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The tunneling wave function of the universe is investigated in a minisuperspace framework of
a de Sitter universe with a quantum scalar field, treated as a perturbation. We consider three
different approaches to defining the tunneling wave function: (1) tunneling boundary conditions
in superspace, (2) Lorentzian path integral, and (3) quantum tunneling from initial universe of a
vanishing size. We show that the superspace approach requires Robin boundary conditions for the
scalar field modes, the path integral approach requires adding an appropriate boundary term to the
scalar field action, and the initial universe approach requires the initial quantum state of the scalar
field to be Euclidean vacuum. We find that all three approaches yield identical wave functions and
that scalar field fluctuations are well behaved, contrary to earlier claims in the literature.

I. INTRODUCTION

Inflationary spacetimes are known to be past-
incomplete [1]. This indicates that such spacetimes must
have a past boundary and raises the question of what de-
termined the initial conditions at that boundary. Even
though it may not be essential for observational predic-
tions of inflationary models, this is an important question
of principle, and without resolving it the inflationary cos-
mology remains incomplete. Perhaps the most promising
approach to this problem is based on quantum cosmol-
ogy, which suggests that a spatially compact universe can
spontaneously nucleate out of ‘nothing’, where ‘nothing’
refers to a state with no classical space, time and matter
[2–7].
In quantum cosmology the universe is described by a

wave function Ψ(g, φ), which is defined on the space of all
possible 3-geometries (g) and all matter field configura-
tions (φ), called superspace. The role of the Schrödinger
equation for Ψ is played by the Wheeler-DeWitt equation
[8]

HΨ = 0, (1)

whereH is the Hamiltonian operator. This is a functional
differential equation in superspace.
In ordinary quantum mechanics, the wave function of a

system is found by solving the Schrödinger equation with
boundary conditions determined by the physical setup
external to the system. But since there is nothing exter-
nal to the universe, it appears that the boundary con-
ditions for the Wheeler-DeWitt equation should be pos-
tulated as an independent physical law. Several possible
forms of this law have been discussed in the literature; the
most developed proposals are the Hartle-Hawking and
the tunneling boundary conditions.1

1 Alternative boundary conditions have been introduced by De-
Witt’s [8] and Linde [4]. These proposals, however, have been
discussed only in the context of one-dimensional minisuperspace
models, and no attempt has been made so far to extend them to
full superspace.

The tunneling boundary condition has been discussed
in detail in Refs. [9–11]. Roughly, it requires that ψ
should include only outgoing waves at the boundary of
superspace, except for the part of the boundary cor-
responding to vanishing 3-geometries. This is supple-
mented by the regularity condition, requiring that ψ re-
mains finite everywhere, including the boundaries of su-
perspace,

|Ψ(g, φ)| <∞. (2)

Thus, the probability flux enters superspace through 3-
geometries of vanishing size and leaves it through the rest
of the boundary, corresponding to singular or infinitely
large universes. The resulting wave function can be in-
terpreted as describing a universe originating at zero size,
that is, from ‘nothing’. It was conjectured in [6] that the
same wave function can be expressed as a path integral
over Lorentzian histories interpolating between a vanish-
ing 3-geometry and a given configuration in superspace,

ΨT =

∫ (g,φ)

∅

DgDφ eiS , (3)

where S is the action. However, the equivalence of the
two definitions has not yet been generally demonstrated.
The Hartle-Hawking (HH) wave function [3] is defined

as a path integral over compact Euclidean ‘histories’
bounded by given 3-geometry and matter field config-
uration,

ΨHH =

∫ (g,φ)

DgDφ e−SE , (4)

where SE is the Euclidean action obtained by the stan-
dard Wick rotation t→ −iτ . This wave function has also
been interpreted as describing quantum nucleation from
nothing. The gravitational part of the Euclidean action
SE is unbounded from below, and as it stands the inte-
gral (4) is divergent. One can attempt to fix the problem
by additional contour rotations, extending the path inte-
gral to complex metrics [12, 13]. However, the space of
complex metrics is very large, and no obvious choice of
integration contour suggests itself as the preferred one.
This is where things stood until the last year, when

Feldbrugge, Lehners and Turok (FLT) reinvigorated the
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field with a new approach to Lorentzian quantum cos-
mology [14]. Working in minisuperspace framework, they
showed that the path integrals (3), (4) can be rigorously
defined with the aid of the Picard-Lefschetz theory. They
first applied this method to de Sitter minisuperspace
model and found that in this case the Euclidean path in-
tegral cannot be made convergent by any deformation of
the lapse integration contour, while the Lorentzian path
integral is well defined and gives the tunneling wave func-
tion, as it was claimed in [6, 11]. (See Ref. [12, 13, 15]
for related earlier work.) In the following papers [16, 17]
FLT considered perturbative minisuperspace, with the
gravitational wave field φ added as a small perturbation.
Here, their results for the tunneling wave function were
far less reassuring. They found that this wave function
predicts a runaway instability, where the probability of
quantum fluctuations of the field φ grows with their am-
plitude. Similar claims about instability of the tunneling
proposal have also been made in the earlier literature
[13].
FLT work has led Diaz Dorronsoro et al. [18, 19] to

further develop the HH proposal. They studied de Sitter
plus scalar field and Bianchi-IX models and showed that
for specific choices of the lapse integration contour in the
complex plane the wave function is well defined and ex-
hibits the qualitative behavior expected of ΨHH .2 In our
view, however, the basic criticism against this approach
still remains: the HH proposal is incomplete without a
choice of a complex integration contour in the path in-
tegral (4). Some general requirements to this contour
have been given in Ref. [13], but it is not clear that they
can always be satisfied or what contour should be used
in models admitting a number of choices that satisfy the
requirements.
In the present paper we focus mostly on the path in-

tegral formulation of the tunneling proposal. We show
that the field fluctuations in the wave function (3) are
well behaved if the action S is supplemented with a suit-
able boundary term. In the next section we review the
calculation of ΨT using the tunneling boundary condi-
tions in perturbative superspace and give an alternative
formulation of the boundary conditions, which is more
suitable for our purposes here. In Section 3 we introduce
into the action a boundary term, which is appropriate for
these boundary conditions, and show that the resulting
path integral coincides with the wave function obtained
using the tunneling boundary conditions. We also pro-
pose a physical interpretation of the boundary term in
terms of the initial scalar field wave function in a tunnel-
ing universe. Our conclusions are summarized in Section
4.
In the main text of the paper we consider a massive

conformally coupled scalar field. The case of a minimally

2 Dispute about the behavior of these wave functions beyond per-
turbation theory is still ongoing [17, 19, 20], but here we focus
exclusively on perturbative superspace.

coupled field, which in the massless case is equivalent to
that of gravitational waves, is discussed in the Appendix.
Throughout this paper, we use the reduced Planck units:
8πG = 1.

II. TUNNELING BOUNDARY CONDITIONS

A. The model

We consider a de Sitter minisuperspace model with a
conformally coupled massive scalar field, where the met-
ric is assumed to be homogeneous, isotropic and closed:

ds2 = a(η)2(−N2dη2 + dΩ2
3). (5)

Here, N is the lapse function, a is the scale factor, η is the
conformal time, and dΩ2

3 is the metric on a unit 3-sphere.
In this section the lapse function is irrelevant and is set
to be unity.
The action for this model is given by

S =

∫

√

−g(4) d4x

(

R

2
− 3H2

)

+ Sm + SB ,(6)

Sm =

∫

√

−g(4) d4x

[

−
1

2
(∇φ)2 −

1

2
m2φ2 −

ξ

2
Rφ2

]

,(7)

where g(4) is the determinant of the metric, H = const
is the de Sitter expansion rate, ξ = 1/6 is the conformal
coupling, Sm is the matter part of the action, and SB is
the boundary term. The boundary term is not relevant
in this section and will be specified in Sec. III. The case
of a minimally coupled field (i.e., ξ = 0) is discussed in
the Appendix.
We expand the field φ as

φ(x, t) =
1

a(t)

∑

χn(t)Qn(x), (8)

∫

QnQn′dΩ3 = δnn′ , (9)

where Qnlm(x) are suitably normalized spherical har-
monics and we have suppressed the indices l,m for
brevity. The superspace of this model is an infinite-
dimensional space {a, χn}. The wave function of the
Universe obeys the Wheeler-DeWitt (WDW) equation:

[

~
2

24π2

∂2

∂a2
− 6π2V (a)−

∑

n

Hn

]

Ψ(a, χn) = 0, (10)

where

V (a) = a2 −H2a4 (11)

Hn ≡
~
2

2

∂2

∂χ2
n

−
1

2
ω2
n(a)χ

2
n (12)

ω2
n(a) = n2 +m2a2 (13)

with n = 1, 2, .... In this paper we disregard the ambigu-
ity of factor ordering.
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With the modes χn treated as small perturbations, a
solution of Eq. (10) can be expressed as a superposition
of terms of the form [21–23]

Ψ(a, χn) = A exp

[

−
12π2

~
S(a)−

1

2~

∑

n

Rn(a)χ
2
n

]

,(14)

where A is a normalization constant. Substituting this
in (10), we neglect terms O(χ4

n). We also use the WKB
approximation for S(a) and neglect terms O(~). Then
the WDW equation is rewritten as

(

dS

da

)2

− V (a) = 0, (15)

(

dS

da

)(

dRn

da

)

−R2
n + ω2

n(a) = 0. (16)

B. Tunneling boundary conditions

The wave function has different behavior in the clas-
sically allowed (V (a) < 0) and classically forbidden
(V (a) > 0) regions. For the tunneling wave function,
we require that Ψ includes only an outgoing wave in a at
large a. Thus, for V (a) < 0 the wave function should be
given by Eq. (14) with

S(a) = i

∫ a

a∗

√

−V (a′)da′ + C, (17)

where a∗ = H−1 is the classical turning point defined by
V (a∗) = 0 and C = const.
In the under-barrier region V (a) > 0, the wave func-

tion can be expressed as

Ψ(a, χn) = A+ exp

[

−12π2S+(a)−
1

2

∑

n

R+
n (a)χ

2
n

]

+A− exp

[

−12π2S−(a)−
1

2

∑

n

R−
n (a)χ

2
n

]

,(18)

where

S±(a) = ∓

∫ a∗

a

√

V (a′)da′ + C. (19)

The A+ and A− terms correspond respectively to de-
creasing and growing wave functions. We have chosen
the integration constant C in Eqs. (17),(19) to be the
same, so that S(a∗) = S±(a∗). With this choice the
coefficients A and A±, which can be determined by the
WKB connection formulas, have comparable magnitude,
A+ ∼ A− ∼ A. Their precise form, which was found in
Ref. [6], will not be important for our discussion here.
For a < a∗ it will be convenient to introduce a Eu-

clidean conformal time variable τ via

da

dτ
≡







√

V (a) for τ < τ∗

−
√

V (a) for τ∗ < τ
, (20)

where the threshold τ∗ is defined by a(τ∗) = a∗. This can
be solved as

a(τ) = (H cosh τ)−1, (21)

where the turning point a∗ corresponds to τ∗ = 0, and
a = 0 corresponds to τ → ±∞. This scale factor de-
scribes a Euclidean 4-sphere, which is an analytic con-
tinuation of de Sitter spacetime. a(τ) in Eq. (21) is an
even function of τ , so each value of a < a∗ corresponds
to two values τ± with τ+(a) = −τ−(a). We shall set
τ+(a) < 0.
It follows from Eqs. (19) and (20) that

dS±

dτ
= V (τ). (22)

Then we can set

S± =

∫ τ±

−∞

V (τ)dτ. (23)

This corresponds to setting the integration constant C in
(19) to

C =

∫ τ∗

−∞

V (τ)dτ =

∫ a∗

0

√

V (a′)da′. (24)

The actions S− (S+) then correspond to histories that
do (do not) traverse the mid-section a∗ of the Euclidean
4-sphere as they go from a = 0 to a given value a.
We now turn to Eq. (16) for the functions R±

n (a):
(

dS±

da

)(

dR±
n

da

)

=
(

R±
n

)2
− ω2

n, (25)

or

dR±
n

dτ
=
(

R±
n

)2
− ω2

n(τ). (26)

The matching conditions at a = a∗ require that R
+
n (τ∗) =

R−
n (τ∗) [23, 24]. Since the functions R±

n satisfy a first-
order differential equation of the same form and have the
same value at τ = τ∗, they can be represented by a single
function Rn(τ) with τ taken to be τ+(a) (τ−(a)) for R+

n

(R−
n ).
Eq. (26) is a Riccati equation. It can be reduced to a

linear equation by the substitution

Rn(τ) = −
1

νn

dνn
dτ

, (27)

where the mode functions νn(τ) satisfy

d2νn
dτ2

− ω2
nνn = 0. (28)

To impose the regularity condition (2), we require that

ReR±
n (a) > 0. (29)

This ensures that |Ψ| decreases as the amplitudes χn are
increased, so that scalar field fluctuations are suppressed.
Strictly speaking, (2) does not follow from (29), since
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our approximation breaks down at large values of χn,
but this seems the best one can do in a perturbative
superspace model. The condition (29) is non-local, in
the sense that the functions R±

n (a) depend on the form
of the potential V (a) everywhere under the barrier. We
will now show that it can be replaced by equivalent local
boundary conditions for νn at τ → −∞.
It has been shown in [24] that the condition (29) is

satisfied for R+
n (a) at a < a∗ and for Rn(a) in the classi-

cally allowed range a > a∗, provided that it is satisfied at
the turning point a = a∗. However, this is not automatic
for R−

n (a) under the barrier, and the regularity condi-
tion gets violated at small a, unless we adopt a special
choice of boundary conditions at a → 0. Specifically, it
was shown in [24] that the regularity condition is satisfied
by R−

n everywhere under the barrier if it is satisfied at
a→ 0, or τ → ∞. (Here we choose the branch τ−(a) > 0
appropriate for the functions R−

n (τ).)
To explore the behavior of the mode functions νn(τ) at

a→ 0 (or τ → ±∞), we can replace ω2
n ≈ n2 in Eq. (A6).

Then the solution is

νn(τ) ≈ Ane
−nτ +Bne

nτ , (30)

and

Rn(τ) ≈ n
An −Bne

2nτ

An +Bne2nτ
. (31)

It is now easy to see that Rn(τ → ∞) = −n < 0, un-
less we set Bn = 0, or νn(τ → ∞) ∝ exp(−nτ). This
corresponds to the boundary condition

dνn
dτ

= −nνn (τ → ∞). (32)

Note that for a massless field the solutions (30) are exact
in the entire range −∞ < τ < ∞. In this case R±

n (a) =
Rn(a) = n and the χn- and a-dependent parts of the
wave function factorize – as they should for a conformally
invariant field.
To find the boundary conditions for νn at τ → −∞,

we note that since Eq. (A6) is symmetric with respect to
the replacement τ → −τ , the mode function νn(τ) can
be expressed in terms of a symmetric function gsn(τ) and
an antisymmetric function gan(τ) as

νn(τ) = An [gsn(τ) + gan(τ)] +Bn [gsn(τ) − gan(τ)] ,

(33)

where gsn(−τ) = gsn(τ), gan(−τ) = −gan(τ), and
gsn(τ → ∞) ≈ cosh(nτ), gan(τ → ∞) ≈ sinh(nτ). It
then follows from (33) that for τ → −∞

νn(τ) ≈ An (gsn(−τ)− gan(−τ)) (34)

≈ Ane
−nτ , (35)

and the boundary condition is the same as (32),

dνn
dτ

= −nνn (τ → −∞). (36)

After imposing the matching conditions at a = a∗ to
determine the mode function in the classically allowed
range, one finds that this choice of the mode functions
corresponds to the Bunch-Davies vacuum state [24].
If the boundary condition (36) is enforced at τ → −∞,

then, according to the results of [24], R−
n (a) satisfy the

regularity condition in the range 0 < a ≤ a∗. On the
other hand, the matching conditions at a = a∗ require
that [23] Rn(a∗) = R+

n (a∗) = R−
n (a∗), and it follows

from the analysis in [24] that the regularity condition
is satisfied by R+

n (a) and Rn(a) as well. Thus we con-
clude that the boundary conditions (36) are sufficient to
ensure that the regularity condition is satisfied in the en-
tire range 0 < a <∞. Combined with the outgoing wave
condition, these boundary conditions uniquely determine
the tunneling wave function in our model. We show in
the Appendix that the same conclusions apply to the de
Sitter model with a minimally coupled scalar field.
The mode functions νn(τ) selected by the boundary

condition (36) diverge at τ → −∞. This may look wor-
risome, but we note that R±

n and the wave function (18)
are well behaved at a → 0. We therefore see no reason
to require finiteness of νn(τ → −∞) in the tunneling
approach. We shall return to this issue in Sec. 3.

III. PATH-INTEGRAL FORMULATION

A. de Sitter minisuperspace

In the path integral formalism, the transition ampli-
tude from an initial state (g0, φ0) to a final state (g1, φ1)
can be symbolically written as

G(g0, φ0; g1, φ1) =

∫ (g1,φ1)

(g0,φ0)

DgDφ eiS . (37)

We will be interested in the limit where the initial geom-
etry shrinks to a point.
We first consider the leading-order homogeneous de

Sitter minisuperspace model. In the gauge where the
lapse function is N = const, the path integral in (37)
reduces to

G(0)(0; a1) =

∫ ∞

0

dN

∫

Da eiS
(0)[a,N ], (38)

where

S(0)[a,N ] = 6π2

∫ η1

−∞

[

−
ȧ2

N
+NV (a)

]

dη (39)

is the action for the de Sitter model with metric (5).
Note that our starting point is a purely Lorentzian path
integral and the lapse integration is performed over a
semi-infinite range N > 0. The latter condition ensures
that we include only histories where η1 occurs later than
η = −∞ and not the geometrically identical histories
related to them by η → −η. This is the choice adopted in
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Refs. [11, 14, 25]. With this choice, G(a0, a1) is a Green’s
function of the Wheeler-DeWitt operator satisfying

HG(a0; a1) = −iδ(a1 − a0). (40)

However, in the limit of a0 → 0, G(0; a1) is a solution of
the WDW equation in the entire range 0 < a1 <∞.
The path integral over a in (38) was first evaluated by

Halliwell and Louko [12]. They noticed that the analy-
sis can be greatly simplified by introducing a new time
coordinate t, which is related to η by dη = a−2(t)dt and
which can be chosen to vary between 0 and 1. Then the
metric takes the form

ds2 = −
N2

q(t)
dt2 + q(t)dΩ2

3, (41)

where q = a2, and the action (39) becomes

S(0)[q,N ] = 6π2

∫ 1

0

[

−
q̇2

4N
+N(1−H2q)

]

dt. (42)

This action is quadratic in q, so the path integral can be
evaluated exactly.
The classical equation of motion for q(t) obtained by

minimizing the action (42) is

q̈ = 2N2H2, (43)

its solution satisfying the boundary conditions q(0) = 0
and q(1) = a21 is

q(t) = H2N2t2 +
(

a21 −H2N2
)

t, (44)

and the action (42) for this solution is given by

S(0)(a1, N) = 6π2

(

N3H
4

12
+N

(

1−
1

2
H2a21

)

−
a41
4N

)

.

(45)

The propagator (38) can now be expressed as [12]

G(0)(0; a1) =

∫ ∞

0+

dN

N1/2
eiS

(0)(a1,N), (46)

where we have omitted an overall numerical factor.
The remaining integration over N can be performed

using the saddle point approximation. The relevant sad-
dle points and the steepest descent contours in the com-
plex N -plane can be found using Picard-Lefschetz theory.
The action (45) generally has four saddle points, which
can be found from ∂S(0)/∂N = 0. In the under-barrier
region a1 < a∗, the corresponding values of N are purely
imaginary and the relevant saddle points are located at
[12, 14]

N± =
i

H2

(

1∓
√

1−H2a21

)

. (47)

The corresponding actions are

S(0)(a1, N
±) = 12π2iS±(a1), (48)

where S+(a) and S−(a) are given by Eqs. (19),(24) and
correspond respectively to Euclidean paths that do and
do not traverse the mid-section of the 4-sphere. The pre-
factors of the exp(iS(0)(a1, N

±)) terms have comparable
magnitudes at a ∼ a∗. In fact, it can be verified [15]
that they differ by a factor i/2, as they should for the
tunneling wave function.
At this point it will be convenient to switch back to

the time variable η, which is related to t as

t =
2i

H2N

1

e2iNη + 1
. (49)

It can be verified that the classical solution (44) is then
given by a(η) = 1/H cosh(−iNη), which is the same as
(21), up to the normalization of η. (Note that the Eu-
clidean time τ that we used in the Section 2 is related
to η via iτ = Nη.) The values t = 0 (where a = 0) and
t = 1 (where a = a1) correspond respectively to η → −∞
and

η±1 =
i

2N±
ln

(

−H2(N±)2

a21

)

. (50)

One can check that η+1 < 0 and η−1 > 0. The actions (48)
can now be expressed as

S(0),N±

= 12π2

∫ η±

1

−∞

V (a)N±dη, (51)

which is equivalent to (23).
In the classically allowed range V (a1) < 0 one finds

that only one saddle point contributes [12, 14],

N =
1

H2

(

i+
√

H2a21 − 1

)

, (52)

and the transition amplitude (46) is

G(0)(0, a1) ∝ exp
(

−12π2S(a1)
)

(53)

with S(a) given by Eqs. (17),(24). This describes a wave
traveling in the positive a1-direction, as expected for the
tunneling wave function. Thus, we can identify

G(0)(0; a) = ΨT (a). (54)

B. The problem with perturbations

We now consider the wave function for scalar field fluc-
tuations χn. Assuming that the backreaction of fluctua-
tions on the metric is negligible, the scale factor and the
lapse parameter can be treated as background variables.
For definiteness we shall consider the under-barrier wave
function with a1 < a∗. Then the path integral in Eq.(3)
reduces to

ΨT (a1, φn1) =
∑

r=±

Are
iS(0)(a1,N

r)
∏

n

∫

Dφne
iSn[φn;N

r]

(55)
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where

Sn[φn;N ] =
1

2

∫ η1

η0

dη

[

a2

N
φ̇2n −Na2(n2 − 1)φ2n

−Na4
(

m2 +
1

6
R

)

φ2n

]

+ SBn (56)

with η0 → −∞. The integration is taken over histories
where φn(η) ≡ χn(η)/a(η) have specified values φn1 at
η = η1, with suitable boundary conditions for φn at η →
−∞. The boundary term in (56) is usually not included;
we shall discuss it in the next subsection. From now on
we omit the superscript r = ± for notational simplicity.
The path integral in (55) is again determined by the

history φn(η) satisfying the classical equation of motion:

1

N2

(

φ̈n + 2
ȧ

a
φ̇n

)

+ (n2 − 1)φn + (m2 + 2H2)a2φn = 0

(57)

Disregarding the boundary term for the moment, the ac-
tion is then given by

Sn =
a21
2N

φn(η1)φ̇n(η1)−
a20
2N

φn(η0)φ̇n(η0). (58)

In the limit of η → −∞, a(η) ≈ 2H−1e−iNη and the
solution to the equation of motion is approximated to be

φn(η) ≈ Ane
i(n+1)Nη +Bne

−i(n−1)Nη. (59)

Since ImN > 0 for both saddle points in Eq. (47), the sec-
ond term of Sn diverges in the limit of η0 → −∞ unless
we take An = 0. This seems to suggest that we should
set An = 0 in order to make the action finite. With
this choice, the φn-dependent part of the wave function
becomes (in the regime where the approximation (59) is
applicable)

ψn(φn1) ∝ eiSn = exp

(

ia21
φn1φ̇n1
2N

)

= exp

(

n− 1

2
a21φ

2
n1

)

, (60)

which has the obvious problem that the wave function
grows with increasing amplitude of the fluctuations. One
can check that the problem persists in the classically al-
lowed range a > a∗. This is the basis for numerous claims
made in the literature that the tunneling wave function
predicts an unstable runaway behavior of the fluctuation
modes [13, 16, 19]. We shall see, however, that the prob-
lem can be resolved by inclusion of a suitable boundary
term.

C. Boundary terms

The boundary term SB in the action (6) should be
selected in such a way that boundary contributions ob-
tained after varying the action and integrating by parts

vanish, once the boundary conditions are imposed. The
form of the boundary term, of course, depends on the
choice of boundary conditions. The choice adopted in
most of the literature on quantum cosmology is Dirichlet
boundary conditions, with the 3-metric and the scalar
field specified at the boundary. The corresponding
boundary action is

SB = SGH + ξ

∫

B

√

−g(3) d3yKφ2, (61)

where SGH is the Gibbons-Hawking term, ξ is the scalar
field coupling to the curvature, g(3) is the determinant of
the induced metric on the boundary B, ya are the coordi-
nates on the boundary, and K is the extrinsic curvature
of the boundary. The second term in (61) is absent for a
minimally coupled field, but in our case ξ = 1/6 and it
has to be included in order for the variation of the action
with respect to the metric not to give any uncompensated
boundary terms [26].
The Dirichlet boundary conditions are appropriate for

the Hartle-Hawking wave function,3 but for the tunnel-
ing wave function one needs to take a different approach.
The spacetimes included in the path integral for ΨT have
two boundaries: the upper boundary B1 (η = η1) with
specified values of a1 and χn1 and a lower boundary B0

where a→ 0 (η0 → −∞). According to Eq. (36), the his-
tories χn(η) = a(η)φn(η) for the tunneling wave function
should satisfy the Robin boundary condition

1

N

dχn

dη
= inχn (η → −∞), (62)

where we have used the relation iτ = Nη. We will now
show that a suitable choice of the boundary terms in this
case is

SB = SGH +
1

2π2

∑

n

∫

B0

√

−g(3) d3y

(

ξK −
1

2
hn

)

φ2n

+
1

2π2

∑

n

∫

B1

√

−g(3) d3yξKφ2n, (63)

where hn are parameters to be determined.
Variation of the action with respect to φn gives

2π2δS = −

∫

√

−g(4) d4x δφn
(

−∇2 + ξR +m2
)

φn

+

∫

B0

√

−g(3) d3yδφn (∂⊥φn + 2ξKφn − hnφn)

+

∫

B1

√

−g(3) d3yδφn (∂⊥φn + 2ξKφn) . (64)

3 This is because the mode functions χn(η) in the Hartle-Hawking
approach are required to have specified values at η = η1 and
to satisfy χn(η → −∞) = 0. This is sometimes justified by the
requirement that the scalar field action should be finite. We note,
however, that the logic here is somewhat circular: the finiteness
of the action depends on the choice of the boundary term, which
in turn depends on boundary conditions.
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Here, ∂⊥ is the derivative in the direction of outer normal
to the boundary. For our metric (5) it is given by

∂⊥ = ±
1

Na

d

dη
, (65)

where the upper and lower signs correspond to upper
and lower boundaries, respectively. The boundary term
in (64) vanishes on the upper boundary B1, where φn are
fixed, while on the lower boundary B0 we will impose the
boundary conditions

∂⊥φn + 2ξKφn − hnφn = 0. (66)

Noticing that

K =
∂⊥VB
VB

= 3
∂⊥a

a
, (67)

where VB = 2π2a3 is the boundary volume, we can ex-
press (66) as

∂⊥χn − hnχn = 0, (68)

where we have used ξ = 1/6. This coincides with (62) if
we set

hn = −ina−1. (69)

Let us now consider the part of the action that de-
pends on φn, Eq. (56). Integrating by parts and using
the boundary conditions, we find that the contribution
of the lower boundary cancels out and we obtain

Sn =
1

2π2

∫

B1

√

−g(3) d3y

(

1

2
φn∂⊥φn + ξKφ2n

)

=
a1
2
χn(η1)∂⊥χn(η1). (70)

Then the wave function for χn becomes

ψn(χn1) ∝ exp

(

−
1

2
Rnχ

2
n1

)

, (71)

where

Rn = −
i

N

χ̇n1

χn1
. (72)

With Nη = iτ , this is the same as Eq. (27) that we
obtained using the WDW formalism. Since the condition
Rn > 0 is satisfied at η1 → −∞, it is guaranteed to
be satisfied for all η1. Thus we conclude that the path
integral formalism with appropriate boundary terms in
the action gives the same wave function as the WDW
equation with tunneling boundary conditions. In both
approaches the scalar field fluctuations are suppressed.

D. Boundary term as the initial wave function

The new boundary term that we introduced in Eq. (63)
can be written as

S̃Bn ≡ −
1

4π2

∫

B0

√

−g(3) d3yhnφ
2
n =

i

2
nχ2

n0, (73)

where χn0 = χn(η0). This term allows an interesting
interpretation, which we shall now discuss.
Let us first show that the scalar field path integral in

Eq. (55) can be expressed as

ψn(χn1) ∝

∫

Dχne
iS̃n[χn]ψn0(χn0), (74)

where

ψn0(χn0) ≡ eiS̃Bn = e−nχ2
n0/2 (75)

and S̃n[χn] is the action (56) with only ξK boundary
terms included. The integration in Eq. (74) is to be taken
over paths χn(η) starting at χn(η0) = χn0 and ending at
χn(η1) = χn1; in other words this path integral assumes
Dirichlet boundary conditions. We assume also that the
functional measure includes an integral over χn0.
Substituting φn = χn/a and

R =
6

a2

(

1 +
ä

N2a

)

(76)

in the action (56) we obtain

S̃n =
1

2

∫ η1

η0

dη

[

1

N
χ̇2
n − n2χ2

n −m2a2χ2
n −

1

N

d

dη

(

ȧ

a
χ2
n

)]

+
1

12π2

∫

B

√

−g(3) d3y
K

a2
χ2
n. (77)

With
∫

B

√

−g(3) d3y = 2π2a3 and K = ±3ȧ/(Na2), we
find that the result of integration of the total derivative
in (77) cancels out with the boundary term, so the result
is

S̃n =
1

2

∫ η1

η0

dη

(

1

N
χ̇2
n − n2χ2

n −m2a2χ2
n

)

. (78)

The functional integral in Eq. (74) is Gaussian, so the
saddle point approximation is exact. Integrating by parts
and using the classical equation of motion for χn, we can
express the action (78) as

S̃n =
1

2N
χn1χ̇n1 −

1

2N
χn0χ̇n0. (79)

Extremizing iS̃n[χ] + ln[ψn0(χn0)] with respect to χn0,
we find

χ̇n0 = inNχn0, (80)

which is precisely the Robin boundary condition (62).
Also, from Eqs. (79), (75), and (80), the amplitude (74)
is given by

ψn(χn1) ∝ eiχn1χ̇n1/2N , (81)

where the second term in Eq. (74) has cancelled out with

Ψ0(χn0). The combination iS̃+ln(Ψ0) is now finite in the
limit η0 → −∞, because of the cancellation. Eq.(81) is
equivalent to Eqs. (71), (72) that we derived in Sec. III C.
Thus we conclude that Eq. (74) is equivalent to the path
integral with Robin boundary conditions.
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Now, the form of Eq. (74) is very suggestive. We can
interpret Ψ0(χn0) as the initial wave function for the
scalar field at η0 → −∞. As suggested in Ref. [24], we
can think of the tunneling wave function as describing a
small initial universe that tunnels to a ≈ a∗ after reach-
ing the bounce point at a0 ≪ a∗, in the limit of a0 → 0.4

The wave function (75) is that for a massless scalar field
in the state of Euclidean vacuum, which is defined by
requiring that the mode functions are regular at τ → ∞.
It was shown in Ref. [24] that the same quantum state
is obtained if one considers a small initial universe that
tunnels through a barrier in the limit when the size of
the initial universe goes to zero. In this limit the mass of
the field χ can be neglected in the wave function (81).

IV. CONCLUSIONS

We discussed three different approaches to defining the
tunneling wave function of the universe ΨT . The first
approach is to impose the outgoing wave and regular-
ity conditions in superspace. This has been previously
studied in Refs. [10, 23, 24], with the conclusion that the
resulting wave function is uniquely defined and describes
a universe nucleating with the scalar field in a de Sitter
invariant Bunch-Davies state. The regularity condition,
requiring that the absolute value of the wave function
decreases with growing amplitude of scalar field fluctu-
ations, is a non-local condition on ΨT . Here we showed
that it is equivalent to the requirement that the scalar
field modes φn satisfy a (local) Robin boundary condi-
tion at a→ 0.
Our main focus in this paper was to explore the con-

jecture made in Refs. [6] that ΨT can also be expressed
as a Lorentzian path integral taken over histories inter-
polating between a vanishing 3-geometry (a = 0) and a
given configuration {a, φn}. We showed that the Robin
boundary conditions for φn require an addition of a new
boundary term to the scalar field action and that the path
integral is then identical to the wave function specified
by the tunneling boundary conditions.
We showed also that the path integral with the new

boundary term can be expressed as a transition ampli-
tude from a universe of vanishing size with a scalar field
in the state of Euclidean vacuum. All three approaches
give identical wave functions with well behaved scalar
field fluctuations, contrary to earlier claims in the litera-
ture.
Our discussion in this paper was limited to a de Sit-

ter minisuperspace model with a scalar field included
as a perturbation. A natural extension of this model
would be to consider non-perturbative minisuperspaces,

4 More precisely, the background cosmology assumed in Ref. [24]
included a small amount of radiation with density ρr = ǫr/a4.
The bounce point a0 then depends on ǫr , and the limit a0 → 0
is obtained at ǫr → 0.

including a few degrees of freedom, but allowing large
variations of the scalar field and large deviations from
de Sitter geometry. Such models with a homogeneous
scalar field [10] and with a Bianchi-IX metric [27] have
been studied in the framework of boundary conditions in
superspace, with the conclusion that the tunneling and
regularity conditions determine a unique wave function
with well-behaved fluctuations. Extension of the path in-
tegral approach to non-perturbative models remains an
open problem for future research.
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Appendix A: Minimally coupled scalar field

The tunneling wave function in a de Sitter minisuper-
space with a minimally coupled massless scalar field was
discussed in Refs. [10, 23]. In this case, Eqs. (12) and
(13) are replaced by

Hn =
~
2

2a2
∂2

∂φ2n
−

1

2a2
ω2
n(a)φ

2
n (A1)

ω2
n(a) = (n2 − 1)a4 +m2a6. (A2)

In the wavefunction (18), we replace R±
n χ

2
n by R±

n φ
2
n.

As before, in the under-barrier range a < a∗ we intro-
duce the Euclidean time τ by Eq. (20); then the functions
R±

n (a) can be represented by a single function Rn(τ) sat-
isfying

a2
dRn

dτ
−R2

n + ω2
n(τ) = 0, (A3)

This can be reduced to a linear equation by the substi-
tution

Rn(τ) = −
a2

ϕn

dϕn

dτ
, (A4)

where the mode functions ϕn(τ) satisfy

d2ϕn

dτ2
+

2

a

da

dτ

dϕn

dτ
−
ω2
n

a4
ϕn = 0. (A5)

Changing the variable as ϕn = νn/a, we rewrite the equa-
tion as

d2νn
dτ2

−
[

n2 +
(

m2 − 2H2
)

a2
]

νn = 0, (A6)

where we used Eq. (76) and R = 12H2.
Since this equation is symmetric with respect to the re-

placement of τ → −τ , the mode function can be written
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as a superposition of a symmetric function gsn(τ) and an
anti-symmetric function gan(τ),

νn(τ) = An[gsn(τ) + gan(τ)] +Bn[gsn(τ) − gan(τ)],

(A7)

where gsn(τ) = gsn(−τ) and gan(τ) = −gan(−τ).
In the limit of τ → ±∞, a(τ) ∝ e∓τ , the solution of

(A6) is given by

νn(τ) ≈ Ane
−nτ +Bne

nτ , (A8)

and

Rn(τ) ≈ a2
(

n
An −Bne

2nτ

An +Bne2nτ
∓ 1

)

. (A9)

This can be positive or zero at τ → ∞ only if Bn = 0.
This corresponds to the boundary condition

dνn
dτ

= −nνn (τ → ∞). (A10)

It then follows from (A7) that

dνn
dτ

= −nνn (τ → −∞). (A11)

These have the same form as Eqs. (32) and (36).
One can easily generalize the discussion in Ref. [24]

and show that the regularity condition for R−
n (R+

n ) is
satisfied everywhere under the barrier if it is satisfied at
a → 0 (a = a∗) and if ω2

n is positive everywhere under
the barrier.5 As a result, what we need to impose is
the regularity condition for R−

n at a → 0, which can be
realized by either boundary condition, (A11) or (A10).
Turning now to the path integral formalism, most of

the analysis in Sec. III C still applies. Using Eq. (65) and
iτ = Nη, we can express the boundary conditions (A11)
as

∂⊥ϕn = −i(n+ 1)a−1ϕn (τ → −∞). (A12)

A comparison with Eq. (66) then shows that we need to
add to the action a boundary term of the form (63) with
ξ = 0 and

hn = −i(n+ 1)a−1. (A13)

As before, the lower boundary contribution to the scalar
field action cancels out and Eq. (70) gives

Sn =
1

4π2

∫

B1

√

−g(3) d3yϕn∂⊥ϕn. (A14)

Then the wave function for ϕn becomes

ψn(ϕn1) ∝ eiSn = exp

(

ia21
2N

ϕn1ϕ̇n1

)

, (A15)

5 The condition ω2
n

> 0 may not be satisfied if the field has a
tachyonic mass (m2 < 0). In this case, we may need a special
treatment for the homogeneous mode (n = 1); see Ref. [10].

which is the same as

ψn(ϕn1) ∝ exp

(

−
1

2
Rnϕ

2
n1

)

(A16)

obtained using the WDW formalism.

As in Sec. III D, the path integral over ϕn(τ) can be
expressed as

ψn(ϕn1) ∝

∫

Dϕne
iS̃[ϕn]ψn0(ϕn0), (A17)

where now the action S̃n does not include any boundary
terms,

ψn0(ϕn0) = e−(n+1)a2
0ϕ

2
n0/2. (A18)

and the integration is over histories ϕn(τ) satisfying
Dirichlet boundary conditions at η0 → −∞ and η1. Fol-
lowing the same steps as in Sec. III D, one can show that
the result is the same as in Eq. (A15).
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