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Abstract
Caustic rings of dark matter with tricusp cross-section were predicted to lie in the galactic disk.

Their radii increase on cosmological time scales at a rate of order 1 kpc/Gyr. When a caustic ring

passes through the orbit of a star, the orbit is strongly perturbed. We find that a star moving in

a nearly circular orbit is first attracted towards the caustic ring, then moves with and oscillates

about the caustic for approximately 1 Gyr before returning to its original orbit. As a result, a

stellar overdensity forms around the caustic ring. We predict such overdensities to be of order

120% near the 2nd caustic ring where the Monoceros Ring is observed and of order 45, 30 and 15%

near the 3rd, 4th and 5th caustic rings, respectively. We show that the associated bulk velocities of

the stars near the caustic rings are less than a few km/s. We also determine the density profile of

interstellar gas near the 5th caustic ring assuming it is in thermal equilibrium in the gravitational

potential of the caustic and of the gas itself.

PACS numbers: 95.35.+d
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I. INTRODUCTION

From various observations, it is known that 23% of the energy density of the universe
is made of cold dark matter [1]. Axions are one of the widely accepted cold dark matter
candidates [2]. The QCD axion was originally proposed as a solution to the Strong CP
Problem in the Standard Model [3, 4]. It became a cold dark matter candidate when it
was shown that QCD axions are produced abundantly in the early universe with very small
velocity dispersion [5].

Since dark matter particles are collisionless, they are described in six dimensional phase
space. Because they have very small velocity dispersion, cold dark matter (CDM) particles
lie on a three dimensional hypersurface embedded in that space. One inevitable consequence
of this is the formation of caustics [6] [7] [8]. Caustics are surfaces in physical space where
the density is infinite in the limit of zero velocity dispersion. In a galactic halo, both outer
and inner caustics are formed. As outer caustics appear in the outer regions of the galactic
halo (e.g. at a distance of order 100 kpc from the Milky Way center), they hardly affect
the stellar dynamics in the disk. In this paper, we only discuss the inner caustics which
form when the particles are at their closest approach to the galactic center (see Fig. 1). The
nth inner caustic forms in the flow of particles experiencing their nth infall in the galactic
potential well. If the total angular momentum of dark matter particles is dominated by net
overall rotation, each inner caustic is a closed tube whose cross-section has the shape of a
tricusp [7, 9] (see Fig. 2). This structure is called a caustic ring of dark matter.

The caustic ring model [7, 8, 10] is a proposal for the full phase space distribution of
cold dark matter halos. It is axially symmetric, reflection symmetric and has self-similar
time evolution. It predicts that caustic rings lie in the galactic plane and that their radii
an(t) increase on cosmological time-scale as an(t) ∝ t4/3. There is observational evidence in
support of the caustic ring model [11, 12]. Furthermore, it was shown that net overall rota-
tion, self-similarity and axial symmetry are the expected outcomes of the rethermalization
of Bose-Einstein condensed axion dark matter [13, 14] before it falls onto a galactic halo
[15, 16]. In the Milky Way, the present radius of the nth caustic ring is approximately 40 kpc

n
.

Since the solar system is about 8.5 kpc away from the galactic center [17], the n = 1, 2, 3
and 4 caustic rings have passed the solar orbit while the n = 5 caustic ring is approaching.

We find that star orbits are strongly perturbed by a passing caustic ring (see Fig. 5). A
star on a nearly circular orbit is first attracted toward the caustic ring, then moves with
and oscillates about the caustic ring for approximately 1 Gyr, and finally returns to its
original orbit (see Fig. 6). This implies that a star overdensity forms near a caustic ring.
The overdensity is determined by the depth (Φc) of gravitational potential well of the caustic
and the velocity dispersion (σ) of the stellar population near the caustic. If σ2 is smaller
than Φc, the stellar distribution is heavily affected by the caustic. Due to larger infall rates
[10], caustic rings with smaller n, i.e. with larger radii, have stronger gravitational fields.
Also, the stars near caustic rings of small n, i.e. those in the outer regions of the galactic
disk, have relatively small velocity dispersions. As a result, large star overdensities form
near the caustic rings of small n. We predict such overdensities around various caustic rings
(see Figs. 7, 8) by simulating the dynamics of half a million stars for each. We perform
the simulations for the radial and vertical motions independently as it is computationally
expensive to do so for the coupled two dimensional motions of a large number of stars. We
estimate the total overdensity near a caustic ring as the sum of overdensities formed due
to the radial and vertical motions. Large star overdensities would attract more stars and

2



interstellar gas, and are expected to be enhanced further. Such feedbacks are not considered
here.

The Monoceros ring [18] has been observed at the location of the second caustic ring. We
find that the star overdensity near the n = 2 caustic ring is of order 120%. This reinforces
the claim of Ref. [19] that the Monoceros ring may be caused by the second caustic ring in
our galaxy. We estimate the size of the tricusp of the n = 2 ring to be p ∼ 2.5 kpc based on
the size of the Monoceros ring. We find the star overdensity of order 45% near the n = 3
caustic ring which may explain the existence of the Binney and Dehnen ring [20] at 13.6
kpc. The overdensities for caustic rings with larger n are smaller, e.g. approximately 30
and 15% for n = 4 and 5 caustic rings, respectively. Such overdensities may be observed in
upcoming astronomical data. Recently, three independent groups [21] have observed position
dependent bulk velocities of order 10 km/s for the stars in the extended solar neighborhood.
Our work was originally motivated to investigate if the passing of a caustic ring through
the solar neighborhood may explain such observations. A caustic ring passing the solar
neighborhood moves with speed ∼ 1 km/s = 1.02 kpc/Gyr. In Section III B 1, we show
that the resultant bulk velocities of the stars are of order (∆d

d
) km/s, where d is density

of stars and ∆d
d

their relative overdensity near the caustic ring. Even if the overdensity
were of order 100%, the bulk velocities are quite small compared to the observed ones.
Hence, a passing caustic ring cannot explain the observed bulk velocities. More prominent
astrophysical signatures of the caustic rings with large n may be found in the distribution
of interstellar gas. The interstellar gas has much smaller velocity dispersion than the stars
and is strongly affected by caustic rings. We study the effects of the n = 5 caustic ring on
interstellar gas assuming the gas to be in thermal equilibrium in the gravitational potential
of the caustic ring and of the gas itself. The caustic ring is taken to be static here because
the dynamics of gas is fast compared to the time-scale over which the radius of the caustic
ring changes. We find that the density of the gas in a cross-sectional plane of the caustic
ring has a triangular shape reminiscent of the tricusp. Triangular features in both tangent
directions to the nearest caustic ring (n = 5) have been observed in the IRAS [11, 12] and
GAIA[22] maps of the galactic plane. Interestingly, the observed features are sharper than
those obtained under the above stated assumptions.

A brief outline of the paper is as follows. In Section II, we describe the caustic ring model
and determine the gravitational field and potential of a caustic ring. In Section III, we study
the dynamics of the stars in the vicinity of a caustic ring. In section IV, we study its effect
on the distribution of interstellar gas. Section V provides a summary.

II. CAUSTIC RINGS

A. Cold dark matter caustics

In the limit of zero velocity dispersion, dark matter particles lie on a 3-dimensional
hypersurface in 6-dimensional phase space. As the particles in a galactic halo are huge in
number, they can be labelled by a set of three continuous parameters, ~α = (α1, α2, α3). Let
~x(~α, t) be the position of particle ~α at time t. For an arbitrary physical point ~r, let the
equation ~x(~α, t) = ~r have solutions ~αj(~r, t) with j = 1, 2, ..., Nf (~r, t). Nf (~r, t) is the number
of flows through ~r at time t.

If d3N
dα3 (~α) is the number density of particles in the chosen parameter space, the mass
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density in physical space is given by [7]

d(~r, t) = m

Nf (~r,t)∑
j=1

d3N

dα3
(~α)

1

|D(~α, t)|

∣∣∣∣
~α=~αj(~r,t)

(2.1)

where m is the mass of each particle and |D(~α, t)| ≡ |det
(
∂~x(~α,t)
∂~α

)
| is the Jacobian of the

map from ~α to ~x. Caustics are locations in physical space where the density d(~r, t) diverges
because the map is singular, i.e. D(~α, t) = 0.

B. Flows near a caustic ring

Each particle in an axially symmetric flow of cold dark matter is labelled by two parame-
ters (α, τ). The third parameter labelling a particle is its azimuth which is irrelevant in case
of axial symmetry. α is the angle from the z = 0 plane at the time of the particle’s most
recent turnaround, i.e. α = π

2
− θ where θ is the polar angle in spherical co-ordinates. For

each value of α, τ = 0 is defined as the time when the particle crosses the z = 0 plane, i.e.
z(α, τ = 0) = 0. The coordinates (ρ, z) of a particle near the caustic ring are given by [7]

ρ= a+
1

2
u(τ − τ0)2 − 1

2
sα2 (2.2)

z= bατ (2.3)

where a, u, τ0, s and b are constants for a given caustic. The caustic occurs where the

Jacobian |D2(α, τ)| ≡ |det ∂(ρ,z)
∂(α,τ)

| is zero. Its location in the ρ-z plane as a function of the

parameter τ is given by:

ρ= a+
1

2
u(τ − τ0)(2τ − τ0) (2.4)

z= ±b
√
u

s
τ 3(τ0 − τ) . (2.5)

Equations 2.4 - 2.5 define the tricusp (see Figs. 1, 2). Its size is p in the ρ-direction and q

in the z-direction: p = 1
2
uτ 2

0 , q =
√

27
4

b√
us
p. The density in physical space is [7]:

d(ρ, z) =
1

ρ

Nf (~r,t)∑
j=1

dM

dΩdτ
(α, τ)

cosα

|D2(α, τ)|

∣∣∣∣
αj(ρ,z),τj(ρ,z)

(2.6)

where dM
dΩdτ

is the mass of dark matter particles falling in per unit solid angle per unit time.

C. Self-similarity

The evolution of dark matter particles in a galactic halo is self-similar if there is no special
time in its history [23][24][25]. Self-similarity implies that the phase space distribution
remains identical to itself except for an overall rescaling of its density, size and velocity. As
pointed out in Ref. [10], self-similarity does not require any symmetry. In the self-similar
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model, the radius of each caustic ring increases on cosmological time-sale as a(t) ∝ tβ where
β = 2

3
+ 2

9ε
. From the slope of the power spectrum of density perturbation on galactic scales,

ε is determined to be in the range 0.25 < ε < 0.35 [26]. The value ε = 1
3

(hence β = 4
3
) is

consistent with the observational evidence for caustic rings, the slope of the power spectrum
on galactic scales and with the value from tidal torquing [15].

D. Gravitational field of a caustic ring

The gravitational field inside and near a caustic ring has been calculated in Refs. [7, 27].
Assuming the size (p, q) of the cross-section of the ring to be much smaller than the radius
a of the ring, the gravitational field in terms of the rescaled variables (X = ρ−a

p
, Z = z

p
) is

given by:

~g = −8πG
dM

dΩdτ

1

bρ
[Iρ(X,Z)ρ̂+ Iz(X,Z)ẑ] (2.7)

where

Iρ=
1

2π

∫ ∞
−∞

dA

∫ ∞
−∞

dT
X − (T − 1)2 + ξA2

(X − (T − 1)2 + ξA2)2 + (Z − 2AT )2
,

Iz=
1

2π

∫ ∞
−∞

dA

∫ ∞
−∞

dT
(Z − 2AT )

(X − (T − 1)2 + ξA2)2 + (Z − 2AT )2

and ξ = su
b2

. The variables (α, τ) have been replaced by (A = bα
uτ0
, T = τ

τ0
). In Ref. [27],

ξ was taken to be unity and the integrals were calculated both analytically, using residue
theory, and numerically with consistent results. Eq. 2.7 gives the gravitational field of the
whole flow forming the caustic. The gravitational field due to the flows without caustics is
that of a smooth halo which result in a flat rotation curve. We are interested in the modified
gravitational field only due to the formation of the caustic. In the caustic ring model, one
cannot remove a flow without removing the caustic in the flow. To separate the gravitational
field of a caustic ring from that of the flow of which it is part, we introduce a long distance
damping factor:

~gc(ρ, z) = exp
(
− s2

R2

)
~g(ρ, z) (2.8)

where s2 = (ρ− a− p
4
)2 + z2 is the distance of the point (ρ, z) from the center of the caustic

and R ∼ 1.5p is the distance scale over which the effects of the caustic ring are significant.
The parameters for various caustic rings have been listed in Ref. [10]. The values for

the infall rate dM
dΩdτ

given in Ref. [10] are based on the assumption of isotropic infall of
dark matter particles. However, Ref. [16] argues that, because the vortices in the axion
Bose-Einstein condensate attract each other, numerous smaller vortices join to form a huge
vortex along the rotation axis of the galaxy. As a result, axions fall in preferentially along
the galactic plane and caustic rings are enhanced. This explains why the bumps in the
Milky Way rotation curve at the locations of the caustic rings are typically a factor of four
larger than that attributed only to the caustic rings with isotropic infall [11]. We therefore
multiply the infall rates in Ref. [10] by a factor 4 to account for the formation of the ‘Big
Vortex’, giving them the values( dM

dΩdτ

∣∣∣
n

: n = 1, 2, 3, 4, 5, ...
)
≈ (210, 95, 60, 40, 32, ...)

M�
sterad-yr

. (2.9)
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In this paper, unless mentioned otherwise, we use the following parameters to describe a
caustic ring passing through the solar neighborhood: p = 0.5 kpc, b = 523 km/s, V = da

dt
= 1

kpc/Gyr and dM
dΩdτ

= 32 M�
sterad-yr

. The chosen infall rate is similar to that of the n = 5 caustic

ring, which is the one closest to us. In Fig. 3, we show the radial and vertical components
(gcρ, gcz) of the gravitational field at Z = z

p
= 0.25 as a function of X = ρ−a

p
.

E. Gravitational potential of a caustic

Assuming the size of the cross-section of a caustic ring to be much smaller than its radius
(i.e. p, q � a, see Fig. 2), the gravitational potential Φ(X,Z) near the caustic ring is given
by:

Φ(X,Z)− Φ(X0, Z0) = 2G
dM

dΩdτ

p

ba
J(X,Z;X0, Z0) (2.10)

where

J(X,Z;X0, Z0) =

∫ ∞
−∞

dA

∫ ∞
−∞

dT ln
(X − (T − 1)2 + A2)2 + (Z − 2AT )2

(X0 − (T − 1)2 + A2)2 + (Z0 − 2AT )2
. (2.11)

We choose the center of the tricusp as the reference point (X0, Z0). Fig. 4 shows the 2D plot
of the caustic potential:

Φc(X,Z) = Φ(X,Z)− Φ(X0 = 0.25, Z0 = 0). (2.12)

It looks smooth and continuous, although its second derivative ∇2Φc diverges at the caustic.

III. EFFECTS ON STARS

A. A single star

For the stars near the galactic disk, small radial and vertical oscillations can be treated
independently [17] in the absence of a caustic. The effective potential for radial motion
consists of a logarithmic gravitational potential and the angular momentum barrier:

Φeff(ρ) = v2
rot ln ρ+

l2

2ρ2
(3.1)

where l = ρ2φ̇ = constant. For small radial oscillations about the minimum ρ0 = l
vrot

of the

effective potential, the angular frequency is ωρ =
√

2vrot
ρ0

. For vertical motion, we choose the

potential Φz(z) of an isothermal stellar disk with velocity dispersion σz and scale-height z0

[17]:

Φz(z) = σ2
z ln

[
cosh2

( z

2z0

)]
. (3.2)

In the presence of a passing caustic ring, the radial and vertical accelerations of a star are
given by:

aρ(ρ, z)= −
v2

rot

ρ
+
l2

ρ3
+ gcρ(ρ, z, a(t)) (3.3)

az(ρ, z)= −
σ2
z

z0

tanh
( z

2z0

)
+ gcz(ρ, z, a(t)) (3.4)
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where gcρ(ρ, z, a(t)) and gcz(ρ, z, a(t)) are the contributions (see Eqs. 2.7 and 2.8) from the
caustic ring with radius a(t). To visualize the effects of the caustic ring on the star, we
define radial and vertical energies per unit mass:

Eρ=
1

2
v2
ρ + Φeff(ρ)− Φeff(ρ0) (3.5)

Ez=
1

2
v2
z + Φz(z) (3.6)

where Φeff(ρ) and Φz(z) are given by Eqs. 3.1, 3.2 and ρ0 is the minimum of Φeff(ρ). Eρ
and Ez remain constant in the absence of a caustic because radial and vertical motions are
independent.

We numerically solve the equations of motion of a star in the ρ-z plane with arbitrary
initial conditions as the caustic ring passes through its orbit. The velocity dispersions of
the stars in the solar neighborhood are 40 km/s in the radial direction and 20 km/s in the
vertical direction, and the scale-height z0 = 0.5 kpc [17]. As an example, we choose a star
that orbits the galaxy at ρ0 = 8 kpc with small radial and vertical oscillations such that
vmax
ρ = 10 km/s and vmax

z = 5 km/s. In Fig. 5, we show the energies, Eρ and Ez, of the star
as the caustic ring passes through its orbit. The fluctuations in the energies are large and
occur on a time scale of approximately 2 Gyr. The fluctuations are smaller for larger initial
values of Eρ and Ez.

The stars which are most affected by a passing caustic ring are those with nearly circular
orbits. In Fig. 6, we plot the radial co-ordinate ρ of a star, and the locations of the rear (a)
and front (a + p) of the tricusp of the caustic ring as a function of time. Initially, the star
in Fig. 6a has an exactly circular orbit with radius ρ0 = 8 kpc, whereas the star in Fig. 6b
has an almost circular orbit with ρ0 = 8 kpc and vmax

ρ = vmax
z = 5 km/s. The tricusp moves

radially outward with a speed da
dt

= 1 kpc/Gyr with a(t = 0) = 6 kpc. In both cases, as
the figures show, the star is first attracted towards the tricusp and then moves with and
oscillates about the tricusp for approximately 1 Gyr before returning to its initial orbit due
to conservation of the angular momentum. For the chosen caustic ring parameters, we find
that all the stars with vmax

ρ , vmax
z ≤ 10 km/s exhibit such behavior. The intermediate phase

of following the tricusp causes stellar overdensities around the caustic ring.

B. Distribution of stars

When a caustic ring passes through a relaxed distribution of stars, it generates bulk
velocities of the stars and perturbs the density profile of the stellar population.

1. Bulk velocities

From the continuity equation: ∂d
∂t

+ ~∇.(d ~v) = 0, the bulk velocities of the stars are of
order:

v ∼ ∆d

d

∆x

∆t
(3.7)

where ∆d
d

is the relative overdensity caused by the caustic and, ∆x and ∆t are the length-
and time-scales over which the stellar distribution changes. For a caustic ring with radius
a and tricusp of size p, ∆x ∼ p and ∆t ∼ p

V
where V ∼ da

dt
is the speed of the tricusp in
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the radial direction. All the caustic rings move slowly with speed V ∼ 1 km/s. Hence, the
bulk velocities are: v ∼ 1 km/s (∆d

d
). Even if the overdensities are as large as ∼ 100%, the

bulk velocities induced by the caustic rings cannot be more than a few km/s. This is too
small to explain the recently observed [21] bulk velocities of order 10 km/s for the stars in
the solar neighborhood.

2. Over-densities

A stellar population with smaller velocity dispersion is more susceptible to a passing
caustic ring. The present locations of the caustic rings are given by:

(an : n = 1, 2, 3, 4, 5, ...) ≈ (40, 20, 13.3, 10, 8, ...) kpc. (3.8)

The radial velocity dispersion σρ of the stars at a distance ρ from the galactic center decays
exponentially with ρ [28]:

σρ(ρ) ≈ (40 km/s) exp
[
− (ρ− 8.5 kpc)

8 kpc

]
. (3.9)

Therefore, the radial velocity dispersions of the stars near the first five caustic rings are:

(σnρ : n = 1, 2, 3, 4, 5, ...) ≈ (1, 10, 20, 30, 40, ...) km/s. (3.10)

The vertical velocity dispersions σz are typically half of the radial ones. The infall rates
for the caustic rings are given by Eq. 2.9. Caustic rings with smaller n have stronger
gravitational field (see Eq. 2.7) and are surrounded by stars with smaller velocity dispersions.

In the presence of a caustic ring, the stellar dynamics in the radial and vertical directions
are not independent. Simulating the dynamics of a large number of stars in the ρ-z plane
near the caustic ring is computationally expensive. For each caustic ring, we simulate one
dimensional motion of the stars in the radial and vertical directions independently. To
determine how the star overdensities change with radial (vertical) co-ordinates, we simulate
the radial (vertical) motions and suppress the vertical (radial) dynamics of the stars. The
initial motion in the radial direction is assumed to be simple harmonic, i.e. a star oscillating

about ρ = ρ0 moves in a harmonic potential with ωρ =
√

2vrot
ρ0

where vrot = 220 km/s (see

Eq. 3.1). For the radial motion of the stars near each caustic ring, we generate a relaxed

distribution of 500, 000 stars with phase space density f(vρ, ρ) ∼ exp
(
− v2ρ+ω2

ρ(ρ−ρ0)2

2σ2
ρ

)
. The

initial vertical motion is determined by the potential Φz(z) in Eq. 3.2 and the phase space

density is given by f(vz, z) ∼ sech2
(

z
2z0

)
exp
(
− v2z

2σ2
z

)
. In the absence of the caustics, each

stellar distribution remains in equilibrium, i.e. the number density profile deq(ρ) or deq(z)
does not change with time.

For the nth caustic ring, the parameters for the radial and vertical dynamics of the
stellar distributions are chosen as follows: σρ = 2σz = σnρ (see Eq. 3.10), 〈ρ〉 = ρ0 = an (see
Eq. 3.8) and z0 = 0.5 kpc. To minimize the error due to finite size of the stellar population,
we choose the size p of the tricusp of each caustic ring to be much smaller than the size of the
corresponding stellar population. While simulating the dynamics of the stars as the caustic
rings pass through them, we take several snapshots of each stellar distribution and determine
the relative overdensity ∆d

d
= d−deq

deq
. We find that, as long as the size p of the tricusp is much
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smaller than the spread of the stellar population, the overdensity is independent of the size
p. In Fig. 7, we plot the stellar overdensities ∆d

d
due to the radial motion at the locations of

different caustic rings as functions of the rescaled radial co-ordinate X = ρ−a
p

. In Fig. 8, we

plot the same for the vertical motion as functions of the rescaled vertical co-ordinate Z = z
p
.

We did not consider the n = 1 caustic ring at 40 kpc. In the linear approximation, the total
overdensity near the caustic is the sum of the overdensities obtained for both directions. We
find the maximum total overdensity to be of order 120, 45, 30 and 15% for the n = 2, 3, 4
and 5 caustic rings. If the star overdensity near a caustic ring is large, it enhances the effects
of the caustic by attracting more stars and interstellar gas. We did not include such back
reactions in our simulation here. The large star overdensities near the n = 2 and 3 caustic
rings may explain the existence of the Monoceros ring [18] at 20 kpc and the Binney and
Dehnen ring [20] at 13.6 kpc. The Monoceros ring has a vertical scale height of order 10
kpc [18]. According to Fig. 8, the vertical scale height of the overdensity due to the n = 2
caustic ring is of order 4p. So, to form an overdensity of vertical size 10 kpc, the n = 2
caustic ring is required to have a size p ∼ 2.5 kpc. The sizes of the n = 1 and 2 caustic
rings are not known from the bumps in the rotation curve while the size of the 3rd caustic
has been determined to be 1 kpc [10]. Since the overdensities near the n = 4 and 5 caustic
rings occur within a distance of few kpc from the sun, they may be observed in upcoming
astronomical data such as from GAIA.

IV. EFFECTS ON INTERSTELLAR GAS

The bulk properties of a distribution of stars in the solar neighborhood are affected by
the caustic rings only at the 15% level because the square of the velocity dispersion (σ2) of
the stars is larger than the depth of the potential (Φc) of a caustic ring. Since gas and dust
in the interstellar medium have smaller velocity dispersions [17], their bulk properties, e.g.
density, are expected to be affected more. Assuming the gas to be in thermal equilibrium in
the gravitational potential of both the caustic and the gas itself, we study its density profile
near the n = 5 caustic ring. The caustic is taken to be static as the gas dynamics is fast
compared to the time-scale over which the radius of the caustic ring changes.

In the absence of the caustic ring, the interstellar gas is assumed to be in thermal equi-
librium through self-gravitational interactions. Its potential and density are given by [17]:

Φg(ρ, z)= σ2
g ln

[
cosh2

( z

2zg

)]
(4.1)

dg(ρ, z)= d0
g sech2

( z

2zg

)
(4.2)

where zg = σg√
8πGd0g

is the scale-height and σg is the velocity dispersion. The parameters in

the solar neighborhood are the following: zg ≈ 65 pc, σg ≈ 5 km/s and d0
g ≈ 0.05 M�/pc3

[17]. Since the scale-height of the gas is much smaller than that of disk stars (300 pc for thin
and 500 pc for thick disks), we ignore the gravity of the stars. The potential and density are
taken to be independent of the radial co-ordinate ρ since they do not change significantly
with ρ over the size of the tricusp.

We change our co-ordinate system from (ρ, z) to (X,Z) = (ρ−a
p
, z
p
) as the latter is more

convenient. In the presence of a caustic ring, the potential Φ(X,Z) due to gas is the solution
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of Poisson’s equation:
∇2Φ(X,Z) = 4πGdg(X,Z) (4.3)

where

dg(X,Z) = dg(X0, Z0) exp
(
− Φ(X,Z) + Φc(X,Z)

σ2
g

)
(4.4)

assuming Φ(X0, Z0) = Φc(X0, Z0) = 0. We calculate the new potential Φ(X,Z) using a
two-dimensional Green’s function. In the X-Z plane, we choose a sufficiently large region
around the tricusp such that, at the boundary of the region, Φ(X,Z) tends to be Φg(X,Z)
(see Eq. 4.1). Choosing a Green’s function G(X,Z;X ′, Z ′) that vanishes at the boundary,
we have:

Φ(X,Z) =

∫
dX ′

∫
dZ ′ G(X,Z;X ′, Z ′)4πGdg(X

′, Z ′) +

∮
dl′ Φg(X

′, Z ′)
∂G

∂n′
(X,Z;X ′, Z ′).

(4.5)
We solve the above equation numerically. The solution for Φ(X,Z) converges after few
iterations. In Fig. 9, we plot the density of gas dg(X,Z) near the tricusp of the n = 5
caustic ring with size p = 150 pc. As evident from the figure, the density profile has a
triangular shape as does the caustic potential shown in Fig. 4. In the recent GAIA sky-map
of the Milky Way [29], triangular features are observed [22] in both tangent directions to
the 5th caustic ring. However, the observed features have sharper edges than the triangular
shape of Fig. 9.

V. SUMMARY

The radii an of caustic rings increase slowly at the rate of approximately 1 km/s ( an
8 kpc

).

We study the dynamics of stars and interstellar gas as the caustic rings pass through them.
We find that stellar orbits are highly perturbed by a passing caustic ring (see Fig. 5). A star
moving in a nearly circular orbit is first attracted towards the caustic ring, then moves with
and oscillates about the caustic for approximately 1 Gyr, and finally returns to its original
orbit (Fig. 6) as a result of angular momentum conservation.

Next, we study how the bulk properties of a distribution of stars are affected by the
passing of a caustic ring. We find that the induced bulk velocities of the stars cannot be
more than a few km/s. The star overdensity around a caustic ring depends upon the velocity
dispersion of the stars. Since a caustic ring with smaller n has stronger gravitational field and
is surrounded by stars with lower velocity dispersion, it causes a larger stellar overdensity.
Figs. 7-8 show the overdensities of stars around different caustic rings due to radial and
vertical dynamics. The maximum total overdensity is approximately 120% around the n = 2
caustic ring at 20 kpc which supports the claim of Ref. [19] that the Monoceros ring [18]
may be caused by the second caustic ring. The total overdensity of 45% near the n = 3
caustic ring may explain the existence of the Binney and Dehnen ring at 13.6 kpc [20]. The
overdensities are smaller for larger n, e.g. approximately 30 and 15% for the n = 4 and 5
caustic rings, respectively. These overdensities, within a few kpc from us, may be observable
in upcoming astronomical data.

We also study the distribution of interstellar gas near the n = 5 caustic ring which is the
one closest to us. The gas dynamics is much faster than the time-scale over which the radius
of a caustic ring changes. We consider the caustic ring to be static and assume the gas to be
in thermal equilibrium in the gravitational potential of the caustic (shown in Fig. 4) and of

10



the gas itself. Using a Green’s function, we iteratively solve the Poisson’s equation to find
the density of gas. The density profile of gas in ρ-z plane shown in Fig. 9 has a triangular
shape as a result of the tricusp cross-section of the caustic ring. In the recent GAIA skymap
[29], two triangular features in both tangent directions to the fifth caustic ring are observed
[22]. However, the observed features have sharper edges than the features (Fig. 9) we obtain.
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FIG. 1. Flows of cold dark matter particles in a ρ-z cross-section of a caustic ring. X and Z are

rescaled co-ordinates X = ρ−a
p and Z = z

p .

FIG. 2. The envelope of the trajectories shown in Fig. 1. The shape in this figure is usually called

a tricusp. The radius a and the transverse sizes (p, q) are indicated in the figure. The figure is

taken from Ref. [10]. The radii an and sizes pn of different caustic rings are given in Ref. [10]. For

the caustic ring nearest to us (n = 5), a5 ≈ 8.28 kpc, p5 ≈ 150 pc and q5 ≈ 200 pc.
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(a)

(b)

FIG. 3. The radial and vertical components of gravitational field ~gc(X,Z = 0.25) (see Eq. 2.8)

due to a caustic ring as a function of X = ρ−a
p for Z = z

p = 0.25. The parameters of the caustic

ring have been chosen as: a = 8.0 kpc, p = 0.5 kpc, b = 523 km/s, dM
dΩdτ = 32 M�

sterad. yr . The chosen

parameters are similar to that of the n = 5 caustic ring, the one closest to us.
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FIG. 4. Two dimensional plot of the gravitational potential Φc(X,Z) of a caustic ring as a function

of the rescaled co-ordinates X = ρ−a
p and Z = z

p . The parameters of the caustic ring are the same

as those in Fig. 3. The center of the tricusp (X0 = 0.25, Z0 = 0) is chosen as the reference point.

The potential has a triangular shape inherited from the tricusp.
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(a)

(b)

FIG. 5. Variation of the radial and vertical energies, Eρ and Ez (see Eqs. 3.5-3.6), of a star when

a caustic ring passes through its orbit. The star was initially orbiting the galaxy at ρ0 = 8 kpc

oscillating in the vertical direction with vmax
z = 5 km/s and in the radial direction with vmax

ρ = 10

km/s. The dotted lines indicate the values of Eρ and Ez in the absence of the caustic ring.

Fluctuations in the energies are shown as the radius a(t) of the caustic ring changes from 6 kpc

to 10 kpc. As the caustic ring moves very slowly (1 kpc/Gyr), the time scale over which the

fluctuations occur is very large (approximately 2 Gyr).
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(a)

(b)

FIG. 6. Variation of the radial co-ordinate ρ of a star as a caustic ring with p = 0.5 kpc passes

through its orbit. In the absence of the caustic ring, the star in Fig. (a) has an initially circular

orbit of radius ρ0 = 8 kpc whereas the star in Fig. (b) has an initially almost circular orbit with

ρ0 = 8 kpc and vmax
ρ = vmax

z = 5 km/s. The thick dotted lines, a and a+ p, indicate the rear and

front of the tricusp (see Fig. 2) moving with speed 1 kpc/Gyr. In both cases, the star is initially

attracted towards the tricusp, then moves with and oscillates about the tricusp for approximately

1 Gyr before coming back to its initial orbit.
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FIG. 7. Relative overdensities of the stars ∆d
d =

d−deq
deq

due to radial motion near the n = 2, 3, 4

and 5 caustic rings as functions of the rescaled radial co-ordinate X = ρ−a
p . Stellar overdensities

are higher near the caustic rings with smaller n because they have stronger gravitational field and

are surrounded by stars with lower velocity dispersions.

FIG. 8. Relative overdensities of the stars (same as Fig. 7) due to vertical motion as functions of

the rescaled vertical co-ordinate Z = z
p .
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FIG. 9. Two dimensional plot of the density of gas dg(X,Z) (Eqs. 4.4, 4.5) when the gas is in

thermal equilibrium in the gravitational potential of the caustic (shown in Fig. 4) and of the gas

itself. The velocity dispersion σg of the gas is chosen to be 5 km/s. The density profile has a

triangular shape reflecting that of the tricusp.
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