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Catalogs of stellar-mass compact binary systems detected by ground-based gravitational-wave in-
struments (such as Advanced LIGO and Advanced Virgo) will offer insights into the demographics
of progenitor systems and the physics guiding stellar evolution. Existing techniques approach this
through phenomenological modeling, discrete model selection, or model mixtures. Instead, we ex-
plore a novel technique that mines gravitational-wave catalogs to directly infer posterior probability
distributions of the hyper-parameters describing formation and evolutionary scenarios (e.g. progen-
itor metallicity, kick parameters, and common-envelope efficiency). We use a bank of compact-
binary population synthesis simulations to train a Gaussian-process emulator that acts as a prior
on observed parameter distributions (e.g. chirp mass, redshift, rate). This emulator slots into a
hierarchical population inference framework to extract the underlying astrophysical origins of sys-
tems detected by Advanced LIGO and Advanced Virgo. Our method is fast, easily expanded with
additional simulations, and can be adapted for training on arbitrary population synthesis codes, as
well as different detectors like LISA.
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I. INTRODUCTION

Over the last few years, the Advanced LIGO
and Advanced Virgo interferometers have detected
gravitational-waves (GWs) emitted during the final inspi-
ral and merger of binary black holes and neutron stars.
Among the many fruits of these ongoing searches have
been the first direct detection of GWs from binary black-
hole (BH) systems [1]; a growing catalog of BHs at var-
ious masses, distances, and component spin orientations
[2–6]; and the first double neutron-star (NS) merger sig-
nal [7], with a plethora of associated multi-messenger
electromagnetic follow-up analysis [8]. The expected de-
tection rate of binary BHs and NSs could be tens per
year with current detectors [2], and promise a data ex-
plosion for future third-generation ground-based interfer-
ometers [9]. As we move from the dawn of GW astron-
omy into its source-rich golden-age, we will be able to
perform detailed reconstructions of the demographics of
stellar populations, the formation history of compact bi-
nary systems, and the physical processes guiding stellar
evolution.

There are undoubtedly individual GW detections that
can provide invaluable physical and astrophysical insight.
For instance, the detection of GW150914 proved that
GWs could be directly detected [1] and that GW emis-
sion was consistent with GR [10, 11]. Perhaps even more
crucially from an astrophysical standpoint, it gave the
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first irrefutable proof that BHs indeed form binary sys-
tems able to merger within a Hubble time. Likewise, the
detection and electromagnetic follow-up of GW170817
showed that NS mergers could explain the origin of short
gamma-ray bursts [8]; gave insight into the equation of
state of nuclear matter [12, 13]; constrained the speed of
the graviton to less than one part in 10−15 [14]; and even
permitted a measurement of the Hubble constant [15].
There will continue to be such “golden” systems offering
unique physical insights. For instance, detections with
particularly favorable orientations in the future might
show signs of spin precession [16].

But even with the small number of GW detections so
far, emphasis is already shifting to answering questions
about the population properties of GW sources. As we
move towards the large-statistics regime of GW astron-
omy, focus will shift from inferring parameters of single
sources (masses, spins, redshifts) to characterizing hyper-
parameters describing formation and evolutionary pro-
cesses of BH and NS populations.

There are many challenges to understanding the for-
mation channels of GW-detected compact binary systems
[17]. Binary stellar evolutionary codes (e.g. [18–25]) have
become very detailed, but still suffer from large theoret-
ical uncertainties. To name a few, these include (i) the
dependence of remnant compact object masses (and thus
NS or BH identities) on stellar winds and metallicity;
(ii) the magnitude of kicks received by BHs and NSs at
formation; and (iii) the efficiency with which orbital en-
ergy can be transferred to a common envelope, thereby
tightening a binary. Adding to these uncertainties in
classical isolated binary evolution are details of other
proposed scenarios involving dynamical interactions with
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other bodies [26]. There is thus much poorly known stel-
lar astrophysics that catalogs of GW detections can be
mined for.

Several techniques have been developed to perform
GW population inference, ranging from phenomenolog-
ical parametrized modeling to discrete model selection,
with mixture modeling as a blending of the former two.
In phenomenological models, the distribution of com-
ponent masses, spins, and redshifts are reconstructed
through relatively simple parametrizations (e.g. [27–33]).
Any inference with these models will only be a broad
sketch of the complicated process of compact binary for-
mation. Detailed stellar population modeling allows bi-
nary stars to be tracked from known astrophysical as-
sumptions all the way through to compact binary forma-
tion (or not, depending on conditions). But these are
computationally expensive (making real-time simulation
runs during Bayesian analysis unfeasible), and are typi-
cally performed in small batches for comparisons to ob-
servations. This approach has been very successful, show-
ing e.g. that GW150914’s stellar progenitor had a metal-
licity of ∼ 5%Z� [34–36]. More systematic approaches
have also been taken, where Bayesian model selection is
performed on grids of discrete population synthesis sim-
ulations, or where simulations are mixed together with
weightings inferred from the data [29, 37–40]. Finally,
non-parametric methods have been developed to allow re-
covery of binary parameter distributions that is more ag-
nostic than the parametrized-model approach [41]. These
methods recover the bin heights of parameter distribution
histograms, typically with Gaussian Process (GP) priors
linking the bins to enforce smoothness.

In this paper we present a qualitatively new approach
that fuses non-parametric modeling with population-
synthesis simulations. In brief, we model histograms of
GW parameter distributions with bin heights constrained
by informative parametrized-priors built out of popula-
tion synthesis simulations. This allows us to fully exploit
catalogs of GW detections to directly infer the proper-
ties of progenitors and the evolutionary path undertaken.
Our methods give predictions of rates and parameter
distributions of compact-binary systems by interpolat-
ing between a set of population-synthesis simulations in-
formed by the data. Crucially, the framework developed
here remains agnostic of the specific population synthesis
code to used.

We follow a multi-stage process (illustrated in Fig. 1),
beginning with a design for the program of simulations
across hyper-parameter space, compressing distributions
of binary parameters to distill the most important fea-
tures, and training a GP model to interpolate between
the simulation hyper-parameter coordinates. These mod-
els are then fed to a hierarchical Bayesian pipeline to re-
cover the joint posterior probability distribution of pop-
ulation hyper-parameters, while incorporating measure-
ment uncertainties in each binary’s parameters. GP emu-
lation of computationally-expensive simulations has been
used in cosmological matter power spectrum analysis
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FIG. 1. A schematic representation of interpolating over pa-
rameter distributions( θ, e.g. masses, spins, redshift) as a
function of population hyper-parameters (β, e.g. progeni-
tor metallicity, common-envelope hardening efficiency, natal
kicks, etc.). We carry out a restricted number of population
synthesis simulations with different hyper-parameters, where
each simulation produces compact binaries distributed over
parameter space. These parameter distributions form the
training data for our interpolant model. For each bin, pixel,
or feature in the parameter distribution, we train a GP inter-
polant over the hyper-parameter space, allowing us to predict
the distribution at any other hyper-parameter coordinate.

[42, 43], pulsar-timing array GW constraints on super-
massive binary BH dynamical environments [44, 45], and
has been suggested in principle for stellar-mass binary
BH population inference [46]. Here we fully develop this
emulation approach, embedding it in a complete end-to-
end statistical framework, starting from the simulation
program design and following through to GW catalog
analysis.

This paper is laid out as follows. In Sec. II we de-
scribe how to choose locations in the hyper-parameter
space where we should perform simulations, how to com-
press distributions of simulated binary parameters, and
how we interpolate over these compressed distributions
using GPs. We introduce our inference tools in Sec. III,
including Bayesian GW parameter estimation, a scheme
to convolve the intrinsic simulated binary distributions
with detector selection effects, and a pipeline to perform
hierarchical Bayesian inference on catalogs of GW detec-
tions. We show our results in Sec. IV, where our entire
framework is tested on three case studies that succes-
sively increase in complexity and astrophysical realism.
These include (i) a toy analytic model, (ii) an example
with publicly-available population synthesis simulations,
and (iii) finally an example with our custom program of
simulations. We provide our conclusions and a discussion
of future prospects in Sec. V.
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II. STATISTICAL FRAMEWORK

In this Section we describe a statistical framework for
choosing points in hyper-parameter space at which to
generate simulated astrophysical populations (Sec. II A),
defining a data-driven basis for the distributions of pop-
ulation parameters (Sec. II B), and training an interpo-
lation scheme to emulate these parameter distributions
(Sec. II C). Our framework closely follows the steps out-
lined for cosmological matter power spectrum studies in
Refs. [42, 43].

A. Simulation design

We need a careful strategy for determining the loca-
tions in hyper-parameter space at which to perform the
simulations that will eventually be used to train our
emulator. While the temptation is to choose an N -
dimensional grid-design, this turns out to be highly sub-
optimal. The hyper-parameter space dictating stellar-
mass binary evolution is O(10) dimensions, and grid-
based designs quickly explode in the number of required
simulations. For example, if we choose a simple grid
with 3 nodes along each dimension, then in 2-dimensions
this is a reasonable choice, requiring 9 simulations in
total. However, expanding this to 10 dimensions re-
quires 310 ∼ 6 × 104 simulations, which is a computa-
tionally prohibitive step for current population-synthesis
codes. The entire purpose of constructing an emulator
is to avoid the need for high numbers of costly simula-
tion runs. Furthermore, grid-based designs are poor at
covering low-dimensional projections of the full hyper-
parameter space. If the distribution of BH masses and
spins is dominated by only three hyper-parameters (say
progenitor metallicity, natal kicks, and common-envelope
efficiency) out of the full 10 dimensional space, then our
above-mentioned grid-based design only assigns 33 = 27
unique simulated combinations of these important hyper-
parameters out of the total ∼ 6 × 104 simulations. The
opposite case is a purely random design, which however
suffers from large regions of sparsely populated hyper-
parameter space because random sampling maintains no
record of where previous points have been placed.

One thus needs a simulation design that gives
good coverage over all lower-dimensional projections of
the hyper-parameter space, while simultaneously being
sparse enough in the full space to make the program of
simulations computationally tractable. A popular solu-
tion is given by stratified sampling. If M points are to
be drawn, the hyper-parameter volume is first divided
into M equally-probable sub-strata, within which ran-
dom sampling for each point is employed. Specifically,
we use space-filling Latin hypercube designs [47], where
each sample is the only one permitted to occupy the axis-
aligned hyperplane containing it. One must define how
many samples are to be drawn at the outset of sampling,
and the sampler keeps a record of the position of each
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FIG. 2. Example of {x, y, z} hyper-parameter locations as-
signed on an evenly-spaced grid (green triangles), randomly
(orange squares), and with Latin hypercube sampling (blue
circles), for M = 8 training coordinates. A projection of these
coordinates into the {x, y} plane is shown on the right.

past draw. A variant on this technique for integers in
the range [0, 9] produces the popular puzzle Sudoku.

We use the pyDOE [48] python module for all simulation
designs in this paper. Various sampling options are avail-
able, but we choose to maximize the minimum separa-
tion between points in hyper-parameter space, while also
centering them within the sampling intervals. We com-
pute all simulation coordinates on the unit hypercube,
then transform them to the physical hyper-parameter
ranges of interest. Figure 2 shows a comparison of how
M = 8 training coordinates would be assigned in hyper-
parameter space according to different simulation design
schemes.

B. Data compression

Running population synthesis simulations will provide
a catalog of systems, each one with associated measured
parameters. In the case of compact binaries, these pa-
rameters include component masses, spins, luminosity
distance, perhaps eccentricity, etc. A natural way to
summarize all this information is to produce histograms
of the properties over the entire population; an inter-
polant could then be used to learn how the input sim-
ulation hyper-parameters affect the height of each his-
togram bin. Although there is nothing formally wrong
with this strategy, it misses the opportunity to generate
a data-driven basis on which to summarize the param-
eter distributions, rather than use naive binning. If we
simply binned then we would need as many interpolants
as bins, which might cause an unnecessary explosion of
the computational cost. But if our training distributions
lack pathological features, we can form a set of basis dis-
tributions that are smaller in number.

To generate a data-driven basis for the simulated dis-
tributions of a binary property, we form a data matrix D
of shape Nbins ×Nsims. Each column in this matrix cor-
responds to a single simulation, and contains the normal-
ized bin heights in the histogram for the parameter (flat-
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tened over all parameter dimensions, if multi-dimensional
histograms are considered), where we a-priori establish a
common binning scheme across all simulations. We then
use principal component analysis (PCA) [43] on the row-
centered matrix to identify a new set of basis distribu-
tions:

D = UΣV T , (1)

where the magnitude of the singular values along the di-
agonal of Σ are used to assess the dimensionality of the
new basis. We denote Nbasis as the number of singular

values above tolerance that form the restricted Σ̃ diago-
nal matrix, while the column spaces of U and V are also

restricted at Nbasis to form Ũ and Ṽ . The columns of
Ũ Σ̃/

√
Nbasis are principal components of the parameter

distributions that form a natural basis, while columns

of
√
NbasisṼ correspond to the projection of the original

data (bin heights) into the new basis. An interpolant
can then be trained on the data in the new compressed
basis, such that subsequent predictions are first made
in lower dimension before being rotated back into the
full-rank binning scheme. Any initial row-centering or
scaling is also corrected after a prediction is rotated into
full-rank. This data compression scheme identifies char-
acteristic “features” in the parameter distributions.

In the following, the choice of binning scheme (the
range and size of bins) is explored case by case. We
want to retain the dominant features in our parameter
distributions that have sensitivity to hyper-parameters,
but also want to avoid an interpolant learning Poisson
fluctuations from low occupations bins. Also, for fixed
Nbasis, the compression fidelity may be lower in a finer
binning scheme, where the bin heights may fluctuate sig-
nificantly from Poisson noise.

C. Training an emulator

In regression analysis, or more specifically GW popu-
lation inference, we need a model to fit to some data. We
can assume a parametric form, but we can also be more
flexible and let the model be data-driven. In the latter
approach, we use the data to train an interpolant which
connects the observations by e.g. straight lines (linear
interpolation) or low-degree polynomials (spline interpo-
lation). An even more powerful technique than straight-
forward linear or spline interpolation is GP regression,
which treats noisy data as a single random draw from
a multivariate Gaussian distribution with a mean vector
and covariance function. By optimizing the parameters
of a covariance function, and conditioning our predictions
of the underlying function on the observations, we let the
data tell us the nature of the underlying process rather
than enforcing a strict parametric function.

In the rest of this section we define GPs and explain
how they can be used as a powerful interpolation tool.
There are many excellent treatments of this subject (for

general theory see e.g. [49–51]; for ground-based GW ap-
plications see [52–54], and for recent applications to Pul-
sar Timing Arrays see [44, 55]), but here we only sum-
marize the salient points that motivate our work.

1. Gaussian processes

The formal definition of a GP is a (possibly infinite)
“collection of random variables, any finite number of
which have a joint Gaussian distribution” [49]. Instead
of parametrizing the underlying function, we are placing
a prior (in this case a Gaussian) on the space of possible
functions characterized by a mean and covariance. The
former is often set to zero and the latter describes how
the N points in our sample of the process are correlated
[50]. Hence, if we model the underlying process, f(x),
as a GP from which our data y = {y1, y2, . . . , yN} are
drawn, then formally we can write [49]:

f(x)∼GP(m(x), k(x,x′)),

y∼N (m(x), k(x,x′)), (2)

where the covariance (or kernel) function is k(x,x′) =
〈(f(x)−m(x))(f(x′)−m(x′))〉, and as mentioned above
we set m(x) = 0.

2. Predictions

We need knowledge of the kernel to constrain the space
of possible underlying functions. We train the GP by
performing a limited sampling of the underlying process
(which in our case are population-synthesis simulations),
and condition further predictions on this training data.
We account for possible measurement uncertainties on
the training data, meaning that we are really measuring
noisy values of the underlying process, i.e.

y = f(x) + n, (3)

where

n ∼ N (0, σ2
nδ(x− x′)) . (4)

If we have training data y measured at x, and we want
to predict function values at new points x∗, then we first
write the joint distribution of y and y∗:[

y
y∗

]
∼ N

(
0,

[
K + σ2

nI KT
∗

K∗ K∗∗

])
, (5)

where K is the matrix of kernel evaluations over the
training data, K∗ is the matrix of kernel evaluations be-
tween the prediction points and the training data, and
K∗∗ is the matrix of kernel evaluations over the predic-
tion points.

The conditional distribution of y∗ given y is [49]

y∗|y ∼ N (y∗, cov(y∗)), (6)



5

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x
−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FIG. 3. Training a Gaussian process for prediction. In the left panel we show an inverted offset-Rosenbrock function. In the
center panel we show the locations of our training data as white points, along with the GP predicted function values in the
background. The right panel shows the uncertainty in the predicted function values of the center panel.

where,

y∗ = K∗(K + σ2
nI)−1y, (7)

cov(y∗) = K∗∗ −K∗(K + σ2
nI)−1KT

∗ . (8)

Equation ((6)) shows a key result — namely that we have
interpolated over our training data by conditioning pre-
dictions of new observations on their values. The mean
of this conditional distribution y is our prediction, but
equally important is the prediction uncertainty cov(y∗),
which we can propagate through to subsequent inference.

3. Kernel functions

The choice of kernel function should be informed by
some prior knowledge of the underlying process, but the
only formal prerequisite is that it produce a positive-
semidefinite covariance matrix. A common choice in the
literature is the Squared Exponential (SE) kernel, whose
popularity stems from the fact that it is stationary and
infinitely differentiable. For training data whose input
coordinates are multi-dimensional, this kernel function
in a flat metric is:

k(x, x′) = σ2
k exp

(
− (xi − x′i)2

2σ2
i

−
(xj − x′j)2

2σ2
j

− · · ·
)
,

(9)
where each dimension of the input coordinate can have
a separate variance {σ2

i , σ
2
j , . . .}, and the kernel has an

overall variance scaling σ2
k. The variance of each dimen-

sion acts as a length parameter that dictates the degree
with which distant observations can influence each other.

Throughout this paper we use George [56], which is a
powerful Python library for GP regression. As an exam-
ple, we sample the following inverted offset-Rosenbrock

function at 900 random locations in [x, y] space:

g(x, y) =
[
(1− x)2 + 100(y − x2)2 + 1

]−1/5
. (10)

This function is shown in the left panel of Fig. 3, while
in the center panel we show the training data locations
as white points and the predicted function values in
the background. These function values have been pre-
dicted by training a GP with an SE kernel. The kernel
hyper-parameters were not optimized, but merely set as
{σ2

k = 1, σ2
x = 0.05, σ2

y = 0.05}. The prediction uncer-
tainty is shown in the rightmost panel of Fig. 3, where
we see that the predictive model accuracy is worst in the
locations where there is a deficit of training data. This
feature of GPs is particularly useful since it tells us where
in parameter space we must take new samples (i.e. per-
form new populations synthesis simulations) so that we
improve the accuracy of our model. Rather than assume
a set of kernel hyper-parameters, we can optimize them;
in this case the likelihood (or optimization function) is
a Gaussian with an SE kernel, and the training data are
treated as a draw from this Gaussian process. We can ei-
ther map the posterior probability distribution of the ker-
nel hyper-parameters (conditioned on the training data)
or simply find the maximum a-posteriori values. In the
following, we use MCMC techniques to sample the kernel
hyper-parameter posterior distribution, and use the pos-
terior samples to determine the maximum a-posteriori
values.

III. INFERENCE TECHNIQUES

In this Section we first outline Bayesian inference as
a statistical framework allowing for robust detection and
parameter estimation (Sec. III A). We then specify how
it is applied to ground-based GW analysis, resulting in
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catalogs of measured compact-binary coalescences, each
associated with a set of samples drawn from the poste-
rior probability distribution of the event’s physical pa-
rameters (Sec. III B). Finally, we introduce a hierar-
chical Bayesian framework for inferring the evolution-
ary history and progenitor conditions of cataloged GW
events, which uses the simulation-trained GP emulator
as a parametrized prior (Sec. III C).

A. Bayesian inference

Bayesian inference is a powerful statistical framework
allowing models to be robustly tested against data, re-
sulting in probability distributions of the model parame-
ters that are conditioned on both prior expectations and
new information [57]. This framework employs Bayes’
rule of conditional probabilities, such that the posterior
probability of parameters Θ within a model H, implied
by data D, is given by:

p(Θ|D,H) =
p(D|Θ,H)p(Θ|H)

p(D|H)
, (11)

where p(D|Θ,H) ≡ L(Θ) is the likelihood of the model
parameters given the data, p(Θ|H) is the prior prob-
ability of the model parameters, and p(D|H) ≡ Z is
the fully-marginalized likelihood, or evidence. When in-
ferring credible regions or upper limits for parameters
within a single fixed model, the evidence acts as a con-
stant and can be ignored. However it is an important
feature for model selection, where the ratio between evi-
dences under different models is known as the Bayes fac-
tor. When multiplied by an appropriate prior odds ratio,
this becomes the posterior odds ratio, which is essentially
the betting odds between the two models.

In parameter estimation we are usually interested in
the credible regions for a few parameters. Since Bayesian
inference returns probability distributions, we can inte-
grate over over all unwanted nuisance parameters while
still incorporating their uncertainty into the measure-
ment spread of parameters that we care about. This tech-
nique is known as marginalization. The high-dimensional
parameter spaces of models is typically explored us-
ing numerical random sampling techniques like Markov
Chain Monte Carlo, where the density of the chain sam-
ples in parameter space is proportional to the posterior
probability density function. As such, all integrations
can be trivially tackled through Monte Carlo techniques,
e.g.: ∫

dx f(x)p(x|d,H) ≈ 1

N

N∑
i=1

f(xi), (12)

where f(x) is an arbitrary function, and p(x|d,H) is
the posterior probability of x given data d under model
H, which we approximate with random samples i ∈
[1, . . . , N ]. We use emcee [58] for all sampling in the
following.

B. Gravitational-wave parameter estimation

Bayesian inference needs a likelihood function to as-
sess the fitness of the proposed model parameter choices
against data, and a measure of the prior probability of
these proposed parameters. For ground-based GW anal-
ysis, the data is the dimensionless strain computed from
the raw interferometric output, which is composed of sig-
nal and noise processes. We treat the noise processes
as Gaussian and stationary so that we can analytically
marginalize over the noise strain, and consider only its
power spectral density (PSD), which we assume to be
known. For this, we use the Advanced LIGO noise PSD
at design sensitivity [59], with a low frequency cutoff at
10 Hz. The strain signal h describing a compact-binary
coalescence has 15 parameters: 2 sky-location, 1 polar-
ization angle, 1 initial phase, 3 components of an orbital
angular-momentum vector, 2 BH masses, and 2× 3 com-
ponents of the spin vectors. Appropriate sampling of this
parameter space will return a set of independent draws
from the posterior probability distribution of the signal
model. We assume that a catalog of all detected GW
events will eventually be issued in the form of sets of
these posterior samples (see Refs. [12, 60] for initial steps
in this direction).1

In the following, we need a simple measure of the detec-
tion probability of a compact-binary system. We adopt
a frequentist statistic for detection, corresponding to a
threshold cut on the expected signal-to-noise ratio (SNR)

ρ2 = 4

∫ ∞
0

df
h̃∗(f)h̃(f)

Sn(f)
, (13)

where Sn(f) is the one-sided noise PSD, and h̃(f) is the
Fourier-domain waveform. We employ the IMRPhe-
nomD approximant [62] and ignore spins in the SNR
calculation, deferring its information content to future
work (cf. [63] for possible biases). We access both the
Advanced LIGO noise PSD and the waveform approxi-
mants through the pyCBC python package [64, 65].

A GW signal from a coalescing binary is described by
the two polarizations

h+(t) = A(t)
1 + cos2 ι

2
cos Φ(t), (14)

h×(t) = A(t) cos ι sin Φ(t), (15)

where ι is the binary orbit inclination and all other de-
pendencies are encoded in the signal amplitude A(t) and
phase Φ(t). The response of a (single) detector,

h(t) = F+h+(t) + F×h×(t), (16)

1 While this work was being completed, the posterior sam-
ples were made available by the LIGO-Virgo Collaboration at
dcc.ligo.org/LIGO-T1800235 and Vitale et al. [61] for the three
events (GW150914, GW151226, LVT151012) in the Advanced
LIGO detector’s first observing run (O1).

https://dcc.ligo.org/LIGO-T1800235/public
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between a given detection threshold ρthr and the SNR ob-
tained assuming optimal orientation ρopt. Here we work in
the single-detector approximation and assume ρthr = 8.

is modulated by the antenna beam patterns
F+,×(θ, φ, ψ), where the three angles describe sky
location and polarization content (e.g. Ref. [66]). One
can then define the projection parameter [67–69]

ω =

√
(1 + cos2 ι)2

4
F 2
+(θ, φ, ψ) + cos2 ιF 2

×(θ, φ, ψ) (17)

and the phase offset

tan Φ0 =
2 cos ιF×

(1 + cos2 ι)F+
, (18)

such that

h(t) = A(t)ω cos(Φ(t)− Φ0) . (19)

The parameter ω encapsulate all the angular dependen-
cies of the signal amplitude and satisfies maxι,θ,φ,ψ ω = 1.
From Eq. (13) one thus obtains ρ = wρopt, where ρopt is
the SNR for an optimally oriented source.

A population synthesis code would typically return
a set of binary parameters like masses, spins and dis-
tance. The probability that those given binaries exceed
a detection threshold ρthr is computed by averaging over
sky location, polarization angle, and inclination. This is
equivalent to evaluating the cumulative probability dis-
tribution P (ω) at the ratio between the threshold SNR
and the optimal SNR, i.e. pdet = P (ρthr/ρopt). The de-
tectability function is shown in Fig. 4. All of the binary
realizations are detectable in the limit ρopt → ∞, i.e.
pdet = 1. Conversely, none of the realizations are visible
below detection threshold, i.e. pdet = 0 if ρthr = ρopt.
For simplicity we use a single-detector SNR threshold
ρthr ≥ 8, which has been found to act as a good proxy
for more elaborate network analysis [70]. The function
P (ω) is computed with a Monte Carlo as implemented in
the python package gwdet [71].

C. Hierarchical population inference

1. Priors and hyper-parameters

Choices of parameter priors may be motivated by un-
derlying physical intuition (e.g. neutron star masses can
not be greater than ∼ 4M�) or fundamental constraints
(e.g. masses should be positive, speeds can not exceed
the speed of light, etc.). However, sometimes intuition
or fundamental constraints do not lead us to a defini-
tive prior, as in the case of the astrophysical distribution
of compact object masses and spins. In some cases one
might be able to make a reasonable guess at the form
of the distribution (e.g. Gaussian), but the mean and
width may be unknown. Or perhaps even the form itself
is completely unknown, and only dictated by unknown
properties of the progenitor system. In this case, we can
extend our model to an additional level (hence hierarchi-
cal inference) by using a parametrized prior. The param-
eters of these priors are the hyper-parameters, and they
themselves will have hyper-priors.

2. Likelihoods and posteriors

Hierarchical inference is discussed in detail elsewhere
(e.g. Refs. [27, 72–77]), but we summarize the salient
points here. We make specific use of the formalism in
Mandel et al. [78] and Farr et al. [79]. The goal is to si-
multaneously infer the joint posterior probability distri-
bution of the measured physical parameters of each event,
as well as the hyper-parameters describing the statistical
properties of the entire population.

The joint probability of strain data from all GW sig-
nals {hk} (where k ∈ [1, . . . , N ] indexes each event), and
associated physical parameters describing each signal θk
is

p({hk}, {θk}|β) = p({hk}|{θk}) p({θk}|β), (20)

where β are the population hyper-parameters. The GW
signals will be produced at a certain rate in parameter
space as a function of the hyper-parameters. We first
consider a discrete representation of the physical param-
eter space (e.g. masses, redshits, etc) divided into bins,
l ∈ [1, . . . , Nl]. The data are then the number of events
detected in a given bin in this parameter space nl. As-
suming non-overlapping statistically-independent signals
(and thus bins)2, the likelihood is the product of a Pois-
son process in each bin:

p({nl}|β) =

Nl∏
l=1

(rl(β))nle−rl(β)

nl!
, (21)

2 This assumption is expected to fail for future 3rd-generation
ground-based detectors, as well as the LISA space mission.
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where rl(β) is the expected rate of events in bin l as
function of hyper-parameters β. If we make the bins
infinitesimally small, then each bin will either have 1 or
0 events. This gives the continuum limit

p({θk}|β) ∝ e−Nβ
N∏
k=1

r(θk|β), (22)

where Nβ =
∫∫

dh dθ p(h|θ) r(θ|β) is the expected total
number of events for a population with hyper-parameters
β, and r(θ|β) = Nβ p(θ|β) such that

∫
dθ p(θ|β) = 1. The

likelihood p(h|θ) is normalized over the data, so while
the data integral is trivial here we will see soon why its
explicit marginalization is useful. Plugging Eq. (22) into
Eq. (20), and again using the statistical independence of
signals, gives

p({hk}, {θk}|β) ∝ e−Nβ
N∏
k=1

p(hk|θk) r(θk|β). (23)

The measured data are usually thresholded using a de-
tection statistic to decide which signals are robust events,
and which are spurious or untrustworthy. Upon exam-
ining the data, we partition N into “observable” (Nobs)
and “non-observable” (Nnobs), so that Eq. (23) becomes

p({hi}, {θi}, {hj}, {θj}|β) ∝

e−Nβ

[
Nobs∏
i=1

p(hi|θi) r(θi|β)

]Nnobs∏
j=1

p(hj |θj) r(θj |β)

 .
(24)

We now marginalize over the data and parameters of
the non-observable events, and divide the probability
by Nnobs! to mitigate over-counting through marginal-
ization. We also marginalize over the number of non-
observable events, Nnobs, from 0 to ∞:

p({hi}, {θi}|β) ∝

e−Nβ

[
Nobs∏
i=1

p(hi|θi) r(θi|β)

] ∞∑
Nnobs=0

(Nndet
β )Nnobs

Nnobs!

∝ e(N
ndet
β −Nβ)

Nobs∏
i=1

p(hi|θi) r(θi|β)

∝ NNobs

β e−N
det
β

Nobs∏
i=1

p(hi|θi) p(θi|β), (25)

where,

Ndet
β =

∫ ∫
{h∈[detection]}

dhdθ p(h|θ) r(θ|β)

=

∫
dθ pdet(θ) r(θ|β)

= Nβ ×
∫
dθ pdet(θ) p(θ|β)

= Nβ × εβ (26)

is the expected number of detected events in a popula-
tion model with hyper-parameters β, such that Nβ =
Ndet
β +Nndet

β . The probability of detection as a function

of binary parameters is given by pdet(θ) from Sec. III B.
The efficiency εβ =

∫
dθ pdet(θ) p(θ|β) denotes the frac-

tion of merging systems that are detectable for a given
hyper-parameter coordinate.

Equation (25) is appropriate if we fully model all
factors influencing the number and distribution of de-
tectable GW events, such as the local merger-rate den-
sity, the duty cycle of the detectors, etc. In our analysis
we construct r(θ|β) from population synthesis simula-
tions, from which we record the fraction of initialized
stars that were evolved to become merging BH-BH sys-
tems. We do not want to make our analysis sensitive to
duty-cycle choices or poorly-constrained scaling parame-
ters that could affect rates, so we marginalize over such
factors [27, 38, 76, 80]. This is done by marginalizing
over Nβ with the prior p(Nβ) ∝ 1/Nβ , such that [81]

p({hi}, {θi}|β) ∝ (Nobs − 1)!

Nobs∏
i=1

p(hi|θi) p(θi|β)

εβ
. (27)

The first term in the numerator is the single-event like-
lihood used for GW parameter-estimation. We do not
want to repeat all of the effort that went into reducing
the raw detector output to a set of likelihood evaluations.
Rather, we assume a GW catalog will eventually be pro-
vided in the form of a set of posterior samples for each
event:

p(θi|hi, β) =
p(hi|θi)p(θi|β)

p(hi|β)
, (28)

where β denotes the prior for the BH/NS parameters cho-
sen by the issuers of the catalog (e.g. uniform in compo-
nent masses, comoving volume, etc.). Plugging Eq. (28)
into Eq. (25), and Monte Carlo integrating over the pos-
terior distribution of event parameters with Eq. (12) gives

p({hi}|β) ∝ Zβ ×NNobs

β e−Nβεβ
Nobs∏
i=1

〈
p(θi|β)

p(θi|β)

〉
post,i

,

(29)
where Zβ is the evidence for the interim prior model using
the data from all observed events. This is a constant and
can thus be ignored. The expectation value in Eq. (29) is
taken over samples drawn from the joint posterior distri-
bution of each event in the GW catalog, while the argu-
ment is the ratio of the rate of detected-event param-
eters under our new parametrized model (constructed
from simulations) versus the interim prior (used in the
catalog construction). Dividing out the influence of the
interim prior used in the original event analysis is crucial
(e.g. Ref. [61]), since our goal is to re-analyze the entire
catalog under the new parametrized prior that has been
constructed from simulations. For the examples reported
in this paper, we approximate the interim prior as being
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FIG. 5. A probabilistic graphical model illustrating Eq. (20).
The detector output, h, depends on noise and signal processes.
The noise may be decomposed onto a Fourier basis with co-
efficients, an, whose variance in turn may be constrained by
a model for the power-spectral density, Sn. The strain in-
duced by each signal depends on the intrinsic and extrinsic
parameters of each binary θ. We place a parametrized prior
on a subset of these parameters, given by orthogonal basis
distributions determined from PCA of population synthesis
simulations, γPCA. The amplitude of each basis distribution
has a Gaussian prior from GP training on these simulations,
informed by some hyper-parameters, β.

uniform over the region of parameter space with likeli-
hood support, so that we can safely ignore this subtlety.

Monte Carlo integrating over the posterior distribution
of event parameters in Eq. (27) gives

p({hi}|β) ∝ Zβ × (Nobs − 1)!

Nobs∏
i=1

1

εβ

〈
p(θi|β)

p(θi|β)

〉
post,i

.

(30)
The rate, Nβ , and distribution, p(θ|β), are constructed
using the simulation and emulation scheme described in
Sec. II, where the former is found by training on the frac-
tion of ZAMS stars that form merging BH-BH systems.
Fig. 5 shows the probabilistic graphical model for our
inference framework, and illustrates the chain of condi-
tional dependencies for constraining the parameters of
each event with a prior that is a function of progenitor
and evolutionary properties. We use both Eq. (29) and
Eq. (30) in the following test cases.

IV. RESULTS

We now implement our new framework on three case
studies. These case studies begin with a toy model
(Sec. IV A), then increase in complexity and astrophys-
ical realism using both public data (Sec. IV B) and tai-
lored simulations (Sec. IV C) to showcase how one might
use our findings in practice.

A. Toy Model

Our first demonstration corresponds to the inference of
binary spin-alignment distributions. Spin alignments are
indeed recognized as one of the cleanest indicators for
constraining BH formation and evolutionary processes
[30, 39, 82–88]. Here we implement the approach devel-
oped by Talbot and Thrane [82]. The observed quantities
in this model are the projection of each binary compo-
nent’s spin onto the orbital angular momentum vector:

z1 = L̂ · Ŝ1, z2 = L̂ · Ŝ2, (31)

where z{1,2} ∈ [−1, 1]. Dynamical capture mechanisms
in, e.g., a globular cluster are expected to produce an
isotropic distribution of spin alignments

p0(z1, z2) =
1

4
. (32)

For field binaries, the evolutionary path of each progen-
itor star (in particular natal kicks during supernova) is
assumed to produce a truncated Gaussian distribution of
alignments. Two hyper-parameters σ1 and σ2 control the
degree with which (anti-)alignment is favored:

p1(z1, z2) =
2

π

1

σ1

e−(z1−1)
2/2σ2

1

erf(
√

2σ1)

1

σ2

e−(z2−1)
2/2σ2

2

erf(
√

2σ2)
. (33)

In this model, σ = 0 produces perfect alignment, while
σ =∞ tends to the dynamic-capture distribution.

We use p1(z1, z2) as the test destribution to be in-
ferred. This probability function has hard-edges at
[z1 = ±1, z2 = ±1], making it challenging to learn and
thus an excellent testbed to test our framework. The
observed parameters from each GW binary event are
θ ∈ {z1, z2}, and the hyper-parameters of the popula-
tion are β ∈ {σ1, σ2}. The parameter probabilities are
represented on a 40× 40 binning in {z1, z2} space.

We generate training data using Eq. (33) for a range
of σ1,2 ∈ [0.1, 10] values, sampled uniformly in log-space.
To examine how many training datasets are needed, we
create grids of training data with different densities in
hyper-parameter (i.e. β) space. We find a compressed
basis representation of the training-data distributions,
then train a GP at each bin in the compressed parame-
ter space. In all cases we find that the initial parameter
binning can be compressed by a factor of ∼ 500 with
high-fidelity3. In this case the compression and training
is performed on the logarithm of the training data, since
this reduces the dynamic range of values across parame-
ter space and ensures that the predicted proability values

3 We compute the normalized inner product of the training data
(flattened to be the vector of all samples in the dataset) with
the compressed data (which has been rotated back into the full
parameter basis). With only 3 reduced basis distributions, cor-
responding to a compression of (40 × 40)/3 ≈ 533, we achieve
discrepancies from true that are of O(10−16).
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FIG. 6. Testing the accuracy of our GP emulator for the model of Eq. (33). In the left panel we create training data on an
evenly-spaced 8×8 grid in log10 σ1,2 space (red points). We achieve a data compression factor of ∼ 500, then train a GP in each
of the reduced basis features. The GP prediction is compared to the analytic result across σ1,2 space by taking the GP-mean
(offset by 1 σ), rotating back to the full z1,2 basis, then finding the maximum difference from the analytic value in any z1,2 bin.
Low accuracy locations are used to inform the positions at which new simulations are performed. These additional points are
shown in the right panel as empty circles, where we see that their addition improves accuracy across the entire hyper-parameter
space.
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FIG. 7. Comparison of posterior recoveries of population
hyper-parameters from a catalog of 100 sources with spin-
alignment distribution given by Eq. (33) [82]. The true hyper-
parameter coordinate, {σ1 = 0.45, σ2 = 0.45} is indicated via
intersecting white dashed lines.

will always be positive. We can now predict the distri-
bution values in compressed parameter space, and rotate
this back into the full parameter space to construct the
final predictions.

Figure 6 shows validation studies for different num-
bers of initial training data. For an evenly-spaced grid of
8 × 8 = 64 training datasets in hyper-parameter space,
we achieve an accuracy of better than ∼ 50% across the
majority of the space. The worst performance occurs in
parts of hyper-parameter space that are voids of simula-
tions. We find the 36 worst accuracy locations, and add
these as additional simulations to improve accuracy to
better than 10%. Similar accuracy is given by an Latin-
hypercube design of 100 training datasets.

We now test our framework on a simulated popula-
tion, consisting of 100 sources drawn from p(z1, z2) with
β = {σ1 = 0.45, σ2 = 0.45}. A comparison of the joint
posterior probability distribution of {σ1, σ2} as recovered
by the analytic model [Eq. (33)] and the GP framework
is shown in Fig. 7. The GP framework is trained on 100
simulations from a Latin-hypercube design; we use this
design because it is our standard approach for efficiently
sampling the high-dimensional hyper-parameter space of
binary stellar evolution, and it gives similar emulation ac-
curacy to the adaptive design in the right panel of Fig. 6.
In this analysis, we have propagated all uncertainties
from the GP prediction and the hyper-parameters of the
trained GP covariance function into the final model. The
agreement is excellent, with the true hyper-parameter co-
ordinate lying well within the 68% credible region of both
techniques. We have not incorporated the effect of indi-



11

vidual event measurement uncertainties, which will be
explored in the next examples.

B. COMPAS Populations

We now test our framework on an example with greater
astrophysical realism. We take publicly-available popu-
lations4 of synthesized binary BHs from Stevenson et al.
[25] as training data. In the aforementioned paper, the
authors introduce COMPAS: a code (broadly similar to
BSE) for evolving zero-age-main-sequence (ZAMS) binary
star systems through classical isolated evolution (i.e. in-
cluding common-envelope stages). By simulating low-
metallicity populations and following the binary evolu-
tion, the authors find that all three initial Advanced
LIGO events (GW150914, GW151226, and LVT151012)
could have been formed with a single model in an en-
vironment with Z ∼ 0.05Z�. In Ref. [25], the statistic
for checking whether a given simulated binary was consis-
tent with forming each individual detected GW event was
whether the simulated binary’s total mass (chirp mass)
fell within the quoted 90% credible region for GW150914
(GW151226, LVT151012), and whether the mass-ratio
exceeded the quoted 90% credible lower bound. While
this is a reasonable measure of consistency, it does not
provide a corresponding measure of statistical credibility
for the inferred progenitor metallicities. By contrast, our
framework allows the posterior probability distribution
of progenitor metallicities to be recovered.

We use populations produced with fiducial assump-
tions under different metallicities, corresponding to Z =
{0.05, 0.1, 0.25}Z�. In this example, Z is the only hyper-
parameter that we aim to infer. All binaries reported
merge within a Hubble time, and we incorporate detec-
tor selection effects using the detection probability men-
tioned in Sec. III B. In principle we would use the binary
component masses, spin information, and redshift to dis-
criminate progenitor properties and evolutionary paths.
But since there is only a limited amount of information
that can be inferred based on these three training popu-
lations, we opt for simplicity and only use the chirp mass
information from each binary. We do not consider rate
information either, such that our likelihood is given by
Eq. (30). By using these publicly-available populations as
training data, we implicitly approximate all BH systems
as forming from progenitors with a common metallicity.

We compress histograms of each population’s chirp
masses from 80 initial bins down to a PCA basis of size
2 (which is set by the small number of training popula-
tions). The compressed training data is then interpolated
over metallicity using a GP with a squared-exponential
kernel. This procedure gives a model for the distribution
of detectable chirp masses as a function of metallicity.

4 Populations available at http://www.sr.bham.ac.uk/compas/data.

TABLE I. The existing catalog of binary BH detec-
tions from Advanced-LIGO–Advanced-Virgo, with measured
source-frame chirp masses and merger redshifts reported as
median values and associated 90% credible bounds.

Event Chirp mass M Merger redshift z Refs.

GW150914 28.1+1.8
−1.5M� 0.09+0.029

−0.036 [2, 89]

LVT151012 15.1+1.4
−1.1M� 0.201+0.086

−0.091 [2]

GW151226 8.88+0.33
−0.28M� 0.094+0.035

−0.039 [2, 3]

GW170104 21.1+2.4
−2.7M� 0.18+0.08

−0.07 [4]

GW170608 7.9+0.2
−0.2M� 0.07+0.03

−0.03 [5]

GW170814 24.1+1.4
−1.1M� 0.11+0.03

−0.04 [6]

We perform a simple test using chirp-mass and redshift
information from the catalog of existing BH detections,
see Table I. We make the very simple approximation that
the source-frame chirp mass and merger redshift poste-
rior distributions are Gaussian and uncorrelated, from
which we can easily draw posterior samples. We draw
100 independent posterior samples for each event and
use these samples to propagate parameter-estimation un-
certainty into our population hyper-parameter inference.
This is obviously a highly simplified representation of
the real event posteriors, but it outlines the scheme one
would use when provided with the samples from the true
GW catalog.

Another subtlety that we do not consider here (but
that must be accounted for in a real analysis) is the influ-
ence of the original priors from the parameter-estimation
analysis of each individual event (c.f. Sec. III C). In the
current Advanced-LIGO–Advanced-Virgo searches, the
component mass priors are uniform, while the luminos-
ity distance prior assumes the mergers occur uniformly in
comoving volume. These choices do not translate to uni-
form priors in chirp mass or redshift, so that we should
re-weight the posterior samples from each event to reflect
the likelihood, then apply our newly-formulated parame-
ter priors (as a function of population hyper-parameters)
to the entire detected event catalog. In this analysis, we
simply assume that the chirp mass and redshift priors
were uniform in the analysis of each GW event.

The resulting posterior distribution for progenitor
metallicity is shown Fig. 8, where the 68% and 90% up-
per limits are found to be Z < 0.12Z� and Z < 0.16Z�,
respectively. This is in broad agreement with Steven-
son et al. [25], who found that the three events required
Z ' 0.05Z�. Our constraints reflect uncertainties in the
GP model prediction and the parameter estimation of
each event. In Fig. 9 we also show the reconstructed in-
trinsic chirp-mass distribution of binary BHs at metallic-
ities corresponding to our credible limits, as well as the
original training distributions. We see that our model
correctly interpolates the physical behavior on which it

http://www.sr.bham.ac.uk/compas/data
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FIG. 8. Posterior probability distribution of progenitor metal-
licity Z, as inferred by an analysis of the current BH catalog
in Table I using a model for the chirp mass distribution that
is conditioned on simulations from [25]. Dashed vertical lines
marks the 68% and 90% confidence intervals.

was trained (including some sharp features), namely that
the distribution of chirp masses shifts to smaller values
as the progenitor metallicity is increased. Physically, this
is because stellar winds are weaker in stars with lower
metallicity, that thus tend to form heavier BHs like the
ones detected by Advanced LIGO [25, 34–36]. The events
of the current binary BH catalog are shown as vertical
bands corresponding to the 90% credible region of chirp
mass.

C. BSE Population Synthesis

To further showcase the effectiveness of our statistical
framework, we now consider a more elaborate set of input
data. We perform a dedicated program of population-
synthesis simulations to predict properties of BH binaries
from isolated binary stars.

We use a modified version of the public population syn-
thesis code BSE [18, 90]. The modifications implemented
here are the same described in Refs. [36, 91]: wind mass
loss prescriptions according to Ref. [92] and core-collapse
remnant mass relationship following Ref. [20]. These
minimal updates are necessary to generate any BHs of
masses & 10M� like the ones that are now detected,
and thus to attempt a comparison with the Advanced-
LIGO–Advanced-Virgo data. We stress, however, that
this study is not meant to rival with the full complex-
ity of state-of-the-art binary evolution codes, but rather
highlight the potential of our inference pipeline.
BSE requires us to specify distributions of binary stars

on their zero-age main sequence (ZAMS), and a variety
of flags encoding assumptions of the underlying stellar
physics. We distribute primary masses m1 from an ini-
tial mass function p(m1) ∝ m−2.31 in [5, 100]M�; mass
ratios q = m2/m1 uniformly in [0, 1]; initial separations

R uniformly in log10 in [10, 105]R�; eccentricities e from
a thermal distribution p(e) ∝ e; and redshifts z uniformly
in comoving volume using the Plank cosmology [93] (c.f.
Ref. [29] for similar choices).

The evolutionary flags are the quantities that should be
treated as hyper-parameters, and that could potentially
be constrained with current and future catalogs of GW
events. For simplicity, we present results considering a
3-dimensional hyper-parameter space, but our method is
fully generalizable and scalable to higher dimensions. We
fix all flags to their default value in BSE, except for the
following three:

1. Metallicity of the ZAMS star: Z. As already
highlighted above, the progenitor metallicity has a
large impact on the properties of the resulting BHs.
Metallicity strongly affects massive star winds and
thus the mass that remains available to form the
final compact object [22, 24, 92, 94–97]. Here we
consider a metallicity range 0.0001 ≤ Z ≤ 0.03
where Z� = 0.02 [18].

2. Kicks imparted to BHs at formation: σk. As
stars collapse (perhaps exploding into supernovae),
asymmetries in the emitted material and neutri-
nos may impart a recoil to the newly formed com-
pact object (e.g. Ref. [98]). Observations of galactic
pulsar proper motions suggest that NS recoils are
well modeled by a single Maxwellian distribution
with 1D root-mean-square σk ∼ 265 km/s [99, 100].
Whether BHs receive any kick at formation is still
a matter of debate. On the one hand, X-ray binary
measurements hint at large kick velocities [101] (c.f.
also Ref. [102] for a GW constraint). Conversely,
theoretical arguments and simulations suggest that
kicks for BHs might be suppressed because of ma-
terial falling back after the explosion [98, 103, 104].
This is a clear case where a method like ours, al-
lowing for a direct estimate of σk, might show its
potential. We consider BH recoils in the range
0 km/s ≤ σk ≤ 265 km/s independently of BH mass
or other parameters (see Ref. [40] for a discussion
of this point).

3. Efficiency of the common envelope: αce. After the
first star collapses, the binary system consists of a
BH and an extended star. As this second star ex-
pands into a supergiant, it may overflow its Roche
Lobe and undergo unstable mass transfer to the
BH [105–108]. The envelope of the giant engulfs
the companion BH. In this process, known as the
common-envelope stage, a fraction αce of the bi-
nary’s orbital energy is transferred to the enve-
lope, thus hardening the binary. In the standard
evolutionary channel considered here, common en-
velope evolution is the key stage to produce BHs
able to merge within a Hubble time. The details
of the common envelope phase are still very uncer-
tain [109–112], and are arguably one of the most
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important stellar (hyper-)parameters that can po-
tentially be measured with GW data. Here we vary
αce in [0.001, 10.0].

We use {Z, σk, αce} as hyper-parameters, thus implic-
itly assuming that all stars in the same simulated uni-
verse share common values of those quantities. While
this might be a good working assumption for, e.g., αce, it
is surely not true for other parameters like the metallicity.
That said, our methods can be straightforwardly gener-
alized to a distribution of metallicities with parameters
that can be treated as hyper-parameters in our inference
instead of Z itself (much like σk, which is a parameter
in the Maxwellian kick distribution, not the kick velocity
itself).

We perform 125 BSE simulations distributing log10 Z,
σk, and log10 αce on a Latin hyper-cube as described in
Sec. II A and drawing N = 107 ZAMS binaries at each
point in hyper-parameter space. Each of these 125 × N
simulated stars is filtered according to two criteria: (i)
a BH binary is formed, and (ii) it merges before z =
0. Binaries passing these cuts are assigned an Advanced
LIGO detection probability, pdet (c.f. Sec. III B).

Each BSE simulation returns a population of BH bina-
ries characterized by their masses and merger redshifts,
which we use as measured event parameters in our statis-
tical inference. Examples of the intrinsic {M, z} distri-
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FIG. 10. An example of two BSE training simulations, show-
ing the intrinsic {M, z} distribution of merging BH binaries.
Contours enclose 68% and 90% of simulated binaries, where
the blue solid lines are for a very low metallicity progenitor
scenario, while the orange dashed lines are for a simulation
close to solar metallicity.

bution for two of these simulations are shown in Fig. 10,
where low Z values ensure stars are able to form mas-
sive BHs. The relative merger rate (i.e. the fraction of
ZAMS stars that form merging BH binaries) is shown
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FIG. 11. Fraction of ZAMS stars that form merging binary
BH systems. The three panels show fractions in each of our
three hyper-parameters: metallicity Z, natal kicks σk and
common-envelope efficiency αce. The dashed lines in each
panel show predictions from a GP that has been trained on
these rates, with only the hyper-parameter relevant to the
panel varied in the prediction.

in Fig. 11. The rate decreases with Z because (i) fewer
BHs are formed in favor of NSs (which are not considered
here for simplicity) and (ii) stars become puffier at large
Z and are more likely to merge earlier in the evolution
(e.g. Ref. [36]). The rate also decreases with σk be-
cause strong kicks more easily unbind binaries (e.g. Ref.
[40, 113]).

We do not know a-priori how many ZAMS stars survive
as merging BH binaries. Some points in hyper-parameter
space lead to only a handful of events, giving a jagged
distribution in parameter space that suffered from finite-
ness. To counter this, we require a simulation to provide
at least 500 systems in order to be included in our train-
ing and validation procedures. This leaves 115 out of the
original 125 hyper-parameter coordinates. Even though
this renders our simulation coordinates no longer a per-
fect LH design, it creates a training set with smoother
and more robust parameter distributions. Out of the
surviving 115 simulations, we train our GP emulator on
a randomly chosen 100, with another 14 selected for in-
dependent validation of the GP, and the final simulation
left as a test population for the full hierarchical Bayesian
pipeline.

For each training simulation, we create a normal-
ized KDE-smoothed5 2D distribution in intrinsic chirp
mass, M, and merger redshift, z, with a common
20 × 20 binning scheme. The distributions are PCA-
compressed by a factor of 8, with a compression fidelity
of better than 0.01%. The remaining 50 features (or

5 We use the scipy.stats implementation of Gaussian kernel den-
sity estimation with a bandwidth selected by Scott’s Rule [114].

“bins”) in the compressed distributions are each interpo-
lated over the three-dimensional hyper-parameter space
of β = {log10 Z, σk, log10 αce} using GPs with squared-
exponential kernels. We denote a match statistic that is
the normalized inner product of the bin heights in the
validation distribution with the GP-predicted distribu-
tion. With maximum a-posteriori GP kernel parameters,
the 14 validation distributions (KDE-smoothed and nor-
malized) all match their GP-predicted distributions to
better than 7%. We also train a separate GP on the
fraction of ZAMS stars that survive as merging binary
BH systems, which was used to make the smooth rate
curves in Fig. 11. This is convolved with detector selec-
tion effects to compute the fraction of merging systems
that are detectable in Advanced LIGO.

We still have one population that was held out of the
GP emulator training and validation, which we now use
as data for a test of the entire hierarchical Bayesian
pipeline. The hyper-parameters of this population are
β = {Z = 7.3 × 10−4, σk = 100 km/s, αce = 0.021}. We
weight each system in the population by its detection
probably, then randomly select 100 to be our catalog, cor-
responding to (depending on duty-cycle and sensitivity
assumptions) a few years of Advanced Advanced-LIGO–
Advanced-Virgo observations. The evaluated match
statistic between this distribution and our GP predic-
tion is ∼ 0.5%. We take two approaches to analyze this
catalog:

(i) using only the information given by the {M, z} dis-
tribution of sources, see Eq. (30);

(ii) artificially scaling the rate-GP to predict 100 de-
tected events for the test hyper-parameters so that
we can use a Poisson likelihood, see Eq. (29).

The recovered posterior probability distributions of
population hyper-parameters are shown in Fig. 12, where
all are consistent with the true values. We have not
marginalized over GP kernel posteriors or the GP pre-
diction uncertainties so that we may see the effect (or
in this case lack thereof) of systematic offsets from in-
terpolation errors. We have also not modeled parameter
uncertainties in the cataloged events, but these can be
straightforwardly incorporated.

As a final test, we analyze the current Advanced-
LIGO–Advanced-Virgo catalog from Table I, following
the same assumptions as in Sec. IV B. We use Eq. (30),
and marginalize over all cataloged event parameter un-
certainties. As expected, with only 6 events the pos-
terior distributions for σk and αce are broad and do
not significantly update their priors. However, we place
a constraint on progenitor metallicity corresponding to
Z < 0.09Z� at 90% credibility. The marginalized mass
and redshift distribution of binary BH mergers for the
maximum a-posterioi hyper-parameters from this analy-
sis are shown in Fig. 13. We stress again that all con-
straints are subject to our assumptions and minimal up-
dates of BSE, which are only intended to show the capa-
bilities of our approach.
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FIG. 12. Corner plot showing 1D-marginalized posterior dis-
tributions of binary BH population hyper-parameters along
the diagonal, and pairwise 2D-marginalized posterior distri-
butions in the lower axes (lines denote 90% credible regions).
The true hyper-parameters are indicated with red lines. The
data were 100 binary BHs from a population simulated with
BSE that was held out of our GP emulator training. Results
are for a distribution-only likelihood [orange dashed, Eq. (30)],
and a re-scaled Poisson-rate likelihood [blue solid, Eq. (29)].

V. CONCLUSIONS

We have developed a new hierarchical Bayesian frame-
work that is capable of recovering posterior probabil-
ity distributions of compact-binary population hyper-
parameters. These hyper-parameters encode details of
stellar evolution, progenitor conditions, and the evolu-
tionary paths taken to form systems that are detected by
ground-based GW instruments such as Advanced LIGO
and Advancdd Virgo.

Our methods fuse non-parametric (i.e. agnostic) mod-
eling of GW parameter distributions with population
synthesis simulations. Given a collection of population
synthesis simulations of potential GW events, we first
formed smoothed histograms of the binary parameters,
stacked the vectors of histogram bin heights, then per-
formed PCA to compress the bins into “features”. This
allowed significant dimensionality reduction while pre-
serving the original distributions to high fidelity. We
then trained GPs to interpolate the weights of these fea-
tures across hyper-parameter space, so that we could em-
ulate parameter distributions at any choice of population
hyper-parameters between the simulated values. Using a
GP allowed uncertainties in the interpolation training to
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FIG. 13. Marginalized binary BH population distributions
of rest-frame chirp mass and redshift for the maximum a-
posteriori hyper-parameters from an analysis of the current
Advanced-LIGO–Advanced-Virgo catalog. These are the in-
trinsic merger distributions, rather than convolved with de-
tector selection effects. The blue vertical lines indicate the
parameters of cataloged events.

be propagated through to subsequent statistical analyses.
Other interpolant choices are possible; in future work we
will explore the ability for a deep neural network to learn
compact-binary distributions, and for such a network to
be embedded in a population inference pipeline.

Having constructed a model for GW parameter distri-
butions, we incorporated it into a hierarchical inference
pipeline that used information from the distribution and
rate of binary BH mergers in parameter space to dis-
criminate compact-binary progenitor and evolutionary
scenarios. We tested our pipeline on three case studies
that successively increased in complexity and astrophys-
ical realism. These ranged from a toy analytic model
of binary component spin alignments, to publicly avail-
able population simulations, and finally to our own cus-
tom population synthesis simulations using a modified
version of the publicly-available BSE code. In our final
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study, we trained Gaussian processes on the 2-D distri-
bution of binary BH chirp masses and redshifts across
the hyper-parameter space of progenitor stellar metal-
licity, BH natal kicks, and common-envelope harden-
ing efficiency. The recovered hyper-parameter posteriors
were fully consistent with the injected values. We also
performed a simple analysis on the existing Advanced-
LIGO–Advanced-Virgo binary BH catalog, where we in-
corporated parameter measurement uncertainties to con-
strain progenitor metallicity to be Z < 0.09Z� at 90%
credibility. (However, there are many caveats to this, and
we quote it only to demonstrate the capabilities of our
framework.)

The framework introduced here can be expanded and
refined in many different ways. Further study is needed
to understand how hyper-parameter measurement uncer-
tainties will scale with the number of detected binaries,
and how these compare with Fisher matrix approaches
[115]. Furthermore, while we have carried out studies
in controlled circumstances, full production-level analysis
of real GW catalogs will require that several conditions
be met: e.g. (i) the number of required training simula-
tions should be determined through an iterative process,
where GP uncertainties are investigated across hyper-
parameter space to motivate new simulation locations;
(ii) the number of binaries in each simulation should
be large enough (ideally & 103) to construct smoothed
distributions that are representative of a large popula-
tion. These refinements are important since we found
that sampling the hyper-parameter space was challeng-
ing in large-event catalogs.

In this paper we mainly focused on binary BH systems,
but our approach can be easily generalized to incorporate
the relative observed fraction of BH-BH, NS-BH, and NS-
NS systems as another means of discriminating evolution-
ary and progenitor conditions. Likewise, we only consid-
ered classical isolated binary evolution as the mechanism
of compact-binary formation, but our framework could
be applied to dynamical formation scenarios, allowing
the details of many-body scattering in dense stellar clus-
ters to be revealed. A mixture model would allow us
to tease apart the sub-populations within a GW cata-
log that have evolved through each mechanism. With
this method, the mixing fractions are just other hyper-
parameters that can be estimated together with those de-
scribing the various channels. Unfortunately, the public
version of BSE that we used does not provide informa-
tion on component BH spins. We stress that inclusion
of spins (and other parameters in general, like eccentric-

ity) can be easily accommodated within our framework
by carrying out informative training simulations.

We are entering a new source-rich era of GW astron-
omy, where catalogs of compact binary coalescences will
reveal much about stellar astrophysics, including the pro-
cesses underlying stellar evolution and the dynamics of
dense stellar clusters. As third-generation ground-based
detectors become a reality, so too will the opportunity
to probe star formation rates across cosmic time, con-
strain cosmological parameters, understand the equation-
of-state of nuclear matter, and use the huge event rates
to limit modifications to GR. Furthermore, a space-based
detector such as LISA will catalog hundreds of massive
BH mergers, permitting reconstruction of massive BH
seed formation scenarios and accretion efficiencies over
cosmic time. Incorporating the detailed physics of popu-
lation simulations into GW catalog analysis will allow for
powerful statistical inference of the aforementioned pro-
cesses. We hope that our framework lays the foundation
for this exciting endeavor.

The code used to perform all analy-
ses in this paper is publicly-available at
github.com/stevertaylor/gw catalog mining, along
with an example jupyter notebook for the toy model
analysis in Sec. IV A.
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