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Collapsing supermassive stars (SMSs) with masses M & 104−6M� have long been speculated to be
the seeds that can grow and become supermassive black holes (SMBHs). We previously performed
general relativistic magnetohydrodynamic (GRMHD) simulations of marginally stable Γ = 4/3
polytropes uniformly rotating at the mass-shedding limit and endowed initially with a dynamically
unimportant dipole magnetic field to model the direct collapse of SMSs. These configurations
are supported entirely by thermal radiation pressure and reliably model SMSs with M & 106M�.
We found that around 90% of the initial stellar mass forms a spinning black hole (BH) remnant
surrounded by a massive, hot, magnetized torus, which eventually launches a magnetically-driven
jet. SMSs could be therefore sources of ultra-long gamma-ray bursts (ULGRBs). Here we perform
GRMHD simulations of Γ & 4/3, polytropes to account for the perturbative role of gas pressure in
SMSs with M . 106M�. We also consider different initial stellar rotation profiles. The stars are
initially seeded with a dynamically weak dipole magnetic field that is either confined to the stellar
interior or extended from its interior into the stellar exterior. We calculate the gravitational wave
burst signal for the different cases. We find that the mass of the black hole remnant is 90%−99% of
the initial stellar mass, depending sharply on Γ−4/3 as well as on the initial stellar rotation profile.
After t ∼ 250 − 550M ≈ 1 − 2 × 103(M/106M�)s following the appearance of the BH horizon,
an incipient jet is launched and it lasts for ∼ 104 − 105(M/106M�)s, consistent with the duration
of long gamma-ray bursts. Our numerical results suggest that the Blandford-Znajek mechanism
powers the incipient jet. They are also in rough agreement with our recently proposed universal
model that estimates accretion rates and electromagnetic (Poynting) luminosities that characterize
magnetized BH-disk remnant systems that launch a jet. This model helps explain why the outgoing
electromagnetic luminosities computed for vastly different BH-disk formation scenarios all reside
within a narrow range (∼ 1052±1ergs−1), roughly independent of M .

PACS numbers: 04.25.D-, 47.75.+f, 97.60.-s, 95.30.Qd
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I. INTRODUCTION

The discovery of quasars at high cosmological redshifts, e.g. J1342+0928 at redshift z = 7.54 [1], J1120+0641 at
redshift z = 7.09 [2], and SDSS J0100+2802 at redshift z = 6.33 [3], strongly supports the idea that supermassive
black holes (SMBHs) with masses M & 109M� exist in the early universe. At the same time, these observations raise
questions about how SMBHs could be formed in less than a billion years after the Big Bang, as well as about their
growth processes (see [4] for a recent review). A possible scenario to explain the origin of SMBHs is provided by
the collapse of supermassive stars (SMSs) with masses & 104M� to black holes (BHs) following their quasistationary
cooling and contraction evolution epochs. These seed BHs, at large redshifts (z ∼ 10 − 15), could grow through
accretion and mergers to become SMBHs [5–7]. An alternative scenario is the collapse of Population III (Pop III)
stars with M ∼ 100− 500M� at z ∼ 20 (e.g. [5, 8–11]). For less massive Pop III stars (140M� . M . 260M�), the
electron-positron pair instability would cause rapid stellar contraction and oxygen and silicon burning would produce
sufficient energy to reverse the collapse and form pair-instability supernovae [12, 13]. However, it is believed that with
M > 260M�, nuclear burning is not powerful enough to overcome the implosion by the pair instability and the star
would collapse to a BH (e.g. [12–15]). As pointed out in e.g. [16], a 100M� seed BH that accretes at the Eddington
limit with ∼ 10% radiative efficiency can grow to MBH & 109M� by z = 6.4, but only if the onset of accretion is at
z > 20.

Idealized SMSs are objects supported dominantly by radiation pressure Pr, which can be well described by a Γ = 4/3
adiabatic index, or an n = 3 polytropic equation of state [17–19]. SMSs are likely to be highly spinning and turbulent
viscosity induced by magnetic fields would keep them in uniform rotation [20–23]. The critical configuration of a
SMS at the mass-shedding limit along a quasistationary evolution sequence is set by the onset of a relativistic radial
instability. It has been pointed out that the ratio of rotational kinetic energy and gravitational potential energy
T/|W |, the compaction parameters Rp/M , where Rp is the polar radius, and the dimensionless spin J/M2 for this
critical configuration are all independent of the initial mass [18]. Such universality also applies to the BH-disk
parameters after collapse, as shown by analytic models and full general relativistic (GR) hydrodynamic simulations
of marginally unstable, uniformly rotating SMSs spinning at the mass-shedding limit [24–27]. These have shown
that the SMS remnant is a black hole surrounded by a massive, hot accretion torus. The remnant black hole has a
mass MBH of about ∼ 90% of the initial stellar mass M and spin aBH/MBH ∼ 0.70 − 0.75. GRMHD simulations
in which the SMS is threaded initially by a dynamically weak dipole magnetic field, either confined or not to the
stellar interior, have shown that the above parameters remain basically unchanged. In the magnetized case, however,
following the gravitational wave (GW) burst at collapse, the BH–accretion disk remnant gives rise to a magnetically
confined jet with an outgoing electromagnetic (Poynting) luminosity LEM ∼ 1052±1erg/s, consistent with typical
GRB luminosities [26, 27]. This feature may explain the recent detection of high redshift (z ∼ 5.3 − 8.0) GRBs
reported from the Burst Alert Telescope (BAT) on Swift. It may indicate that some metal–free Pop III stars could
also be the engines that power long GRBs (see e.g. [28, 29]), as they are at the epoch when Pop III stars reached
formation peak (see e.g. [30, 31]). The jets also exhibit universal characteristics independent of mass. We explained
this universality [32] by an analytic model that estimates several key global parameters characterizing a BH–accretion
disk remnant that launches a magnetically–driven jet consistent with the Blandford-Znajek (BZ) mechanism [33].
The same universal model accounts for BH–disk systems formed either through compact binary mergers (i.e. neutron
star or black hole–neutron star binary mergers, such as in [34, 35], or massive star collapse as in [26, 27].)

Some numerical simulations have shown that the gravitational collapse could be overcome by thermonuclear energy
if the SMSs have non-zero metallicity. In [36] a series of nonrotating SMSs with different metallicity Z were studied
analytically and numerically, and microphysical processes including electron-positron pairs, rapid proton capture and
neutrinos loss were considered. They found that hydrogen burning by the CNO cycle would trigger the explosion with
a metallicity as low as Z = 5× 10−3 and release 2× 1056 − 1057erg of energy for stellar masses of 105 − 106M�. It is
also been found that the critical metallicity triggering the explosion increases with stellar masses. A similar result was
found by [37], in which a nonrotating SMS with mass of ∼ 5× 105M� would explode if the metallicity is greater than
7×10−3. Additionally, they discovered that the metallicity threshold is lowered to ∼ 1×10−3 if the stars are uniformly
rotating. However, whether the massive stars could contain the threshold metallicity is questionable, especially for
the first generation of stars born in metal-free regions. Although an 1D simulation of the evolution of Pop III SMSs
by [11] has shown that a 5 × 104M� star could explode as a thermonuclear supernova powered by helium burning,
various approximations assumed and grid limitations may have hindered the accuracy of the simulations.

Although numerical calculations obtained from strictly radiation-dominated n = 3 SMS models provide promising
observational suggestions, the approximation and simplification of the model may neither accurately describe a realistic
progenitor, nor sufficiently display some important physical characteristics during the evolution. For example, SMSs
also contain gas pressure Pg � Pr, which becomes increasingly important as the mass of the star decreases. This
importance is reflected in the adiabatic index and polytropic index of the star. For a SMS with M ∼ 105M� the
effective adiabatic index is Γ = 1.339 or n = 2.95 while for M ∼ 104M� these parameters are Γ = 1.345 or n = 2.9.
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Both the critical configuration at the onset of collapse and the final BH-disk system following collapse are extremely
sensitive functions of Γ− 4/3 or n− 3, as we showed in [38]. Hence to reliably track the onset of instability and the
fate of an unstable SMS with mass . 106M� it is necessary to simulate collapse from the critical configuration found
for Γ > 4/3. We also note that recent GR semi-analytic calculations and hydrodynamic simulations [39–41] suggest
that the SMS in the nuclear burning phase may be better described by a polytropic EOS in the range 2.95 . n . 3.

As a uniformly rotating SMS contracts during its quasistationary cooling phase, its angular velocity increases until
reaching the maximally rotating (mass-shedding) limit. It will continue evolving along a mass-shedding sequence [18,
41–43], as turbulent viscosity arising from magnetic field instabilities likely maintain uniform rotation. Nevertheless,
two alternative situations might arise in principle. First, if the initial gaseous angular momentum is not sufficient
prior to contraction, then it is possible that SMSs do not spin-up sufficiently to reach the mass-shedding limit when
the radial-instability is triggered. Second, if magnetic effects are greatly suppressed, then uniform rotation would not
be sustained by turbulent processes during the contraction phase and instead angular momentum would be conserved
on each concentric cylindrical shell [44, 45]. As a result, the SMSs would become differentially rotating, even if
uniformly rotating initially [42]. Thus, simulating SMS collapse with the star rotating differentially is also of interest.
GR hydrodynamic simulations of collapsing differentially rotating, radially unstable SMS models were performed first
by [46], who found the collapse to be similar to that of a uniformly rotating star. A differentially rotating, n = 3
polytrope with a toroidal shape was studied in [47]. It was found that such an object is unstable to nonaxisymmetric
modes and fragmentation occurs. Recently, the evolution has been extended to Γ & 4/3, n . 3 SMS models where an
initial m = 2–sinusoidal density perturbation triggered fragmentation that eventually formed a binary BH surrounded
by a cloud of gas [48]. However, this simulation did not begin from an initially quasiequilibrium state. GRMHD
simulations that incorporate magnetic fields have yet to be performed for this fragmentation scenario.

The aim of the paper is twofold. First, we extend our previous GRMHD calculations [27] of collapsing SMSs
described by Γ = 4/3, n = 3 polytropes to Γ & 4/3, n . 3 polytropes to treat lower mass models with gas pressure
perturbations. We also consider the evolution of SMS models with different initial stellar rotation profiles. Our
simulations might be useful for interpreting future coincident detections of GW bursts with electromagnetic (EM)
counterpart radiation (multimessenger observations). Multimessenger signatures from the direct collapse of a SMS
and the subsequent accretion epoch have not been explored to a great extent. The future detection of GW signals
by detectors such as LISA [49, 50], in coincident with GRBs at very high redshift, would provide evidence for the
direct–collapse massive-star model for the seeds SMBHs. We also would like to verify the viability of the unified
model presented in [32], which derives a direct relation between the EM signal strength and the BH-accretion disk
parameters.

We find that the mass of the black hole remnant is between 90% and 99% of the initial mass of the SMS, depending
sharply on Γ− 4/3 or n− 3 as well as on the initial rotation profile. The latter can affect the ram pressure produced
by fall-back debris and the ultimate emergence of the jet. After t ∼ 250− 550M ≈ 1− 2× 103(M/106M�)s following
the appearance of the black hole horizon, an incipient jet is launched in the magnetized cases considered, and it is
expected to last for ∼ 104 − 105(M/106M�)s, consistent with the duration of long gamma-ray bursts [51, 52]. The
outgoing electromagnetic Poynting luminosity driven by the jet is LEM ∼ 1051−53erg/s. As we pointed out in [27],
if 1% − 10% of this power is converted into gamma rays, they can be detected potentially by Swift and Fermi [53].
Our results also suggest that the BZ mechanism powers the incipient jet. We find that the estimates provided by
our unified model in [32] are consistent with our numerical results within an order of magnitude. Finally, we also
diagnose the possibility of the quasi-periodic GW signature in the BH-disk system arising from the Papaloizou–Pringle
Instability (PPI) [54] as suggested in [55]. However, we find that only the initial GW burst is appreciable and that
no prominent signature of a PPI is found.

The paper is organized as follows. In Sec. II, we summarize analytic calculations which model SMSs with different
characteristic masses and rotation profiles. In Sec. III, we discuss how the initial SMS models are implemented
numerically. We also describe the numerical methods used, as well as a number of diagnostic quantities that we use
to verify the reliability of our calculations. In Sec. IV we discuss our results and compare them with our analytic
model in [32]. Finally, we summarize our conclusion and propose future work in Sec. V. Throughout the paper, we
use geometrized units c = G = 1 unless otherwise specified.

II. ANALYTIC MODEL

In this section we review key features of analytic SMS models described by polytropes with different polytropic
indices and rotation profiles. In Sec. II A, we show how the effective adiabatic (or polytropic) index of a SMS scales
with mass when gas pressure perturbations are included along with the dominant radiative pressure. In Sec. II B, we
describe the relation between angular velocity and the equatorial radius for uniformly rotating stars, and we give the
differential rotation profile used in one of our numerical models.
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A. Characteristic masses

Containing both radiation and gas pressure, a highly convective core maintains constant entropy of the stellar
interior [12, 39]. Therefore, from the first law of thermodynamics, a SMS can be modeled approximately by a
polytrope with P ∝ ρ0)Γ, where P is the pressure, and ρ0 is the rest-mass density,

Γ =
4

3
+

β(4 + β)

3(1 + β)(8 + β)
=

4

3
+
β

6
+O(β2), (1)

and β ≡ Pg/Pr is the ratio between the gas and the radiation pressure (see, e.g., [12, 39, 41, 56, 57], also see Problem
17.3 in [58] and Problem 2.26 in [59]). For radiation-dominated stars, β � 1 is directly related to the radiation
entropy sr and to the mass of a SMS. To lowest order, and assuming stars consist of hydrogen only, we have

β =
8kB
sr

= 8.485

(
M

M�

)−1/2

, (2)

where kB is Boltzmann’s constant. The relation between adiabatic index Γ and M to first order in β is

Γ− 4

3
≈ 1.414

(
M

M�

)−1/2

, (3)

or, in terms of polytropic index n ≡ 1/(Γ− 1)

n ≈ 3

1 + 4.242
(
M
M�

)−1/2
. (4)

Fig. 1 displays β and the mass of a SMS as a function of polytropic index n for 0 < β < 0.1. As n decreases by a small
amount, the resulting SMS mass drops by orders of magnitude. A more detailed analysis of Γ versus M considering
different components of the plasma inside the star is proposed in [39], which is consistent with the analysis above.

B. Rotation profiles

Full discussion of an uniformly rotating, pressure dominated SMS is contained in [60] and [38] in the Newtonian,
Roche approximation. There it is shown that the angular frequency at the mass-shedding limit, where matter at the
equator has no outward support from pressure but is instead supported exclusively by centrifugal forces and therefore
follows a circular geodesic, satisfies

Ωshedd =

(
M

R3
eq

)1/2

, (5)

where Req is the equatorial radius. Integrating the hydrostatic equilibrium equation for a spherical stellar model in
the Newtonian limit, we obtain (see Eq. 4 in [38])

(n+ 1)
P

ρ
− M

r
− 1

2
Ω2r2 sin2 θ = H . (6)

Here H is a constant of integration. The angular velocity of an uniformly rotating star less than the mass-shedding
limit can be described by Ω = αΩshedd, where α is a spin-down factor that measures the deviation from the mass-
shedding limit. Equating the values of Eq. 6 calculated at the pole and the equator, and assume that Rpol of an
uniformly rotating star is the same as the nonrotating case 1, we find that the ratio between equatorial and polar
radius of uniformly rotating Newtonian polytropes satisfies

α2

2

(
2

3

)3(
Req
Rpol

)3

−
(
Req
Rpol

)
+ 1 = 0 . (7)

1 This assumption was shown numerically to be very accurate, see e.g. [61]



5

We treated the collapse of a uniformly rotating, marginally unstable SMS with n = 3 at mass-shedding in [27]. For
this case α = 1, for which Rpol = 2Req/3. Here we consider the collapse of uniformly rotating, marginally unstable
configurations with n = 2.9 and n = 2.95 at the mass-shedding limit α = 1. We also treat a n = 2.9 configuration
at a smaller spin α = 0.75. We choose the smaller n in part to explore the effects of gas-pressure perturbations
and in part to evolve a configuration of smaller compaction and hence shorter dynamical and integration timescale.
We use the approximate Newtonian model described above to provide input parameters for Rpol/Req for insertion in
our relativistic equilibrium code [62–64] to build a stable, uniformly rotating star. Our numerical solution is more
accurate than the approximate Newtonian Roche model described by Eq. 7, although the discrepancy is not large
even in the most compact case. For example, for n = 2.9 and Rpol/Req = 0.89, the numerically accurate GR value
for α is 0.75, while Eq. 7 gives 0.77.

We also consider a differentially rotating configuration at the onset of instability. It is defined by [46, 48, 65, 66]

utuφ =
R2
eq

9
(Ωc − Ω) , (8)

in the relativistic regime, where Ω = Ω($) is the angular velocity of the fluid, Ωc is the angular velocity at the stellar
center, and the ui are 4-velocity components. In the Newtonian limit, Eq. (8) reduces to:

Ω =
Ωc

1 + 9$2

R2
eq

(9)

where $2 = x2 + y2 is the distance from the rotation axis, with the center of mass at the origin.

III. METHODS

In this section we begin with a summary of the numerical approach and code we employ for solving GRMHD
equations. A detailed description can be found in [67, 68]. In Sec. III B we describe our initial data. In particular, we
discuss how we build our initial SMS models, including the initial rotation profile and the magnetic field configuration
seeded in the SMS. In Sec. III C we review the resolution and grid structure used during the different epochs of the
stellar evolution. Finally, in Sec. III D we describe our standard tools to diagnose the numerical simulations.

A. Numerical setup

We use the moving-grid mesh refinement Illinois GRMHD code embedded in the Cactus2/Carpet3 infrastructure.
The code has been extensively tested and used to study various scenarios, including magnetized compact object
mergers and stellar collapse, leading to magnetized accretion disks and in some cases the formation of jets (see
e.g.[27, 68–70] and references therein).

The Illinois GRMHD code evolves the spacetime metric by solving Baumgarte–Shapiro–Shibata–Nakamura (BSSN)
formulation of the Einstein’s equations [71, 72], coupled to moving puncture gauge conditions [73, 74] with the equation
for the shift vector in first-order form (see e.g. [75, 76]). Depending on the grid structure and system properties for the
different cases, the shift parameter η is set between 3.26/M and 3.89/M , where M is the ADM mass of the system.
The code solves the equations in a flux conservative formulation [see Eqs.(27)-(29) in [67]] via a high-resolution shock
capturing method [77]. To guarantee that the magnetic field remains divergenceless, the code solves the magnetic
induction equation by introducing a vector potential [see Eqs. (8)-(9) in [68]]. We adopt the generalized Lorenz
gauge [68, 78] to close Maxwell’s equations. This gauge is chosen so that the development of spurious magnetic
fields that arise due to interpolations across AMR levels can be avoided; for details see [68]. The GRMHD evolution
equations are evolved by employing a Γ-law EOS, P = (Γ − 1) ε ρ0, where Γ & 4/3, and ε and ρ0 are the specific
internal energy and the rest-mass density, respectively.

B. Initial data

It is believed that SMSs form when colliding gas residing in metal–, dust–, and H2–poor halos build up sufficient
radiation pressure to inhibit fragmentation and the formation of small stars [79–82]. As thermal emission and turbu-

2 http:// www.cactuscode.org
3 http://www.carpetcode.org
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lence driven by magnetic viscosity take place, the star shrinks and spins up to the mass-shedding limit [20, 22, 83].
It then evolves in a quasistationary manner until reaching the onset of relativistic radial instability and eventually
collapses to form a seed of a SMBH [18]. It also has been argued, that massive stars with M & 102M�and sufficiently
low metallicity (Pop III stars) may be the progenitors of SMBHs, if mass–loss mechanisms such as nuclear–powered
radial pulsations and the electron-positron pair instability on the main sequence are suppressed [84, 85]. Here, we
consider SMSs described by a marginally unstable polytrope spinning at the mass-shedding limit characterized by a
polytopic index n = 2.95 and n = 2.9 (Table I). Compared to n = 3 polytropes which better characterize SMSs with
M & 106M�, they correspond to SMSs with smaller characteristic mass of 105M� and 104M�, respectively, according
to Eq. (4) and Fig. 1. In order to study the effects of the initial rotation profile, we model the uniformly rotating
SMSs initial configuration at mass-shedding and with 0.75 of the corresponding mass-shedding angular velocity. For
the latter we set α = 0.75, which gives Rpol/Req ≈ 0.89. Finally we also consider differentially rotating stars with an
initial rotation profile given by Eq. (8).

To determine the central density ρc of the marginally unstable stellar models spinning at the mass-shedding limit
for a given polytropic index n, we solve Eqs.(17) and (18) along with the constraint in Eq. (19) in [38]. Note that the
configurations described by such a soft EOS (n ≈ 3) are low compaction stars. Given the central density ρc and the
above polar-to-equatorial radius ratio, we build the above rotating stellar configurations with the relativistic rotating
star code described in [62–64].

To consider magnetized initial configurations as in [27], the stellar models are endowed with a dynamically unim-
portant magnetic field as follows:

• Interior magnetic field case: The star is seeded with a dipole-like magnetic field generated by the vector
potential [86]

Aint
φ = Ab$

2 max(P − Pcut, 0)nb , (10)

where Ab, Pcut, and nb are free parameters that determine the initial magnetic field strength, its confinement
and its degree of central condensation. Following [27], we set Pcut = 10−4Pmax(0), where Pmax(0) is the initial
maximum value of the pressure, and nb = 1/8. In our models, we choose a value of Ab such as the magnetic-to-
rotational-kinetic-energy ratio M/T = 0.1 (see Table I). As in standard hydrodynamic and MHD simulations,
we add a tenuous constant–density atmosphere with small rest mass density ρ0, atm = 10−10 ρ0,max(0), where
ρ0,max(0) is the maximum value of the rest mass density of the SMS, to cover the computational grid outside
the star.

• Interior-Exterior magnetic field case: The star is seeded with an interior and exterior dipole-like magnetic
field generated by the vector potential [27]

Aφ = e−(r/r1)2pAint
φ +

(
1− e−(r/r1)2p

)
Aext
φ , (11)

with

Aext
φ =

π$2 I0 r
2
0

(r2
0 + r2)3/2

[
1 +

15 r2
0 (r2

0 +$2)

8 (r2
0 + r2)2

]
, (12)

that corresponds to that generated by an interior current loop with radius r0 and current I0 [69, 87]. Here,
r2 = $2 + z2 and the constant r0 is the radius of the current loop that generates the magnetic field in the
stellar exterior. On the other hand, the free constant r1 controls the thickness of the transition region between
the interior and exterior potentials. These parameters, along with the current loop I0 and the free parameter
p, determine the strength of the magnetic field. Following [27], in all models listed in Table I we choose
Pcut = 10−4Pmax and I0 = 7.35× 10−3. In the n = 3.0 SMS model, we set r0 ≈ 2.2M , and r1 ≈ 240M . In the
n = 2.95 model, we set r0 ≈ 0.6M , and r1 ≈ 120M , and, finally, in the n = 2.9 model, we set r0 ≈ 0.6M , and
r1 ≈ 120M . In all cases we set p = 2. The above choices yield a magnetic field in the bulk of the star similar to
that in the interior case[27]. Finally, we set an initial low and variable density atmosphere in the stellar exterior
such that the gas-to-magnetic-pressure ratio is 0.01 which allows us to evolve reliably the magnetic field outside
the star and mimic a force-free external environment [34, 35]. The left top panel in Fig. 2 and the left column
in Fig. 3 display the initial magnetic field configurations of the models listed (see Table I).

Since we are interested in the stellar collapse epoch and the subsequent evolution, we initially deplete the pressure
by 1% as in [26, 27] to trigger stellar collapse. Table I summarizes the key initial parameters of these models. Unless
otherwise noted, the initial configuration corresponds to a uniformly rotating SMS spinning at the mass-shedding
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limit, close to the onset of general relativistic radial instability. So, for example, the model denoted as n29-EXTINT-
DIFF corresponds to an n = 2.9 differentially rotating star endowed with a magnetic field that extends from the
stellar interior to the exterior, while the model denoted as n29-HYD corresponds to the n = 2.9 uniform rotating star
spinning at the mass-shedding limit without any magnetic field.

C. Grid Structure

During the collapse, the size of the star changes in many orders of magnitude from some hundreds of M to a few
M (see Table I). Hence, to reliably evolve the SMS, high-resolution refinement levels need to be added on the base
levels as the star size shrinks. Following [24, 26, 27], we begin the numerical evolution of the models listed in Table I
with one set of five nested refinement levels centered at the star and differing in size and resolution by factors of
two. Reflection symmetry across the equatorial plane is imposed to save computational resources. The resulting
number of grid points per level is N = Nx ×Ny ×Nz ≥ 1202 × 60, where Ni is the number of grids points along the
i–direction. During the evolution, a new refinement level is added each time the central density increases by roughly
a factor of three. The new level has half the grid spacing of the previous innermost level with same number of grid
points. Such a procedure is repeated five and six times for the n = 3 purely hydrodynamic and GRMHD evolutions,
respectively, and four times for the other cases (see Table II). The highest resolution on our grids is similar to that
used in [26, 27]. Note that the main purpose of applying higher resolution is to accurately evolve the low-density,
force-free environments that emerge above the black hole poles.

D. Diagnostics

During the evolution, we monitor the normalized Hamiltonian and momentum constraints calculated by Eqs.(40)-
(43) in [88]. In all cases displayed in table I, the constraint violations remain below ∼ 0.01 throughout the whole
evolution. We use a modified version of the Psikadelia thorn to extract GWs using the Weyl scalar Ψ4 and
computed the total energy radiated by gravitational waves; this routine uses a s = −2 spin-weighted spherical
harmonics decomposition (for details see [89]). To further validate our numerical results, we verify the conservation
of the total mass Mint and the total angular momentum Jint computed through Eqs.(9)-(10) in [90], which coincides
with the ADM mass only at spatial infinity. In all cases we find that both the interior mass and the interior angular
momentum calculate at large but finite radius deviate from their initial values by . 1%, which is manly due to
numerical dissipation. Notice that in the above calculation we take into account the energy and angular momentum
carried away by gravitational radiation, which is . 10−4%, the mass and angular momentum loss through EM
radiation, computed via Eq.(7) in [27], as well as the escaping matter, which computed as Mesc =

∫
−u0>1

ρ∗ d
3x with

ρ∗ = −nµ ρ0 u
µ, where ρ0, uµ and nµ are the rest-mass density, 4-velocity, and the future-directed unit normal to the

time slice. respectively.
Finally, we use the AHFinderDirect thorn [91] to locate the apparent horizon, as well as the isolated horizon

formalism to estimate the spin and mass of the black hole via Eqs.(25) and (27) in [92].

IV. RESULTS

A. Overview

Following the initial pressure depletion, the bulk of our SMS models begin to undergo nearly homologous collapse.
Regardless of the different characteristic masses (or polytropic index n), the magnetic field configuration, or the
stellar rotation law, the gas falls inward, forming a dense core that eventually collapses to a black hole. Following the
catastrophic collapse, the black hole captures in all the low-angular momentum gas from the inner layers of the SMS.
The high-angular momentum gas in the outer layers spirals around the black hole as it falls inward and is ultimately
held back by a centrifugal barrier. Eventually, a reverse shock is formed which induces an outflow (see e.g. [26, 27]).
During this epoch, the frozen-in magnetic field winds up (see right top and middle panels of Fig. 2), and the magnetic
pressure grows. The magnetorotational-instability (MRI) develops in the disk. We resolve the MRI according to
λ/∆ ≈ 10− 20 [93]. Here λ is the wavelength of the fastest-growing MRI mode and ∆ is the grid spacing. Once the
magnetic pressure above the black hole poles is sufficiently large (i.e. B2/8πρ0 & 1), a collimated outflow is driven
along the polar axis of black hole, and an incipient jet is launched [27] (see bottom panels of Fig. 2 and right column
of Fig. 3).
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B. Effects of different mass scale

Semianalytic calculations of marginally unstable, uniformly rotating and axisymmetric SMS spinning at the mass-
shedding limit in [38], and numerical calculations (see e.g. [18, 26, 27, 40]) of SMSs supported by thermal radiation
pressure with Γ ≈ 4/3 suggested that the final parameters that characterize the BH-accretion disk remnant depend
strongly on Γ − 4/3 � 1, or n − 3 � 1. We consider the evolution of marginally unstable SMSs spinning at
the mass-shedding limit described by a polytropic EOS with n ∈ {3.0, 2.95, 2.90} (see Table I), which characterize
masses of M? ∈ {& 106, 105, 104}M� respectively, supported by radiation plus gas pressure. Although the different
n characterize different mass scales, we nevertheless scale our numerical results in units of 106M� for convenient
comparisons.

The stiffer the EOS (the smaller the characteristic mass M?), the more compact the critical configuration and,
hence, the shorter the black formation time. We observe that in the most massive SMS models with n = 3, an
apparent horizon (AH) forms by t ≈ 3.0 × 104M ∼ 1.5 × 105(M/106M�)s [27]. For the n = 2.95 SMS, the AH
forms by t ≈ 9.08 × 103M ∼ 4.48 × 105(M/106M�)s, while for the models with n = 2.9, the horizon appears
about t ≈ 4.2 × 103M ∼ 2.1 × 104(M/106M�)s. Regardless of EOS, in all cases listed in table I, we observe
that following the high accretion episode, both the mass and the spin of the black hole rapidly grow for about
t − tBH ≈ 400M ∼ 1.8 × 103(M/106M�)s until reaching quasistationary state values. Fig. 4 shows the dependence
of these quantities on the polytropic index n (see Table III for details). For models with the smallest masses (stiffer
EOS, n→ 2.9), essentially all the mass and the angular momentum of the progenitor are swallowed by the black hole
during the high accretion episode, leaving only a tenuous cloud of gas to form the accretion disk. We find that only
∼ 1% of the SMS rest mass ends up in the disk, and the final spin of the black hole remnant is a/MBH ≈ 0.53 which
is approximately the initial angular momentum of the SMS. On the other hand, as the characteristic mass becomes
greater (softer EOS, n → 3), the initial SMS configuration becomes less compact (see table I), allowing more gas to
be sufficiently far from the final BH innermost stable circular orbit (ISCO) allowing for a higher mass of the disk.
For n = 2.95, we find that around ∼ 3% of the SMS exists in the disk, but for n = 3.0 it can be as much as ∼ 9% of
the SMS rest mass [27]. The spin of the black hole for these cases is a/MBH ≈ 0.58, and a/MBH ≈ 0.7, respectively.
Although the softer EOS produces larger MBH and aBH/MBH, only the mass of the black hole seems to be sharply
dependent on the polytropic index n. Note that the above results are consistent with the previous simulations of the
collapse of n ≈ 2.98 SMS models reported in [94] that account for nuclear burning, for which the mass of the disk is
. 5%, a value that lies between our n = 3 and n = 2.95 SMS models, as expected.

Finally, we compare our numerical results with the semianalytic predictions for the collapse of critical configurations
uniformly rotating at mass-shedding in [18, 38, 63] and previous GR hydrodynamic simulations in [24] and GRMHD
simulations in [26]. As it can be seen in Table IV, the previous theoretical predictions and numerical calculations are
consistent with the results of our simulations for the mass of BH, the dimensionless spin of BH, and the disk mass for
all three polytropic indices (characteristic mass scales).

C. Effects of different rotation law

If the turbulent viscosity is low, uniform rotation may not be enforced during stellar evolution, and hence the star
may be differentially rotating when it collapses to a black hole (see e.g. [42]). Since the angular momentum of the
outer layers of the collapsing star will be conserved, the fate of the remnant black hole-disk will depend on the initial
rotation law profile of the SMS [42, 44, 45, 95]. Fig. 4 displays the evolution of the mass and the spin of the black hole
remnant, as well as the rest mass fraction M0 outside the AH computed as M0 =

∫
ρ∗ d

3x for models listed in table I.
Here we focus on the three different n = 2.9 SMS models that: a) uniformly rotate at the mass-shedding limit, b)
uniformly rotate at 75% of the mass-shedding limit, and c) differentially rotate with an initial rotation profile given
by Eq. (8).

Following the initial pressure depletion, the SMS models contract and form a central dense core that under-
goes collapse. Unlike the uniform rotation models, in which an AH forms approximately at t . 6600M ∼ 3.2 ×
104(M/106M�)s, the differential rotation profile provides centrifugal support against collapse. However, over a secu-
lar time t . 2× 104M ∼ 105(M/106M�)s, turbulent viscosity (in our case magnetic viscosity) transports the angular
momentum outward pushing out the external layers of the star and driving the inner core toward uniform rotation.
As the total rest mass of the core exceeds the maximum value allowed by uniform rotation, it eventually collapses.
The black hole horizon appears by around t ≈ 2.6 × 103M ∼ 1.3 × 105(M/106M�)s, which is similar to that in the
case of a less centrally condensed n = 3 SMS (see table III). The bottom panel of Fig. 4 shows the fraction of the rest
mass that wraps around the black hole to form the accretion disk. Notice that in the differentially rotating case about
∼ 18% of the initial rest mass of the star forms the disk, while only ∼ 1% and ∼ 0.3% of the rest mass contributes to
the disk in the uniformly rotating mass-shedding case, and in the α = 0.75–uniformly rotating case, respectively.
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D. Effects of the magnetic field: Jets

During stellar contraction and black hole formation, the magnetic field winds up, causing the magnetic pressure to
grow. A reverse shock pushes away material that is tied to the disk via the frozen-in magnetic field lines, producing a
strong poloidal magnetic field, as shown in the right-middle panel of Fig. 2. As pointed out in [27, 34], the conversion
of poloidal to toroidal flux via magnetic winding produces large magnetic pressure gradients above the BH that
eventually launches a strong outflow sustained by helical magnetic fields (see the bottom panel of Fig. 2). In the
following we summarize additional differences in the evolution of the models listed in table I.

a. Models spinning at the mass-shedding limit: Except for n29-INT, in which we do not observe any
indication of jet formation, the early evolution and outcome of the uniform rotating SMSs spinning at the mass-
shedding limit is similar (see the first three panels of Fig. 3); at about t − tBH ≈ 250 − 550M ∼ 1.2 − 2.7 ×
103(M/106M�)s an incipient jet is launched following the growth of magnetic of pressure gradients above the black
hole poles (for details see Table III). As is shown in Fig. 5, the accretion rate in all these cases settles to roughly
∼ 1M�/s by about t − tBH ∼ 1.8 × 103M ∼ 8.8 × 103(M/106M�)s, at which the mass of the disk is Mdisk ∼
1.5 − 7.0 × 104(M/106M�)M�. Hence, the duration of the jet is ∆t = Mdisk/Ṁ ∼ 1.8 − 7.2 × 104(M/106M�)s,
consistent with estimates of ultra-long gamma-ray bursts (ULGRBs) duration in [96, 97]. To verify that the BZ
mechanism is operating in our systems, we compare the Poynting luminosity LEM computed through Eq. (7) in [27]
with the expected EM power generated by BZ [33],

LBZ ≈ (13)

1051

(
a/MBH

0.75

)2 (
MBH

106M�

)2
(
Bpole
BH

1010G

)2

erg/s .

As in [27], the magnetic field Bpole
BH is computed as a space- and time-averaged value of the field in a cubical region

with a side of length 2 rBH , where rBH is the radius of the AH, just above the black hole poles over the last
t ≈ 200M ∼ 1000(M/106M�)s after the jet is well-developed. As it is displayed in Fig. 6, the outgoing electromagnetic
Poynting luminosity passing through a sphere with coordinate radius Rext = 100M ∼ 1.4 × 108(M/106M�)km is
LEM ≈ 1051 − 1052erg/s, roughly consistent with the expected BZ value. We also compute the ratio of the angular
frequency of the magnetic field lines to the black hole angular frequency ΩF /ΩH in magnetically dominated regions
above the black hole poles (see Eq.(9) in [27]). We find that in these cases the ratio is ΩF /ΩH ≈ 0.2−0.4. Deviations
from the expected split-monopole force-free magnetic field configuration value ΩF /ΩH = 0.5 [98] are expected due to
differences in the field topology and other numerical artifacts (see e.g. [34, 35]). The helical structure of the polar
B-field and the collimation of the outflow further suggest that the BZ mechanism is operating in our simulations.

The lack of an incipient jet in the n29-INT model might be due to the fact that during the stellar collapse, the
black hole swallows almost the entire star, leaving only ∼ 1% of the rest mass of the SMS as a disk. During that
process, the highly magnetized layers of the SMSs are captured, leaving only the very outer layers, which are weakly
magnetized, to form the remnant disk. By contrast, the outer layer in the remnant disk in the n29-EXTINT model
is highly magnetized. Following the collapse, we find that the magnetic field strength above the black hole poles is
. 108(106M�/M)G in the n29-INT model case, while in the n29-EXTINT case it approaches ∼ 1010(106M�/M)G.
As it has been pointed out in [27], the other significant difference is that configurations in which the magnetic field
extends from the stellar interior to its exterior mimic a force-free environment more accurately, and as a result it is
easier for the magnetic pressure to overcome the plasma ram pressure because of less baryon loading. Following the
appearance of an apparent horizon, we trace the plasma parameter b2/2ρ0 = B2/(8π ρ0) (where B is the comoving
magnetic field strength) in a cubical region above the black hole poles. This parameter measured the degree to which
the region above the BH poles is force-free. Values larger than ∼ 1 − 10 are required to launch a jet. We observe
that in the n29-INT model, the plasma parameter rapidly settles down to ∼ 10−5, while in the other cases it reaches
values larger than 25 (see Table III). As we have seen in [27], because of the weakly magnetized outer layer, it takes
twice as long for the n3-INT cases to build up the jet than n3-EXTINT, which might also be true for n = 2.9 cases.
However, the computational resources required for this is overly expensive.

b. Model spinning at half of the mass-shedding limit: The evolution and final outcome of the uniformly
rotating SMS spinning at half of the mass-shedding limit is qualitatively the same as those at the mass-shedding limit
(see bottom panel of Fig. 3). Following pressure depletion, the star shrinks and forms a central core that undergoes
collapse. A black hole horizon appears about tBH = 6.5 × 103M ∼ 3.25 × 104(M/106M�)s, slightly later than in
the mass-shedding limit case, because this SMS model is a less compact than the previous cases (see Table I). Due
to less centrifugal force, during the first episode of high accretion the star is rapidly swallowed by the black hole,
leaving only a tiny cloud of magnetized gas consisting of only ∼ 0.3% of the rest mass of the star (see bottom panel
of Fig. 4). Following the high accretion episode, the remnant magnetic field lines wind up, and around tBH ≈ 340 ∼
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1.2×103(M/106M�)s the system launches a jet. The accretion rate settles down to 1.5M�/s and, therefore the disk is

expected to last for an accretion time t = Mdisk/Ṁ ∼ 1 ×104(M/106M�)s. These numbers once again are consistent
with observations of ULGRBs [96, 97]. Once the jet is well–developed, the time–averaged Poynting luminosity over
the last 200M ∼ 103(M/106M�)s crossing a sphere at coordinate radius Rext = 100M ∼ 1.4 × 108(M/106M�)km
is LEM ≈ 1051.5erg/s, roughly consistent with the expected BZ luminosity (see Fig. 6). At this time, the force-free
parameter has reached a value of b2/(2 ρ0) ∼ 60. As it can be seen in Eq. (13), a lower luminosity for this case is
expected according to Eq. (13) because of the lower spin.

c. Differentially rotating model: As already mentioned, differential rotation provides a centrifugal barrier
to collapse. However, redistribution of angular momentum occurs due to magnetic winding, followed by transport
by turbulent viscosity arising from MRI. Viscosity drives the external layers of the SMS outward and the inner
core toward uniform rotation (see top right panel of Fig. 2) allowing the inner core to collapse. At around tBH =
2.5 × 104M ∼ 1.3 × 105(M/106M�)s a black hole forms surrounded by a denser, highly spinning, magnetized cloud
of gas (see middle panels of Fig. 2). Unlike the previous n = 2.9 models, differential rotation prevents not only the
outermost layers of the star to be accreted onto the black hole, but also some of the inner and more magnetized layers.
We find that the average magnetic field strength at the pole is ∼ 1011(106M�/M)G. The incipient jet is launched at
tBH ≈ 286.2M ∼ 1.4 × 103(M/106M�)s, i.e. approximately at the same time as in the previous cases (see bottom
panels of Fig. 2). Following the black hole formation, we observe that the plasma parameter grows rapidly and reaches
values of b2/2ρ0 & 100. Note that, as it has been previously discussed in [34, 35], our numerical approach may be not
reliable for higher values of the plasma parameter (& 200), but the growth of magnetization in the funnel is robust, and
thus is the magnetically sustained outflow. Finally, the outgoing Poynting luminosity compute is LEM ≈ 1053.5erg/s,
consistent with the BZ mechanism (see Fig. 6). At late times the accretion rate settles down to ∼ 2.0M�/s. The jet
duration is thus t ∼ 9.0 × 104(M/106M�)s (see table III), again consistent with ULGRBs observations, which may
have Pop III stars as progenitors [99, 100].

E. Comparison with the unified analytic model

Spinning black holes immersed in magnetized accretion disks that launch collimated jets confined by helical magnetic fields
from their poles were found via our numerical simulations to be the outcomes of three different scenarios: binary black hole-
neutron star mergers [34], binary neutron star mergers [35] and SMS collapse [27]. Surprisingly, while these all represent very
different scenarios involving objects spanning a huge range of masses, length and time scale, the final quasistationary Poynting
luminosities from the jets and the mass accretion rates onto the black holes were all within a few magnitudes of each other!
This finding was recently explained by a simple analysis [32] where we showed that all the results could be understood in terms
of the following universal relations:

LBZ ∼
1

10

(
Mdisk

MBH

)(
MBH

Rdisk

)3(
a

MBH

)2

[L0]

∼ 1052±1erg s−1 (14)

ṀBH ∼
(
Mdisk

MBH

)(
RBH

Rdisk

)3

[Ṁ0]

∼ 0.1− 10M� s−1 (15)

where L0 ≡ c5/G = 3.6 × 1059erg s−1 and Ṁ0 ≡ c3/G = 2.0 × 105M� s−1. Table V shows a comparison with these model
predictions. We find that in within one order of magnitude, the model is consistent with the numerical results reported in this
paper. Therefore, it provides another proof that the EM mechanism running in our cases is mainly based on the BZ mechanism,
on which the analysis in [32] is based, and it indicates the universality of the EM luminosity from these different scenarios.
Additionally, the EM signatures obtained from our models indicate consistency with the spectroscopic measurements from a
recent survey of short and long GRBs [101].

F. GW signals and PPI in the BH-disk system

To extract the gravitational wave, we project the Weyl scalar Ψ4 onto different extraction spheres with radii fromRext ∼ 100M
to 400M , and describe its angular dependence in terms of s=-2 spin-weighted spherical harmonics (see Eqs. (3.5) and (3.6)
in [89]). Fig 7 shows the dominant mode (l = 2,m = 0) of the expansion coefficient Ψ4(t, r) at an extraction radius Rext ∼ 100M
for all cases with interior and exterior B-fields. We find that the peak amplitudes of Ψ4 for all the cases are between 0.5− 0.8
times that of the n = 3 cases, decreasing with decreasing n. The reason is that critical configurations with smaller n have larger
compaction, hence they acquire a smaller infall speed at collapse. The oscillation period of this mode in all cases resembles the
n = 3 waveform (f ∼ 15(106M�/M)/(1 + z)mHz) and both amplitude and frequency are consistent with the results obtained
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from the axisymmetric SMS collapse reported in [102]. Therefore, analogous to the discussion of detectability for the Γ = 4/3
cases in [27], it is expected that GW detectors most sensitive to the 10−3− 10−1Hz band (e.g. LISA and DECIGO) are able to
observe the GW signals from such systems [103–105]. It was suggested by [55] that a detectable, quasiperiodic post-collapse
signal might arise from the BH-disk system due to the growth of the m = 1 nonaxisymmetric Papaloizou-Pringle instability
(PPI). However, we find that compared to the (l,m) = (2, 0) mode, all nonaxisymmetric modes are significantly smaller. This
suggests that no pronounced and sustained oscillatory waveform is produced in this system, in contrast to Fig. (3) in [55].
Therefore, PPI and its associated GW signal do not arise in our simulations. The reason that the instability is absent could be
either that the BH-disk system is stable with respect to PPI even in the absence of a magnetic field, or that the instability is
suppressed by the magnetic fields and the development of MRI [106]. To address this question we compute the specific angular
momentum profile j = utuφ versus r in the equatorial plane. If Ω ∼ r−q, then in the Newtonian limit,

j ∼ Ωr2 ∼ r2−q, (16)

in which case we know that the disk in the absence of magnetic fields is unstable whenever q >
√

3 or 2− q < 0.27 [107]. We
find that for nonmagnetized cases, our post-collapse quasiequilibrium disks satisfy 2− q ∼ 0.33− 0.35, which suggests that the
disks are stable, even in the absence of magnetic fields. Furthermore, disks formed by collapsing magnetized models result in
2− q ∼ 0.47− 0.55, in which case the disk stability with respect to PPI may be enhanced by the magnetic field [106].

V. SUMMARY AND CONCLUSIONS

In this work, we extended our earlier calculations [27] of the magnetorotational collapse of SMSs in which radiation pressure
alone is present(Γ = 4/3, or n = 3). Such a model applies to SMSs with M & 106M�. Hence we have performed full GRMHD
simulations of collapsing of SMSs with masses & 104 − 105M� for which gas pressure represents a significant perturbation
[12, 94, 102]. We considered stellar models described by a polytropic EOS with Γ & 4/3, or equivalently n . 3, which
effectively incorporates a gas pressure perturbation. Such a model also crudely describes massive Pop III stars. We also studied
the impact of the initial stellar rotation profile and the initial magnetic field configuration on the final outcome of the SMS
remnant. To be consistent with our previous study [27], we set the initial magnetic-to-rotational-kinetic energy to 0.1.

We focus on uniformly rotating configurations spinning at mass-shedding and on the verge of collapse due to a relativistic
radial instability. For uniformly rotating cases, the evolution process is similar to the n = 3 cases presented in [27] with the
same initial magnetic field configuration. For smaller characteristic masses (smaller n), the stars collapse in a shorter period.
The outcome in all cases is a spinning black hole surrounded by an accretion disk. For smaller initial n and thus smaller
M , the BH has a greater MBH/M and thus a smaller Mdisk/M , and a smaller aBH/MBH. All the black hole parameters are
consistent with various previous semi-analytic and numerical studies in [18, 24, 26, 38, 63]. For SMSs with M & 106M�, the
ratios MBH/M , aBH/MBH and Mdisk/M are universal numbers independent of mass [25]: MBH/M ≈ 0.9, aBH/MBH ≈ 0.75

and Mdisk/M ≈ 0.1. Furthermore, for all magnetized cases, the final ṀBH is roughly the same (∼ 0.1 − 1M�/s) as is the
Poynting luminosity (LEM ∼ 1052±1erg/s), independent of M . These are consistent with the n = 3 cases and with the unified
analytic model in [32].

For the cases with reduced spin Ω = 0.75Ωshedd, we found that almost all the matter falls into the black hole, with only
∼ 0.3% of the total mass remaining to form the disk. Correspondingly, LEM is approximately one order of magnitude smaller
than its uniformly rotating counterpart. On the contrary, the collapse of a differentially rotating star results in a massive disk
with Mdisk/M ∼ 0.18 and the highest luminosity LEM ∼ 1053.5erg/s.

We find that all appreciably magnetized disks launch incipient jets. We confirm the likelihood that the BZ mechanism
generates the Poynting luminosity in the jets. The gravitational waveforms for n . 3 show strong resemblance to their
n = 3 counterparts. It is thus expected that GW detectors like LISA and DECIGO are capable of observing the GW
signals from such events [27]. The specific angular momentum profiles in the post-BH disk show that the disk is stable with
respect to PPI even without the magnetic field, and such stability is probably strengthened in presence of the magnetic field.
Additionally, the magnitude of the Poynting luminosity, which is insensitive to the stellar mass M , suggests that detecting
the EM counterpart radiation from magnetized, massive, stellar collapses by GRB detectors like Fermi and Swift is quite
feasible [108, 109]. Therefore, the study of and search for SMSs or massive Pop III stars could provide a promising avenue for
advancing multimessenger astronomy research.

An extensive survey of different rotation profiles is clearly needed to strengthen our conclusion (e.g. Eq. 14) regarding the
EM luminosity in the case of differentially rotating stars. However, the results reported here, along with the simulations of
supermassive black holes surrounded by accretion disk in [110], the simulations of black hole-neutron star mergers in [34], and
those of binary neutron star mergers [35] suggest that indeed there maybe a narrow range of expected EM luminosity in accord
with Eq. 14 and the analysis in [32].
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FIGURES

FIG. 1. Gas-to-radiation pressure ratio β (upper panel) and SMS mass (lower panel) as a function of polytropic index n using
Eqs.(1) and (4). For n within the range where 0 < β < 0.1, gas pressure is a small perturbation, yet the mass varies by orders
of magnitude.

http://dx.doi.org/10.1093/mnras/stx3158
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FIG. 2. 3D volume rendering of the rest-mass density normalized to its initial maximum value ρ0,max =
1.66(M/106M�)−2gcm−3 at select times for the n29-EXTINT-DIFF case (see table I). Solid lines indicate the magnetic field
lines and arrows show plasma velocities with length proportional to their magnitude. The bottom left panel displays the
collimated, helical magnetic field and outgoing plasma, whose zoomed-in view near the horizon is shown in the bottom right
panel. Here M = 4.9(M/106M�)s = 1.47× 106(M/106M�)km.
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FIG. 3. 3D volume rendering of the rest mass density normalized to the corresponding initial maximum value ρ0,max in
log scale (for details see Table I) for cases n3-EXTINT, n295-EXTINT, n29-EXTINT, and n29-EXTINT-0.75SPIN, shown
from top to the bottom, respectively. The initial and final configurations for these cases are shown in left and right panels,
respectively. See Table III for a summary of global parameters describing the final outcome of these cases. Solid lines
indicate the magnetic field lines while arrows display plasma velocities with length proportional to their magnitude. Here
M = 4.9(M/106M�)s = 1.47× 106(M/106M�)km.
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FIG. 4. Dependence of the black hole mass (top panel), black hole dimensionless spin parameter (middle panel), and the
accretion mass disk (bottom panel) on different EOSs, magnetic field configurations, and rotation profiles for models in Table I.
The mass of the black hole remnant, and hence the mass of the disk, is sharply sensitive to changes in the EOS as well as the
initial rotation profile of the SMS.

FIG. 5. Rest mass accretion rate Ṁ vs. time for cases listed in Table I. Notice that the time has shifted to the black hole
formation time and it is normalized to (M/106M�).
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FIG. 6. Evolution of the electromagnetic Poynting luminosity LEM crossing a sphere at coordinate radius Rext = 100M −
175M ∼ 1.4 − 2.4 × 108(M/106M�)km for all SMS models seeded with an external-interior magnetic field configuration (see
Table I). Horizontal dashed lines indicate the expected BZ values computed via Eq. (13). Here tjet is the time at which the jet
front has reached ∼ 100M above the black hole pole.

FIG. 7. Real part of the (l,m) = (2, 0) mode of Ψ4 as a function of t− tBH for the cases with interior and exterior B-field at
an extraction radius Rext ∼ 100M . The cyan curve represents the n3-EXTINT case displayed in [27]. Cases with other B-field
configurations share similarity with their counterparts in the figure.

TABLES

TABLE I. Summary of initial star parameters. Nondimensional quantities which have been rescaled with the polytropic gas
constant K, are denoted with a bar. In all the magnetized stars the magnetic-to-rotational-kinetic-energy ratio is 0.1. Columns
show the polytropic index n = 1/(1 − Γ), the characteristic mass M? for which this index is most appropriate, the central
rest-mass density ρ̄0,c, the ADM mass M̄ADM , the polar-to-equatorial radius ratio Rp/Req , the equatorial radius Req, the
dimensionless angular momentum J/M2

ADM , the initial magnetic field configuration, the averaged magnetic field strength

〈B〉 =
√

8πM/Vs, where M is the total magnetic energy and Vs =
∫ √

γd3x is the initial proper volume of the star.

Case n M?/M� ρ̄0,c
a M̄ADM

b Rp/Req Req/MADM J/M2
ADM B-field 〈B〉 × (M/106M�)

n3-HYDc 3 & 106 7.7× 10−9 4.57 0.67 625 0.96 None 0

n3-INTc 3 & 106 7.7× 10−9 4.57 0.67 625 0.96 Int. 6.5× 106G

n3-EXTINTc 3 & 106 7.7× 10−9 4.57 0.67 625 0.96 Int . 6.5× 106G

n295-EXTINTc 2.95 ∼ 105 1.04× 10−7 3.84 0.67 286 0.68 Int. + Ext. 1.5× 107G

n29-HYDc 2.9 ∼ 104 5.66× 10−7 3.30 0.67 175 0.56 None 0

n29-INTc 2.9 ∼ 104 5.66× 10−7 3.30 0.67 175 0.56 Int. 4.7× 107G

n29-EXTINTc 2.9 ∼ 104 5.66× 10−7 3.30 0.67 175 0.56 Int.+ Ext. 4.7× 107G

n29-EXTINT-0.75SPINd 2.9 ∼ 104 2.6× 10−7 3.26 0.89 174 0.45 Int.+ Ext. 2.7× 107G

n29-EXTINT-DIFFe 2.9 ∼ 104 1.77× 10−7 3.88 0.67 170 1.48 Int. + Ext. 1.6× 108G

a ρ̄0,c = ρ0,cKn, where K = P/ρΓ
0 , Γ = 1 + 1

n
(for K in cgs units, see [58], Eq. 17.2.6).

b M̄ADM = MADMK
−n/2

c Uniformly rotating star spinning at the mass-shedding limit.
d Uniformly rotating star spinning at 75% of the mass-shedding limit.
e Differentially rotating star with the initial rotation profile given by Eq. (8).
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TABLE II. Grid structure for all cases listed in Table I. The computational mesh consists of one set of j-nested AMR grids
centered at the start, in which equatorial symmetry is imposed. Here j = 5, · · · , levelmax denotes the number of AMR grids
during a given evolution epoch, and levelmax is the maximum number of AMR grids at the end of the simulations. Each case
begins with a set of j = 5-AMR grids, and we add a new refinement level every time the maximum value of the rest-mass
density increases by a factor of three. The finest level for a given set of j-nested grids is denoted by ∆xmin. The grid spacing
of all other levels is 2l−1 ∆xmin, where l = 1, · · · , j, is the level number such that l = 1 corresponds to the coarsest level. The
half-side length of the outermost AMR boundary is given by the first number in the grid hierarchy.

Case ∆xmin levelmax Grid hierarchy

n3-HYD 1.36M/2j−5 10 1312M/2l−1

n3-INT 1.36M/2j−5 11 1312M/2l−1

n3-EXTINT 1.36M/2j−5 11 1312M/2l−1

n295-EXTINT 0.4M/2j−5 9 728M/2l−1

n29-HYD 0.48M/2j−5 9 454M/2l−1

n29-INT 0.48M/2j−5 9 454M/2l−1

n29-EXTINT 0.48M/2j−5 9 454M/2l−1

n29-EXTINT-0.75SPIN 0.48M/2j−5 9 458M/2l−1

n29-EXTINT-DIFF 0.40M/2j−5 9 515M/2l−1

TABLE III. Summary of key results. Here tBH denotes the black hole formation time, MBH and aBH/MBH denote the mass of
the black hole and the dimensionless spin once the system has settled down, respectively, Rdisk and Mdisk are the outer edge
and the mass of the accretion disk, Ṁ is the accretion rate roughly after t− tBH ∼ 1.8× 103M ∼ 8.8× 103(M/106M�)s, tjet
is the launching jet time after black hole formation, τdisk ≡Mdisk/Ṁ is disk lifetime, (b2/2ρ0)|pole and LEM are the force-free
parameter above the black hole pole and the Poynting electromagnetic luminosity driven by the incipient jet, respectively, which
are time-averaged over t ≈ 200M ∼ 103(M/106M�)s after jet launching. The quantities tBH , tjet, and τdisk are normalized by
(M/106M�).

Case tBH(s) MBH/M aBH/MBH Rdisk/M Mdisk/M Ṁ(M�/s) tjet(s) τdisk(s) (b2/2ρ0)|pole LEM(erg/s)

n3-HYD 1.40× 105 0.91 0.75 95 9.0% 1.0 - 9.0× 104 - -

n3-INT 1.48× 105 0.92 0.74 90 6.0% 1.2 2.7× 103 5.0× 104 25 1050.6

n3-EXTINT 1.53× 105 0.92 0.68 95 7.0% 1.1 2.2× 103 7.2× 104 300 1052.5

n295-EXTINT 4.48× 104 0.96 0.58 75 3.0% 1.2 1.5× 103 2.4× 104 100 1052.3

n29-HYD 2.06× 104 0.99 0.53 60 1.1% 1.0 - 1.0× 104 - -

n29-INT 2.13× 104 0.99 0.53 55 1.1% 0.4 - 1.0× 104 < 10−4 -

n29-EXTINT 2.12× 104 0.99 0.52 55 1.5% 0.8 1.2× 103 1.8× 104 100 1052.1

n29-EXTINT-0.75SPIN 3.25× 104 0.99 0.45 55 0.3% 1.5 1.7× 103 1.0× 104 60 1051.5

n29-EXTINT-DIFF 1.26× 105 0.82 0.54 60 18.0% 2.0 1.4× 103 9.0× 104 300 1053.5

TABLE IV. Comparison of black hole and disk parameters from cases in Table III (bold) with the semi-analytic and numeric
results in previous studies for critical collapse at mass-shedding different EOS (characteristic mass) and magnetic fields. Here
“H”, “I”, and “E+I” represent no magnetic field, interior magnetic field, and exterior plus interior magnetic field, respectively.

n
MBH/M aBH/MBH Mdisk/M

(M?) H I E+I H I E+I H I E+I

3.00 0.89a 0.95 b 0.94 0.60 0.70 0.68 11.0% 6.0% 7.0%

(& 106M�) 0.87c 0.95d 0.71 0.68 13.0% 6.0%

0.90e 0.92 0.75 0.64 10.0% 6.0%

0.90f 0.70 7.0%

0.91 0.75 9.0%

2.95 0.97a 0.96 0.52 0.58 2.9% 3.0%

(∼ 105M�)

2.90 0.99a 0.99 0.99 0.45 0.53 0.52 1.1% 1.1% 1.5%

(∼ 104M�) 0.99 g 0.53 1.4%
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0.99 0.53 1.4%
a Table 2 in [38], fully analytic
b GRMHD simulation by [26] (model S1)
c Table 2 in [38], analytic, using critical configuration in [18]
d GRMHD simulation by [26] (model S2)
e GR hydrodynamic simulation by [24]
f GR hydrodynamic simulation by [26] (model S0)
g Table 2 in [63] by setting Rp/Re ≈ 2/3

TABLE V. Order of magnitude comparison of simulation results with the unified model of [32].

Case
ρM2

BH B2
pM

2
BH Ṁeq(M�/s) τdisk/MBH LEM (erg/s)

model a simulations model a simulations model a simulations model a simulations model a model BZ b simulations

n3-HYD 10−7 10−7 - - 100 100 105 105 - - -

n3-INT 10−7 10−7 10−6 10−6 100 100 105 105 1052 1052 1051

n3-EXTINT 10−8 10−8 10−6 10−6 100 100 105 105 1052 1053 1053

n295-EXTINT 10−7 10−6 10−6 10−6 100 100 104 104 1052 1052 1052

n29-HYD 10−9 10−9 - - 100 100 105 103 - - -

n29-INT 10−8 10−6 10−6 10−7 100 10−1 104 105 1051 1051 1050

n29-EXTINT 10−8 10−7 10−6 10−7 100 100 104 104 1052 1052 1052

n29-EXTINT-0.75SPIN 10−8 10−7 10−8 10−7 10−1 100 103 102 1051 1051 1052

n29-EXTINT-DIFF 10−8 10−8 10−7 10−7 101 100 106 106 1053 1053 1054

a Use Eqs.(9-12) and (17) in [32].
b Use Eq. 13.
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