ν2 − 1121

81
ν3 +

[
247611308999

87318000

− 392048

525
γE +

3664

15
π2 +

(
−2828420479

680400
+

477

4
π2

)
ν +

1070903

315
ν2 − 392945

324
ν3

]
e2 +

[
− 236637777001

58212000

− 93304

175
γE +

872

5
π2 +

(
2963572847

453600
− 53131

960
π2

)
ν +

44123941

6048
ν2 − 2198212

405
ν3

]
e4 +

[
− 28913792717

6468000

− 4922

175
γE +

46

5
π2 +

(
107275139

30240
− 369

80
π2

)
ν +

5155951

1512
ν2 − 44338

15
ν3

]
e6 +

(
− 243511057

887040
+

4179523

15120
ν

+
83701

3780
ν2 − 1876

15
ν3

)
e8 +

e2

1− e2

[
91284763

378000
+

(
19505077

5040
− 595

8
π2

)
ν − 48569

12
ν2 − 730168

23625
(
1 +
√

1− e2
)]

+
1−
√

1− e2

√
1− e2

{
− 1425319

3375
+

(
9874

315
− 41

30
π2

)
ν +

632

15
ν2 +

[
2385427

1050
+

(
−274234

45
+

4223

240
π2

)
ν +

70946

45
ν2

]
e2

+

[
8364697

4200
+

(
1900517

630
− 32267

960
π2

)
ν − 47443

90
ν2

]
e4 +

[
− 167385119

25200
+

(
4272491

504
− 123

160
π2

)
ν − 43607

18
ν2

]
e6

+

(
− 65279

168
+

510361

1260
ν − 5623

45
ν2

)
e8

}
+

1284

175
κy

+

(
54784

525
+

392048

525
e2 +

93304

175
e4 +

4922

175
e6

)
log

[
1 +
√

1− e2

8y (1− e2)
3/2

]
, (C2f)

b0 =
608

15
e2 +

242

15
e4 , (C2g)

b2 =

(
−1878

35
− 8168

45
ν

)
e2 +

(
59834

105
− 7753

15
ν

)
e4 +

(
13929

140
− 3328

45
ν

)
e6 , (C2h)

b3 =
788πe2

3
φe + β

(
19688

45
e2 +

28256

45
e4 +

263

5
e6,

1448

5
e2 +

1618

3
e4 +

167

3
e6

)
, (C2i)

b4 =

(
−952397

945
+

5937

7
ν +

1504

5
ν2

)
e2 +

(
−3113989

1260
− 388419

140
ν +

64433

20
ν2

)
e4 +

(
4656611

1512
− 13057267

2520
ν

+
127411

45
ν2

)
e6 +

(
420727

1680
− 362071

1260
ν +

1642

9
ν2

)
e8 +

√
1− e2

[(
2672

3
− 5344

15
ν

)
e2 +

(
2321− 4642

5
ν

)
e4
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+

(
565

3
− 226

3
ν

)
e6

]
+ σ

[
2

3
− 1961

15
e2 − 2527

12
e4 − 157

8
e6,−2

3
+

5623

15
e2 +

2393

4
e4 +

447

8
e6,−5527

30
e2 − 10117

30
e4

− 5507

160
e6,−4

3
+

(
682

5
− 1876

15
q

)
e2 +

(
1337

6
− 595

3
q

)
e4 +

(
83

4
− 37

2
q

)
e6,

4

3
+

(
−5618

15
+

1876

5
q

)
e2

+

(
−1203

2
+ 595q

)
e4 +

(
−225

4
+

111

4
q

)
e6,

(
2764

15
− 921

5
q

)
e2 +

(
1687

5
− 5056

15
q

)
e4 +

(
551

16
− 172

5
q

)
e6

]
,

(C2j)

b5 = π

(
−55691

105
ψe −

610144

315
νζe

)
e2 , (C2k)

b6 =

[
61655211971

4365900
− 2633056

1575
γE +

24608

45
π2 +

(
43386337

56700
+

1017

5
π2

)
ν − 4148897

1260
ν2 − 61001

243
ν3

]
e2

+

[
64020009407

21829500
− 9525568

1575
γE +

89024

45
π2 +

(
770214901

12600
− 15727

96
π2

)
ν − 80915371

7560
ν2 − 86910509

9720
ν3

]
e4

+

[
−1167012417073

58212000
− 4588588

1575
γE +

42884

45
π2 +

(
8799500893

453600
− 295559

960
π2

)
ν +

351962207

10080
ν2 − 2223241

90
ν3

]
e6

+

[
120660628321

12936000
− 20437

175
γE +

191

5
π2 +

(
−91818931

5040
− 6519

320
π2

)
ν +

2495471

126
ν2 − 11792069

1215
ν3

]
e8

+

(
302322169

887040
− 1921387

5040
ν +

41179

108
ν2 − 386792

1215
ν3

)
e10 +

√
1− e2

{[
− 22713049

7875
+

(
−11053982

945
+

8323

90
π2

)
ν

+
108664

45
ν2

]
e2 +

[
178791374

7875
+

(
−38295557

630
+

94177

480
π2

)
ν +

681989

45
ν2

]
e4 +

[
5321445613

189000

+

(
−26478311

756
+

2501

1440
π2

)
ν +

450212

45
ν2

]
e6 +

[
186961

168
− 289691

252
ν +

3197

9
ν2

]
e8

}
+

1460336

23625

(
1−

√
1− e2

)
+

428

1575
e2κe +

(
2633056

1575
e2 +

9525568

1575
e4 +

4588588

1575
e6 +

20437

175
e8

)
log

[
1 +
√

1− e2

8y (1− e2)
3/2

]
, (C2l)

with the tail terms given, in terms of the functions found in [34, 36], by

φy =
(
1− e2

)7/2
φ̃ , (C3a)

φe =
192

(
1− e2

)9/2
985e2

(√
1− e2φ− φ̃

)
, (C3b)

ψy =
(
1− e2

)9/2(−8064

4159

√
1− e2φ+

4032

4159
φ̃+

8191

4159
ψ̃

)
, (C3c)

ζy =
(
1− e2

)7/2 [160
(
1− e2

)3/2
567

φ+

(
−176

567
+

80

567
e2

)
φ̃+

583
(
1− e2

)
567

ζ̃

]
, (C3d)

ψe =
16382

(
1− e2

)9/2
55691e2

[(
9408

8191
− 14784

8191
e2

)√
1− e2φ+

(
−9408

8191
+

4032

8191
e2

)
φ̃+

(
1− e2

) (√
1− e2ψ − ψ̃

)]
,

(C3e)

ζe =
12243

(
1− e2

)9/2
76268e2

[
−

16
(
1− e2

)3/2
53

φ+

(
16

53
− 80

583
e2

)
φ̃+

(
1− e2

) (√
1− e2ζ − ζ̃

)]
, (C3f)

κy = −
934088

(
1− e2

)5
33705

(
κ̃− F̃

)
, (C3g)

κe = −
5604528

(
1− e2

)6
3745e2

[√
1− e2 (κ− F )−

(
κ̃− F̃

)]
. (C3h)

We chose to only include in the 3PN enhancement functions κi the terms proportional to log n, as the other ones are
in finite number and can be combined with non-tail terms. Using the formalism developed in [34, 36], we give them
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here at tenth order in the eccentricity:

φy = 1 +
97

32
e2 +

49

128
e4 − 49

18432
e6 − 109

147456
e8 − 2567

58982400
e10 +O

(
e12
)
, (C4a)

φe = 1 +
5969

3940
e2 +

24217

189120
e4 +

623

4538880
e6 − 96811

363110400
e8 − 5971

4357324800
e10 +O

(
e12
)
, (C4b)

ψy = 1− 207671

8318
e2 − 8382869

266176
e4 − 8437609

4791168
e6 +

10075915

306634752
e8 − 38077159

15331737600
e10 +O

(
e12
)
, (C4c)

ζy = 1 +
113002

11907
e2 +

6035543

762048
e4 +

253177

571536
e6 − 850489

877879296
e8 − 1888651

10973491200
e10 +O

(
e12
)
, (C4d)

ψe = 1− 9904271

891056
e2 − 101704075

10692672
e4 − 217413779

513248256
e6 +

35703577

6843310080
e8 − 3311197679

9854366515200
e10 +O

(
e12
)
, (C4e)

ζe = 1 +
11228233

2440576
e2 +

37095275

14643456
e4 +

151238443

1405771776
e6 − 118111

611205120
e8 − 407523451

26990818099300
e10 +O

(
e12
)
, (C4f)

κy = 244 log 2

(
e2 − 18881

1098
e4 +

6159821

39528
e6 − 16811095

19764
e8 +

446132351

123525
e10

)
− 243 log 3

(
e2 − 39

4
e4 +

2735

64
e6

+
25959

512
e8 − 638032239

409600
e10

)
− 48828125 log 5

5184

(
e6 − 83

8
e8 +

12637

256
e10

)
+

4747561509943 log 7

33177600
e10 +O

(
e12
)
,

(C4g)

κe = 6536 log 2

(
1− 22314

817
e2 +

7170067

19608
e4 − 10943033

4128
e6 +

230370959

15480
e8 − 866124466133

8823600
e10

)
− 6561 log 3

(
1− 49

4
e2 +

4369

64
e4 +

214449

512
e6 − 623830739

81920
e8 +

76513915569

1638400
e10

)
− 48828125 log 5

64

(
e4 − 293

24
e6 +

159007

2304
e8 − 6631171

27648
e10

)
+

4747561509943 log 7

245760

(
e8 − 259

20
e10

)
+O

(
e12
)
.

(C4h)

It can be noted that those enhancement functions converge much more quickly than the ones presented in [34, 36].

Indeed, because of the inclusion of factors of
√

1− e2 in them, the enhancement functions seem to converge in the
parabolic limit e → 1. We believe it to be related to the fact that the PN parameter y we used here is related to
the Newtonian orbital angular momentum and thus is finite and nonzero in this limit. In contrast, the PN parameter
(Mω)1/3 is related to the energy and thus vanishes in this limit. In that case, in order for the tail effects to stay
nonzero, the enhancement functions are forced to diverge.

Appendix D: True and eccentric anomaly expansion

The Fourier coefficients of the eccentric anomaly, true anomaly and orbital phase are given to order O
(
y4, e5

)
by

A1 = e− e3

8
+

e5

192
+ y4

(
e3

(
105

8
− 51η

64
− 19η2

64

)
+ e

(
−15

2
+

9η

8
+
η2

8

)
+ e5

(
−735

128
− 489η

512
+

111η2

512

))
,

A2 =
e2

2
− e4

6
+ y4

(
e4

(
75

4
− 5η

32
− 47η2

96

)
+ e2

(
−75

8
+

15η

16
+

3η2

16

))
,

A3 =
3e3

8
− 27e5

128
+ y4

(
e5

(
6825

256
+

705η

1024
− 775η2

1024

)
+ e3

(
−95

8
+

49η

64
+

17η2

64

))
,

A4 =
e4

3
+ e4y4

(
−975

64
+

35η

64
+

71η2

192

)
,

A5 =
125e5

384
+ e5y4

(
−5049

256
+

1167η

5120
+

523η2

1024

)
, (D1a)

B1 = 2e− e3

4
+

5e5

96
+ y2

(
e(4− η) + e5

(
17

48
− 17η

192

)
+ e3

(
−7

2
+

7η

8

))
+ y4

(
e3

(
−39

4
+
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− 7η2

32

)
+ e

(
13− 31η

12
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)
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(
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))
,
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B2 =
5e2

4
− 11e4
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+ y2

(
e2(4− η) + e4

(
−14

3
+

7η

6

))
+ y4
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, (D1b)

C1 = 2e− e3
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+
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. (D1c)

Appendix E: Waveform amplitudes expansion

The amplitudes G
(m,n)
+,× in Eq. (18b) are given to order O

(
y2, e

)
for n < 0, with Ci = cos i = L̂ · N̂ and Si = sin i,

by

G
(1,−1)
+ = e
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2
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2
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+ ey2
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16
+
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G
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, (E1a)
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. (E1b)

Note that G
(m,−n)
+,× = Ḡ

(−m,n)
+,× .
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