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Gravity theories beyond general relativity (GR) can change the properties of gravitational waves:
their polarizations, dispersion, speed, and, importantly, energy content are all heavily theory-
dependent. All these corrections can potentially be probed by measuring the stochastic gravitational-
wave background. However, most existing treatments of this background beyond GR overlook
modifications to the energy carried by gravitational waves, or rely on GR assumptions that are
invalid in other theories. This may lead to mistranslation between the observable cross-correlation of
detector outputs and gravitational-wave energy density, and thus to errors when deriving observational
constraints on theories. In this article, we lay out a generic formalism for stochastic gravitational-
wave searches, applicable to a large family of theories beyond GR. We explicitly state the (often
tacit) assumptions that go into these searches, evaluating their generic applicability, or lack thereof.
Examples of problematic assumptions are: statistical independence of linear polarization amplitudes;
which polarizations satisfy equipartition; and which polarizations have well-defined phase velocities.
We also show how to correctly infer the value of the stochastic energy density in the context of any
given theory. We demonstrate with specific theories in which some of the traditional assumptions break
down: Chern-Simons gravity, scalar-tensor theory, and Fierz-Pauli massive gravity. In each theory,
we show how to properly include the beyond-GR corrections, and how to interpret observational
results.

I. INTRODUCTION

Besides transient signals, like those detected so far [1–7]
by the Advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) [8] and Virgo [9], gravitational-wave
(GW) detectors are also expected to be sensitive to a per-
sistent stochastic background [10–17]. This background
signal is expected from primordial cosmological processes
[18–28], or the incoherent addition of myriad individually-
unresolvable astrophysical sources, like compact binary
coalescences [29–36] or exotic topological defects [37–40].
Among many other rich scientific goals (see [41] for a
review) detection of a stochastic background would pro-
vide an invaluable opportunity to study the fundamental
nature of gravitational waves as they propagate over cos-
mological distances.

In the past decade or so, the formalism underlying
stochastic GW searches has been extended to theories
of gravity beyond general relativity (GR), primarily to
account for the potential presence of nontensorial polar-
izations. Generic metric theories of gravity allow for up
to six polarizations, corresponding to scalar (helicity 0),
vector (helicity ±1) and tensor (helicity ±2) metric per-
turbations [42, 43]. The effect of these extra polarizations
on the stochastic background has been studied in particu-
lar for theories with scalar modes [44–46], and in general
for all possible modes in a theory-agnostic way [47, 48].
The problem of detecting nontensorial modes in the back-
ground has been studied in the context pulsar timing
[49–52], and GW measurements using astrometry [53].
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Beyond these proposals, a comprehensive data analysis
framework has been recently implemented to search LIGO
and Virgo data for GWs of any polarization, tensorial or
otherwise, and some first upper limits have been placed
on their amplitudes [54, 55].

The goal of searches for stochastic backgrounds, within
GR or beyond, is to measure the amount of energy that
the Universe contains in the form of gravitational waves.
Consequently, treatments of stochastic GW signals are
predominantly parametrized in terms of their effective
energy-density spectrum [ΩGW, defined in Eq. (29) be-
low]. The latest constraints on this quantity, assuming
GR, yield ΩGW < 1.7 × 10−7 with 95% confidence [17].
However, a parametrization in terms of ΩGW is only pos-
sible thanks to a standard set of assumptions about the
properties of gravitational waves, the detectors, and the
statistics of the background itself. Although generally
justified within GR, the fundamental structure of beyond-
GR theories may not always warrant all (or any) of those
standard assumptions—even without considering mod-
ifications to specific emission mechanisms, or expected
source populations. One must therefore be careful in ap-
plying the usual premises to searches for stochastic waves
that aim to be theory agnostic, and should be aware
that adopting any of these assumptions may come with
additional observational restrictions.

Perhaps the most important example of an assumption
that has been dubiously applied beyond GR concerns
the form of the effective stress-energy of GWs. Multiple
studies of stochastic signals beyond GR assume that the
fractional energy density spectrum in GWs is related
to the wave amplitudes in the same way as it is in GR
[46–48, 50, 52, 53, 56]. Yet, as pointed out in [57], the
expression for the effective GW stress-energy need not be
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the same in all theories of gravity. This means that it is
inadvisable to parametrize putatively model-independent
searches for beyond-GR backgrounds assuming the GW
energy density has the same functional form as in GR:
doing so will result in the use of a quantity that should
not generally be interpreted as the energy density in GWs.
This is not only misleading, but (most importantly) can
lead to incorrect comparisons between observational limits
and theoretical predictions.

Besides this, some of the simplifying assumptions about
the properties of the stochastic background that are usu-
ally justified in GR are not acceptable in general, and
should not be extended to model-independent analyses.
This is the case even without considering changes to the
potential sources of the background in beyond-GR theo-
ries, which may themselves break more of the assumed
symmetries. For instance, it is not reasonable to always
assume that the usual linear GW polarization amplitudes
will be statistically independent, as this will not be true
unless the chosen polarization basis diagonalizes the ki-
netic matrix of the underlying theory of gravity (defined
below). Similar arguments can be made about the as-
sumptions that the polarizations are equipartitioned, or
even that they have well defined phase velocities—let
alone that they propagate at the speed of light.

In view of this, our goal is to straighten out the frame-
work underlying searches for stochastic gravitational back-
grounds, to make it formally valid and easily applicable
to a large family of theories beyond GR. In Sec. II, we
lay out a generic formalism for such searches, review the
most commonplace assumptions in standard analyses, and
evaluate their degree of applicability to other frameworks;
along the way, we also clarify some relevant differences
in conventions used by the theory and data analysis lit-
eratures. In Sec. III, we provide a series of examples
of theories that break the premises behind one or more
of these assumptions, and show the impact this has on
the analysis—we focus on differences in the predicted
form of the effective GW stress energy, but also discuss
other problematic points. In particular, we use these
examples to show how to go from the action defining
a theory to (1) a relation between the fractional GW
energy density spectrum and the correlation of polar-
ization amplitudes, and (2) to the cross-correlation of
GW detector outputs—which is the relevant observable
for ground-based detectors. We review the derivation
for general relativity in Sec. III A, and then move on to
Chern-Simons gravity in Sec. III B, scalar-tensor theories
in Sec. III C, and Fierz-Pauli massive gravity in Sec. III D.
Finally, we offer a summary and conclusions in Sec. IV.

II. FORMALISM

In this section, we provide the framework required to
search for stochastic GW backgrounds without assuming
GR is correct. In Sec. II A, we review the four-dimensional
Fourier transform of a generic GW, lay out its decomposi-

tion into polarizations, and provide some useful identities
for later use in Sec. III. In Sec. II B, we focus on the prop-
erties of stochastic backgrounds, carefully reviewing the
assumptions made in traditional analyses to determine
whether they hold in theories beyond GR. In Sec. II C,
we describe the measurement process, including compli-
cations that may arise in generic theories. Finally, in
Sec. II D, we sketch the calculations needed to relate the
effective stochastic GW energy in any given theory to the
polarization amplitudes measurable by a detector.

Here, and throughout this document, spatial three-

vectors are identified by an arrow (e.g. ~k), or a circumflex

accent if they have unit norm (e.g. k̂). Four-vectors and
higher-rank tensors are denoted by boldface, or abstract
index notation (e.g. k or ka). For tensor coordinate com-
ponents, spacetime Greek indices (α, β, γ, . . . ) take
values in the range 0–3, while spatial Latin indices (i, j,
k, . . . ) span 1–3. We use metric signature +2, using gab
for generic background metrics and ηab for the Minkowski
metric. Our conventions for the Levi-Civita tensor fol-
low [58]: εabcd =

√
−g[abcd] where g is the determinant

of the metric, and [abcd] is the Levi-Civita symbol, with
[0123] = +1; similarly, εijk =

√
γ[ijk] where γ is the

determinant of the spatial metric, and [123] = +1. We
normalize (anti-)symmetrizations as idempotent projec-
tion operations, e.g., T(ab) = (Tab + Tba) /2 and T[ab] =
(Tab − Tba) /2.

A. Decomposition of the metric perturbation

In any metric theory of gravity, as long as the observa-
tion region is small compared to the curvature radius, an
arbitrary GW metric perturbation hab(x) at a spacetime
point x may be expressed as a plane-wave expansion by
the compact expression:

hab(x) =
1

2π

∫
h̃ab(k)eik·x d̃k , (1)

integrating over all directions of propagation, and over
both positive and negative frequencies. Here h̃ab(k) is
the complex-valued Fourier amplitude for the wave-vector

k ≡ (ω/c, ~k); we let ω = 2πf be the angular frequency,

and ~k = |~k| k̂ ≡ −|~k| n̂ the spatial wave-vector, implic-
itly defining n̂ as the sky location of the source. To
simplify our notation in Eq. (1), we have defined the
four-dimensional integral over the measure

d̃k ≡ 2c δ(|~k|2 − |~kω|2) |~k|−1dk = dω dn̂ , (2)

where δ(x) is the Dirac delta function, and the last equal-
ity assumes an implicit integration over the magnitude of
~k. In order to write this, we assume that there is just one

dispersion relation, ω = ω(~k) ≡ ωk, that determines the
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modulus of k and implicitly defines |~kω| ≡ |~k|(ω). 1 The
dispersion relation is specific to the theory of gravity: for

example, ωk = c|~k| and |~kω| = ω/c in GR.
With the integration measure defined as in Eq. (2), in

a local Lorentz frame (so that x ·y = ~x ·~y−x0y0), Eq. (1)
can be recast in a form most common in stochastic GW
literature (see, e.g., [14, 16, 60]):

hab(t, ~x) =

∫ ∞
−∞

∫
sky

h̃ab(f, n̂) e−2πif(t+n̂·~x/vp) dn̂ df ,

(3)

where vp ≡ |~k/ω|−1 is the (potentially frequency-
dependent) phase velocity of the wave (vp = c in GR).
Finally, to guarantee that hab(x) be real, we must neces-
sarily have

h̃
∗
ab(f, n̂) = h̃ab(−f, n̂) , (4)

where the asterisk indicates complex conjugation. In
Appendix A, we elucidate the equivalence between Eqs.
(1) and (3), derive the second equality in Eq. (2) and
discuss differences between our Fourier conventions and
those from the field theory literature.

For any given frequency and direction of propagation,
the Fourier amplitudes may be written as a linear com-
bination of at most six tensors corresponding to the six
polarizations supported by generic metric theories of grav-
ity [42, 43], even if the wave speed is slightly different
from the speed of light [61]. Therefore, the most generic
gravitational wave in this large category of theories may
be written as a function of six amplitudes. We may con-
sequently define six orthogonal polarization tensors, eAab,
such that

h̃ab(k) = h̃A(k) eAab(n̂) , (5)

where the sum is over six polarizations indexed by A, and
the h̃A(k)’s are the Fourier transforms of the six scalar
fields, hA(x), encoding the amplitude of each mode, as
defined by means of Eq. (1). Importantly, the hA’s in an
arbitrary frame will generally not be linearly independent:
this will only be the case if frame and gauge are chosen
such that the metric degrees of freedom (polarizations)
map to the physical degrees of freedom of the underlying
theory.

In order to study interactions between waves and de-
tectors, it is usually convenient to pick a “synchronous”
gauge2 such that the perturbation is purely spatial in the
frame of interest (h0ν = 0), and correspondingly so are

1 Some theories violate this assumption; for example, bimetric
gravity [59] has one massless and one massive gravitational wave
mode—we will allow for this briefly in Sec. II C only.

2 In a diffeomorphism invariant theory, one may always gauge
transform into synchronous gauge by solving an initial value
problem. If the theory is not diff-invariant, the Stückelberg trick
can be used to restore the symmetry and then gauge transform.
We provide an example of this in Sec. III D.

the polarization tensors. For instance, in an orthogonal
frame in which the z-axis is aligned with the direction

of propagation (so that k̂i = δ3
i in that frame), we may

write the six degrees of freedom as

(hij) =

hb + h+ h× hx

h× hb − h+ hy

hx hy hl

 , (6)

in terms of the linear tensor polarizations (+, ×), linear
vector polarizations (x, y), and scalar breathing (b) and
longitudinal (l) modes. As mentioned above, these need
not be linearly independent, e.g. in GR, there are only two,
not six, physical degrees of freedom, which correspond to
the plus and cross polarizations in the transverse-traceless
gauge—in any other gauge, the six hA’s can all be ex-
pressed as functions of those two quantities.

For the purpose of analyzing the output of multiple GW
detectors, it is often convenient to write the polarization
tensors in terms of unit vectors tangent and normal to the
celestial sphere at each sky location. A standard linear
polarization basis is given by

e+
ab(n̂) = φ̂a(n̂) φ̂b(n̂)− θ̂a(n̂) θ̂b(n̂) , (7a)

e×ab(n̂) = φ̂a(n̂) θ̂b(n̂) + θ̂a(n̂) φ̂b(n̂) , (7b)

ex
ab(n̂) = φ̂a(n̂) k̂b(n̂) + k̂a(n̂) φ̂b(n̂) , (7c)

ey
ab(n̂) = θ̂a(n̂) k̂b(n̂) + k̂a(n̂) θ̂b(n̂) , (7d)

eb
ab(n̂) = φ̂a(n̂) φ̂b(n̂) + θ̂a(n̂) θ̂b(n̂) , (7e)

el
ab(n̂) = k̂a(n̂) k̂b(n̂) , (7f)

where θ̂(n̂) and φ̂(n̂) are respectively the celestial polar
and azimuthal coordinate vectors for a given source sky
location determined by n̂; by design, these vectors sat-

isfy θ̂(n̂) × φ̂(n̂) = −k̂(n̂) = n̂. Other frame choices are
possible, and multiple conventions abound in the litera-
ture. In particular, note that these metric polarizations
will correspond to those in [42, 43] only for an equivalent
choice of eAab’s and in a gauge such that R0i0j ∝ −∂2

t hij ,
where Rabcd is the Riemann tensor (in GR, this is just
the transverse-traceless gauge).

As an example of the polarization decomposition of
Eq. (5), consider theories in which gravitational pertur-
bations carry spin-weight 2, like GR. In that case, we
may choose to work with the two transverse-traceless
linear polarization tensors corresponding to the plus (+)
and cross (×) amplitudes shown in Eq. (6), and Eq. (5)
becomes simply:

h̃ab(k) = h̃+(k) e+
ab(n̂) + h̃×(k) e×ab(n̂) . (8)

Because the linear polarization tensors are real-valued
by definition [cf. Eq. (7)], the reality condition for the
amplitudes, Eq. (4), implies

h̃+/×(−f, n̂) = h̃
∗
+/×(f, n̂) . (9)

Alternatively, instead of the linear modes of Eq. (6),
we could choose to work with eigenmodes of the helicity



4

operator, i.e. the right- and left-handed circular polariza-
tion tensors (denoted “R” and “L” respectively). These
modes satisfy an eigenvalue equation

εijkk̂ke
Â
`j = i εÂ e

Â
`
i , (10)

for Â ∈ {R,L} (not summed on the right-hand side),
where we have defined the factor εR/L = ±1, with the
plus (minus) sign corresponding to the R (L) mode. Then,
the circular polarization tensors can be written in terms
of the ones for plus and cross as

eR/L =
1√
2

(
e+ + i εR/Le×

)
. (11)

Using the circular tensors as a basis, we would write,
instead of Eq. (8),

h̃ab(k) = h̃R(k) eR
ab(n̂) + h̃L(k) eL

ab(n̂) , (12)

and the reality condition, Eq. (4), would now imply (note
the “L/R” subscript on the right hand side)

h̃R/L(−f, n̂) = h̃
∗
L/R(f, n̂) , (13)

instead of Eq. (9). The circular polarization modes can
be similarly defined for the vector polarizations to obtain
eigenmodes of helicity ±1. On the other hand, the scalar
modes have helicity 0, so in a sense are already circular.

For future reference, note that the spin-weight 2, spin-
weight 1 and the transverse spin-weight 0 linear polariza-
tion tensors are normalized as usual such that, for a given
direction of propagation,

eA ijeA
′
ij = 2 δAA

′
, (14)

for A ∈ {+, ×, x, y, b}, and δAA
′

the Kronecker delta;
on the other hand, the longitudinal tensor satisfies
(el)ij(eA)ij = δlA. Similarly, the spin-weight 2 circular
polarization tensors of Eq. (11) satisfy

(eÂ ij)∗eÂ
′
ij = 2 δÂÂ

′
. (15)

The basis tensors for the circularly-polarized vector modes
also satisfy Eq. (15).

Although the two linear and circular bases discussed
above are probably the most common in the GW literature
(modulo normalizations), we are of course free to pick
any other. For instance, in the analysis of differential-
arm instruments, it is generally convenient to instead
work with the traceless linear combination of hb and hl,
since that is what such detectors can measure. Similarly,
different theories may also define their own preferred
polarization bases, composed of the GW eigenstates that
are preserved during propagation. Such basis will be
the one that diagonalizes the “kinetic matrix” of any
given theory. By this we mean the Hermitian matrix
KIJ(k) in the free, quadratic, Fourier-space action S =∫

1
2KIJ(k)Φ̃I†Φ̃Jd4k, where Φ̃I is the vector of all the

linearized fields, indexed by I. This matrix also includes
mass (potential) terms.

B. Stochastic signals

In the case of stochastic signals, the Fourier amplitudes,
h̃ij(k), are, by definition, random variables and, as such,
can be fully characterized by the moments of some (multi-
variate) probability distribution. Most standard searches
for a stochastic GW background make the following as-
sumptions about the random process that produced these
amplitudes (see, e.g., [60] for a review): the random pro-
cess is (i) Gaussian, (ii) ergodic, and (iii) stationary, with
no correlation between amplitudes from different (iv) sky
locations or (v) polarizations, and with (vi) equipartition
of power across polarizations; furthermore, the process is
commonly (although not universally) assumed to be (vii)
isotropic. We break down these assumptions below, and
introduce some important definitions along the way.

Stochastic backgrounds are expected to arise from pri-
mordial cosmological processes [18–28], or by the inco-
herent superposition of a great number of signals from
contemporary astrophysical events [29–41]. The assump-
tion (i) that the astrophysical background is produced
by a Gaussian random process is motivated by the cen-
tral limit theorem—this guarantees that the properties
of any large number of incoherently-added GW signals
will be normally distributed, regardless of the specific
characteristics of any given source. A similar argument
can be applied to primordial signals by considering the in-
dependent evolution of waves from causally-disconnected
regions [15]. Although waves from inflation will techni-
cally have non-Gaussianities, they will be small as long as
inflation satisfied the slow-roll approximation [15, 28, 62].

For Gaussian processes, all properties of the probability
distribution are determined by its first two moments (cor-
relation functions)—namely, the mean and power spec-
trum (respectively, the one- and two-point correlation
functions). The first moment of the distribution, the mean

〈h̃(f)〉, will not appear explicitly in any of the expressions
below, so we ignore it.3 Here and below, the expecta-
tion value, denoted by angle brackets 〈·〉, corresponds to
ensemble averages, as well as space/time-averages by as-
sumption (ii) of ergodicity. The expectation of ergodicity
itself comes from the assumption that the Universe is
homogeneous (for more discussion on this topic, see [28]).

The second moment of the distribution will end up
being an important observable. In order to write down
an expression for it, we can make use of assumptions (iii)
and (iv). First, stationarity (iii) is motivated by the fact
that observation times (order of months to years) are
extremely small relative to the dynamical timescales in-
trinsic to the cosmological processes that could change the
properties of the background (order of billions of years);

3 Some authors explicitly set this value to zero because the con-
tribution from a nonvanishing mean would take the form of a
coherent offset in the Fourier amplitudes as a function of fre-
quency, which not only would be hard to justify physically, but
would also hardly classify as “stochastic” (see, e.g., [16, 60]).
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therefore, any changes in the stochastic background would
be unnoticeable to us. Formally, stationarity means that
the first moment is constant, while the second moment
depends only on time differences (see, e.g., [63]). As a
consequence, the Fourier transform of a stationary ran-
dom variable can be shown to be such that amplitudes at
different frequencies will be statistically independent and,
therefore, uncorrelated (Appendix B).

Next, the assumption (iv) that amplitudes from dif-
ferent sky locations will be uncorrelated is justified for
primordial waves because signals from different points in
the sky are only coming into causal contact now at Earth,
under ordinary topological assumptions. One could po-
tentially search for nonstandard spatial topologies in a
sufficiently “small” universe through angular correlations
in gravitational waves [64], in much the same way as in
the cosmic microwave background (CMB) [65, 66]. A
small universe with nonstandard spatial topology would
induce circles of excess correlation in both the CMB and
gravitational-wave background. As there has been no evi-
dence of this phenomenon in the CMB, in this article we
consider primordial signals from different sky directions
to be uncorrelated.

For contemporary (“astrophysical”) backgrounds, (iv)
comes from the assumption that the contributions from
multiple sources throughout the sky (say, binary systems)
are added “incoherently”—that is, sources are not per-
fectly aligned and timed as would be needed for signals
from different directions to reach us with matching phase
and amplitude evolution. Even though such astrophysical
sources were in causal contact at some point in the past,
they are embedded in chaotic astrophysical environments
(with e.g. turbulent magnetohydrodynamics) with Lya-
punov times sufficiently short that in practice, they can be
treated as uncorrelated. In principle, strong gravitational
lensing may introduce correlations between sky bins into
the stochastic background, whether primordial or contem-
porary, but we can expect this effect to be negligible in
practice [67].

With assumptions (iii) and (iv) in place, we may write
the second moment of the amplitude distribution in the
form (Appendix B):〈

h̃
∗
A(k) h̃A′(k′)

〉
=

1

2
δ(f − f ′) δ(n̂− n̂′)SAA′(k) . (16)

This equation defines the one-sided cross-power spectral
density, SAA′(k) ≡ SAA′(f, n̂), for two signals, h̃A/A′(k),
sharing a wave-vector k but with potentially different
polarizations A and A′. For linear polarizations, this
quantity satisfies SAA′(f, n̂) = SA′A(−f, n̂), because of
the reality condition of Eq. (4). Since we are usually in-
terested in the total measured power at a given frequency,
regardless of sky direction, we also define the integral of
SAA′(k) over the sky,

SAA′(f) ≡
∫

sky

SAA′(f, n̂) dn̂ , (17)

which carries units of strain2/Hz. For A = A′, this is noth-

ing more than the one-sided power spectral density (PSD)
in polarization A, which we denote SA(f) ≡ SAA(f). In
general, for any real-valued random variable X(t), the
PSD can be approximated as twice the square of the
band-limited Fourier transform [63],

SX(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2
X(t) e2πiftdt

∣∣∣∣∣
2

, (18)

in practice always computed for some long but finite
integration time, T , on the order of months to years for
observations of the stochastic background. As usual, the
factor of 2 in Eq. (18) accounts for the fact that this is
the one-sided PSD, S(f) ≡ S(|f |).

Assumption (v) that the different polarizations are
statistically independent may be used to discard off-
diagonal terms in the cross-power spectrum, so that
SAA′(f) = δAA′SA(f). However, one must be careful
with this simplification: the assumption is valid if and
only if one works in a polarization basis that diagonalizes
the kinetic matrix of the theory. Importantly, as we will
show with specific examples, such a basis need not be the
linear polarization basis used in most GR analyses. Even
when working within GR, it is generally better, from a
theoretical standpoint, to work in terms of the circular
modes, as they are eigenstates of the helicity operator,
and they might be produced with different intensities in
the early universe [68–70].

Besides assuming that the polarizations are uncorre-
lated, it is also common to assume that there is equipar-
tition of power between them—assumption (vi) in our
list above. Under this presumption, the background is
said to be unpolarized and the polarization PSDs may
be written in terms of the total GW spectral density,
S(f) =

∑
SA(f), such that SA = S(f)/N , where N is

the number of polarizations allowed to propagate in a
given theory. In general, this assumption is only justified if
the polarizations both diagonalize the kinetic matrix and
interact similarly with matter, so that they are sourced
in equal amounts. This not always the case: for example,
in both massive gravity [71, 72] and dynamical Chern-
Simons gravity [73–75], different polarizations couple to
sources with different strengths.

Finally, the simplest searches for a stochastic back-
ground also adopt assumption (vii) of isotropy, in which
case S(f, n̂) = S(f)/4π, by Eq. (17). In GR, if one
disregards the proper motion of the solar system, this
assumption is expected to hold well for most foreseeable
sources of a stochastic background detectable by existing
ground-based observatories, since they are expected to
originate from cosmological distances [15, 16, 60]. 4 For
cosmological sources, isotropy is likely also a good as-
sumption in many beyond-GR theories; however, isotropy

4 The same will not necessarily be true for LISA, which will be
sensitive to galactic stochastic sources, like the “confusion noise”
from white-dwarf binaries [76].
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should not be expected to hold in theories with a pre-
ferred frame, which are intrinsically anisotropic [77–84].
For simplicity, the rest of this document will treat only the
case of an isotropic background, but this does not affect
the spirit of the results, which can be easily generalized to
the anisotropic case. For predictions of the angular power
spectrum of astrophysical GR backgrounds see [85], and
for corresponding observational limits that do not assume
isotropy see [86].

Assuming both (vii) an isotropic background and (v)
uncorrelated polarizations, on top of (iii) stationarity and
(iv) uncorrelated sky bins, Eq. (16) can be written directly
in terms of the power spectral density,〈
h̃
∗
A(k)h̃A′(k′)

〉
=

1

8π
δ(f−f ′)δ(n̂−n̂′)δAA′SA(f). (19)

If one further assumed (vi) equipartition, SA(f) would
be replaced with S(f)/N , as explained above. This is
the form of the expression most common in recent lit-
erature about detection of stochastic gravitational-wave
backgrounds (e.g., [60]).

C. Detection

Because the output of ground-based GW detectors is
largely dominated by stochastic instrumental and envi-
ronmental noise [87, 88], it is not possible to measure the
power spectrum of the polarization amplitudes, SA(f),
directly with a single detector at any level of interest.
However, this quantity may be inferred by looking instead
at the cross-correlation of the output of two or more in-
struments (see, e.g., [60] for a comprehensive review of
data analysis methods).

We assume that each GW detector has a purely linear
response to gravitational waves. Therefore, in the Fourier
domain, the response of detector I to a plane wave h̃ab(k)
must be expressible as

h̃I(k) = D̃ab
I (k) h̃ab(k) , (20)

for some tensor D̃ab
I (k) ≡ D̃ab

I (f, n̂) representing the de-
tector’s frequency- and direction-dependent transfer func-
tion. This tensor encodes all relevant information about
the detector and the physics of the measurement pro-
cess [89–96] (for considerations specific to gravity beyond
GR, see e.g. [43, 51, 97–100]). The detector’s output

h̃I(k) (e.g. the calibrated current out of a photodiode) is
a gauge-invariant observable. However, the metric pertur-
bation h̃ab(k) is gauge-dependent; therefore, the detection

tensor D̃ab
I (k) must also depend on the gauge choice, so

that the overall gauge dependence on the right-hand side
of Eq. (20) exactly cancels.

Assuming a basis of polarization states A that have
well defined phase velocities (i.e. they diagonalize the
kinetic matrix of the theory), we may use Eq. (20) to
write the Fourier transform of the signal at detector I

explicitly as a sum over polarizations and an integral over
sky directions,

h̃I(f) =

∫ ∑
A

F̃AI (f, n̂) h̃A(f, n̂) e−2πifn̂·~xI/v
A
p dn̂ , (21)

defining the Fourier-domain response functions as the
contraction between the detector and polarization tensors,
F̃AI (f, n̂) ≡ D̃ab

I (f, n̂) eAab(n̂), which must also be gauge-
dependent.

The time-domain analogue of Eq. (20) is given by a
convolution,

hI(t, ~xI) =

∫ ∞
−∞

Dab
I (t)hab(t− τ, ~xI) dτ , (22)

with ~xI the location of detector I, and Dab
I (t) its im-

pulse response. Since D̃ab
I (k) is gauge-dependent, the

same must be true for Dab
I (t). For an ideal differential

arm-length instrument, it is easiest to write down this
detector tensor in a synchronous gauge (h0ν = 0 in the
detector frame), wherein the end test masses’ coordinate
locations will not change [58]. In such a gauge, the result-
ing differential-arm detector tensor is the purely geometric
factor

Dab(t) =
1

2

(
X̂aX̂b − ŶaŶb

)
, (23)

with X̂ and Ŷ spacelike unit vectors pointing along the
detector arms. For real interferometric detectors, like
LIGO and Virgo, Eq. (23) is valid only in the small-
antenna limit (arm length � GW wavelength) [92–96].

For any realistic detector, the tensor of Eq. (23) will
vary in time due to the motion of the instrument with re-
spect to the inertial frame of the wave (e.g. due to Earth’s
rotation, for ground-based observatories). However, for
the cases we are interested in, we can take this variation
to be slow with respect to the period of the waves, so that
it can be ignored if Eq. (21) is implemented via short-time
Fourier transforms. In this ideal “slow-detector” limit,
we may then treat the response as time- and frequency-
independent to write D̃ab

I (k) = Dab
I (t) ≡ Dab

I , and so
Eq. (21) simplifies to

h̃I(f) =

∫ ∑
A

FAI (n̂) h̃A(f, n̂) e−2πifn̂·~xI/v
A
p dn̂ , (24)

with the frequency-independent antenna patterns defined
in full analogy to our definition of F̃AI (f, n̂) above,

FAI (n̂) ≡ Dab
I eAab(n̂) . (25)

For details on this simplification, and nuances applicable
to anisotropic backgrounds, see Sect. IV in [101].

In the Fourier domain, the cross-correlation between
the output of two detectors may then be written in terms
of the second moment of the distribution of polarization
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amplitudes as〈
h̃
∗
I(f)h̃I′(f

′)
〉

=

∫
dn̂dn̂′

∑
AA′

〈
h̃
∗
A(k)h̃A′(k′)

〉
(26)

× F ∗AI (n̂)FA
′

I′ (n̂′) ei(
~kA′ ·~xI′−~kA·~xI) ,

where, again, assumption (ii) of ergodicity is tacitly im-
plied. If we also assume, as we will throughout this paper,
that the background is (iii) stationary and (vii) isotropic,
and (iv) that sky bins are uncorrelated, we may then use
Eq. (19) to simplify this to〈

h̃
∗
I(f)h̃I′(f

′)
〉

=
1

2
δ(f − f ′)SAA′(f)ΓAA

′
II′(f) , (27)

where we have defined the generalized overlap reduction
function for polarizations A, A′ and detectors I, I ′,

ΓAA
′

II′(f) ≡ 1

4π

∫
dn̂ F ∗AI (n̂)FA

′
I′ (n̂)e−2πifn̂·ξAA′

II′ , (28)

in terms of the phase factor ξAA
′

II′ (f) ≡ ~xI/vAp − ~xI′/vA
′

p ,
which acquires a potential frequency dependence through
the phase velocities. If there is one dispersion relation
shared by all polarizations (true throughout the rest of
this paper), the exponent in Eq. (28) can be written as

−2πifn̂ · ξAA′
II′ = −i~k ·∆~xII′ , in terms of the separation

between detectors ∆~xII′ ≡ ~xI − ~xI′ . The overlap reduc-
tion functions encode all relevant information pertaining
GW polarizations and speed, as well as detector geome-
try. The specific definition and normalization chosen here
are intended to facilitate generalization of the analysis
beyond GR, and are not necessarily standard (see, e.g.,
Sect. 5.3 of [60] for a review of these functions and their
properties).

Because the noise in different instruments will generally
be statistically independent [87, 88], by cross-correlating
the output of a pair of detectors, one may directly measure
the signal cross-correlation of Eq. (27), and hence infer
the polarization power spectra SAA′(f) (as proposed by
[10, 11], and studied in multiple works since). In a theory
that allows for N independent polarizations, there will
be up to N(N + 1)/2 different SAA′ terms (only N if
the correlation matrix is diagonal), and at least as many
detector pairs (“baselines”) will be needed to break all
degeneracies between them.

D. Energy density

Searches for a stochastic gravitational-wave background
attempt to measure the Universe’s total energy density in
gravitational waves as a function of frequency. However,
inferring this quantity from direct observables requires
theoretical assumptions. Furthermore, the equivalence
principle precludes being able to localize energy density
in gravitational waves, so this is in fact an effective energy
density. We elaborate on these important points below,
and sketch the general procedure to link the effective GW

energy density to observables at the detector in (almost)
any given theory. Concrete examples of how to apply this
are provided in Sec. III.

With an eye to cosmology, the quantity of interest
in stochastic searches is usually chosen to be the log-
fractional spectrum of the effective GW energy density
[11–14, 16],

ΩGW(f) ≡ 1

ρcritical

dρGW

d ln f
, (29)

with ρGW the effective GW energy density as a function
of frequency, and ρcritical the critical density required to
close the universe,

ρcritical ≡
3c2H2

0

8πG
, (30)

where H0 is the present Hubble parameter [16]. Present-
ing results of a stochastic background search in terms
of this quantity facilitates their cosmological interpreta-
tion. More importantly, using an energy density (however
parametrized) allows for direct comparison with theoreti-
cal models: in order to predict the properties of the GW
background, one computes the typical GW power emitted
by the system of interest (e.g., compact binaries, cosmic
strings, or primordial fluctuations) and then obtains an
energy spectrum by incoherently adding many such contri-
butions (e.g., using the quadrupole formula with merger
rates from population synthesis) [18–41].

However, GW detectors do not measure the effective
physical GW energy density, but rather the amplitude of
the waves at each instrument. In particular, searches for
a stochastic background are sensitive to the (incoherent)
strain amplitude power, Eq. (16). This will remain true for
future detection methods, like space missions or pulsar
timing. In the case of ground-based observatories, as
outlined in Sec. II C, the stochastic strain amplitudes are
probed through the cross-correlation of detector outputs
across a network, Eq. (26). Thus, whatever the detection
method, we will need an object that relates gravitational-
wave amplitudes to energies—a mapping that is theory-
dependent.

The frequency-domain effective stress-energy tensor
(ESET) for gravitational waves lets us translate be-
tween the more accessible two-point amplitude correla-
tion function, Eq. (16), [or the two-detector-output cross-
correlation, Eq. (26)] and the GW contribution to the
energy density, Eq. (29). In GR the ESET is given by a
simple expression first derived by Isaacson [102, 103] (see
Sec. III A below), which enables stochastic searches to
be parametrized directly in terms of ΩGW(f) [11–14, 16].
Interestingly, the same relationship has been assumed to
hold in most stochastic GW data analysis schemes that
allow for departures from GR [46–48, 50, 52, 53, 56], even
though the Isaacson formula will not necessarily hold in
arbitrary theories [57]. Using the Isaacson formula when
inappropriate will lead to a mistranslation between de-
tector cross-correlations and GW energy densities. This
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Detector cross-
correlation

〈h̃∗I(f)h̃I′(f
′)〉

Polarization
basis two-

point function
〈h̃∗A(k)h̃A′(k′)〉

GW effective
energy density
ρGW(x) = T eff

00

Fractional
cosmological
GW energy

density ΩGW(f)

Eq. (26),
depends on
dispersion
relation

Eq. (36)
& (31),
depends

on kinetic
matrix

Eq. (29)
& (37),

definition

Eq. (39), when several
assumptions are satisfied

FIG. 1. Key quantities appearing in stochastic searches, and how they are related to each other. The relationships between
them are theory-dependent. The primary observable is the detector cross-correlation, but inferences are often stated in terms of
the fractional cosmological GW energy density, or a parametrization thereof. Arrows point from more fundamental quantities to
derived quantities.

is not only misleading, but can also lead to errors when
deriving constraints on theories from observations.

In the context of any specific theory of gravity, the
ESET can be derived directly from the action. The ESET
is given by a space-time average of the variation of the
second-order perturbation of the action with respect to
the background (inverse) metric [57],

T eff
ab =

〈〈
− 2√
−g(0)

δS(2)
eff

δg(0)ab

〉〉
, (31)

where the double angular brackets 〈〈·〉〉 indicate an aver-
aging procedure over a spacetime region on the order of
several wavelengths (e.g. Brill-Hartle averaging, though
other procedures [104] agree when there is a separation of
length scales). We briefly summarize the approach here;
we refer the interested reader to [57] for more exposition.

The second-order Lagrangian L(2)
eff is obtained from the

action S[g, ψ] after perturbing the metric gab and other
dynamical fields ψ via

gab = g
(0)
ab + εh

(1)
ab + ε2h

(2)
ab +O(ε3) , (32)

ψ = ψ(0) + εψ(1) + ε2ψ(2) +O(ε3) , (33)

and collecting terms in the action order-by-order in the
small parameter ε. This gives the expansion

S[g, ψ] = S(0)[g(0), ψ(0)] (34)

+ εS(1)[h(1), ψ(1); g(0), ψ(0)]

+ ε2S(2)[h(1,2), ψ(1,2); g(0), ψ(0)] +O(ε3) ,

where h(1,2) means both h(1) and h(2) are present. At
order ε0, the action S(0) generates the ordinary nonlinear
background equations of motion for g(0) and ψ(0). At
order ε1, the action S(1) is purely a “tadpole” term which
vanishes when (g(0), ψ(0)) are on shell, and therefore does
not contribute to any equations of motion. The same
is true for the second-order perturbations (h(2), ψ(2)),

which appear linearly in S(2). However, (h(1), ψ(1)) appear
quadratically in S(2): the quadratic action S(2) then
generates the linear equations of motion for (h(1), ψ(1))
when varied with respect to (h(1), ψ(1)); at the same time,
the variation with respect to g(0) will be a quadratic
functional of (h(1), ψ(1)), and results in the ESET.

From now on we drop the order-counting superscript,
letting h = h(1), since we will not encounter h(2). In a
local Lorentz frame whose time direction is aligned with
the Hubble flow, we can define the position-space effective
GW energy density as

ρGW ≡ T eff
00 [h, h] , (35)

where the double argument [h, h] is just to remind us that
T eff is a quadratic functional of h. To use Eq. (29), we
want ρGW in momentum space, so we need to make use
of a plane-wave expansion like Eq. (1). The result will
always be a momentum-space integral of the form

ρGW(x) =

∫
d̃kd̃k

′
Qabcd(k,k′)×〈
h̃
∗
ab(−k) h̃cd(k

′)
〉
ei(k+k′)·x , (36)

where the (gauge-dependent) tensor Qabcd encodes in-
formation about the kinetic matrix of the theory in
momentum space, and we have used Eq. (4) to write

h̃ab(k) = h̃
∗
ab(−k). Notice that here we have replaced the

spacetime averaging of Eq. (31) with ensemble averaging,
based on assumption (ii) ergodicity. When the two-point

function 〈h̃
∗
A(k)h̃A′(k′)〉 is of the form of Eq. (16), the

double integral will collapse to a single integral, and the
physical energy density will be related to the power spec-
tral density SAA′(k), with some potentially nontrivial
frequency dependence arising from Qabcd (we will see
several examples below).

When this double integral collapses to a single inte-
gral, we can then define the fractional energy density per
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frequency bin via

ρGW =

∫
dρGW

df
df =

∫
dρGW

d ln f

df

f
. (37)

With this definition of dρGW/d ln f , and the relationship
between the energy density Eq. (36) and a two-point func-
tion like Eq. (16), it will be possible to relate the power
spectral density SAA′(k) to the cosmological fractional
energy density ΩGW(f), Eq. (29). The relationships be-
tween all these key quantities are illustrated in Fig. 1.

Once we have this, we may work directly with ΩGW(f);
in particular, data analysis searches usually assume a
power-law model like

ΩGW(f) = Ω0

(
f

f0

)α
, (38)

for some spectral index α, and Ω0 the characteristic am-
plitude at some arbitrary reference frequency f0. This is
how LIGO generally parametrizes its searches, e.g. [17];
for a discussion of the validity of this parametrization,
see [105].

III. EXAMPLE THEORIES

In this section, we show how different gravitational
theories imply different functional relations between the
effective fractional energy density spectrum, ΩGW(f)
in Eq. (29), the strain cross-power spectrum, S(f) in
Eq. (16), and, consequently, the cross-correlation between
detector outputs, Eq. (26) As discussed in Sec. II C, this
last quantity is the relevant observable for ground-based
instruments, on which we focus. The relationships be-
tween all the key quantities are illustrated in Fig. 1. Along
the way, we also discuss the expected statistical properties
of the polarization amplitudes under each framework, as
required purely by the basic structure of the theory (that
is, not considering specific source models).

We first demonstrate the procedure by rederiving the
standard GR expressions from the Einstein-Hilbert action
(Sec. III A), and then offer a series of beyond-GR examples
for which the analogous result is different: we consider
the case of Chern-Simons gravity, a theory which is not
parity-symmetric (Sec. III B); this is followed by Brans-
Dicke gravity, the prototypical example of a scalar-tensor
theory (Sec. III C); finally, we study Fierz-Pauli gravity
(Sec. III D), in which the graviton is endowed with a mass.
The last two examples support nontensorial modes of the
metric perturbation (see Sec. II A).

For all the examples we consider, we find it reason-
able to simplify our equations by assuming the stochastic
background is (i) Gaussian, (ii) ergodic, (iii) stationary
and (vii) isotropic, with (iv) no correlation between dif-
ferent sky locations. In all cases, then, we find that we
can write the cross-correlation between the output of two

ideal differential-arm detectors I and I ′ in the form〈
h̃
∗
I(f)h̃I′(f

′)
〉

=
3H2

0

4π2|f |3
δ(f − f ′) (39)

×
∑
A

ΞA(f) ΩA(f) ΓAII′(f) ,

where the sum is over some polarization basis A that
diagonalizes the kinetic matrix of the theory. Here the
ΓAII′(f)’s are the generalized overlap reduction functions of
Eq. (28), ΩA(f) is the effective fractional energy spectrum
in polarization A defined by analogy to Eq. (29), and
ΞA(f) is a model-dependent factor encoding deviations
from GR. In Einstein’s theory, ΞA(f) = 1 for tensor
polarizations and vanishes otherwise, as we show below.

Many of the results in this section are derived on a flat
background, and will therefore be erroneous in a cosmo-
logical setting. However, because of the vast separation
of scales between the gravitational wavelength λGW and
the Hubble parameter today H0, the error between the
flat space results and the cosmologically-correct results
will be of fractional order O(λGWH0/c). This correction
has been explicitly computed in GR [106], and while we
are not aware of the same computation in beyond-GR
theories, it should remain true as long as the theory of
gravity respects the separation of scales.

A. General relativity

The vacuum Einstein field equations can be derived
from the Einstein-Hilbert (EH) action,

SEH = κ

∫
dx
√
−gR , (40)

where κ = c4/(16πG), g is the determinant of the metric
gab, andR is the Ricci scalar [58]. We may now expand the

metric around some background, gab = g
(0)
ab + εhab + . . . ,

as in Eq. (32). The source-free linearized equations of
motion, on a flat background (so that Riemann vanishes),
and in the transverse-traceless gauge (∇ahab = 0 and
haa = 0), take the simple form

�hab = 0, (41)

where � ≡ ∇a∇a is the d’Alembertian with respect to the
background metric. Equation (41) leads to the standard
geometric optics approximation to GW propagation, from
which it follows that GWs show no birefringence and
always propagate at the speed of light.

Focus now on the second-order perturbation of Eq. (40).
On a flat background, the second-order Lagrangian den-
sity is given by [57, 107]

L(2)
GR = κ

√
−g
[

1

2

(
∇ah̄bc

) (
∇bh̄ac

)
− 1

4

(
∇ah̄cd

) (
∇ah̄cd

)
+

1

8

(
∇ah̄

) (
∇ah̄

)]
, (42)
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where all derivatives are taken with respect to the back-
ground metric gab, and h̄ab ≡ hab − gabh

c
c/2 is the

trace-reversed metric perturbation. This piece of the
Lagrangian density corresponds to S(2) in Eq. (34).

We now apply the transverse-traceless gauge conditions
and evaluate the perturbations on-shell (that is, we en-
force the first-order equations of motion). Then, varying
with respect to the inverse background metric, gab, as in
Eq. (31), we obtain, far away from sources,

T
(GR)
ab =

c4

32πG

〈〈
∇ahcd∇bhcd

〉〉
. (43)

This is the well-known expression for the effective stress-
energy carried by a gravitational wave, first derived by
Isaacson (and, consequently, known as the Isaacson for-
mula) [102, 103].

We may now use Eq. (43) to relate S(f) and ΩGW(f),
as outlined in Sec. II D. The Isaacson expression implies
that, in a local Lorentz frame,

ρGW = T
(GR)
00 =

c2

32πG

〈〈
∂thij ∂th

ij
〉〉
, (44)

where we have used the fact that the transverse-traceless
metric perturbation will be purely spatial. Plugging in
the plane-wave expansion of Eq. (1), using the reality
condition of Eq. (4), and invoking (ii) ergodicity, we may
rewrite this as

ρGW =
−c2

128π3G

∫
d̃kd̃k

′
ωω′

〈
h̃
∗
ij(−k) h̃

ij
(k′)

〉
× ei(k+k′)·x. (45)

This means that, in GR and in our gauge, ρGW takes the
form of Eq. (36) with

QabcdGR =
−c2

128π3G
gacgbdωω′ . (46)

It is convenient at this point to expand the Fourier
amplitudes into polarizations. Because GR is parity-
symmetric, in this theory all modes are generated and
propagate equally, so one is free to choose between lin-
ear and circular polarizations; however, working with the
former is slightly simpler because the corresponding polar-
ization tensors, Eqs. (7a) and (7b), are real-valued. Then,
summing over A, A′ ∈ {+,×},

ρGW =
−c2

128π3G

∫
d̃kd̃k

′
ωω′

〈
h̃
∗
A(−k) h̃A′(k′)

〉
× eAij eA

′ij ei(k+k′)·x. (47)

We now use the fact that the Fourier amplitudes are
given by a random process to simplify our expression for
ρGW via Eq. (16). Following common practice and for
the sake of simplicity, we will assume that the station-
ary Gaussian background is also (vii) isotropic and (vi)

unpolarized, with equal contributions from the linear po-
larizations. Letting the total PSD in tensor polarizations
be St ≡ S+ + S× with S+ = S× = St/2, this means

SAA′(f, n̂) =
1

8π
δAA′St(f) . (48)

Again, the assumption (vi) of equipartition is justified
because GR conserves parity. The correlation of the
Fourier polarization amplitudes, Eq. (19), then becomes〈
h̃
∗
A(k)h̃A′(k′)

〉
=

1

16π
δ(f−f ′)δ(n̂−n̂′)δAA′St(f). (49)

With this in place, and noting that Eq. (14) implies
eAije

Aij = 4 when summing over A = {+,×}, the ef-
fective energy density of Eq. (47) simplifies to

ρGW =
πc2

4G

∫ ∞
0

St(f)f2 df . (50)

Comparing with Eq. (37), we can immediately read off
dρGW/d ln f , and then, from the definition of ΩGW(f),
Eq. (29), we conclude

St(f) =
3H2

0

2π2|f |3
ΩGW(f) . (51)

As discussed in Sec. II C, the actual observable for
stochastic-background searches in data from ground-based
observatories is the cross-correlation between the outputs
of pairs of detectors. For an isotropic background, this is
given by Eq. (27), which can be written in terms of the
fractional energy density by means of Eq. (51):〈

h̃
∗
I(f)h̃I′(f

′)
〉

=
3H2

0

8π2|f |3
δ(f − f ′) ΩGW(f) Γt

II′ , (52)

where we have defined the total tensor overlap-reduction
function as Γt

II′ ≡ Γ++
II′ (f) + Γ××II′ (f). This is the desired

expression relating the observable strain cross-correlation
to the fractional effective-energy density spectrum, that
will be predicted by theory. Eq. (52) is used in most
LIGO and Virgo searches for a stochastic background, via
parametrizations like the ΩGW(f) power-law of Eq. (38).
Comparing to Eq. (39), and recalling ΩGW = Ω+ + Ω×
with Ω+ = Ω× = ΩGW/2, we see that in GR, Ξ(f) = 1 for
tensor polarizations, and vanishes otherwise, as expected.

B. Chern-Simons gravity

Chern-Simons (CS) theory is an extension of GR with
motivations ranging from anomaly-cancellation in curved
spacetime, low-energy limits of both string theory and
loop quantum gravity, effective field theory of inflation,
and more [73, 108–118]. The theory is characterized
by the presence of a parity-odd, axion-like scalar field,
which couples to curvature through a parity-odd interac-
tion (see [74] for a review). This modification introduces
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the additional axionic degree of freedom, but does not
introduce any additional propagating GW degrees of free-
dom. The ESET in this theory was derived in [57], in
an asymptotically-flat spacetime and approaching future
null infinity (I +). As noted before, by promoting flat-
space results to a cosmological setting, we are making an
extremely small error of fractional order O(λGWH0/c).
Below, we provide a sketch of this derivation and show
what the result implies for the stochastic background.

As a consequence of its lack of parity symmetry, CS
gravity generally predicts birefringent propagation and
generation of the metric perturbations, so that one of the
circular tensor polarizations is amplified at the expense
of the other [119]. Consequently, as is true for any theory
lacking parity symmetry, it is not appropriate to assume
that the stochastic background is unpolarized [120]. Fur-
thermore, as we will see, the nondynamical version of the
theory predicts an expression for the effective GW stress-
energy different from the Isaacson formula of Eq. (43),
and consequently differs from GR via a factor of Ξ(f) 6= 1
in Eq. (39).

In the absence of matter, CS gravity is given by the
Einstein-Hilbert action of Eq. (40), plus terms describing
the axion-curvature coupling (Sint), and dynamics (Sϑ)
of the scalar field ϑ [73, 74],

SCS = SEH + Sint + Sϑ , (53)

Sint =
α

4

∫
dx
√
−g ϑ ∗RR , (54)

Sϑ = −β
2

∫
dx
√
−g gab (∇aϑ) (∇bϑ) . (55)

In the above, α is the constant determining the coupling
of the CS field to the gravitational sector, while β controls
the kinetic energy of the scalar; ∗RR is the Pontryagin
density, which is defined in terms of the Riemann tensor,
Rabcd, by

∗RR =
1

2
εabefRabcdR

cd
ef , (56)

with εabcd the Levi-Civita tensor. This term is parity-odd,
and gives CS gravity much of its richness.

Studying the dynamics of the theory, one may show
that gravitational waves in CS gravity will present only
the same tensor (spin-weight 2) propagating degrees of
freedom as in GR [73, 75]. On a flat background and in
Lorenz gauge (∇ah̄ab = 0), metric perturbations follow
the first-order equations of motion [57, 74],

�h̄ab =− 1

κ
T̃

(ϑ)
ab +

α

κ

[
∇cϑ̄∇d�h̄e(aε

cde
b) (57)

+ ∇c∇dϑ̄εcef(a∇f
(
∇b)h̄

de −∇dh̄ e
b)

)]
,

where we split ϑ into a smooth background piece ϑ̄ and

a perturbation ϑ̃, and T̃
(ϑ)
ab is the stress energy sourced

quadratically by ϑ̃,

T̃
(ϑ)
ab = β

[(
∇aϑ̃

)(
∇bϑ̃

)
− 1

2
gab

(
∇cϑ̃

)(
∇cϑ̃

)]
. (58)

Again on a flat background, CS gravity admits an approx-
imately traceless gauge [57], so that h̄ab can be replaced
by hab in these equations, as was done for GR in Eq. (41).

In the weak-coupling limit (i.e. α∇ϑ̄� κλGW, for GW
perturbation wavelength λGW = c/f), it can be shown
that the quadratic Lagrangian density corresponding to
S(2) in Eq. (34) can be written as [57]

L(2)
CS = L(2)

GR + ∆L(2)
CS , (59)

where L(2)
GR is the effective Lagrangian density derived

from the Einstein-Hilbert action, Eq. (42), and

∆L(2)
CS ≡

α

4

√
−g εabcd

(
∇e∇f ϑ̄∇ah̄ f

b ∇ch̄
e
d (60)

+ ∇aϑ̄∇eh̄ f
b ∇d∇eh̄fc

)
.

From this we may derive the effective GW stress-energy,
and relate the energy to the strain cross-correlation, for
both the nondynamical and dynamical versions of the
theory, as outlined in Sec. II D.

1. Nondynamical theory

The nondynamical version of CS gravity is obtained
from Eqs. (53)–(55) by setting β = 0. This removes the
dynamics of the scalar field, fixing it to some a priori
value. Furthermore, in the canonical embedding of this
theory [74], we set the field’s gradient to be purely timelike
in some global frame,

∇αϑ̄ = µ−1δtα , (61)

for some constant µ. When expanding hab as a power
series in α in the weak coupling limit, the first-order
equations of motion on a flat background, Eq. (57), reduce
to a simple wave equation, �h̄ab = 0 +O(α2), as in GR.
This implies that the Lorenz gauge is compatible with
synchronous gauge (i.e., we can satisfy both ∇µhµν = 0
and h0ν = 0 in the same frame).

In spite of its name, there is nothing special about
the canonical embedding other than its simplicity [74].
Although in the following we assume this particular form
for the background scalar field, the qualitative features
of our result should be similar in general, possibly with
extra terms stemming from any non-zero higher-order
derivatives of ϑ̄.

In the canonical embedding of nondynamical CS grav-
ity, it can be shown that the only non-GR contribution
to the on-shell ESET comes from the second term in
Eq. (60), in regions at a great distance from the source
[57]. Consequently, we can write:

T
(CS)
ab = T

(GR)
ab + ∆T

(CS)
ab , (62)

where T
(GR)
ab is the Isaacson tensor from Eq. (43), and

∆T
(CS)
ab is the surviving contribution from Eq. (60), with
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components

∆T (CS)
µν =

α

2µ

〈〈
εi
jk∇(µh

iσ∇ν)∇khσj
〉〉

(63)

in the global frame. The corresponding non-GR energy

density, ∆ρ(CS) ≡ ∆T
(CS)
00 , over a flat background is

∆ρ(CS) =
−iα

8π2µc2

∫
d̃kd̃k

′
ωω′εijkk′k e

i(k+k′)·x

×
〈
h̃
∗ `
i (−k) h̃`j(k

′)
〉
, (64)

after expanding over plane-waves in a synchronous gauge,
as done in Eq. (45), and using the reality condition of

Eq. (4) to substitute h̃
`

i (k)→ h̃
∗ `
i (−k). In the notation

of Eq. (36), Qabcd = QabcdGR + ∆Qabcd, where in dCS and
in our gauge choice, the components of the correction are
given by

∆Qαβγδ =
−iα

8π2µc2
gβγεαδik′i ωω

′ . (65)

We want to expand the perturbation into polarizations,
as we did for the GR case in Eq. (45). However, it would
be inconvenient to do so in terms of the linear plus and
cross modes, since these are not actual eigenmodes of the
kinetic matrix in CS gravity, and hence their amplitudes
will generally be correlated [119]. Instead, we will work
with the right- and left-handed modes of Eq. (11), which

do diagonalize the CS kinetic matrix. Letting Â ∈ {R, L},
then

∆ρ(CS) =
−iα

8π2µc2

∫
d̃kd̃k

′
ωω′|ω′|εijkk̂′k (eÂ `

i )∗(eÂ
′
`j)

×
〈
h̃
∗
Â(−k)h̃Â′(k

′)
〉
ei(k+k′)·x. (66)

Here we have used the fact that, to first order, the GW
dispersion relation in canonical nondynamical CS gravity

is the same as in GR, so that k′i = |ω′|k̂′i.
As a consequence of the birefringence of GWs in CS

gravity, it is also no longer reasonable to assume an
(vi) unpolarized background; rather, we should expect
SR(f) 6= SL(f). (Although in the canonical embedding
there is no amplitude birefringence in GW propagation,
wave generation should still be expected to break par-
ity symmetry.). However, we are justified in taking the
two polarizations to be uncorrelated in this basis, i.e.
SRL(f) = SLR(f) = 0, which is not true in the linear
basis.

With the above considerations in mind, we may write
the correlation factor in terms of the PSD in each mode
as in Eq. (19), so that Eq. (66) becomes (ω′ → −ω):

∆ρ(CS) =
iαπ2

2µc3

∫
dfdn̂|ω|3SÂ(f) δÂÂ′ε

ijkk̂k

× (eÂ `
i )∗(eÂ

′
`j) . (67)

With the help of Eqs. (15) and (10), this simplifies to our
final expression for the additional energy density, after
integrating over the source direction n̂:

∆ρ(CS) = −α8π3

µc3

∫ ∞
0

[SR(f)− SL(f)] f3 df. (68)

Writing the GR contribution also in terms of circular
polarizations and adding it to the purely-CS part, it is
then straightforward to obtain the total energy density
in nondynamical CS gravity:

ρGW =
πc2

4G

∫ ∞
0

∑
Â

λÂ(f)SÂ(f) f2df , (69)

where the sum is over circular polarizations, and for con-
venience we defined

λÂ(f) ≡ 1− 32π2εÂ
αG

µc5
f , (70)

with εR/L = ±1, as in Eq. (10). Because the energy is
diagonal in the circular modes, this may also be writ-
ten as ρGW = ρR + ρL, with each term defined as the
corresponding summand (pulling the sum up front) in
Eq. (69).

Using the definition of the fractional energy density
spectrum, Eq. (29), this means that the strain power in
each polarization can be written as

SÂ(f) =
3H2

0

2π2|f |3
λ−1

Â
(f) ΩÂ(f) (71)

where ΩR/L(f) represents the energy density in each po-
larization, defined in full analogy to Eq. (29) such that
ΩGW = ΩR(f) + ΩL(f). The observable cross-correlation
between the output of two detectors, Eq. (27), can then
be written as in Eq. (39), if we choose the circular tensor
polarization basis and let

ΞÂ(f) = λ−1

Â
(f) ≈ 1 + 32π2εÂ

αG

µc5
f , (72)

with the approximation being valid in the weak-coupling
limit that we have been working in (α/µ � κc/f). As
expected, the usual GR expression of Eq. (52) is recovered
in the limit that the coupling of the scalar field vanishes
(α→ 0), if we further assume SR = SL.

2. Dynamical theory

Perhaps surprisingly, the case of dynamical CS grav-
ity is simpler for our purposes. This is because, in the
dynamical theory, the functional form of the effective
GW stress-energy tensor (about flat spacetime and with
∇ϑ̄→ 0 far away from sources) is given by the Isaacson
formula of Eq. (43), as in GR [57]. This notwithstand-
ing, dynamical CS gravity still breaks parity symmetry,
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featuring birefringent propagation and generation of grav-
itational waves. Therefore, just as in the nondynamical
theory, it would not be justified to take the stochastic
background to be unpolarized. Instead, using the circu-
lar polarization states, in which the CS kinetic matrix
diagonalizes, we find that in the dynamical case〈
h̃
∗
I(f)h̃I′(f

′)
〉

=
3H2

0

4π2|f |3
δ(f − f ′)ΩÂ(f) ΓÂ

II′(f) , (73)

with Â ∈ {L,R}, but now allowing ΩL 6= ΩR. Here we
also have ΞÂ(f) = 1, as in GR. With at least two detector
pairs (e.g. LIGO-Livingston–Virgo, and LIGO-Hanford–
Virgo), it should be possible to use this to measure the
energy density in each circular mode. Eq. (73) may also
be used to parametrize a polarized background in GR,
and hence probe polarized cosmological backgrounds like
those predicted in [68].

C. Scalar-tensor theories

Scalar-tensor (ST) theories are defined by the presence
of one or more scalar fields that couple to the gravita-
tional sector nonminimally. From a field-theoretic point
of view, this family of theories are a natural extension of
GR, and, as such, has been extensively studied [121–128].
Scalar-tensor theories are also well-motivated as effective
field theories encapsulating the low-energy behavior of
quantum gravity completions, like string theory [129–132],
or braneworld scenarios [133, 134]. These theories also
have important applications to cosmology [135, 136].

The literature contains several formulations of ST the-
ories, with varying degrees of generality and complexity.
For simplicity, we will focus on the most basic case, which
was introduced by Brans and Dicke in an attempt to make
Einstein’s theory fully compatible with Mach’s principle
[121]. Scalar stochastic GW backgrounds have been previ-
ously studied in the context of this theory [44]—we revisit
some of those results here from the ESET point of view
presented in Sec. II D.

The vacuum action for Brans-Dicke scalar-tensor grav-
ity can be expressed as

SST = κ

∫
dx
√
−g
[
φR− ωBD

φ
∇aφ∇aφ

]
, (74)

for a scalar field φ, some constant ωBD, and where, as be-
fore, κ = c4/(16πG) and R is the Ricci scalar. Matter will
follow geodesics of the metric associated with Eq. (74);
this representation is known as the Jordan frame of the
theory. Notice that the scalar field has a “scaling sym-
metry,” where if we take φ→ Cφ for some nonzero real
constant C, this constant can be absorbed into κ. If the
scalar field asymptotes to a constant φ0 far away from
all sources, we can use this scaling symmetry to change
the value of φ0 to whatever is most convenient for our
calculations, e.g. we can set φ0 = 1 (note that [44] chooses
a different asymptotic value).

Alternatively, it is often useful to recast the ST action
in a conformal frame in which the scalar is only minimally
coupled to the metric sector. This can be achieved by
defining the conformal metric:

˜
gab ≡

φ

φ0
gab . (75)

In terms of this metric and a redefined scalar field ϕ,
Brans-Dicke theory can be recovered from the action

˜
SST = κ

∫
dx
√
−

˜
g [

˜
R− 2

˜
∇aϕ

˜
∇aϕ] , (76)

where the under-tilded quantities are to be computed
using the metric of Eq. (75). The new scalar field ϕ is
related to φ from Eq. (74) by

φ/φ0 ≡ e−2α0(ϕ−ϕ0) , (77)

α0 ≡ (3 + 2ωBD)−1/2 , (78)

where ϕ0 is some constant analogous to φ0. Because of
its resemblance to the Einstein-Hilbert action of Eq. (40),
this is known as the Einstein representation of the theory.
As we will see, Eq. (76) is more convenient for theoretical
manipulations than Eq. (74)—although it should be kept
in mind that matter follows geodesics in Eq. (74), but not
in Eq. (76).

As usual, we will perturb the Jordan metric and field
to first order by letting gab → gab + hab and φ→ φ0 + δφ,
with hab � gab and δφ � φ0, like in Eq. (32). For
convenience, we will also define

Φ ≡ −δφ/φ0 . (79)

Equivalently, we may perturb the Einstein-frame quan-
tities by writing

˜
gab →

˜
gab +

˜
hab and ϕ→ ϕ0 + δϕ. The

two perturbations will be related by the transformation
of Eq. (77), yielding to first order:

˜
hab = hab − Φgab , (80a)

δϕ =
Φ

2α0
, (80b)

˜
gab = gab . (80c)

Studying linearized perturbations in the Jordan frame,
it is possible to show that there exists a gauge in which
the vacuum linear equations of motion reduce to simple
wave equations, �hab = 0 and �Φ = 0, with the trace
of the perturbation satisfying h = 2Φ [122]. This implies
that the metric perturbation may be locally decomposed
into spin-weight 2 and spin-weight 0 contributions, in the
spirit of Eq. (5), such that

h̃ab(k) = h̃+(k)e+
ab(n̂) + h̃×(k)e×ab(n̂) + Φ̃(k)eb

ab(n̂) (81)

with the polarization tensors as given by Eqs. (7a), (7b)
and (7e). It is easy to check, using the linear transfor-
mations of Eq. (80), that in the Einstein frame this is
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equivalent to a gauge in which the trace-reversed Einstein
metric is given by the same expression as the Jordan
metric, i.e.

˜
h̄ab ≡

˜
hab −

˜
h ηab/2 = hab . (82)

Consequently,
˜
h̄ab is divergenceless (∇a

˜
h̄ab = 0), although

it is not traceless (
˜
h̄ = h = 2Φ).

We will now derive an expression for the GW effective
stress-energy in the Einstein frame, and will then re-
express this in terms of the Jordan quantities that are
measurable at the detector. The reason for this choice is
that, by definition of the Einstein frame, the metric and
scalar field separate in the action of Eq. (76). This nice
feature not only makes our computations easier, but also
those in the modeling of observational scenarios for the
stochastic background—which will generally also offer a
prediction of the energy spectrum in the Einstein frame.
In any, case there is no difference between the Jordan and
Einstein energies to linear order, as given by Eq. (80).

From the variation of the second-order perturbation
of the Einstein-frame Lagrangian density, Eq. (76), with
respect to the inverse background metric,

˜
gµν , we can

show, as in Sec. II D, that the effective GW stress-energy
tensor will be given by two terms:

˜
T

(ST)
ab =

˜
T

(EH)
ab + ∆

˜
T

(ST)
ab . (83)

The first,
˜
T

(EH)
ab , is the contribution from the Einstein-

Hilbert part of the action in Eq. (76)—this is analogous

to T
(GR)
ab in Eq. (43), but is not identical to it due to the

presence of the scalar and the necessarily different gauge
choice with

˜
h̄ = 2Φ. In fact, starting from the quadratic

Lagrangian density of Eq. (42), after evaluating on shell,
it may be shown that

˜
T

(EH)
ab =

κ

2

〈〈
∇ahcd∇bhcd − 2∇aΦ∇bΦ

〉〉
, (84)

in a synchronous gauge for hab (Appendix C). Recall that
the metric perturbation appearing in this equation can be
equivalently taken to be the trace-reversed perturbation
in the Einstein frame, or the regular perturbation in the
Jordan frame (hab =

˜
h̄ab), because we are working to

linear order [Eq. (82)].
The second contribution to the stress energy comes

from the variation of the second term in Eq. (76), and
can be shown to be

∆
˜
T

(ST)
ab = (3 + 2ωBD)κ

〈〈
∇aΦ∇bΦ

〉〉
, (85)

after applying the equations of motion (Appendix C 1). In
both Eqs. (84) and (85), we have simplified the notation
by letting

˜
∇ → ∇, because these derivatives are taken

with respect to the background metric,
˜
gab = gab to linear

order [Eq. (80c)]. Adding together the two contributions,
we obtain the total Einstein frame stress energy:

˜
T

(ST)
ab =

κ

2

〈〈
∇ahcd∇bhcd

〉〉
+ 2κ (1 + ωBD)

〈〈
∇aΦ∇bΦ

〉〉
.

(86)

This agrees with the expression originally found in [122]
by a different procedure.

As in previous sections, we may now expand the cor-
responding effective energy density, ρGW ≡ T00, into
plane-waves to obtain an expression like Eq. (36) with
Qabcd = QabcdGR + ∆Qabcd and

∆Qabcd = − c2ωω′

128π3G
(ωBD + 1) gab gcd , (87)

where we have used the fact that Φ = gabhab/2, as implied
by Eq. (81). The energy density can also be written
explicitly in terms of the polarization amplitudes as

ρGW = − κ

2c2

∫
d̃kd̃k

′
ωω′ei(k+k′)·x × (88)∑

A

λA

〈
h̃∗A(−k)h̃A(k)

〉
,

with a sum over the polarizations A ∈ {+, ×, b}. To
make the notation more compact, we have also defined
the auxiliary factor

λA =

{
(3 + 2ωBD) if A = b,

1 if A = +,×.
(89)

For more details, see Appendix C 2.
We must now make some assumptions about the sta-

tistical properties of the Fourier amplitudes. As before,
we will assume the simplest case of (vii) an isotropic
background, with (v) uncorrelated polarizations and (iv)
sky-bins. We can then use the corresponding expression
for the correlations, Eq. (19), to get:

ρGW =
πc2

4G

∑
A

∫ ∞
0

df f2λASA(f) . (90)

From the definition of the fractional energy spectrum,
Eq. (29), this in turn implies [cf. Eq. (37)]

SA(f) =
3H2

0

2π2|f |3
λ−1
A ΩA(f) , (91)

where ΩA represents the energy content in polarization A,
with ΩGW =

∑
ΩA for A ∈ {+, ×, b}, because we took

the different modes to be uncorrelated. This is justified
because the kinetic matrix of the theory is diagonal for
A ∈ {+, ×, b}.

We may use this expression for the power spectral
density in each polarization to write the observable cross-
correlation between the output of a pair of detectors (I
and I ′). Using the cross-correlation expression of Eq. (27),
we find again that we can write this as in Eq. (39) with
a summation over polarizations A ∈ {+, ×, b}, and the
factor

ΞA(f) = λ−1
A =

{
(3 + 2ωBD)−1 if A = b,

1 if A = +,×.
(92)

The GR result of Eq. (52) is recovered, as expected, in
the limit that ωBD becomes infinitely large.
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D. Massive gravity

From a field theory perspective, general relativity is
nothing but the theory of a nontrivial massless spin-2
particle—the graviton. Therefore, theories of massive
gravity, which endow the graviton with a mass, are a
natural (and, in some sense, the simplest) extension of
Einstein’s theory (see [71, 72] for reviews). In its most
basic form, linearized massive gravity is given by the
Fierz-Pauli (FP) action [137],

SFP = S(2)
EH + Sm , (93)

where S(2)
EH is the quadratic piece of the Einstein-Hilbert

action of Eq. (40), and Sm is the Fierz-Pauli mass term,

Sm =
1

2
κ

∫
dx
√
−g µ2habhcd g

a[bgc]d , (94)

for a graviton mass m = ~µ/c, and where hab is a linear
perturbation over the background metric gab, as before.
For background diffeomorphism invariance, we explicitly
include the

√
−g term in Eq. (94), though the background

metric in this action should be thought of as Minkowski
(yet potentially in curvilinear coordinates).

Extending this linear theory to a more general, nonlin-
ear one is far from trivial (for reviews see e.g. [71, 72]).
Therefore, we will focus only on the linear theory
of Eq. (93), and will only comment on the relevance
of the linearized analysis for the nonlinear completion at
the end of this section. Until then, we will write “massive
gravity” to mean Fierz-Pauli theory.

Massive gravity has many interesting features, including
the fact that it supports five independent GW polariza-
tions corresponding to the helicity states available to a
massive particle: two tensor modes (helicity ±2), two
vector modes (helicity ±1), and one scalar mode (helic-
ity 0). Over a flat background, these degrees of freedom
propagate following the Klein-Gordon equations of motion
describing a massive graviton,(

�− µ2
)
hab = 0 , (95)

and are divergenceless and traceless,

∇ahab = 0 , (96a)

h = gabhab = 0 . (96b)

These three equations follow from the variation of Eq. (93)
with respect to the inverse metric perturbation hab [71, 72],
and contain all relevant properties of GWs in this theory.
Equation (95) immediately gives the dispersion relation

ω2 = c2(|~k|2 + µ2).
Before proceeding, we must discuss the length scales

which appear in this calculation. Around a flat back-
ground, there are only two length scales of importance:
the wavelength of radiation, λGW, and the graviton’s
Compton wavelength, λm = h/mc. Generally speaking,
the relevance of corrections to GR due to a nonvanishing

graviton mass will depend on the value of the ratio of
these two,

α(f) ≡ λGW

λm
=

cµ

2πf
, (97)

or, equivalently, the ratio of the norm of the wave’s spatial
wavevector to its angular frequency,

β(f) ≡ |
~k|c

2πf
=
√

1− α2 . (98)

This last quantity is just the graviton group velocity in
natural units, which is the same as the ratio of the speed
of light to the graviton phase velocity (β = vg/c = c/vp).
We should expect to recover GR results for vanishing
graviton mass, when µ→ 0 and, consequently, α→ 0 and
β → 1. Note that for propagating GW modes, we must
have α < 1, and consequently, β is real-valued.

When we move to the cosmological setting (or a more
general curved background), there is a third length scale
at each point: the curvature radius of the background,
LBG. In order for the Brill-Hartle averaging procedure
to be valid, we need a separation of scales, λGW � LBG,
since the B-H average makes errors of order λGW/LBG

(this is clearly satisfied when comparing the LIGO/Virgo
frequency band with the cosmological curvature radius
cH−1

0 ). Now, in the following, we want to keep the depen-
dence on µ, so we keep terms at the length scale λm. This
is only compatible with the B-H averaging procedure if we
demand the additional separation of scales λm � LBG.

We now return to a flat background to develop the
results which we later promote to a cosmological back-
ground. In a generic frame (that is, without special boosts)
with rectangular coordinates, and with the z-axis aligned
along the wave’s direction of propagation, the equations
of motion can be shown to restrict the components of a
massive GW to be of the form (Appendix D 1 a):

(hµν) =


β2hl −βhx −βhy −βhl

−βhx − 1
2α

2hl + h+ h× hx

−βhy h× − 1
2α

2hl − h+ hy

−βhl hx hy hl

 ,

(99)
for the five linear polarization amplitudes hA, with
A ∈ {+,×, x, y, l}. Here, we have parametrized the sin-
gle scalar mode allowed by the theory in terms of the
longitudinal amplitude (rather than the breathing am-
plitude, or some linear combination thereof), treating it
as the fundamental degree of freedom.5 It is straightfor-
ward to check that the metric of Eq. (99) is traceless and
divergenceless, as required by the equations of motion

5 Importantly, note that our definition of the longitudinal mode fol-
lows the standard in the GW literature, and does not necessarily
agree with the conventions from the massive-gravity theory litera-
ture, e.g. Ref. [72] defines the longitudinal tensor as proportional
to our elab − ebab/2, instead of just elab.
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(Appendix D 1 a). The GR case is recovered in the limit
of vanishing graviton mass, if we also re-enforce the re-
quirements of transversality and tracelessness by setting
hx = hy = hl = 0.

We must now determine the functional form of the GW
effective stress-energy tensor in FP theory. Varying the
effective Lagrangian density from Eq. (93) with respect
to gab, as in Eq. (31), we may write the effective GW
stress-energy tensor in massive gravity as (Appendix D 2)

T
(FP)
ab = T

(EH)
ab + ∆T

(FP)
ab . (100)

As in previous examples, T
(EH)
ab is derived from the

Einstein-Hilbert piece of the action, but now evaluated
with the new on-shell condition Eq. (95), rather than the
GR requirement of Eq. (41). This gives

T
(EH)
ab =

κ

2

〈〈
∇ahcd∇bhcd

〉〉
(101)

+ κµ2
〈〈
hdahb

d + 1
4gabh

cdhcd

〉〉
.

The second term in Eq. (101) is derived from the Fierz-
Pauli mass term of Eq. (94) and reduces to

∆T
(FP)
ab = −κµ2

〈〈
hdahb

d + 1
4gabh

cdhcd

〉〉
, (102)

for on-shell perturbations (Appendix D). This result in-
cludes no derivatives of the metric, as is to be expected
from Eq. (94). Perhaps surprisingly, the mass terms ap-
pearing Eq. (101) and Eq. (102) exactly cancel, resulting
in the same functional form for the ESET as in GR,

T
(FP)
ab =

κ

2

〈〈
∇ahcd∇bhcd

〉〉
. (103)

This result is in agreement with one derived in [138] based
on Noether’s theorem on a Minkowski background (though
note that Ref. [138] had a slightly different mass term,
but this difference cancels out after evaluating the ESET
on shell). Despite the fact that the two functionals have
the same on-shell expressions, the solutions hab on which
they will be evaluated differ, because they satisfy different
linearized equations of motion, Eq. (41) vs. Eq. (95). We
caution that, as discussed at the end of this section, the
Isaacson expression Eq. (103) should not be expected to
hold in a nonlinear completion of the theory over arbitrary
backgrounds.

Decomposing the metric components into plane-waves,
the above expressions imply that the energy density
ρGW ≡ T00, in some frame, may be written as in Eq. (36)
with Qabcd = QabcdGR . Breaking up the Fourier amplitudes
into polarizations and applying all the usual assumptions
(i)–(vii) about the background, it may then be shown that
we can use Eq. (19) to write the energy density in terms
of the polarization PSDs as (Appendix D 2):

ρGW =
πc2

4G

∫ ∞
0

∑
A

λA(f)SA(f) f2df , (104)

where the sum is over the five linear polarizations A ∈
{+,×, x, y, l} as they appear in Eq. (99), and we have
defined

λA(f) ≡


1 if A = +,×,
α2 if A = x, y,
3
4α

4 if A = l .

(105)

Clearly, higher powers of α will be strongly suppressed
in the limit of small mass we are working in, but leave
them in for now nonetheless. Note again that we have
assumed that the polarization amplitudes of Eq. (99) are
statistically independent because they are the fundamen-
tal degrees of freedom that diagonalize the kinetic matrix
of the theory.

With this expression for ρGW in hand, the definition
of the fractional energy density spectrum, Eq. (29), then
implies that

ΩGW(f) =
2π2|f |3

3H2
0

∑
A

λA(f)SA(f) , (106)

and, as we have done in previous sections, we may call
each summand in this equation ΩA(f), with ΩGW(f) =∑
A ΩA(f), so that we can write the corresponding polar-

ization spectral density as

SA(f) =
3H2

0

2π2|f |3
λ−1
A (f) ΩA(f) . (107)

We now want to relate the GW energy density to the
cross-correlation of the outputs of two interferometric
detectors. Instead of Eq. (99), we would like to be able
to write the GW as a purely spatial metric perturbation
(h0ν = 0) in arbitrary frames (i.e. without the need for
special boosts). This is so we can have the perturbation
be purely spatial in the proper frame of the detector,
which would then allow us to use our usual expression for
the detector tensor, Eq. (23), when computing the output
of a measurement.

In GR, the required gauge freedom is afforded by dif-
feomorphism invariance, which is not directly available to
us in massive gravity [71, 72]. However, we may circum-
vent this restriction by introducing auxiliary fields into
the action, designed to reintroduce gauge freedom to the
theory (the so-called Stückelberg trick). We would then
obtain a generalized version of massive gravity that is
invariant under infinitesimal coordinate transformations,
and which reduces to the usual theory after fixing to a
particular gauge (see Appendix D 1 b).

We refer to the gauge that returns the FP action of
Eq. (93) as the unitary gauge, as opposed to the syn-
chronous gauge, in which the metric perturbation can
take a purely-spatial form without special boosts. In this
gauge, a measurement via an interferometric detector in
the small-antenna limit can be represented by the dou-
ble contraction of the metric with the detector tensor of
Eq. (23), and the metric perturbation can be decomposed
as in Eq. (6), as explained in Sec. II C.
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Unfortunately, the synchronous polarizations will not
be statistically independent in the linear basis of Eq. (6),
which is commonly used in data analysis (e.g. [54]). In
fact, the 6 polarization amplitudes in the synchronous
gauge,

˜
hA, can be obtained from the 5 in the unitary

gauge of Eq. (99), hB , via a (polarization-basis-dependent)
transformation matrix, M

˜
A
B , given by

(M
˜
A
B) ≡


1 0 0 0 0
0 1 0 0 0
0 0 α2 0 0
0 0 0 α2 0
0 0 0 0 − 1

2α
2

0 0 0 0 α4

 , (108)

so that
˜
hA = M

˜
A
BhB, and where

˜
A ∈ {+, ×, x, y, b, l}

indexes synchronous polarization amplitudes

˜
hA ∈ {

˜
h+,

˜
h×,

˜
hx,

˜
hy,

˜
hb,

˜
hl}, while B ∈ {+, ×, x, y, l}

indexes unitary polarization amplitudes hB ∈
{h+, h×, hx, hy, hl}. Had we started with a basis
for the unitary metric components different than Eq. (99),
all our results would still apply after redefining M

˜
A
B

accordingly. We provide an explicit expression for
˜
hab in

terms of the unitary amplitudes in Eq. (D24) in Appendix
D 1 b. The fact that the 5 unitary amplitudes determine
6 synchronous amplitudes makes it immediately clear
that the latter are not statistically independent.

Taking advantage of the synchronous gauge to compute
detector responses and taking the unitary polarizations
to be uncorrelated, the cross-correlation of two detector
outputs may be written directly in terms of the frac-
tional energy spectrum for each unitary polarization via
Eq. (107),〈

h̃
∗
I(f)h̃I′(f

′)
〉

=
3H2

0

4π2|f |3
δ(f − f ′)

∑
B

ΩB(f) (109)

× λ−1
B (f)M

˜
AB(f)M

˜
A′B(f) Γ˜

A
˜
A′

II′(f) ,

with λB(f) as in Eq. (105), M
˜
AB as in Eq. (108), and

Γ˜
A

˜
A′

II′(f) the generalized overlap reduction functions for
the synchronous polarizations. These functions are de-
fined as in Eq. (28), with a delay factor corresponding to
vp = c/β [cf. Eq. (98)], i.e.

ξAA
′

II′ =
∆xII′

c

√
1− α2 ≈ ∆xII′

c

(
1− 1

2
α2

)
, (110)

after expanding for small α. The resulting overlap-
reduction functions will not be the same (even ignor-
ing differences in normalization) as those used in ex-
isting stochastic searches beyond GR [54, 55], because
those assume vp = c. However, we should expect that
to be a good approximation as long as the extra de-
lay in the time of flight due to the nonvanishing mass,
δξAA

′
II′ ≡ − 1

2α
2∆xII′/c, is small with respect to the timing

accuracy of the instruments. For a treatment of overlap-
reduction functions without ignoring this correction, see
[46].

Regardless of whether we neglect dispersive corrections
to the overlap-reduction functions or not, it turns out
that, for differential-arm detectors, we have that

Γ˜
A

˜
A′

II′ =

{(
2δ

˜
A

˜
A′ − 1

)
Γl
II′ if

˜
A or

˜
A′ in {b, l},

δ
˜
A

˜
A′Γ˜

A
II′ otherwise,

(111)

as long as differences in the phase velocities of different
polarizations are negligible (which is exactly the case for
the Fierz-Pauli theory). This relation may be used to put
our result of Eq. (109) in the form of Eq. (39) with

ΞA(f) ≈


1 if A in {+,×},
α2 if A in {x, y},
1
3

(
2α2 + 1

)2
if A = l.

(112)

plus terms of order α6 and higher. Here, ΞA(f) goes
smoothly to the GR limit as α→ 0 (vanishing graviton
mass) for the tensor and vector modes. However, notice
that Ξl(f)→ 1

3 (rather than vanishing) in this same limit.
This is reminiscent of the vDVZ (van Dam, Veltman,
Zakharov) discontinuity [139, 140] (see also [141] for a
similar effect, and [72] for more discussion). For interest-
ing details on the derivation of Eqs. (109)–(112), we refer
the reader to Appendix D 3.

Relation to nonlinear massive gravity

There is no problem in thinking of the action Eq. (93)
as describing a linear spin-2 field hab on a curved back-
ground gab. However, if we want hab to represent metric
fluctuations of the gravitational field, the theory must
have a nonlinear completion, which is known to have
several problems (see e.g. [71, 72] for more discussion).
One which we have already mentioned [below Eq. (112)]
is the vDVZ discontinuity, by which the limit of vanishing
graviton mass µ→ 0 does not recover GR (e.g., the scalar
degree of freedom does not decouple).

Another major problem is the Boulware-Deser
ghost [142], which must be excised order-by-order in the
graviton self-interaction. Controlling this ghost degree
of freedom to all orders is possible with a specific set of
self-interactions, known as de Rham-Gabadadze-Tolley
(dRGT) massive gravity [143]. This has been extended
to a theory of two interacting metrics by Hassan and
Rosen [59], which has dRGT as a careful scaling limit.
Bigravity propagates one massive and one massless spin-
2 field (7 total degrees of freedom), whereas taking the
dRGT limit eliminates the massless mode (leaving only 5
dynamical degrees of freedom, as in the linearized theory).

Indeed when expanded about a Minkowski background
to linear order (quadratic in the Lagrangian), dRGT
agrees with Fierz-Pauli theory. This might lead one to
believe that the preceding FP analysis can be directly
lifted to dRGT, or even to bigravity, but this conclusion is
unwarranted. The quadratic Lagrangian about nontrivial
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background-field configurations [144–148] can look rather
different from the simple FP Lagrangian.6

In fact, the difference from the FP Lagrangian is cru-
cial for the health of such theories, because otherwise
the nonlinear theories would also exhibit problematic
phenomenology, like the vDVZ discontinuity. However,
healthy nonlinear massive gravity theories are protected
from vDVZ phenomenology by the Vainshtein screening
mechanism [149]. The Vainshtein mechanism leads to a
nontrivial, nonlinear field configuration (like a condensate)
with a new length scale, the Vainshtein radius. Within
this radius, the effective couplings for the massive de-
gree of freedom can be very different from what is seen
when expanded about the Minkowski background, thus
reverting to the phenomenology of general relativity.

In short, the ESET for nonlinear massive gravity on a
general background (e.g. one exhibiting Vainshtein screen-
ing) should be considered an open problem. It seems
unlikely that the FP result lifts to the general massive
gravity result.

IV. CONCLUSION

The detection of a stochastic gravitational-wave back-
ground will provide a unique opportunity to study the
properties of gravitational waves as they propagate
through cosmological distances, and will thus be an in-
valuable tool to study extensions of general relativity.
Properly interpreting the theoretical implications of such
a detection will require a detailed understanding of the as-
sumptions that go into the usual searches for a stochastic
background, and how the measurement process might be
modified in theories beyond general relativity. Towards
that goal, in this paper we have laid out the formalism
underlying searches for stochastic signals in a generic
fashion that makes it easily applicable to a large family
of theories. We have also surveyed the standard set of
assumptions that go into these searches, evaluating their
generic applicability, or lack thereof.

First and foremost, we find that most existing treat-
ments of stochastic backgrounds beyond GR fail to con-
sider possible modifications to the effective stress-energy
carried by a gravitational wave of a given amplitude and
frequency [46–48, 50, 52, 53, 56]. This is important be-
cause the goal of searches for stochastic backgrounds,
within GR or beyond, is precisely to measure the amount
of energy that exists in the form of stochastic gravitational

6 For a special subclass of “proportional” background configurations
in bigravity [145, 148], two linear combinations of the two metrics’
perturbations can be combined into the massless and massive
eigenstates which diagonalize the kinetic matrix of the quadratic
Lagrangian. In this case, the massive mode does have a FP
Lagrangian. However, this is likely a special case—as far as
we have been able to discern, the transformation to the mass
eigenstates has not been performed for a more general background.

waves. Accordingly, data analysis strategies tend to be
parametrized directly in terms of of an effective energy
spectrum, Eq. (29). However, this is only possible if one
knows the relation between the energy density and the
observables at the detector (e.g. the cross-correlation of
strain detector outputs)—this will depend on the specific
structure of the underlying theory of gravity, and in gen-
eral need not be the same as in GR. Therefore, parametriz-
ing model-independent searches for backgrounds beyond
GR as traditionally done will result in the use of a quan-
tity that should not generally be interpreted as the GW
energy density, and may thus lead to incorrect compar-
isons between theory and experiment. Instead, we find it
advisable to parametrize theory-agnostic searches using
the power spectrum of polarization amplitudes, Eq. (16),
which have a (mostly) model-independent interpretation.
One can always translate amplitudes into effective energies
for any specific theory, as sketched in Sec. II D.

We also reviewed the standard set of simplifying as-
sumptions that the stochastic background is (i) Gaussian,
(ii) ergodic, and (iii) stationary, with no correlation be-
tween amplitudes from different (iv) sky locations or (v)
polarizations, and with (vi) equipartition of power across
polarizations; and also, commonly (although not univer-
sally) assumed to be (vii) isotropic. While we find that
the first four of these premises are generally applicable
beyond GR, the same is not true for the rest—this is with-
out considering changes to the potential sources of the
background in beyond-GR theories, which may themselves
break more of the assumed symmetries. In particular, it
is not reasonable to always assume that the usual linear
GW polarization amplitudes of Eq. (6) will be statisti-
cally independent and have well-defined phase velocities,
as this will not be true unless the chosen polarization
basis diagonalizes the kinetic matrix of the underlying
theory of gravity. Similarly, one should be careful in
assuming that power will be equipartitioned among po-
larizations, even for modes with the same spin-weight,
as parity-asymmetric theories may predict differences in
the generation and propagation of modes with different
helicities. Deviations from isotropy should be expected
in theories with intrinsically preferred frames.

Finally, we have provided specific examples of beyond-
GR theories in which these traditional assumptions break
down, and in which the GR expression for the stress-
energy of a gravitational wave may receive a correction:
Chern-Simons gravity, scalar-tensor theories, and massive
gravity. For all these theories, we find that the cross-
correlation of the outputs of two ideal differential-arm
detectors can be written in terms of the effective GW
stress-energy as in Eq. (39), with different Ξ(f) factors
encoding how each theory departs from GR. This set of
examples is not intended to be exhaustive, but merely
to show that it is possible to construct viable theories
that violate standard assumptions in stochastic searches.
This will be important in the interpretation of results like
[54, 55] once a stochastic signal is detected.
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Appendix A: Plane-wave decomposition

Begin with our compact expression for the plane-wave
expansion of the metric components, Eq. (1):

hab(x) =
1

2π

∫
h̃ab(k)eik·x d̃k , (A1)

with the integral over the four-wave-vector k as prescribed

by our definition of d̃k in Eq. (2),

d̃k ≡ 2c δ(|~k|2 − |~kω|2) |~k|−1dk . (A2)

This definition of the four-dimensional Fourier transform
is designed to yield Eq. (3), and thus follows the con-
vention of recent stochastic GW background literature
(e.g. [14, 16, 60]). This choice, however, differs from the
Lorentz-invariant measure most common in field theory
(see e.g. Eq. (3.18) in [150] or Eq. (4.4) in [151]),

d̃kQFT = cδ(|~k|2 − |~kω|2) dk/(2π)3

= |~k|d̃k/2/(2π)3 . (A3)

Note that this difference in measures results in a difference
in conventions for the Fourier amplitudes. Specifically,

this means that h̃(k) ∝ |~k|h̃(k)QFT (the factor of propor-
tionality depends on prefactors outside of the integral).

With the help of Eq. (A2), Eq. (A1) can be immediately
rewritten as an explicit integral over the four-vector k,
transforming each component independently,

hab(x) =
c

π

∫
h̃ab(k)eik·x δ(|~k|2 − |~kω|2) |~k|−1dk . (A4)

Here ~kω ≡ ~k(ω) encodes the functional dependence of ~k
on ω imposed by the specific dispersion relation required
by the underlying theory of gravity—in GR, this is just

the usual demand that |~kω| = ω/c). For clarity, we may

split the 4-vector k into frequency and spatial ~k-vector,

hab(t, ~x) =
1

π

∫ ∞
−∞

∫
S2

∫ ∞
0

h̃ab(ω,~k) ei(
~k·~x−ωt)

× δ(|~k|2 − |~kω|2) |~k|d|~k|dk̂ dω , (A5)

where we have written the spatial three-integral in polar
coordinates such that

d~k = |~k|2 d|~k|dk̂ , (A6)

with angular domain over the 2-sphere, S2. In this step,

we have also used the fact that |~k| is non-negative by
definition to set its integration limits.

We may now use the fact that, for any continuously
differentiable function g(x) with real roots xi,

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

, (A7)

to further simplify the integrand to

hab(t, ~x) =
1

2π

∫ ∞
−∞

∫
S2

∫ ∞
0

h̃ab(ω,~k) ei(
~k·~x−ωt)

× 1

|~kω|
δ(|~k| − |~kω|) |~k|d|~k|dk̂ dω , (A8)

where the integration limits have allowed us to ignore the

negative root, |~k| = −|~kω|. It is now straightforward to

carry out the integral over the norm |~k| to obtain:

hab(t, ~x) =
1

2π

∫ ∞
−∞

∫
S2

h̃ab(ω,~k)ei(
~k·~x−ωt)dk̂dω , (A9)

where now ~k is necessarily on shell (|~k| = |~kω|). Writing

this in terms of f = ω/2π, n̂ = −k̂ and vp ≡ |~k/ω|−1, we
immediately recover Eq. (3), as promised,

hab(t, ~x) =

∫ ∞
−∞

∫
sky

h̃ab(k, n̂)e−2πif(t+n̂·~x/vp)dn̂df ,

(A10)
thus justifying the second equality in Eq. (2),

d̃k = dω dn̂ . (A11)

Appendix B: Correlation and spectral density

We will reproduce the standard result that assump-
tions (iii) of stationarity and (iv) of uncorrelated sky
locations allow us to write the cross-correlation of the
Fourier amplitudes as in Eq. (16),〈
h̃
∗
A(k) h̃A′(k′)

〉
=

1

2
δ(f − f ′) δ(n̂− n̂′)SAA′(k) , (B1)

with SAA′ the cross-power spectral density of stochastic
signals of polarizations A and A′.

The second delta function in Eq. (B1) is just a direct
statement of assumption (iv), so focus on the rest of the
equation by suppressing the dependence on n̂. We are
then left with simple one-dimensional Fourier transforms
in the expression for the cross-correlation,〈

h̃
∗
A(f)h̃A′(f ′)

〉
=

〈∫
hA(t)e2πiftdt (B2)

×
∫
hA′(t′)e−2πif ′t′dt′

〉
.
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Defining τ ≡ t′ − t, this can be put in the form:〈
h̃
∗
A(f)h̃A′(f ′)

〉
=

∫ ∫
〈hA(t)hA′(t+ τ)〉 (B3)

× e−2πif ′τe2πi(f−f ′)tdτdt .

Now note that the term in brackets is simply the cor-
relation of hA(t) and hA′(t′), which by assumption of
stationarity depends only on the time difference τ , i.e.

〈hA(t)hA′(t+ τ)〉 = 〈hA(0)hA′(τ)〉 , (B4)

where we have set t = 0 for concreteness. We may there-
fore carry out the integral over t to obtain〈
h̃
∗
A(f)h̃A′(f ′)

〉
= δ(f−f ′)

∫
〈hA(0)hA′(τ)〉 e−2πifτdτ .

(B5)
Now, the Wiener-Khinchin theorem [63] guarantees that,
if the cross-correlation is continuous, we can always define
a function of frequency to give the Fourier transform
of the cross-correlation (the integral above); that can
be taken as the definition of the one-sided cross-power
spectral density,

SXY (f) ≡ 2

∫
〈X(0)Y (τ)〉 e−2πifτdτ , (B6)

for any two stationary random processes, X(t) and Y (t),
and where the prefactor is chosen so that S(f) ≡ S(|f |)
is the one-sided spectral density. All this means is that
we may write〈

h̃
∗
A(f) h̃A′(f ′)

〉
=

1

2
δ(f − f ′)SAA′(f) , (B7)

or, restoring the n̂ dependence,〈
h̃
∗
A(k) h̃A′(k′)

〉
=

1

2
δ(f − f ′)δ(n̂− n̂′)SAA′(k) . (B8)

Appendix C: Scalar-tensor computations

Here we provide details on the computations of the
ESET and correlation functions in Brans-Dicke gravity
(Sec. III C). In order to do so, first consider the trans-
formations between the Jordan and Einstein frames. By
definition of the Einstein frame, in a generic scalar-tensor
theory these can be written as (e.g. Eqs. (34)–(36) in
[152])

gab ≡ A2(ϕ)
˜
gab , (C1a)

φ ≡ A−2(ϕ) , (C1b)

for some auxiliary function A(ϕ). We can then use this
to define the coupling α(ϕ) as

α(ϕ) ≡ d lnA(ϕ)

dϕ
. (C2)

To recover the Brans-Dicke theory, we simply expand this
coupling to linear order by setting

α(ϕ) = α0 ≡ (2ωBD + 3)−1/2 , (C3)

so that lnA(ϕ) = α0(ϕ− ϕ0) for some fiducial value ϕ0,
and Eqs. (C1) become (Jordan to Einstein)

gab = e2α0(ϕ−ϕ0)

˜
gab , (C4a)

φ = e−2α0(ϕ−ϕ0) . (C4b)

For later convenience, define δϕ ≡ ϕ− ϕ0 and rescale
the Jordan field by letting φ→ φ/φ0 for some background
value φ0. After doing so, Eqs. (C4) imply (Einstein to
Jordan)

˜
gab =

φ

φ0
gab , (C5a)

δϕ = − ln(φ/φ0)

2α0
. (C5b)

With the above notation in place, let us perturb the two
metrics and scalar fields to first order, and then obtain
the relationship between the perturbations in the two
frames. Letting gab → gab +

˜
hab and φ→ φ0 + δφ in the

Jordan frame, and
˜
gab →

˜
gab +

˜
hab and ϕ→ ϕ0 + δϕ in

the Einstein frame, we can then apply the transformations
from Eq. (C5) to write

˜
gab +

˜
hab = φ−1

0 (φ0 + δφ) (gab + hab)

≈ gab + (hab + gabδφ/φ0) . (C6)

Collecting terms of the same order, this implies that, to
first order in the perturbations,

gab =
˜
gab , (C7a)

hab =
˜
hab + 2α0δϕ

˜
gab , (C7b)

Φ = 2α0δϕ , (C7c)

where we have defined Φ ≡ −δφ/φ0 for convenience. Us-
ing this definition to replace the second expression by

˜
hab = hab − Φgab, it becomes clear these are Eqs. (80)
provided in the main text.

1. Effective stress-energy tensor

We wish to compute the effective GW stress energy in
the Einstein frame. We will do so by taking advantage of
the gauge proposed in [122], in which the trace-reversed
Einstein-frame perturbation,

˜
h̄ab, satisfies

˜
h̄ = 2Φ , (C8a)

∇a
˜
h̄ab = 0 , (C8b)

and follows simple free-wave equations of motion,

�
˜
h̄ab = 0 , (C9a)

�Φ = 0 . (C9b)



21

In this gauge, the Einstein-frame trace-reversed metric
perturbation is equal to the regular (non-trace-reversed)
perturbation in the Jordan frame:

˜
h̄ab = hab. Thus,

˜
h̄ab

may be decomposed into synchronous polarizations as in
Eq. (81).

To obtain an expression for the GW stress energy in
the Einstein frame, we may follow the procedure outlined
in Sec. II D starting from the action of Eq. (76). Per-
turbing the metric and scalar as described above, and
discarding terms higher than second order, we may obtain
the quadratic Lagrangian density corresponding to S(2)

in Eq. (34),

˜
L(2) =

˜
L(2)

EH + κ
√
−

˜
g
[
−2

˜
gab∇a(δϕ)∇b(δϕ)

]
, (C10)

where
˜
L(2)

EH is the Einstein-Hilbert piece of Eq. (42), but in
terms of

˜
g,

˜
h. The variation of this quantity with respect

to
˜
h̄ab and δϕ will lead to the ESET per Eq. (31). This

will be given by a contribution from the Einstein-Hilbert
part of the action (the Ricci terms above), and another

from the rest. We will call those two terms
˜
T

(EH)
ab and

∆
˜
T

(ST)
ab respectively, so that

˜
T

(ST)
ab =

˜
T

(EH)
ab + ∆

˜
T

(ST)
ab .

Focus first on the EH term. This will not be the identi-
cal to Eq. (43) in GR, because there will be an extra con-
tribution from the nonvanishing trace of

˜
h̄ab, Eq. (C8a).

To compute it, we may take a shortcut and begin from an
expression obtained MacCallum and Taub for the effective
EH quadratic Lagrangian contributing to the GW stress-
energy far away from the source [107]. The corresponding
stress-energy tensor can be written as

˜
T

(EH)
ab = κ

〈〈
1

2
∇a

˜
h̄cd∇b

˜
h̄cd −∇c

˜
h̄da∇c

˜
h̄b
d − 1

4
∇a

˜
h̄∇b

˜
h̄

+
1

2
∇c

˜
h̄ab∇c

˜
h̄+

˜
gab

(
1

2
∇e

˜
h̄fc∇f

˜
h̄ec

−1

4
∇e

˜
h̄cd∇e

˜
h̄cd +

1

8
∇e

˜
h̄∇e

˜
h̄

)〉〉
. (C11)

This expression is valid whenever separation of length-
scales allows for a clear definition of the waves over some
background. In GR, application of the equations of motion
in a transverse-traceless gauge reduces Eq. (C11) to the
Isaacson formula, Eq. (43). We proceed similarly here
but keeping the trace, using Eqs. (C9) and (C8).

First note that the second term in Eq. (C11) may be re-
written by integrating by parts “under the average.” This
is because the Brill-Hartle average of a total derivative
is smaller by a factor of order O(λGW/Lave) than non-
vanishing averages, where Lave is the averaging length
scale (see e.g. Sect. IIA in [57]). This then implies that

〈〈−∇a
˜
h̄bc∇a

˜
h̄d
b〉〉 = 〈〈

(
∇a∇a

˜
h̄bc
)

˜
h̄d
b〉〉
[
1 +O

(
λGW

Lave

)]
.

(C12)
Therefore, the second term in Eq. (C11) vanishes via the
equations of motion [Eq. (C9a)], up to this order. The

same logic may be applied to all terms in the second
and third lines of Eq. (C11), which will vanish due to
Eq. (C9a) or Eq. (C8b). We are then only left with the
first and third terms in Eq. (C11). The first term is just
the same quadratic contribution that appears in Eq. (43)
for GR. Meanwhile, the third term involves the trace of

˜
h̄ab, and may thus be written in terms of the scalar field
using Eq. (C8a). The contribution of the Einstein-Hilbert
part of the action to the ESET, Eq. (C11), in ST gravity
then reduces to

˜
T

(EH)
ab =

1

2
κ〈〈∇a

˜
h̄cd∇b

˜
h̄cd〉〉 − κ〈〈∇aΦ∇bΦ〉〉 . (C13)

Switch now to the contribution from the kinetic term
of the scalar field, ∆

˜
T

(ST)
ab . This will be obtained from

the corresponding part of the quadratic Lagrangian of
Eq. (C10), namely ∆

˜
L(2) ≡ −2

√
−

˜
gκ

˜
gab∇a(δϕ)∇b(δϕ).

The variation of this quantity may be written as

δ∆
˜
L(2)

δ
˜
gab

= κ
√
−

˜
g
[
˜
gab

˜
gcd − δc(aδdb)

]
∇cδϕ∇dδϕ ,

(C14)
using the usual fact that δ

√
−

˜
g = −

√
−

˜
g

˜
gabδ

˜
gab/2, and

explicitly symmetrizing the variation of the metric. There-
fore, Eq. (31) implies that

∆
˜
T

(ST)
ab = 2κ

〈〈(
−

˜
gab

˜
gαβ + 2δαaδ

β
b

)
∇αδϕ∇βδϕ

〉〉
= 4κ〈〈∇aδϕ∇bδϕ〉〉 , (C15)

where one the first term vanished due to Eq. (C9b), by
integration by parts under averaging as before.

We may now write an expression for the total effective
stress energy of a scalar-tensor GW in the Einstein frame:

˜
T

(ST)
ab =

˜
T

(EH)
ab + ∆

˜
T

(ST)
ab (C16)

= κ

〈〈
1

2
∇a

˜
h̄cd∇b

˜
h̄cd +

(
α−2

0 − 1
)
∇aΦ∇bΦ

〉〉
,

where we have used the fact that δϕ = Φ/(2α0) to first
order, Eq. (C7c). This may also be written in terms
of the Brans-Dicke parameter using the definition of α0,
Eq. (C3), to obtain our final result presented in Eq. (86).

2. Energy density spectrum

Taking the time-time component of Eq. (86) and assum-
ing (ii) ergodicity, we immediately obtain an expression for
ρGW in a local Lorentz frame (

˜
gab = ηab) from Eq. (86),

ρGW =
κ

2c2
[〈
∂t

˜
h̄ij∂t

˜
h̄ij
〉

+4(ωBD + 1)〈∂tΦ∂tΦ〉
]
, (C17)

or equivalently, because Φ =
˜
gab

˜
hab/2 by Eq. (81),

ρGW =
κ

2c2
[
gikgjl + (ωBD + 1) gijgkl

]
×
〈
∂t

˜
h̄ij∂t

˜
h̄kl
〉
. (C18)
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Expanding out
˜
h̄ij into plane-waves, ρGW can then be

put in the form of Eq. (36) with Qabcd as in Eq. (87) of
the main text.

For convenience, denote each of the two terms in
Eq. (C17) ρEH and ρST respectively, so that ρGW =
ρEH + ρST. Making use of all the usual assumptions
(i)–(vii) about the background, we can use Eq. (19) to
write ρEH in the same form as Eq. (50) in GR,

ρEH =
πc2

4G

∑
A

∫ ∞
0

SA(f)f2 df , (C19)

except that now the sum is over A ∈ {+,×,b} with
Sb = SΦ by Eq. (81). For ρST, a similar derivation to the
one for ρEH gives the analogous result that

ρST =
πc2

4G
(2 + 2ωBD)

∫ ∞
0

Sb(f)f2 df . (C20)

Adding both contributions together, we may then write
the total energy spectrum compactly as we did in Eqs.
(89) and (90) in the main text.

Appendix D: Massive gravity computations

Here we provide more details for the computation of the
GW stress-energy density and correlation functions pre-
sented in Sec. III D. In App. D 1 we derive the expressions
for the unitary and synchronous metric components, pre-
sented respectively in Eqs. (99) and (108) in the main text.
In App. D 2, we obtain an expression for the ESET in
Fierz-Pauli massive gravity, and one for the energy density
ρGW in terms of the unitary PSDs, making use of statis-
tical assumptions about the background. Finally, in App.
D 3 we compute an expression for the cross-correlation of
the output of two differential-arm detectors in the form
of Eq. (39). We will make repeated use of the massive
Klein-Gordon equation of motion of Eq. (95), as well as
the fact that the metric perturbation must be divergence-
less, Eq. (96a), and traceless, Eq. (96b). Throughout
this appendix, “massive gravity” refers to the Fierz-Pauli
theory of Eq. (93).

1. Polarizations

a. Unitary gauge

We would like to decompose a massive plane GW into
a basis of polarization tensors. In GR, diffeomorphism
invariance guarantees that we may always find a gauge
in which the perturbation is purely spatial, as in Eq. (6).
Although this is not possible in FP gravity, we may still
write a generic metric perturbation propagating in the

z-direction, hµν , as

(hµν) =

h00 h01 h02 h03

h10 hb + h+ h× hx

h20 h× hb − h+ hy

h30 hx hy hl

 , (D1)

and then apply the constraints from Eqs. (96) to cut down
the number of degrees of freedom.

First, for a GW with wave-vector ka, Eq. (96a) implies
kahab = 0. Thus, picking a frame in which the wave
travels in the z-direction,

(kµ) =
(
ω/c, 0, 0, |~k|

)
, (D2)

lack of divergence, together with symmetry, must mean

h0µ = hµ0 = −βh3µ = −βhµ3 , (D3)

with β as in Eq. (98). Equation (D3) also implies that

h00 = −βh30 = −βh03 = β2h33 . (D4)

However, tracelessness, Eq. (96b), also demands

h = ηµνhµν = −h00 + 2hb + hl = 0 . (D5)

Therefore, if we choose to get rid of the time-time degree
of freedom by writing h00 = 2hb + hl, Eq. (96) requires

2hb + hl = β2hl =⇒ hb =
1

2

(
β2 − 1

)
hl , (D6)

so we will only need one scalar polarization. This could
have been anticipated from the fact that a symmetric
rank-2 tensor in four dimensions can have at most ten
independent components, five of which are necessarily
constrained by Eq. (96), leaving only five degrees of free-
dom. These correspond to the five possible helicities of a
massive spin-2 particle.

Choosing to work in terms of the longitudinal scalar
amplitude, our final expression for the metric perturbation
in the unitary gauge native to FP gravity is Eq. (99), i.e.

(hµν) =


β2hl −βhx −βhy −βhl

−βhx − 1
2α

2hl + h+ h× hx

−βhy h× − 1
2α

2hl − h+ hy

−βhl hx hy hl

 ,

(D7)
where we have used the fact that (β2−1) = α2 by Eq. (98).

For later convenience, note that the metric perturbation
of Eq. (D7) satisfies

hab(k)h′ab(k
′) = 2

∑
A

CA(ω, ω′)hA(k)h′A(k′) , (D8)

with a sum over unitary polarizations A, and for some
frequency-dependent normalization coefficients CA de-
fined by

CA(ω, ω′) ≡


1 if A = +,×,
1− ββ′ if A = x, y,
3
2 (1− ββ′)2 − 1

2 (β − β′)2
if A = l .

(D9)
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The form of these coefficients should not come as a sur-
prise, since they are just terms of the form eAabeA

ab,
analogous to those in Eq. (14), times extra factors arising
from the trace and timelike components of Eq. (D7). Note
that CA acquires its frequency dependence via β and β′,
Eq. (98).

b. Synchronous gauge

As mentioned in Sec. II C, it is easiest to compute the
influence of a gravitational wave on a LIGO-style detec-
tor in the synchronous gauge, because the coordinate
locations of the mirrors do not change in this gauge [58].
However, massive gravity lacks the linearized diffeomor-
phism freedom needed to transform into synchronous
gauge. Fortunately, we circumvent the lack of linearized
diffeomorphism invariance in massive gravity by using
the Stückelberg trick: we can add extra auxiliary fields
to write the FP action, Eq. (93), as a gauge-fixed ver-
sion of a gauge invariant theory [153]. After adding the
Stückelberg fields, ξa, we will have the usual freedom to
carry out infinitesimal coordinate transformations,

˜
hab = hab +∇aξb +∇bξa , (D10)

We will want to choose the fields ξa such that we can go
from the unitary gauge hab of Eq. (D7) to a synchronous
gauge

˜
hab in which

˜
h0ν = 0. To do this, pick the same

frame as before, in which k is given by Eq. (D2), and use
linearity to consider the transformation of the degrees
of freedom in Eq. (D7), {h+, h×, hx, hy, hl}, one by one.

Below, we will temporarily let c = 1 and k ≡ |~k| for
simplicity, but the final result of Eq. (D24) is insensitive
to this. For simplicity, we also let gab = ηab. (For more
details on the application of this technique to massive
gravity, see e.g. Sect. 2.2.2 in [71] or Sect. IV in [72].)

Because the two tensor degrees of freedom, h+ and
h×, only appear in the spatial part of Eq. (D7), these
modes already satisfy the synchronous gauge condition.
Next consider the vector-x amplitude, hx: to determine
the transformation that would make its contributions to
time-like components in Eq. (D7) vanish, suppose the
unitary perturbation is given simply by

(hµν) =

 0 −βhx 0 0
−βhx 0 0 hx

0 0 0 0
0 hx 0 0

 , (D11)

and let the single degree of freedom be a simple plane-
wave, hx = Ax sin(ωt− kz). The goal is to find the form
of ξµ in Eq. (D10) that yields

˜
h0ν = 0 in this frame. For

instance, for the time-time component, Eq. (D10) and
our requirement that

˜
h00 = 0 imply

∂0ξ0 = 0 =⇒ ξ0 = 0 . (D12)

In the last step, we integrated over time and used gauge
freedom to pick initial conditions in which ξ0(~x) = 0

for all ~x, so that we can ignore the integration constant.
Similarly, using this result for ξ0 and demanding

˜
h01 = 0,

we can also conclude that Eq. (D10) requires

h01 + ∂0ξ1 + ∂1ξ0 = 0 =⇒ ∂tξ1 = βhx , (D13)

which we can integrate, as we did above, to get

ξ1 = −β
ω
Ax cos(ωt− kz). (D14)

Since this is the only nonvanishing component of the
Stückelberg field relevant to the vector-x amplitude,
Eq. (D10) implies that

˜
h13 =

˜
h31 = hx + ∂zξ1 =

(
1− β2

)
hx, (D15)

and
˜
hµν = 0 otherwise, for a unitary metric perturbation

whose only non-zero components come from hx, as we
supposed above in Eq. (D11). It can be shown that the
same exact argument, applied to hy instead of hx, yields
an analogous result,

˜
h23 =

˜
h32 = hy + ∂zξ1 =

(
1− β2

)
hy, (D16)

if we had started with a unitary metric perturbation
whose only non-vanishing degree of freedom was hy.

The case of the longitudinal amplitude, hl, is slightly
more complicated, but can be handled in the same way.
Suppose the perturbation is given simply by

(hµν) =


β2hl 0 0 −βhl

0 1
2

(
β2 − 1

)
hl 0 0

0 0 1
2

(
β2 − 1

)
hl 0

−βhl 0 0 hl

 ,

(D17)
and let hl = Al sin(ωt− kz), as we did above for hx (and,
implicitly, hy). In this case, the requirement that

˜
h00 = 0

implies, via Eq. (D10), that

h00 + 2∂0ξ0 = 0 =⇒ ∂0ξ0 = −1

2
β2hl , (D18)

and so, integrating over time, we conclude that

ξ0 =
β2

2ω
Al cos(ωt− kz) , (D19)

where we have neglected integration constants, as before.
Now, the result for ξ0 and the requirement that

˜
h03 = 0

mean that Eq. (D10) also implies

h03 +∂0ξ3 +∂3ξ0 = 0 =⇒ ∂0ξ3 =

(
β − β3

2

)
hl , (D20)

and so, integrating over time,

ξ3 =
β

ω

(
β2

2
− 1

)
Al cos(ωt− kz) . (D21)
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Since ξ0 and ξ3 are the only nonvanishing components of
the Stückelberg field relevant to the longitudinal ampli-
tude, Eq. (D10) implies that

˜
h11 = h22 = h11 = h22 =

1

2

(
β2 − 1

)
hl , (D22)

˜
h33 = h33 + 2∂zξ3 =

(
β2 − 1

)2
hl , (D23)

for a unitary metric whose only non-zero components
come from hl, as we supposed above in Eq. (D17).

Putting back all degrees of freedom together, we ob-
tain our final expression for the metric perturbation in a
synchronous gauge,

(
˜
hµν) =


0 0 0 0
0 h+ − 1

2α
2hl h× α2hx

0 h× −h+ − 1
2α

2hl α2hy

0 α2hx α2hy α4hl

 ,

(D24)
with α as in Eq. (97). In the limit of no graviton mass
(α → 0), we manifestly recover the transverse-traceless
expression familiar from GR without the need for further
gauge fixing.

Finally, it will be useful to define a transformation ma-
trix to go from unitary to synchronous polarization am-
plitudes. The unitary amplitudes are simply the degrees
of freedom appearing in Eq. (D7), while the synchronous
ones are just

(
˜
hµν) =

0 0 0 0
0

˜
hb +

˜
h+

˜
h×

˜
hx

0
˜
h×

˜
hb −

˜
h+

˜
hy

0
˜
hx

˜
hy

˜
hl

 , (D25)

in full analogy to Eq. (6). Comparing this definition to
Eq. (D24), it can be easily shown that the transforma-
tion matrix M

˜
A
B satisfying

˜
hA = M

˜
A
BhB is given by

Eq. (108).

2. Effective stress-energy tensor

We wish to obtain an expression for the ESET of GWs
in Fierz-Pauli massive gravity, following the procedure
outlined in Sec. II D. To do so, begin with the total FP ac-
tion of Eq. (93), SFP = SEH +Sm, with SEH the Einstein-
Hilbert action of Eq. (40), and Sm the contribution from
the scalar field given by Eq. (94). All computations in this
section will be carried out in the unitary gauge native to
FP gravity, Eq. (99), since those polarization amplitudes
are the fundamental degrees of freedom that we can take
to be uncorrelated in this theory (since they diagonalize
its kinetic matrix).

We will consider the two terms in the FP action sep-
arately. As in the scalar-tensor case (Appendix C), we
may obtain the contribution from the Einstein-Hilbert
part by starting from the MacCallum–Taub expression
for the stress energy, Eq. (C11). Unlike for scalar-tensor,
however, we may now ignore all terms showing the trace

and let h̄ab = hab, thanks to Eq. (96b). With these
simplifications, Eq. (C11) becomes

T
(EH)
ab = κ

〈〈
1

2
∇ahcd∇bhcd −∇chda∇chbd (D26)

+ gab

(
1

2
∇ehfc∇fhec −

1

4
∇ehcd∇ehcd

)〉〉
.

The first term in this expression yields the Isaacson tensor
obtained in GR, Eq. (43), except now the sum must
include all five polarizations allowed in Eq. (99), not just
the transverse-traceless ones. The second term may be
rewritten via integration by parts “under the average,” as
discussed around Eq. (C12), so that it becomes7

〈〈−∇chda∇chbd〉〉 = µ2〈〈hdahbd〉〉+ (avg. error) , (D27)

after applying the equations of motion, Eq. (95). A simi-
lar argument shows that the third term vanishes due to
Eq. (96a), while the fourth and final term takes a similar
form as the second one,

〈〈−∇ehcd∇ehcd〉〉 = µ2〈〈hcdhcd〉〉+ (avg. error) . (D28)

Altogether, this means that the contribution to the ESET
from the Einstein-Hilbert part of the action is

T
(EH)
ab =

κ

2
〈〈∇ahcd∇bhcd〉〉 (D29)

+ κµ2〈〈hdahbd + 1
4gabh

cdhcd〉〉 .

Now focus on the contribution from Sm in Eq. (94).
This action is already the quadratic action S(2) needed
for Eq. (34), namely

L(2)
m =

1

4
κµ2habhcd

√
−g (gabgcd − gacgbd) , (D30)

where we have explicitly written out the antisymmetrized
terms. We have also written hab with indices up, to match
the index position convention used in [57] and thus in
deriving Eq. (C11).8 The variation of this quantity with
respect to the inverse metric can be shown to be

δL(2)
m

δgcd
= 1

2κµ
2√−g

[
hcahd

a + 1
4gcdhabh

ab
]
, (D31)

7 The error here arises from the level at which total derivatives
average out to over the length Lave. Naturally this length needs
to be very large compared to the gravitational wavelength, but
its hierarchy with the Compton wavelength is more subtle. To
justify keeping the µ2 terms, we need the averaging error to be
small compared to the µ2 terms.

8 This is a somewhat subtle point, since wrong index position
generates implicit dependence on the (inverse) metric. Ultimately
it doesn’t matter whether hab or hab is treated as the fundamental
variable, so long as the same choice is made for all parts of the
action when performing the variation with respect to gab.
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where we have used the fact that δgab = −gac(δgcd)gdb,
δ
√
−g = −

√
−g gabδgab/2, and that, on shell, the pertur-

bation is traceless by Eq. (96b). The contribution of Sm
to the stress energy may be obtained directly from this
variation using Eq. (31):

∆T
(FP)
ab = −κµ2

〈〈
hdahb

d +
1

4
gabh

cdhcd

〉〉
. (D32)

Adding both contributions computed above, the total

ESET in massive gravity, Tab = T
(EH)
ab + ∆T

(FP)
ab , is then

Tab =
κ

2
〈〈∇ahcd∇bhcd〉〉 , (D33)

as presented in Eqs. (100)–(103). We further discuss the
interpretation of this result in the main text.

We now compute an expression for ρGW as a function
of the PSD of the unitary polarization amplitudes of
Eq. (D7) [Eq. (99) in the main text]. Expanding the
metric perturbation into plane waves in the local Lorentz
frame of the detector (with gab = ηab), as in Eq. (1), and
taking the time-time component of the ESET, we get

ρGW ≡
κ

2c2
〈
∂th

αβ∂thαβ
〉

(D34)

=
−κ
2c2

1

4π2

∫ 〈
h̃
∗
αβ(−k)h̃

αβ
(k′)

〉
ei(k+k′)·xωω′d̃kd̃k

′
,

assuming (ii) ergodicity as usual. The second equality was
obtained by proceeding identically as in GR (Sec. III A).
The contraction inside the angular brackets can be rewrit-
ten in terms of the unitary polarizations using Eq. (D8),〈

h̃
∗
αβ(−k)h̃

αβ
(k′)

〉
=
∑

CA(ω, ω′) (D35)

×
〈
h̃
∗
A(−k)h̃A(k′)

〉
,

for a sum over the degrees of freedom A of Eq. (99), and
CA as defined in Eq. (D9).

Making use of all the usual assumptions (i)–(vii) about
the background, we can then use Eq. (19) to write ρGW

as

ρGW =
πc2

4G

∫ ∞
0

∑
A

λA(f)SA(f)f2df , (D36)

for λA(f) ≡ CA(f, f), and SA(f) the PSDs of the uni-
tary polarization amplitudes. Here we have assumed that
the polarization amplitudes in the unitary gauge are sta-
tistically independent, which is justified because, unlike
the synchronous amplitudes, they diagonalize the kinetic
matrix of the theory. Note that we recover the GR expres-
sion, Eq. (50), in the limit of vanishing α, if we also force
SA(f) = 0 for nontensorial modes, which is appropriate
if these additional degrees of freedom are frozen out [71].

3. Cross-correlation

Here we derive an expression, in the form of Eq. (39),
for the cross-correlation of detector outputs as a function

of the fractional energy spectrum of massive gravitational
waves, Eq. (106). Going back to Eq. (26), we may write
the cross-correlation of the outputs of two detectors as〈

h̃
∗
I(f)h̃I′(f

′)
〉

=

∫
dn̂dn̂′

〈
˜
h̃
∗

˜
A(k)

˜
h̃

˜
A′(k′)

〉
(D37)

× F ∗˜AI (n̂)F ˜
A′

I′ (n̂′) ei(
~k

˜
A′ ·~xI′−~k

˜
A·~xI) ,

where the under-tilded quantities are defined in the syn-
chronous gauge of Eq. (D24). The reason we carry out
the expansion in terms of the synchronous amplitudes
is that only in the synchronous gauge may we write out
the detector response by applying Eq. (23). However, we
need a relation in terms of the unitary degrees of freedom,
which diagonalize the kinetic matrix of the theory—we
obtain such an expression below.

First, assuming a (iii) stationary and (vii) isotropic
background, with (iv) uncorrelated sky bins, we may
rewrite the above equation as (see Appendix B)〈

h̃
∗
I(f)h̃I′(f

′)
〉

= δ(f − f ′)
〈

˜
h̃
∗

˜
A(f)

˜
h̃

˜
A′(f)

〉
× Γ˜

A
˜
A′

II′(f) , (D38)

where we have pushed all the directional dependence into

the generalized overlap reduction functions, Γ˜
A

˜
A′

II′(f), of
Eq. (28). Using the transformation of Eq. (108), we can
now write this directly in terms of the unitary polarization
amplitudes,〈

h̃
∗
I(f)h̃I′(f

′)
〉

= δ(f − f ′)
〈
h̃
∗
B(f)h̃B′(f)

〉
(D39)

×M
˜
A
B(f)M

˜
A′B

′
(f) Γ˜

A
˜
A′

II′(f) .

Here we have explicitly denoted the frequency dependence
in M

˜
A
B(f), which is acquired implicitly via α in Eq. (108).

Because the unitary polarizations can be taken to be
(v) statistically independent, we may rewrite the above
equation as a single sum over B,〈

h̃
∗
I(f)h̃I′(f

′)
〉

=
1

2
δ(f − f ′)

∑
B

SB(f) (D40)

×M
˜
AB(f)M

˜
A′B(f) Γ˜

A
˜
A′

II′(f) .

Using Eq. (107), this may be written directly in terms of
the fractional energy spectrum for each unitary polariza-
tion as in Eq. (109).

Without more information about the detectors,
Eq. (109) would be our final result for massive gravity.
However, we may further simplify this for the case of a
differential-arm instrument that effects a measurement
via the detector tensor of Eq. (23). In that case, it may
be shown from the definition of the antenna patterns,
Eq. (25), that F b

I (n̂) = −F l
I(n̂) (e.g. [100]). This means

that the generalized overlap reduction functions, Eq. (28),
for the breathing and longitudinal modes will not be di-
agonal. In fact, this is evident from our expression for
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the Γ˜
A

˜
A′

II′ factors for differential-arm detectors, Eq. (111),
which follows directly from F b

I (n̂) = −F l
I(n̂).

Using Eq. (111) and the definitions of λB(f) and
MAB(f), from Eq. (105) and Eq. (108) respectively, our
final result for the cross-correlation of the detector out-

puts of two differential-arm detectors takes the form of
Eq. (39) with ΞA(f) implicitly defined by

ΞB(f) ΓBII′ = λ−1
B (f)M

˜
AB(f)M

˜
A′B(f)Γ˜

A
˜
A′

II′(f). (D41)

This reduces to the main result of Eq. (112), to quadratic
order in α.
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