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Abstract

The quantum fluctuations of the geodesic deviation equation in a flat background spacetime

are discussed. We calculate the resulting mean squared fluctuations in the relative velocity and

separation of test particles. The effect of these quantum fluctuations of the spacetime geometry is

given in terms of the Riemann tensor correlation function. Three different sources of the Riemann

tensor fluctuations are considered: a thermal bath of gravitons, gravitons in a squeezed state, and

the graviton vacuum state.
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I. INTRODUCTION

In flat space, parallel lines maintain their separation forever. However, in curved space-

time, parallel geodesics do not remain parallel when are extended. The mathematical state-

ment of this physical phenomena is given by the geodesic deviation equation, which shows

that the tidal force of a gravitational field causes modification in the trajectories of neighbor-

ing particles [1]. Many studies concerning the behavior of the geodesic deviation equation in

several background gravitational fields as well as their consequences can be found in [2–6].

In the general relativity theory, an important effect played by curvature is how it changes the

relative separation between two geodesic particles. This is a manifestation of the gravita-

tional field and hence the acceleration of the deviation vector between two nearby geodesics

contains information about the curvature of the spacetime [7–10].

The properties of the curved spacetime which are reflected by physics in a gravitational

field can be evaluated by analyzing the behavior of a set of neighboring geodesics, repre-

senting, for example, a bundle of photons or a distribution of massive test particles [11]. In

order to study this phenomenon, many different approaches have been proposed [12–15].

On the other hand, the investigation of the Brownian motion, which can be described

by the Langevin equation, played a very important role for the establishment of the atomic

structure of matter. The discreteness character of matter (microscopic feature) causes fluc-

tuations in the density of matter, which, in turn, causes observable effects on the motion of

the Brownian particle (macroscopic feature) [16]. Recently, the solutions of Langevin-type

equations in some astrophysical scenarios have been discussed in the literature [17–23].

The knowledge of the behavior of a Brownian particle immersed in a fluid of much smaller

atoms, can give us, in principle, some relevant information about the physics of these ob-

jects [24]. Brownian motion of test particles coupled to quantized fields was studied in

Refs. [25–27]. Similarly, we can study the Brownian motion of test particles in a fluctuating

gravitational field to look for insights into quantum gravity [28] . In this way, we will use the

geodesic deviation equation as a Langevin equation in which the Riemann tensor fluctuates.

These quantum fluctuations of the curvature modify the motion of test particles and can be

measured by the relative velocity dispersion after an interaction.

The quantum fluctuations of the spacetime geometry can be of two types: passive and

active. The passive case is generated by fluctuations of the quantum matter fields, that is,
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from fluctuations in the source of the gravitational field which are described in terms of the

stress and Ricci tensor correlation functions [29–35]. The active case is due to the quantum

nature of gravity, that is, from fluctuations of the dynamical degrees of freedom of gravity

itself, which are given in terms of the Riemann tensor correlation function [36–43].

This paper is organized as follows. In Section II we introduce the geodesic deviation

equation and obtain an expression for the relative velocity dispersion. In Section III, we

evaluate this expression and compute the relative distance fluctuations in the case of a

thermal bath of gravitons. In Section IV, we do the same for gravitons in a squeezed

state. In Section V, we sample the Riemann tensor correlation function for the case of the

graviton vacuum state. Finally, in Section VI, the conclusions are given. We will use units

in which ~ = c = 1 throughout the paper. In Sections III and V, we use units in which

32πG = 32π`2Pl = 1 where G is Newton’s constant and `Pl, is the Planck length. However, in

Section IV we will work in units where G = `2Pl = 1 for consistency with previous references.

In all case, we will restore powers `Pl in final results.

II. GEODESIC DEVIATION FLUCTUATIONS

Let us consider two test particles whose worldlines are nearby timelike geodesics, as

illustrated in Fig. 1.

FIG. 1. Timelike geodesics for two nearby falling particles, with four-velocity uµ, and separation

sµ = εnµ, where nµ is a unit spacelike vector.
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The four-velocity, uµ, and the separation vector, sµ, are given by

uµ ≡ dxµ

dτ
, (1)

and

sµ ≡ dxµ

dn
= εnµ , (2)

where nµnµ = 1, and n is a parameter which labels nearby geodesics. Note that sµ is a

spacelike vector with magnitude ε(τ) which connects two points on the two geodesics with

the same values of the proper time, τ .

The variation of the separation vector between two neighboring geodesics is described by

the geodesic deviation equation,

D2sµ

dτ 2
= −Rµ

ανλu
αsνuλ, (3)

where Rµ
ανλ is the Riemann tensor. For particles on the neighboring geodesics, their relative

acceleration along the separation direction is given by [44]

α ≡ nµ
D2sµ

dτ 2
= −εRµανλn

µuαnνuλ. (4)

Thus, if the particles start at rest at proper time τ = 0, then we may approximately integrate

the above expression to find their relative velocity at a later time τ = τ0 as

υ ≡ nµ
Dsµ

dτ
≈ −ε0

∫ τ0

0

dτ Rµανλ(τ) nµuαnνuλ . (5)

Here we assume that the separation change during this interval is small, so we may let

ε ≈ ε(0) = ε0, the initial separation. We also assume that nµ is constant to leading order.

Equation (5) defines a scalar velocity in the frame where nµ = (0, ~n).

Now, let us suppose that the spacetime geometry is subject to quantum fluctuations.

In fact, given an ensemble of geodesics, measurements of the relative velocity along the

same line will give different results. Therefore, we must take the expectation value of these

measurements as well as the standard deviation. To do this, we will assume that the Riemann

tensor is subject to quantum fluctuations which can be, in principle, active, passive or both.

We have to specify how the 4-vectors uµ and sµ behave under the fluctuations. The simplest

assumption is that both uµ and sµ do not fluctuate to lowest order in the perturbations

of spacetime. Physically, this is equivalent to assuming that both source and detector are
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located in a flat region, or both are rigidly attached to one another by non-gravitational

forces. Finally, we assume that the perturbation is negligible at both source and detector.

The mean relative velocity of the particles, 〈υ〉, is now obtained by averaging Eq. (5) as

follows

〈υ〉 = −ε0
∫ τ0

0

dτ 〈Rµανλ(τ)〉 nµuαnνuλ . (6)

The fluctuations around the mean trajectory in the direction of nµ are described by

∆υ = υ − 〈υ〉

= −ε0
∫ τ0

0

dτ [Rµανλ(τ)− 〈Rµανλ(τ)〉] nµuαnνuλ. (7)

Therefore, the variance of the relative velocity, 〈(∆υ)2〉, can be expressed as

〈(∆υ)2〉 = 〈υ2〉 − 〈υ〉2

= ε20

∫ τ0

0

dτ

∫ τ0

0

dτ ′ Cαλµνγδρσ(x, x′) nαuλnµuνnγuδnρuσ, (8)

where the Riemann tensor correlation function, Cαλµνγδρσ(x, x′), is given by

Cαλµνγδρσ(x, x′) = 〈Rαλµν(x)Rγδρσ(x′)〉 − 〈Rαλµν(x)〉〈Rγδρσ(x′)〉. (9)

This expression describes the fluctuations of the Riemann tensor. Here, the indices αλµν

refer to the spacetime point x (which corresponds to the point τ), while the indices γδρσ

refer to the spacetime point x′ (which corresponds to the point τ ′). Equation (8) is our

key result for the geodesic deviation fluctuations and it applies to both active and passive

fluctuations of the spacetime geometry. In what follows, we will evaluate the relative velocity

dispersion given by Eq. (8) for three different sources of active fluctuations.

III. THERMAL GRAVITON STATE

In this section, we will analyze the fluctuations produced by a thermal bath of gravitons,

which may be created, for example, by the Hawking effect or cosmological particle production

[45, 46]. In this case, let us suppose that the spacetime geometry fluctuates in such a way

that [47]

〈Rα
λµν〉 = 0, (10)

but

〈Rα
λµνR

γ
δρσ〉 6= 0. (11)
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These two statements mean that we are neglecting the average spacetime curvature due to

the bath of gravitons. Therefore, the average geometry corresponds to a flat Minkowski

spacetime. Furthermore, since that we are dealing with a thermal quantum state at tem-

perature T , the Riemann tensor correlation function can be written as

Cαλµνγδρσ = 〈Rαλµν(x)Rγδρσ(x′)〉β, (12)

where 〈Rαλµν(x)Rγδρσ(x′)〉β is the thermal normal-ordered Riemann tensor two-point func-

tion, with β = 1/T . Therefore, Eq. (8) reduces to

〈(∆υ)2〉 = ε20

∫ τ0

0

dτ

∫ τ0

0

dτ ′ 〈Rαλµν(x)Rγδρσ(x′)〉β nαuλnµuνnγuδnρuσ. (13)

Let us choose the case where both source and detector are initially at rest with respect

to one another and to the bath of gravitons. This choice is such that

uµ = (1, 0, 0, 0), (14)

nµ = (0, 1, 0, 0), (15)

where we have assumed that the particles are separated in the x-direction. Thus, substituting

Eqs. (14)-(15) into Eq. (13), we obtain

〈(∆υ)2〉 = ε20

∫ τ0

0

dτ

∫ τ0

0

dτ ′ 〈Rxtxt(x)Rxtxt(x
′)〉β nxutnxutnxutnxut

= ε20

∫ τ0

0

dτ

∫ τ0

0

dτ ′ 〈Rtxtx(x)Rtxtx(x
′)〉β, (16)

where we have used the symmetry and cyclic properties of the Riemann tensor, namely,

Rαλµν = −Rλαµν = −Rαλνµ. (17)

Now, we introduce the thermal Riemann tensor two-point function which was constructed

from the vacuum two-point function via the Matsubara method (see [44] and references

therein). It is given by

〈Rtxtx(x)Rtxtx(x
′)〉β =

1

4
(∂4t − 2∂2t ∂

2
x + ∂4x)Dβ, (18)

with

Dβ =
1

4π2

+∞ ′∑
n=−∞

1

(∆~x)2 − (∆t+ inβ)2
, (19)
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where

∂t∂t′ = −∂2t , (20)

∆~x = ~x− ~x′, (21)

∆t = t− t′. (22)

In the last summation, the prime denotes that we have removed the n = 0 term, which is

the vacuum contribution.

Now we will examine the relative velocity dispersion in one space dimension, that is, we

may choose ∆y = ∆z = 0. Then, we can write Eq. (19) as

Dβ =
1

4π2

+∞ ′∑
n=−∞

1

(∆x)2 − (∆t+ inβ)2
. (23)

Next assume that the two particles both start at rest in our frame of reference , so we may

use dτ = dt in Eq. (16), which becomes

〈(∆υ)2〉 = It + Itx + Ix, (24)

with

It =

∫ t0

0

dt

∫ t0

0

dt′
(

1

4
∂4tDβ

)
, (25)

Itx =

∫ t0

0

dt

∫ t0

0

dt′
(
−1

2
∂2t ∂

2
xDβ

)
, (26)

Ix =

∫ t0

0

dt

∫ t0

0

dt′
(

1

4
∂4xDβ

)
, (27)

where t0 is the flight time, that is, the interaction time between the particles and the thermal

bath.

We are interested in the real part of Dβ. Thus, we may make the replacement

+∞ ′∑
n=−∞

= 2
+∞∑
n=1

, (28)

and take

<(Dβ) =
1

2π2

+∞∑
n=1

G, (29)

with

G = <
[

1

(∆x)2 − (∆t+ inβ)2

]
, (30)
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where < denotes the real part. After that, we can evaluate Eq. (24) by using an algebraic

manipulation program. However, the final expression is so long that no insight is gained by

writing it out.

Next, we will assume that ∆x is small compared to ∆t and/or β, and hence can be

ignored. We may compute the relative velocity between the two test particles taking the

following limits in the derivatives:

1

4
∂4tDβ

∣∣
x→x′ =

1

2π2

+∞∑
n=1

(
1

4
∂4tG

∣∣
x→x′

)

=
1

2π2

+∞∑
n=1

<
[
− 30

(∆t+ inβ)6

]
, (31)

−1

2
∂2t ∂

2
xDβ

∣∣
x→x′ =

1

2π2

+∞∑
n=1

(
−1

2
∂2t ∂

2
xG
∣∣
x→x′

)

=
1

2π2

+∞∑
n=1

<
[

20

(∆t+ inβ)6

]
, (32)

1

4
∂4xDβ

∣∣
x→x′ =

1

2π2

+∞∑
n=1

(
1

4
∂4xG

∣∣
x→x′

)

=
1

2π2

+∞∑
n=1

<
[
− 6

(∆t+ inβ)6

]
. (33)

Thus, we can write the thermal normal-ordered Riemann tensor two-point function as

〈Rtxtx(x)Rtxtx(x
′)〉β =

1

2π2

+∞∑
n=1

<
[
− 16

(∆t+ inβ)6

]
. (34)

Therefore, substituting Eqs. (25)-(33) into Eq. (24), we obtain

〈(∆υ)2〉 =
ε20

2π2

+∞∑
n=1

[
8

5n4β4
− 8

5(t20 + n2β2)2
+

64t20
5(t20 + n2β2)3

− 64t40
5(t20 + n2β2)4

]
. (35)

At this point, we can analyze the limits in which the time of observation t0 is large compared

to the thermal parameter β, and vice versa.

A. Case 1: t0 � β (short flight time or low temperature)

If t0 � β, we have

〈(∆υ)2〉 ∼ ε20
2π2

+∞∑
n=1

16t20
n6β6

=
8π4ε20t

2
0

945β6
=

256π5`2Plε
2
0 t

2
0

945β6
. (36)
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Here the rms relative velocity is given by

(∆υ)rms =
16π5/2`Plε0 t0

3
√

105β3
, (37)

which grows linearly with the flight time. Recall that, following the convention in Ref. [44],

we set 32π`2Pl = 1 in this section.

B. Case 2: t0 � β (long flight time or high temperature)

In the limit when t0 � β, that is, in the observationally reasonable limit where the

wavelength of the gravitational waves is small compared to the flight time of the particles

after the interaction with the thermal bath of gravitons, the expression reduces to

〈(∆υ)2〉 ∼ ε20
2π2

+∞∑
n=1

8

5n4β4
=

2π2ε20
225β4

=
64π3`2Plε

2
0

225β4
, (38)

where `Pl is the Planck length. In this case, the rms relative velocity approaches a constant,

namely,

(∆υ)rms =
8π3/2`Plε0

15β2
. (39)

There are several features of this result which require comment. First, it is proportional to

the Planck length, `Pl. This arises from the fact that the graviton Riemann tensor correlation

function, Eq. (9), is proportional to G = `2Pl, and reflects the smallness of quantum gravity

effects. Second, the relative velocity of the test particles is proportional to their initial

separation, ε0. This comes because the tidal acceleration, Eq. (3), is proportional to the

particle separation. Recall that we have assumed that this separation does not change

dramatically, so ε(τ) ≈ ε0. In addition, we assumed in Eq. (30) that ∆x . β, which

implies that ε0 . β. Finally, note that (∆υ)rms ∝ β−2 = T 2, which can be understood on

dimensional grounds, given the factors of `Pl and ε0 in the numerator. However, in thermal

equilibrium one expects (∆υ)rms ∝ T 1/2. The reason for this difference is that Eq. (39)

describes the state of the system after a time long compared to β, but well before thermal

equilibrium has been reached. Equilibrium requires a balance between graviton absorption

and emission processes, the latter of which is not included in our analysis. In addition, the

equilibrium value of the mean speed should be independent of the value of the coupling

constant, G, which Eq. (39) is not. The weakness of gravity insures that the time required

to reach thermal equilibrium is much longer that the scales which we consider.
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FIG. 2. Distance and velocity between two nearby timelike geodesics after interaction with the

thermal bath of gravitons.

C. Position fluctuations

From the previous calculations, note that the relative velocity dispersion is not zero,

that is, the nearby timelike geodesics are affected by the gravitons. In this way, we are

interested in computing the relative distance dispersion between the two test particles after

their interaction with the thermal bath of gravitons. The mean squared distance fluctuation

in the x-direction, as represented in Fig. 2, can be calculated as follows:

〈(∆χ)2〉 = ε20

∫ T
0

dt1

∫ t1

0

dt

∫ T
0

dt′1

∫ t′1

0

dt′ 〈Rtxtx(x)Rtxtx(x
′)〉β. (40)

Following the same procedure used to obtain Eq. (35), namely, setting ∆x,∆y,∆z ≈ 0

in the denominator of the Riemann tensor correlation function, which means |∆~x| > ∆t,

the relative distance dispersion is given by

〈(∆χ)2〉 =
ε20

2π2

+∞∑
n=1

[
4

15n2β2
+

4t2

5n4β4
+

4(3t4 − 6t2n2β2 − n4β4)

15(t2 + n2β2)3

]
, (41)

where we have set t = T > t0, which means that t is the measurement time, i.e, the total

time given by the sum of the flight time and the time elapsed after the interaction.

In the t � β limit, the relative distance dispersion and its root-mean-square value are

given, respectively, by

〈(∆χ)2〉 ∼ ε20
2π2

+∞∑
n=1

4t4

n6β6
=

64π5`2Plε
2
0 t

4

945β6
, (42)
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(∆χ)rms =
8π5/2`Pl ε0t

2

3
√

105β3
. (43)

On the other hand, for the t� β limit, we have

〈(∆χ)2〉 ∼ ε20
2π2

+∞∑
n=1

4t2

5n4β4
=

32π3`2Plε
2
0 t

2

225β4
, (44)

(∆χ)rms =
4
√

2π3/2`Plε0 t

15β2
. (45)

From Eqs. (39), (37), (45), and (43), we have

(∆χ)rms =
(∆υ)rms

2t0
t2 (for t� β). (46)

(∆χ)rms =
(∆υ)rms√

2
t (for t� β), (47)

Therefore, we find in both cases a form of gravitational wave memory effect (see Ref. [2] and

references therein), such that

(∆χ)rms ∼ (∆υ)rms t. (48)

Note that while the test particles are in the thermal graviton bath, our assumption that ∆x .

β in Eq. (40) requires that (∆χ)rms . β. However, the timelike geodesics are subsequently

modified due to their passage through the thermal bath. This modification is reflected in

the growing distance between the pair of particles and can in principle become large as t

grows despite the smallness of the Planck length.

IV. GRAVITONS IN A SQUEEZED QUANTUM STATE

In this section we will consider a spacetime region filled with gravitons in a squeezed state

which produce quantum fluctuations on test particle geodesics. In principle, this squeezed

state could be due to quantum creation of gravitons in a background gravitational field, as

for example, in the course of a cosmological expansion or in the Hawking process of black

hole evaporation [48–51]. The squeezed state is represented by |α, ζ〉, where α and ζ are the

displacement and squeezed parameters, respectively. Consider a gravitational plane wave

mode in a squeezed state. The normal-ordered Riemann tensor correlation function can be

expressed as [47]

: Cαλµνγδρσ(x, x′) : = 4(`[αAλ][µ`ν])(`[γAδ][ρ`σ])F (x, x′), (49)
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with

F (x, x′) = [cosh(2r)− 1] cos[`ε(x
ε − x′ε)]− sinh(2r) cos[`ε(x

ε + x′ε) + θ], (50)

where `ε = (ωg, `
x, `y, `z) is the specific wave vector of the excited mode, ωg is the angular

frequency, Aµν is the polarization tensor, and the parameters r, θ are defined such that

ζ = reiθ. We have used the following convention for the antisymmetrized tensor,

T[µν] =
1

2
(Tµν − Tνµ) . (51)

In this section only, we follow the convention of Ref. [47], and use units in which `Pl = 1.

Substituting Eqs. (49) and (50) into Eq. (8), the relative velocity dispersion for test particles

subjected to gravitons in a squeezed state is given by

〈(∆υ)2〉 = 4ε20(`[αAλ][µ`ν])(`[γAδ][ρ`σ])n
αuλnµuνnγuδnρuσf1(ωg, t0), (52)

where the function f1(ωg, t0) is calculated from Eq. (16), again with dτ = dt, leading to

f1(ωg, t0) =

∫ τ0

0

dτ

∫ τ0

0

dτ ′ F (x, x′)

=

∫ t0

0

dt

∫ t0

0

dt′ {[cosh(2r)− 1] cos[ωg(t− t′) + `x(x− x′)]

− sinh(2r) cos[ωg(t+ t′) + `x(x+ x′) + `y(y + y′) + `z(z + z′) + θ]}

=
4

ω2
g

sin2

(
ωgt0

2

)
{2 sinh2(r) cos[`x(x− x′)]

− sinh(2r) cos[ωgt0 + `x(x+ x′) + `y(y + y′) + `z(z + z′) + θ]}, (53)

where t0 is the flight time, the interaction time between the geodesic particles and the

quantum state under consideration.

In this last result, we have chosen ∆y = ∆z = 0, that is, we are again assuming that ∆y

and ∆z are small. It is worth calling attention to the fact that f1(ωg, t0), and hence 〈(∆υ)2〉,
are independent of the displacement parameter α. Therefore, the fluctuations depend only

on the squeezing parameter ζ in such a way that ζ = 0 (a coherent state) induces no

fluctuations:

r = 0⇒ ζ = 0⇒ f1 = 0⇒ 〈(∆υ)2〉 = 0 (classical wave).

We will assume that the gravitational wave mode is in the transverse tracefree (TT)

gauge, in which the gravitational perturbations have only spatial components hij, satisfying
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∂ihij = 0 and hii = 0. In fact, this choice is only a matter of convenience, since our results

were obtained from the linearized Riemann tensor, which is gauge invariant. Thus, the first

vector product of Eq. (52) is given by

(`[αAλ][µ`ν])n
αuλnµuν = (`[xAt][x`t])n

xutnxut

=
1

4
(`xAtx`t − `xAtt`x − `tAxx`t + `tAxt`x)

= −1

4
(`t)

2Axx

= −1

4
ω2
gA+, (54)

where the polarization tensor Aµν is given by

Aµν =


0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

 =


0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0

 , (55)

which is obviously traceless and purely spatial:

A0ν = 0, ηµνAµν = 0, A3ν = 0. (56)

Therefore, there exists a nonzero effect on the relative velocity dispersion due to gravitons

in a squeezed state, which depends on the (+) polarization as well as upon position. It is

given by

〈(∆υ)2〉 = 4ε20

(
−1

4
ω2
gA+

)(
−1

4
ω2
gA+

)
f1(ωg, t0)

=
ε20
4
ω4
gA

2
+f1(ωg, t0). (57)

In the t0 → 0 limit, we can expand Eq. (57) for fixed r in order to find

〈(∆υ)2〉 ∼ ε20
4
ω4
gA

2
+{2 sinh2(r) cos[`x(x− x′)]

− sinh(2r) cos[`x(x+ x′) + `y(y + y′) + `z(z + z′) + θ]}t20. (58)

A. Classical time-dependence

In this subsection ,we examine the expectation value of the relative velocity, 〈υ〉, which is

given in terms of the first order contribution in the Riemann tensor fluctuations, 〈Rαλµν(x)〉.
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This quantity gives the classical time dependent variation since it depends only upon the

displacement parameter, α. If ζ = 0 the squeezed state becomes a coherent state, which can

describe a classical wave.

In order to evaluate 〈υ〉, we can do a single integration of the expectation value of the

Riemann tensor over the proper time dτ by using Eq. (6). However, we want to calculate

〈υ〉2 directly from Eq. (8). Then, the squared mean change in relative velocity can be written

as

〈υ〉2 = ε20

∫ τ0

0

dτ

∫ τ0

0

dτ ′ 〈Rαλµν(x)〉〈Rγδρσ(x′)〉nαuλnµuνnγuδnρuσ. (59)

The right-hand side of the Riemann tensor correlation function for gravitons in a squeezed

state is given by [47]

〈Rαλµν(x)〉〈Rγδρσ(x′)〉 = 4
∑
`

(`[αAλ][µ`ν])(`[γAδ][ρ`σ])G(x, x′), (60)

where

G(x, x′) = α2ei`ε(x
ε+x′ε) + (α∗)2e−i`ε(x

ε+x′ε) + 2|α|2 cos[`ε(x
ε − x′ε)]. (61)

Thus, following the same procedure used to obtain Eq. (53), and performing the integration

of G(x, x′), we get

g1(ωg, t0) =

∫ τ0

0

dτ

∫ τ0

0

dτ ′ G(x, x′)

=

∫ t0

0

dt

∫ t0

0

dt′ {2|α|2 cos[ωg(t− t′) + `x(x− x′)]

+(α∗)2e−i[ωg(t+t
′)+`x(x+x′)+`y(y+y′)+`z(z+z′)] + α2ei[ωg(t+t

′)+`x(x+x′)+`y(y+y′)+`z(z+z′)]}

= −e−i[2ωgt0+`x(x+x
′)+`y(y+y′)+`z(z+z′)](eiωgt0 − 1)2

ω2
g

×{(α∗)2 + α2e2i[ωgt0+`x(x+x
′)+`y(y+y′)+`z(z+z′)]

+2|α|2ei[ωgt0+`x(x+x′)+`y(y+y′)+`z(z+z′)] cos[`x(x− x′)]}. (62)

Therefore, the classical time dependent variation of the relative velocity for a single mode

is characterized by

〈υ〉2 = 4ε20(`[αAλ][µ`ν])(`[γAδ][ρ`σ])n
αuλnµuνnγuδnρuσg1(ωg, t0)

= 4ε20

(
−1

4
ω2
gA+

)(
−1

4
ω2
gA+

)
g1(ωg, t0)

=
ε20
4
ω4
gA

2
+g1(ωg, t0). (63)
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B. Special case: Transverse gravitational waves

Here, we will analyze the special case of transversely propagating gravity waves. These

waves propagate with wave vector given by `µ = ωg(1, 0, 0, 1), while the test particles con-

tinue to have 4-vectors given by uµ = (1, 0, 0, 0) and nµ = (0, 1, 0, 0). Then, for a gravita-

tional wave propagating in the z-direction, we just need to set `x = `y = 0 into Eq. (53) in

order to define the function f2(ωg, t0) as

f2(ωg, t0) =
4

ω2
g

sin2

(
ωgt0

2

)
{2 sinh2(r)− sinh(2r) cos[ωgt0 + ωg(z + z′) + θ]}. (64)

Therefore, in the special case of transverse gravitational waves, the relative velocity disper-

sion is given by

〈(∆υ)2〉 =
ε20
4
ω4
gA

2
+f2(ωg, t0). (65)

From Eqs. (57) and (65), we conclude that the fluctuations in the relative velocity depend

on the degree of squeezing, measured by the parameter ζ.

On the other hand, the classical time dependent variaton of the relative velocity is given

by

〈υ〉2 =
ε20
4
ω4
gA

2
+g2(ωg, t0), (66)

where the function g2(ωg, t0) is defined in a similar way as g1(ωg, t0), when `x = `y = 0,

namely,

g2(ωg, t0) = −e−iωg [2t0+(z+z′)](eiωgt0 − 1)2

ω2
g

×{(α∗)2 + 2|α|2eiωg [t0+(z+z′)] + α2e2iωg [t0+(z+z′)]}. (67)

Note that both functions g1(ωg, t0) and g2(ωg, t0) depend on the displacement parameter,

α, but are independent of the squeeze parameter, r. Therefore, we can say the same for

Eqs. (63) and (66). Furthermore, in the α = 0 limit, we have that g1(ωg, t0) = g2(ωg, t0) = 0,

which means a coherent state (r = 0 and α 6= 0) exhibits regular time variation but does

not fluctuate. In fact, from Eq. (53) we can see that 〈(∆υ)2〉 = 0 for r = 0.

C. Estimating 〈(∆υ)2〉 from the value of the stress tensor

In this subsection, we will estimate the order of magnitude of 〈(∆υ)2〉 in the squeezed

vacuum state when α = 0 and r � 1. In order to do this, we will assume the (+) polarization
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for the gravitational waves, which implies A× = 0. These assumptions lead to 〈υ〉2 = 0 and,

therefore, we have 〈(∆υ)2〉 = 〈υ2〉. Thus, from Eqs. (53) and (57), with a suitable choice of

θ, in a situation where many modes are excited, we find the following asymptotic behavior

for large r:

〈(∆υ)2〉 ≈ ε20
4
ω4
g

8π

ωgV

V

(2π)3
(∆`x)(∆`y)(∆`z)

2e2r

ω2
g

= ε20
ωge

2r

2π2
(∆`x)(∆`y)(∆`z), (68)

where the contribution from the (+) polarization is given by A+ =
√

8π/ωgV . In the latter

result, we have summed the modes when the density of states is large, namely,∑
`

→ V

(2π)3

∫
d3` =

V

(2π)3
(∆`x)(∆`y)(∆`z), (69)

where V is the quantization volume. Now, from the effective stress tensor in the linearized

theory, the vacuum energy density for large r is given by [47]

: T00 : ≈ ωge
2r

32π3
(∆`x)(∆`y)(∆`z). (70)

Then, substituting Eq. (70) into Eq. (68), the relative velocity dispersion can be expressed

as

〈(∆υ)2〉 ≈ ωge
2r

2π2

32π3ε20
ωge2r

: T00 : = 16πε20 `
2
Pl : T00 : . (71)

In this case, the rms relative velocity dispersion is given by

(∆υ)rms ≈ 4`Pl ε0
√
π ρg , (72)

where ρg =: T00 : is the graviton energy density. Recall that Eq. (72) is valid only when

ε0 . λg, with λg being the characteristic wavelength of the gravitons in the bath. Unlike

the case of a thermal bath, where both energy density and characteristic wavelength are

determined by the temperature, here ρg and λg can be independent of one another.

It is of interest to make an estimate of (∆υ)rms in the context of a cosmological model in

which gravitons contribute a non-negligible fraction of the total energy density. Consider a

spatially flat Robertson-Walker universe in which the present value of the Hubble parameter

is H0, and the present total energy density is ρT . The Friedmann equation gives

H2
0 =

8π

3
GρT . (73)
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Assume that gravitons contribute a fraction r of the total energy density, so ρg = r ρT .

Observational data on the expansion rate of the universe are consistent with r = 0, and lead

to an upper bound on r . 0.04 [51]. We may combine Eqs. (72) and (73) to write

(∆υ)rms

ε0
=
√

6 r H0 . 0.5H0 . (74)

This relation gives an upper bound on and potentially an estimate of the fractional relative

speed (∆υ)rms/ε0 in terms of the Hubble parameter, whose value observed by the Planck

satellite is H0 ≈ 67km/s/Mpc [52]. If r is near its upper bound, and ε0 is of the order of a

few Mpc, then Eq. (74) gives the estimate (∆υ)rms ≈ 102 km/s, which is of the order of the

peculiar motions of individual galaxies. This estimate would require a present day graviton

bath with λg & 1Mpc, for which there is no obvious physical origin. Smaller values of ε0

lead to smaller relative speeds from Eq. (74), However, in the early universe where graviton

density could be much larger, the effect could increase.

D. Position fluctuation

In order to compute the relative distance dispersion for two geodesic particles subject to

the gravitons in a squeezed state, we follow the same procedure used in the thermal case,

and perform two more integrals of the function F (x, x′):

〈(∆χ)2〉 = 4ε20(`[αAλ][µ`ν])(`[γAδ][ρ`σ])n
αuλnµuνnγuδnρuσf3(ωg, t0), (75)

where the function f3(ωg, t0) is given by

f3(ωg, T ) =

∫ T
0

dτ1

∫ τ1

0

dτ

∫ T
0

dτ ′1

∫ τ ′1

0

dτ ′ F (x, x′)

=

∫ T
0

dt1

∫ t1

0

dt

∫ T
0

dt′1

∫ t′1

0

dt′ {[cosh(2r)− 1] cos[ωg(t− t′) + `x(x− x′)]

− sinh(2r) cos[ωg(t+ t′) + `x(x+ x′) + `y(y + y′) + `z(z + z′) + θ]}, (76)
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such that

f3(ωg, t) =
1

ω4
g

{2 sinh2(r) cos[lx(x− x′)][t2ω2
g − 2tωg sin(tωg)− 2 cos(tωg) + 2]

+ sinh(2r){t2ω2
g cos[θ + ly(y + y′) + lz(z + z′) + lx(x+ x′)]

+2tωg sin[θ + ly(y + y′) + lz(z + z′) + lx(x+ x′)]

−2tωg sin[θ + ly(y + y′) + lz(z + z′) + lx(x+ x′) + tωg]

+2 cos[θ + ly(y + y′) + lz(z + z′) + lx(x+ x′) + tωg]

− cos[θ + ly(y + y′) + lz(z + z′) + lx(x+ x′) + 2tωg]

− cos[θ + ly(y + y′) + lz(z + z′) + lx(x+ x′)]}}, (77)

where we have set t = T > t0, which means that t is the total time.

Therefore, the relative distance dispersion is given by

〈(∆χ)2〉 =
ε20
4
ω4
gA

2
+f3(ωg, t). (78)

In the t→ 0 limit, we can expand Eq. (78) for fixed r in order to get

〈(∆χ)2〉 ∼ ε20
4
ω4
gA

2
+

{
1

2
sinh2(r) cos[`x(x− x′)]

−1

4
sinh(2r) cos[`x(x+ x′) + `y(y + y′) + `z(z + z′) + θ]

}
t4. (79)

From Eqs. (58) and (79), we have

〈(∆χ)2〉 =
〈(∆υ)2〉

4
t2. (80)

The root-mean-square value is given by

(∆χ)rms =
(∆υ)rms

2
t. (81)

Therefore, we conclude that

(∆χ)rms ∼ (∆υ)rms t. (82)

This is the same behavior as for the thermal case, given by Eq. (48). As before, we need to

require that (∆χ)rms . λg while the test particles are in the graviton bath, However, after

leaving the bath, (∆χ)rms can become arbitrarily large due to the gravitational memory

effect.
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V. GRAVITON VACUUM STATE

In this section, we will deal with fluctuations of the Riemann tensor in the graviton

vacuum state in linearized quantum gravity. This state must approximate a corresponding

state in full quantum gravity in a suitable limit, and exhibits nontrivial fluctuation effects.

From Eq. (8), the relative velocity dispersion can be expressed as

〈(∆υ)2〉 = ε20

∫ τ0

0

dτ

∫ τ0

0

dτ ′ Ctxtxtxtx(x, x
′). (83)

where the Riemann tensor correlation function, Ctxtxtxtx(x, x
′), is given in terms of the

vacuum two-point function, namely,

Ctxtxtxtx(x, x
′) = 〈Rtxtx(x)Rtxtx(x

′)〉 =
1

4
(∂4t − 2∂2t ∂

2
x + ∂4x)D, (84)

with

D =
1

4π2[(∆~x)2 − (∆t)2]
. (85)

Substituting Eqs. (20)-(22) into Eq. (84), we can write the full expression of the Riemann

tensor correlation function in the graviton vacuum state as

Ctxtxtxtx(∆t,∆x,∆y,∆z) =
4

π2

[
(∆x2 −∆t2)2 + (∆y2 + ∆z2)2

(∆x2 + ∆y2 + ∆z2 −∆t2)5

− 4(∆x2 −∆t2)(∆y2 + ∆z2)

(∆x2 + ∆y2 + ∆z2 −∆t2)5

]
, (86)

where ∆t = t − t′, ∆x = x − x′, ∆y = y − y′, and ∆z = z − z′. Note that this corre-

lation function is singular in the limit of coincident spacetime points, so that the integral

in Eq. (83) diverges. We adopt the viewpoint that the correct resolution of this problem

involves averaging over space and time.

A. Space and Time Averaging of Quantum Field Operators

It is well known that while expectation values of products of local field operators diverge,

averaging the operators over a finite spacetime region produces finite expectation values.

This technique of smearing a field operator with a smooth test function is used as a formal

device in rigorous approaches to quantum field theory [53]. However, there is evidence that

this averaging can have a physical meaning in specific contexts. For example, the one-

loop QED correction to potential scattering can be estimated by averaging the quantum
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electric field operator of a time of the order that spent by an electron in the vicinity of the

potential barrier [54]. The averaging of quadratic operators, such as the stress tensor, in

time or space and time is essential to define a probability distribution for the fluctuations

of such operators [55–57]. Furthermore, the results are very sensitive to the choice of the

averaging function. The more rapidly the averaging function switches on and off, the greater

is the probability of a large fluctuation. The physical origin of this sensitivity is as follows:

averaging suppresses the contributions of the high frequency modes of the theory and renders

the fluctuations finite. However, more rapid switching leaves a larger contribution from

high frequency modes and hence both a larger variance for the fluctuations and a greater

probability for a large fluctuation.

We adopt the viewpoint that the details of the averaging function are to be determined by

the specific physical situation in question. In the present context of the fluctuations in the

Riemann tensor in a bundle of geodesics, this involves averaging over the world tube defined

by the bundle. This approach was used in Refs. [58, 59]. This averaging will produce finite

results which depend upon the details of the averaging, as these details provide a physical

cutoff on the high frequency mode contributions. In this view, there is no need for a formal

regularization and renormalization procedure. We replace the integrations on the proper

time in Eq. (83) by four-dimensional spacetime integrations:

〈(∆υ)2〉 = ε20

∫ +∞

−∞
d4x f(x)

∫ +∞

−∞
d4x′ f(x′) Ctxtxtxtx(x, x

′), (87)

where f(x) is the sampling function, which is normalized so that
∫
d3x f(x) = 1 and has

dimensions of 1/length3. It describes the history of a wave packet, and involves integrating

in time and averaging in space.

Here we will first average in space, and then integrate in time. For the spatial averaging,

we consider a Lorentzian sampling function of width φ in each of the rectangular coordinates

x, y, z and x′, y′, z′,

gL(u, φ) =
φ

π(u2 + φ2)
, (88)

so that ∫ +∞

−∞
du gL(u, φ) = 1. (89)

This has the effect of averaging over a spatial scale of order φ. Therefore, the Riemann
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tensor correlation function, averaged over the spatial directions, may be defined by

Ĉ(t− t′, b) =

∫ +∞

−∞
d3x f(x)

∫ +∞

−∞
d3x′ f(x′) Ctxtxtxtx(x, x

′)

=

∫ +∞

−∞
dx gL(x, φ)

∫ +∞

−∞
dy gL(y, φ)

∫ +∞

−∞
dz gL(z, φ)

×
∫ +∞

−∞
dx′ gL(x′, φ)

∫ +∞

−∞
dy′ gL(y′, φ)

∫ +∞

−∞
dz′ gL(z′, φ)

× Ctxtxtxtx(∆t,∆x,∆y,∆z)

=
4[3b4 + 6b2(t− t′)2 − (t− t′)4]

π2[3b2 + (t− t′)2]5 . (90)

Here we have used the following identity∫ +∞

−∞
dx gL(x, φ)

∫ +∞

−∞
dx′ gL(x′, φ) F (x− x′) =

∫ +∞

−∞
d∆x gL(∆x, b) F (∆x), (91)

with b = 2φ. Note that the lightcone singularity present in Eq. (86), is no longer present

in Ĉ(t− t′, b). We may interpret the latter quantity as an acceleration correlation function

which has been averaged in space, but not in time.

B. Direct time integration

Because Ĉ(t − t′, b) is finite for all values of its arguments, so long as b 6= 0, one option

seems to be to integrate it directly in time to find the associated velocity and position

fluctuations. Define a velocity correlation function obtained by direct time integration by

〈υ(t1)υ(t2)〉DTI = ε20

∫ t1

0

dt

∫ t2

0

dt′Ĉ(t− t′) , (92)

and the associated velocity variance at time t0 by

〈(∆υ(t))2〉DTI = 〈υ(t0)υ(t0)〉DTI . (93)

The latter quantity is found to be

〈(∆υ)2〉DTI =
16ε20 t0 `

2
Pl[27b5t0 + 60b3t30 + 9bt50 + 7

√
3(3b2 + t20)

3 arctan(t0/
√

3b)]

81π b5(3b2 + t20)
3

. (94)

In the limit that t0 becomes large for fixed b, we find

〈(∆υ)2〉DTI ∼
56
√

3ε20 `
2
Pl

81 b5
t0 −

64`2Plε
2
0

27πb4
+O

(
1

t0

)2

. (95)
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One may also find the associated position fluctuations by further time integrations:

〈(∆χ)2〉DTI =

∫ t0

0

dt1

∫ t0

0

dt2〈υ(t1)υ(t2)〉DTI , (96)

and find

〈(∆χ)2〉DTI ∼
56ε20`

2
Pl t

3
0

81
√

3b5
(97)

in the limit of large t0.

These results are puzzling, because they imply that the mean squared velocity of the

particle grows linearly in time. This is only possible if there is an external energy source.

It is useful to examine a somewhat different limit. Let b = c t0, where c > 0 is a constant.

Now Eq. (94) take the form

〈(∆υ)2〉DTI =
K

t40
, (98)

where K is a constant. Now 〈(∆υ)2〉DTI → 0 as t0 →∞. Thus if both b and t0 become large

together, then the velocity variance vanishes. At this point, it is unclear whether the linear

growth found in Eq. (94) is due to holding b fixed, or to the sudden time switching used in

the direct time integration approach.

.

C. Lorentzian Time Integration

We next adopt an indirect way of integrating in time, which we call Lorentzian time

integration. It involves a dimensionless Lorentzian function given by

ḡL(u, ϕ) =
ϕ2

π(u2 + ϕ2)
. (99)

This function has the following property∫ +∞

−∞
du ḡL(u, ϕ) = ϕ, (100)

so ϕ is the effective interval of integration. That is,
∫ +∞
−∞ du ḡL(u, ϕ)F (u) is an integral of

F (u) over an interval of order ϕ centered about u = 0. The advantages of this approach

are that the integral can be finite even if F (u) has a singularity somewhere in the range of

integration, and it avoids sudden switching.
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In this subsection, we will use Lorentzian time integration to study velocity fluctuations.

Thus, we integrate Ĉ(t − t′, b) using two functions of the form of Eq. (99), and define the

velocity variance as

〈(∆υ(t))2〉LTI = ε20

∫ +∞

−∞
dt ḡL(t, ϕ)

∫ +∞

−∞
dt′ ḡL(t′, ϕ) Ĉ(t− t′, b)

=
aε20
4

∫ +∞

−∞
dτ ḡL(τ, a) Ĉ(τ, b) , (101)

where a = 2ϕ. In the last step, we used the fact that∫ +∞

−∞
dt ḡL(t, ϕ)

∫ +∞

−∞
dt′ ḡL(t′, ϕ) F (t− t′) =

a

4

∫ +∞

−∞
dτ ḡL(τ, a) F (τ) . (102)

The integrand in the second line of Eq. (101) has first order poles at τ = ±ia and fifth

order poles at τ = ±i
√

3 b. The integral may be performed by contour integration, with the

result

〈(∆υ(t))2〉LTI =
2`2Pl a

2ε20
81π b5 (a2 − 3b2)5

(7
√

3a9 − 108
√

3a7b2 + 594
√

3a5b4 (103)

+ 1296a4b5 − 4860
√

3a3b6 + 7776a2b7 + 1215
√

3ab8 − 3888b9) . (104)

In the limit that a becomes large for fixed b, we have

〈(∆υ(t))2〉LTI ∼
14
√

3 aε20 `
2
Pl

81 b5
. (105)

Given that the duration of the time integration is proportional to a, this is essentially the

same result as in Eq. (95), with the velocity variance growing linearly in the flight time. In

fact, if we set a = 4πt0, the two asymptotic forms are identical. We can also consider the

limit where a and b are proportional to one another: set b = c a, so Eq. (104) takes the form

〈(∆υ)2〉LTI =
K ′

a4
, (106)

for some constant K ′. Now 〈(∆υ)2〉LTI → 0 as a→∞.

Both Eqs. (105) and (106) are in qualitative agreement with the corresponding results,

Eqs. (95) and (98), found using direct time integration. This indicates that the linear growth

of 〈(∆υ(t))2〉 in time is not an artifact of sudden temporal switching. However, the velocity

variance does not grow when both the flight time and spatial scale increase together. This

result suggests that we should examine more general space and time averagings.
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D. Averaging over World Tubes of increasing Width

In both of the previous subsections, the spatial scale b was a constant, which means

that we were averaging over the history of a bundle of rays with a fixed spatial cross section.

However, more realistic beams tend to spread in width as they propagate. Now we explore an

averaging method which describes this spreading. Return to the Riemann tensor correlation

function, Eq. (86). Now we average it with Lorentzians of width b in (x, y, z), but width b′

in (x′, y′, z′). However, this is equivalent to averaging with Lorentzians of width b + b′ in

each of ∆x, ∆y, and ∆z, because of the identity∫ +∞

−∞
dx gL(x, b)

∫ +∞

−∞
dx′ gL(x′, b′) F (x− x′) =

∫ +∞

−∞
d∆x gL(∆x, b+ b′) F (∆x) . (107)

Thus, we may define

Ĉ(t− t′, b, b′) =

∫ +∞

−∞
dx dy dz gL(x, b) gL(y, b) gL(z, b)

×
∫ +∞

−∞
dx′ dy′ dz′ gL(x′, b′) gL(y′, b′) gL(z′, b′) Ctxtxtxtx(∆t,∆x,∆y,∆z)

=

∫ +∞

−∞
d∆x d∆y d∆z gL(∆x, b+ b′) gL(∆y, b+ b′) gL(∆z, b+ b′)

× Ctxtxtxtx(∆t,∆x,∆y,∆z) . (108)

This may be evaluated with the result

Ĉ(t− t′, b, b′) =
4[3(b+ b′)4 + 6(b+ b′)2(t− t′)2 − (t− t′)4]

π2[3(b+ b′)2 + (t− t′)2]5 . (109)

So far, b and b′ have been constants, but they may be functions of time without changing

any of the above analysis. Let them be linear functions given by

b = b(t) = c t+ b0 and b′ = b′(t′) = c t′ + b0 , (110)

where c > 0 and b0 > 0 are constants. These functions describe a bundle of rays which

starts with a nonzero width, which then grows linearly in time as the rays propagate. Now

the variable width averaged acceleration correlation function becomes

Ĉvw(t, t′) = Ĉ(t−t′, b(t), b′(t′)) =
4{3[c(t+ t′) + 2b0]

4 + 6[c(t+ t′) + 2b0]
2(t− t′)2 − (t− t′)4}

π2{3[c(t+ t′) + 2b0]2 + (t− t′)2}5 .

(111)
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The velocity variance of obtained from an integral upon t and t′ of Ĉvw(t, t′). In the limit

of a long flight time, this variance becomes

〈(∆υ)2〉 = ε20

∫ ∞
0

dt

∫ ∞
0

dt′ Ĉvw(t, t′) . (112)

This integral is finite so long as both c and b0 are nonzero. This is most easily seen by

transforming to polar coordinates, defined by t = τ sin θ and t′ = τ cos θ, so

〈(∆υ)2〉 = ε20

∫ ∞
0

dτ

∫ π/2

0

dθ τ Ĉvw(τ, θ) . (113)

The integrand is finite as τ → 0 so long as b0 > 0. As τ → ∞, the integrand falls as 1/τ 5

for all θ if c > 0, and hence the integral converges at the upper limit. We can also now

understand why we found 〈(∆υ)2〉 growing with increasing flight time in the two previous

subsections. Both of those cases correspond to c = 0 in the present notation. If c = 0,

the integrand in Eq. (113) grows for large τ if θ = π/4, which is the t = t′ line. Note

that on dimensional grounds, 〈(∆υ)2〉 ∝ b0
−4. The integral in Eq. (112) may be evaluated

numerically as a function of the parameter c, and the result is plotted in Fig. 3.

In summary, we have found that averaging over a geodesic bundle with a fixed spatial

cross section leads to a mean squared velocity which grows linearly in time. This requires

an external energy source to supply the added kinetic energy to the particles. However,

if the cross section grows linearly in time, as would be the case for a diverging beam of

particles, then the mean squared velocity approaches a constant value. Furthermore, this

asymptotic value is very small unless the initial cross section is close to the Planck scale.

In other contexts, the lack of secular growth of vacuum fluctuation effects can be linked to

anti-correlations [59]. It is of interest to explore whether similar anti-correlations exist here

as well. This is a topic for future research.

VI. CONCLUSIONS

In this work, we have analyzed the effects of fluctuations of the spacetime geometry

on the motion of test particles using the geodesic deviation equation. Just as a classical

gravitational field leads to tidal acceleration and changes in the relative velocities of test

particles, a fluctuating gravitational field leads to fluctuations in these relative velocities and

consequently fluctuations in the relative separations of the particles. We treat the geodesic
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FIG. 3. The velocity variance for the case of variable width spatial sampling is plotted as a function

of the parameter c.

deviation equation as a Langevin equation, which may be integrated to express the relative

velocity and position variances as integrals of a Riemann tensor correlation function. Here

we have considered fluctuations around an average flat spacetime background produced by

linear quantum gravity effects. Thus we are dealing with active fluctuations of the dynamical

degrees of freedom of gravity, as opposed to passive fluctuations driven by a matter stress

tensor. The source of the spacetime geometry fluctuations could be either a bath of gravitons,

or the graviton vacuum fluctuations. We have consider both a thermal bath of gravitons,

and a bath of gravitons in a squeezed vacuum state. As expected, the velocity and position

variances tend to be very small, and are suppressed by the square of the ratio of the Planck

length to a characteristic length scale of the system. In the case of a thermal graviton

bath, the variance of the relative velocity approaches a constant at late time, but root-mean

squared position fluctuation grows linearly in time. This can be interpreted as a version of

the gravitational memory effect [2].
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The discussion of graviton vacuum fluctuation effects, given in Section V, requires aver-

aging over both space and time to produce finite results. We view this as averaging over a

world tube which describes the history of a set of test particles. We find results which can be

very sensitive to the details of the averaging. This is to be expected, because the details of

the rate of switch-on or switch-off determine the frequencies of the vacuum graviton modes

which contribute to the final results. In this viewpoint, the details of the world tube of the

test particles provides a physical cutoff which renders the theory finite, so there is no need

for formal regularization or renormalization. A test of this viewpoint could in principle come

from experiments which measure the dependence of the observable fluctuation effects upon

the shape of this world tube. Although quantum gravity effects are far from testability, the

same issues could arise in analog systems with electromagnetic field fluctuations which might

be more accessible to experiment. This is a topic for future study, to determine whether

large effects from rapid switching are real, or artificial effects which need to be subtracted by

renormalization. In this paper, we have worked only to lowest order in the Riemann tensor.

Whether the viewpoint which we adopt can be generalized to higher orders remains to be

determined.

In the case where the spatial width of the bundle of geodesics is held constant, we find

that the mean squared relative velocity grows linearly with the flight time. This seems to

require an external energy source to maintain the constant width. However, it also raises the

interesting possibility of enhanced quantum gravity effects for long flight times. However,

we also find that if the spatial width is allowed to grow, even if very slowly, as the particles

propagate, then the mean squared relative velocity approaches a constant.

There seem to be some subtle effects of spacetime geometry fluctuations in linearized

quantum gravity which may elucidate the effects to be expected in a complete quantum

gravity theory.
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