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Motivated by the apparent discrepancy between Cosmic Microwave Background measurements of
the Hubble constant and measurements from Type-Ia supernovae, we construct a model for Dark
Energy with equation of state w = p/ρ < −1, violating the Null Energy Condition. Naive canonical
models of so-called “Phantom” Dark Energy require a negative scalar kinetic term, resulting in a
Hamiltonian unbounded from below and associated vacuum instability. We construct a scalar field
model for Dark Energy with w < −1, which nonetheless has a Hamiltonian bounded from below in
the comoving reference frame, i.e. in the rest frame of the fluid. We demonstrate that the solution
is a cosmological attractor, and find that early-time cosmological boundary conditions consist of
a “frozen” scalar field, which relaxes to the attractor solution once the Dark Energy component
dominates the cosmological energy density. We consider the model in an arbitrary choice of gauge,
and find that, unlike the case of comoving gauge, the fluid Hamiltonian is in fact unbounded from
below in the reference frame of a highly boosted observer, corresponding to a nonlinear gradient
instability. We discuss this in the context of general NEC-violating perfect fluids, for which this
instability is a general property.

I. INTRODUCTION

Current cosmological data constraining the form of
Dark Energy in the universe are consistent with Dark
Energy as a cosmological constant [1]. However, recent
direct measurements of the Hubble parameter H0 are in
substantial tension with measurements based on the Cos-
mic Microwave Background (CMB) [1–19]. While per-
haps the most parsimonious explanation of this tension
is the presence of an unidentified systematic in one or
more data sets [4, 20–32], the possibility remains that
the tension in H0 between high-redshift and low-redshift
measurements is an indication of new physics beyond the
six-parameter “concordance” model of cosmology. Pos-
sibilities for this new physics include “dark radiation”,
i.e. an extra light degree of freedom [2, 33–44], dynam-
ical or interacting Dark Energy [2, 45–69], and nonzero
curvature [45, 70–72]. In this paper, we concentrate on
the possibility of a “phantom” equation of state for Dark
Energy [2, 5, 73–76], which corresponds to Dark Energy
equation of state w ≡ p/ρ < −1, violating the Null En-
ergy Condition (NEC). Phantom Dark Energy provides
an especially simple resolution to the discrepancy in mea-
surements ofH0: high-reshift measurements favor a small
value of H0, and low-redshift measurements favor a larger
value, which can be readily explained by an increasing ex-
pansion rate, corresponding to equation of state w < −1.
Constraints on Phantom Dark Energy (PDE) were cal-
culated, e.g., by Di Valentino and Silk in Ref. [5], with

∗ Gabriela.Barenboim@uv.es
† whkinney@buffalo.edu
‡ mjmorse3@buffalo.edu

a 68% confidence level constraint of w = −1.29+0.15
−0.12, us-

ing the Planck CMB measurement [1] and the Riess et
al. constraint on H0 from Type-Ia supernova data [2].
(While inclusion of PDE improves the fit relative to the
ΛCDM case, we note that the extended parameters are
nonetheless disfavored by Bayesian evidence [55, 77]. In
this paper, we adopt the best-fit from Ref. [5] as a fidu-
cial case consistent with current data, although not yet
convincingly favored over ΛCDM.)

While appealing from a parametric standpoint, Phan-
tom Dark Energy is less so from the standpoint of funda-
mental physics, since NEC violation in scalar field theory
requires a negative kinetic term in the field Lagrangian,
for example in the simplest canonical realization [78],

L = −X − V (φ) , (1)

where

X ≡ 1

2
gµν∂

µφ∂νφ. (2)

Therefore the corresponding Hamiltonian, corresponding
to the field energy density, is unbounded from below,

H = −X + V (φ) , (3)

so that H → −∞ as X → ∞. The result is vacuum
instability via particle creation, and a theory which is
not self-consistent [79–83]. In addition, Phantom Dark
Energy results in a future cosmological singularity, or
‘Big Rip’ [74]. The literature on proposed solutions to
these problems is large. In this paper, we consider an
especially simple approach to the instability problem by
considering a phenomenological Lagrangian of the Dirac-
Born-Infeld (DBI) form, which reduces to the form of
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a canonical phantom field (1) in the X → 0 limit, but
nonetheless has a postive-definite comoving energy den-
sity in the X →∞ limit. The toy model we consider has
constant equation of state, w = const. < 0, which can
serve to alleviate the tension in H0 between low-redshift
and high-redshift constraints, but still has the issue of
a future Big Rip singularity. While the energy density
of the field is bounded below in the comoving reference
frame, we show that this property does not apply to the
Hamiltonian evaluated in arbitrary gauge, and that it is
always possible to construct a gauge in which the Hamil-
tonian is in fact unbounded from below, indicating an
instability in the theory. This instability is in fact char-
acteristic of general NEC-violating perfect fluids, a result
which was first shown by Sawiki and Vikman [84] which
we summarize in Sec. IV C.

The paper is organized as follows: In Section II, we
review the non-canonical “flow” formalism which we use
to construct the Phantom Dark Energy solution. In Sec-
tion III we construct a stable Phantom Dark Energy La-
grangian. In Section IV we demonstrate that the solu-
tion is a general dynamical attractor, and consider early-
universe boundary conditions and vacuum stability in ar-
bitrary gauge. Section V presents conclusions.

II. GENERAL FORMALISM

In this section, we briefly review the “flow” formalism
for non-canonical Lagrangians, following closely the dis-
cussion in Bean et al. [85] and Bessada, et al. [86]. We
will use this formalism in Sec. III to construct an exactly
solvable scalar Dark Energy model with w < −1.

We take a general Lagrangian of the form L = L [X,φ],
where 2X = gµν∂µφ∂νφ is the canonical kinetic term. We
assume a flat Friedmann-Robertson-Walker metric of the
form

gµν = diag.(1,−a2(t),−a2(t),−a2(t)), (4)

so that X is positive-definite. The pressure p and energy
density ρ are given by

p = L (X,φ) , (5)

ρ = 2XLX − L, (6)

where the subscript “X” indicates a derivative with re-
spect to the kinetic term. The Friedmann equation
can be written in terms of the reduced Planck mass
MP ≡ 1/

√
8πG,

H2 =

(
ȧ

a

)2

=
1

3M2
P

ρ =
1

3M2
P

(2XLX − L) , (7)

and stress-energy conservation results in the continuity
equation,

ρ̇ = 2HḢ = −3H (ρ+ p) = −6HXLX . (8)

For monotonic field evolution, the field value φ can be
used as a “clock”, and all other quantities expressed as

functions of φ, for example X = X (φ), L = L [X (φ) , φ],
and so on. We consider the homogeneous case, so that
φ̇ =
√

2X. Using

d

dt
= φ̇

d

dφ
=
√

2X
d

dφ
, (9)

we can re-write the Friedmann and continuity equations
as the Hamilton Jacobi equations,

φ̇ =
√

2X = −2M2
P

LX
H ′(φ), (10)

3M2
PH

2(φ) =
4M4

PH
′ (φ)

2

LX
− L. (11)

where a prime denotes a derivative with respect to the
field φ.

We define flow parameters as derivatives with respect
to the number of e-folds, dN ≡ d log a(t) = Hdt:

ε ≡ − 1

H

dH

dN
, (12)

s ≡ 1

cS

dcS
dN

, (13)

s̃ ≡ − 1

LX
dLX
dN

. (14)

where speed of sound for the scalar fluid is given by

c2S ≡
pX
ρX

=

(
1 + 2X

LXX
LX

)−1
, (15)

(Note that we adopt the opposite sign convention for N
than used e.g. in Ref. [86], appropriate to late-time
cosmic acceleration.) The equation of state of the scalar
field φ is related to the parameter ε by:

w ≡ p

ρ
=

2

3
ε− 1. (16)

For monotonic field evolution, number of e-folds dN
can then be re-written in terms of dφ by:

dN ≡ Hdt= H√
2X

dφ (17)

= − LX
2M2

P

(
H (φ)

H ′ (φ)

)
dφ, (18)

and the flow parameters ε, s, and s̃ (12) can be written
as derivatives with respect to the field φ as [85]:

ε (φ) =
2M2

P

LX

(
H ′ (φ)

H (φ)

)2

, (19)

s (φ) = −2M2
P

LX
H ′ (φ)

H (φ)

c′S (φ)

cS (φ)
, (20)

s̃ (φ) =
2M2

P

LX
H ′ (φ)

H (φ)

L′X
LX

. (21)

Following Refs. [86, 87], we construct a family of exact
solutions by making the ansatz of ε, s, and s̃ constant, so
that

H ∝ e−εN
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cS ∝ esN ,
LX ∝ e−s̃N . (22)

We can write these expressions as solutions to Eqs. (17,
19, 20, 21) as follows:

φ (N) = φ0e
s̃N/2,

cS (φ) =

(
φ

φ0

)2s/s̃

,

H (φ) = H0

(
φ

φ0

)−2ε/s
,

LX =
8ε

s̃2

(
MP

φ

)2

. (23)

Here the field value φ0 is defined such that cS (φ0) = 1,
and the solution admits both causal (cS < 1) and “tachy-
acoustic” (cS > 1) behavior. Note in particular that we
have not yet specified the form of the Lagrangian leading
to solutions of the form (23): In fact, such solutions define
a family of Lagrangians, which are determined via the
relationship between the parameters s and s̃. (See Ref.
[86] for a detailed discussion.) For our purposes here,
it is sufficient to specify a Lagrangian L by ansatz, and
demonstrate that it admits a solution of the form (23).
In the next section, we construct a DBI-like Lagrangian
with solution (23) characterized ε < 0, corresponding to
w < −1.

III. DARK ENERGY MODEL

In this section, we construct a general DBI-like model
with constant equation of state w < −1. Consider a
Lagrangian of the form

L = − 1

f (φ)

√
1± 2f (φ)X +

1

f (φ)
− V (φ) . (24)

It is conventional to define the Lagrangian such that the
limit X → 0 corresponds to a canonical Lagrangian,

L → X − V (φ) , (25)

which is equivalent to choosing the negative sign in Eq.
(24). This is the standard Dirac-Born-Infeld case. Here
we make the opposite ansatz,

L = − 1

f (φ)

√
1 + 2f (φ)X +

1

f (φ)
− V (φ) , (26)

with f (φ) > 0, so that the “canonical” limit has a wrong-
sign kinetic term as X → 0,

L → −X − V (φ) . (27)

Despite the wrong-sign kinetic term, the energy density
(6) corresponding to the Lagrangian (26) is bounded from
below for an appropriate choice of potential V :

ρ =
1

f (φ)
√

1 + 2f (φ)X
− 1

f (φ)
+ V (φ) , (28)

which is positive definite as long as V (φ) > f (φ)
−1

for
all values of the field φ. The speed of sound (15) is

cS = +
√

1 + 2f (φ)X = − 1

LX
. (29)

Comparing with Eqs. (20) and (21), we then have im-
mediately that s̃ = s. The Hamilton-Jacobi Equations
(10,11) reduce to:

φ̇ =
√

2X = 2M2
PcS (φ)H ′ (φ) , (30)

L = −3M2
PH

2

(
1− 2ε

3

)
. (31)

Note in particular that the field evolution is in the direc-
tion of increasing Hubble parameter, φ̇ ∝ +H ′ (φ).

We wish to construct functions f (φ) and V (φ) which
admit solutions of the form (23), with ε and s constant,
and w < −1, so that ε < 0. From Eqs. (29), (30), and
(19), we can construct the functional form of f (φ),

f =
1

2M2
PH

2ε

1− c2S (φ)

cS (φ)
. (32)

Writing the Lagrangian as

L =
1

f
(1− cS)− V (φ) , (33)

the Hamilton-Jacobi Equation (31), combined with the
solution (32) for f results in an expression for V (φ),

V (φ) = 3M2
PH

2 (φ)

[
1− 2ε

3

(
1

1 + cS (φ)

)]
. (34)

We make contact with the ansatz (23) by taking

φ (N) = φ0e
sN/2,

cS (φ) =

(
φ

φ0

)2

,

H (φ) = H0

(
φ

φ0

)−2ε/s
, (35)

so that f (φ) and V (φ) take the functional forms,

f (φ) =
1

2M2
PH

2
0 ε

(
φ

φ0

)4ε/s−2
[

1−
(
φ

φ0

)4
]
, (36)

and

V (φ) = 3M2
PH

2
0

(
φ

φ0

)−4ε/s [
1− 2ε

3

1

1− (φ/φ0)
2

]
.

(37)
It is straightforward to verify that Eqs. (35), (36), (37)
satisfy the Hamilton-Jacobi Equations (30) and (31).

The solution (35,36,37) represents a family of Dark En-
ergy models parameterized by ε and s. The parameter ε
is directly related to the equation of state parameter w
by Eq. (16), but the parameter s is arbitrary, and can
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FIG. 1. The potential for s = 2ε, showing field evolution.

be chosen to obtain a conceptually simple Dark Energy
model. (We consider one such example here, although
others are possible.) Take the case of

s = 2ε, (38)

so that

f (φ) =
1

2M2
PH

2
0 ε

[
1−

(
φ

φ0

)4
]
,

V (φ) = 3M2
PH

2
0

(
φ

φ0

)−2 [
1− 2ε

3

1

1 + (φ/φ0)
2

]
,(39)

with solution

H (φ)= H0

(
φ

φ0

)−1
,

cS=

(
φ

φ0

)2

, (40)

and field velocity

φ̇= 2M2
PcSH

′ (φ)

= −2M2
PH0

φ0
= const. (41)

We then have an approximately inverted quadratic
potential, V ∝ φ−2, similar to the original rolling
quintessence models [88–90], except with field rolling up

the potential [91, 92] with constant velocity φ̇ = const. <
0 (Fig. 1). We will use this as a Dark Energy model.1

In the next section, we demonstrate that this solution
is a dynamical attractor, and discuss cosmological bound-
ary conditions.

1 Note that this model is purely phenomenological: a wrong-sign
DBI Lagrangian of the type we propose is unlikely to arise in
realistic string or braneworld models for ultraviolet (UV) physics.
The question of a self-consistent UV completion resulting in a
low-energy effective Lagrangian of the form (26) is an interesting
one, but is beyond the scope of this work.

IV. GENERAL FIELD DYNAMICS

A. Attractor Behavior

While it is straightforward to demonstrate that Eqs.
(35,36,37) represent a solution for field evolution in a
Lagrangian of the form (26), it is not immediately clear
that this solution represents a dynamical attractor, which
is necessary for the construction of a viable Dark Energy
model. In this section, we demonstrate that the solution
is, in fact, a dynamical attractor.

The equation of motion for a Lagrangian of the form
(26) can be shown to be:

φ̈+3
H

γ2
φ̇+

3

2

f ′ (φ)

f (φ)
φ̇2+

f ′ (φ)

f (φ)
2−

1

γ3

[
f ′ (φ)

f (φ)
2 + V ′ (φ)

]
= 0,

(42)
where

γ ≡ c−1s =
1√

1 + f (φ) φ̇2
. (43)

We can write this in dimensionless phase-space variables
as follows: Take

x ≡ φ

φ0
, (44)

and

y = y(x) =
φ̇√

3MPH0

, (45)

where we take x(t) to be monotonic, so y(t) = y[x(t)] =
y(x). We can likewise define dimensionless forms for the
warp factor (36) and potential (37) as

g (x) ≡ 3M2
PH

2
0f (φ) =

3

2ε
x4ε/s−2

(
1− x4

)
, (46)

and

v(x) ≡ V (φ)

3M2
PH

2
0

= x−4ε/s
(

1− 2ε

3

1

1 + x2

)
. (47)

Using (45), we can write

φ̈ = φ̇
dφ̇

dφ
=

3M2
PH

2
0

φ0
y(x)y′(x), (48)

and defining

h(x) ≡ H/H0, (49)

we can write a general dimensionless equation for evolu-
tion of the system in phase space, appropriate for numer-
ical evolution:

y(x)y′(x) + 3

√
− 8ε

3s2
h(x)y(x)

γ2 (x)
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FIG. 2. Phase space plot of attractor behavior for the phan-
tom scalar field. The dotted (red) line represents the late-time
attractor solution, and the solid lines represent exact numer-
ical solutions for the field evolution. Note that the field is
rolling up the potential, with φ̇ < 0.

+
g′ (x)

g (x)

[
3

2
g (x) y2 (x) +

(
1− 1

γ3 (x)

)]
− v
′ (x)

γ3 (x)
= 0. (50)

The analytic solution (35) then corresponds to

cS (x)= γ−1 (x) = x2,

h (x)= x−2ε/s,

y (x)= ±
√
−2ε

3
x1−2ε/s, (51)

where the sign of y (x) is the same as the sign of s. It is
straightforward to verify that this is an exact solution to
Eq. (50).

We are particularly interested in the case s = 2ε,
(39,40,41), which corresponds to

g (x) =
3

2ε

(
1− x4

)
,

v(x) = x−2
(

1− 2ε

3

1

1 + x2

)
, (52)

with analytic solution

cS (x)= γ−1 (x) = x2,
h (x)= x−1,

y (x)= −
√
−2ε

3
= const. (53)

We evaluate the full equation of motion (50) for a fiducial
case of ε = −0.435, corresponding to the best-fit value of
w = −1.29 from the analysis of Di Valentino, et al. [5].
Figure 2 shows y(x) vs x for a variety of initial conditions,
showing the attractor behavior of the solution (53). Fig-
ure 3 shows the same attractor solution as a function of
scale factor a instead of as a function of the field, showing
rapid convergence to the attractor solution.

FIG. 3. Attractor behavior for the phantom scalar field, plot-
ted vs. scale factor a. The dotted (red) line represents the
late-time attractor solution, and the solid lines represent ex-
act numerical solutions for the field evolution.

B. Cosmological Boundary Conditions

With attractor behavior established, we now consider
the question of cosmological boundary condition. Our ex-
act solution (35,36,37) only applies to a single-component
universe, i.e. it is a good approximation in the limit that
Dark Energy dominates the cosmological energy density,
and therefore the dynamics. However, in the presence
of Dark Matter, the Dark Energy will be subdominant
at high redshift, with the transition from matter- to
phantom-domination happening at an approximate red-
shift of z ∼ 1. We must therefore consider the dynamics
of the field in the limit of matter-domination, which sets
the boundary condition for the field evolution when the
phantom energy dominates, at z < 1.

Consider the limit of large field, x � 1, so that the
dimensionless warp factor (46) and potential (47) become

g(x)
3

2ε

(
1− x4

)
→ − 3

2ε
x4,

v(x) = x−2
(

1− 2ε

3

1

1 + x2

)
→ x−2. (54)

We consider by ansatz a solution of the form y (x) → 0.
It is straightforward to identify subdominant terms in the
equation of motion (50),

g′

g
→ 4

x
→ 0,

g′

g2
→ 0,

y (x) y′ (x)→ 0,
c2S = γ−2 = 1 + g (x) y (x)→ 1. (55)

In this limit, the solution is a slowly rolling scalar,

3H(t)ẋ− v′ (x) = 0, (56)

where H (t) is determined by the scaling of the dominant
energy component, either matter or radiation. Taking

H (t) =
2

3 (1 + w)
t−1, (57)
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FIG. 4. Field evolution with a cosmological boundary condi-
tion φ̇ → 0. (Scale factor is in arbitrary units.) The dotted
(red) line represents the late-time attractor solution.

and v (x) = x−2, the solution to (56) is

x (t) ∝
(
1− Ct2

)1/4 → const. (58)

This solution is confirmed by direct numerical integra-
tion of the full equation of motion (50). We therefore
have a boundary condition of a frozen field with cS = 1
in the very early universe, which then relaxes to the at-
tractor solution once the phantom component becomes
dominant. Figure 4 shows field relaxation to the at-
tractor solution with a cosmological boundary condition,
φ̇ → 0, showing that relaxation occurs rapidly, in less
than a Hubble time.

C. Vacuum Stability in Arbitrary Gauge

We have shown that, considered in the fluid rest frame,
the energy density (6) (and therefore the field Hamil-
tonian) is bounded from below, with a stable dynami-
cal attractor solution corresponding to p = wρ, which
w = const. < −1. The expression

ρ = 2XLX − L (59)

is manifestly a coordinate scalar, and independent of
gauge. However, the Hamiltonian is a coordinate-
dependent object, corresponding to the time-evolution
operator in a particlar foliation of the spacetime. For
a perfect fluid, the Hamiltonian corresponds exactly to
the energy density (28) in the rest frame of the fluid,
where Tµν = diag (ρ,−p,−p,−p), and

H ≡ T 0
0 = ρ. (60)

The fluid four-velocity in a general coordinate frame can
be written as

uµ =
∂µφ√

2X
, (61)

which is by construction timelike and unit normalized,
uµuµ = +1. (Note that timelike uµ automatically im-
plies that the kinetic term X is positive-definite). The
corresponding stress-energy is then

Tµν = (ρ+ p)uµuν − gµνp
= LX∂µφ∂νφ− gµνL
= − ∂µφ∂νφ√

1 + 2f (φ)X
− gµνL. (62)

We can then write the Hamiltonian in a general coordi-
nate frame as

H = V (φ)− 1

f (φ)
+

1 + f (φ)
(
∂iφ
)

(∂iφ)

f (φ)
√

1 + 2f (φ)X

= ρ− (∇φ)
2

cS
. (63)

where
(
∂iφ
)

(∂iφ) = − (∇φ)
2

denotes a sum over spatial
indices. This reduces trivially to Eq. (28) in the limit
of zero field gradient ∂iφ = 0, i.e. the rest frame of
the fluid. This is in general not positive definite, since
a negative Hamiltonian density can be found for a field
configuration with gradient

(∇φ)2 > ρcs =
1

f (φ)
(1− cS) + cSV (φ) . (64)

For the solution (53), this condition is especially simple,
since

ρ

3M2
P

= h2 (x) = γ (x) =
1

cS
, (65)

so that

cSρ = 3M2
PH

2
0 = const., (66)

and H < 0 for

(∇φ)2 > 3M2
PH

2
0 . (67)

While this relation shows that the Hamiltonian can be
negative for sufficiently large field gradient, it does not
show that the Hamiltonian is in fact unbounded. We show
this below for a general NEC-violating perfect fluid, and
apply the result to the specific model considered here.

The general case was shown by Sawiki and Vikman in
Ref. [84]. Consider a perfect fluid with stress-energy vio-
lating the Null Energy Condition, such that there exists
a null congruence nµ such that

Tµνn
µnν < 0. (68)

Take the fluid four-velocity to by given by a timelike con-
gruence uµ. The rest-frame energy density ρ is then given
by

ρ = Tµνu
µuν = 2XLX − L. (69)

This is a coordinate-invariant scalar, and is valid in any
reference frame. However, it is only equal to the Hamil-
tonian in the rest frame of the fluid, uµ = (1, 0, 0, 0).
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Now consider an arbitrary coordinate frame defined by a
timelike congruence vµ : vµvµ = +1. The Hamiltonian
defined by this rest frame is given by

H = Tµνv
µvν . (70)

We now construct vµ as a linear combination of the fluid
four-velocity uµ and null vector nµ,

vµ ≡ αuµ + βnµ, (71)

where α and β are constants, and nµ is normalized such
that uµnµ = +1. Since vµ is by definition unit normal-
ized,

vµvµ = +1= α2uµuµ + 2αβuµnµ + β2nµnµ
= α2 + 2αβ, (72)

so that

β =
1− α2

2α
, (73)

and

vµ = αuµ +
1− α2

2α
nµ. (74)

The corresponding Hamiltonian is then

H = α2Tµνu
µuν +(1−α2)Tµνu

µnν +
(1− α2)2

4α2
Tµνn

µnν .

(75)
Note that if nµ satisfies the NEC, the last term is zero
or positive-definite, but if nµ violates the NEC, it is neg-
ative,

Tµνn
µnν < 0. (76)

We are free to take the limit that vµ is arbitrarily close to
the light cone, vµ → nµ, which corresponds to the limit
α→ 0. Then the Hamiltonian approaches

H → 1

4α2
Tµνn

µnν → −∞. (77)

The vector vµ remains timelike and unit normalized, but
the Hamiltonian is unbounded from below. For the par-
ticular case of the scalar field Lagrangian (26),

Tµν u
µuν= 2XLX − L = ρ (78)

Tµν u
µnν= 2XLX (uαn

α)︸ ︷︷ ︸
1

(uαu
α)︸ ︷︷ ︸

1

−L (uαn
α)︸ ︷︷ ︸

1

(79)

= 2XLX − L = ρ (80)

Tµν n
µnν= 2XLX (81)

Then Eq. (75) reduces to

H = ρ+
(1− α2)2

2α2
XLX → −

1

2α2

X

cS
, α→ 0. (82)

Therefore, while the field Hamiltonian is bounded and
well-behaved in the rest frame of the fluid, there exists a
proper Lorentz frame for which the Hamiltonian appears
unbounded from below.

V. CONCLUSIONS

Current data suggest a tension between high-redshift
constraints on the Hubble parameterH0 from Cosmic Mi-
crowave Backround measurements [1], and low-redshift
constraints from Type-Ia supernovae [2]. While still not
compelling when viewed in terms of Bayesian evidence,
this discrepancy suggests the need for inclusion of ex-
tended cosmological parameters beyond ΛCDM. Perhaps
the conceptually simplest way to reconcile a low value of
H0 at high redshift with a high value at low redshift is
Dark Energy which violates the Null Energy Condition,
such that the expansion rate H increases with expansion.
Such “Phantom” Dark Energy (PDE) is characterized by
Equation of State p < −ρ; while appealing from a para-
metric standpoint, PDE presents serious problems from
a model-building standpoint. In particular, a phantom
equation of state in a scalar field theory typically requires
a wrong-sign kinetic term, which implies negative energy
and a vacuum unstable to particle production [79, 80, 82].

In this paper, we construct a Lagrangian with phantom
equation of state p < −ρ, based on a Dirac-Born-Infeld
(DBI) Lagrangian, with a wrong-sign kinetic term

L = − 1

f (φ)

√
1 + 2f (φ)X +

1

f (φ)
− V (φ) . (83)

For appropriate choices of f (φ) and V (φ), the comoving
energy density ρ is bounded from below,

ρ =
1

f (φ)
√

1 + 2f (φ)X
− 1

f (φ)
+ V (φ) . (84)

We show by construction that it is possible to con-
struct a Lagrangian with exact solution for homogeneous
field modes such that w ≡ p/ρ = const. < −1. These
solutions correspond to a scalar field rolling up an ap-
proximately quadratic potential (Fig. 1). We show that
these solutions correspond to a dynamical attractor in
a cosmological background, and consider early-universe
boundary conditions for the phantom field. We find field
dynamics such that, in a matter-dominated phase at high
redshift, the field is “frozen”, and only becomes dynam-
ical when the universe transitions to Dark Energy domi-
nation at low redshift. At that point, the field dynamics
transitions to the attractor dynamics in less than a Hub-
ble time, approaching constant equation of state w < −1.

Other approaches have been previously applied to the
construction of such cosmologies. In Ref. [93], Rubakov
constructs a model by adding single-derivative terms cou-
pled to a vector field, suppressed by a small parameter,
which is also responsible for the suppression of tachyonic
modes below a cutoff momentum pc. As in the model con-
sidered here, the field executes a “slow climb” up the po-
tential, with p < −ρ. Csaki et al. propose an especially
simple solution which resolves the issue of instabilities by
considering a canonical theory with modified dynamics,
where the field is a dynamical transient rolling up the
potential, which results in an effective equation of state
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p < −ρ. In an entirely different vein, Melia has proposed
a non-accelerating “coasting” model with a = ct [94, 95].
This model has, however, been strongly criticized as a
comparatively poor fit to data: see, for example, Hari-
dasu, et al. [96].

Since the DBI-type Lagrangian (84) does not contain
higher time-derivatives of the scalar field, the theory
automatically avoids any Ostrogradsky instabilities due
non-local interactions [97].2 Despite these attractive fea-
tures, the model is nonetheless pathological: While the
field Hamiltonian is well-behaved in the rest frame of the
fluid, it is dependent on the spacetime foliation. In par-
ticular, there in general exist proper Lorentz frames for
which the Hamiltonian is unbounded from below [84].
This is distinct from the Unruh effect [99] in that it oc-
curs for inertial, rather than accelerated observers. This
is not necessarily an issue with repect to classical cos-
mological evolution, since there is no instability in the
cosmological rest frame, and the classical gradient in-
stability is nonlinear. However, quantum-mechanically,
highly boosted momentum states will inevitably sample
the region of phase space for which the field Hamiltonian
can become arbitrarily negative [100]. Thus, while such
models are attractive phenomenological descriptions of
Phantom Dark Energy, they remain inconsistent as re-
alizations of a fully fundamental theory. We note that
the model considered here is purely phenomenological:
wrong-sign Lagrangians are not, for example, typical of

string-theory constructions [101]. It is an interesting
question whether or not Lagrangians of the type con-
sidered here can be embedded in a self-consistent UV-
complete theory.
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