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We demonstrate an all-sky search for persistent, narrowband gravitational waves using mock
data. The search employs radiometry to sidereal-folded data in order to uncover persistent sources
of gravitational waves with minimal assumptions about the signal model. The method complements
continuous-wave searches, which are finely tuned to search for gravitational waves from rotating
neutron stars, while providing a means of detecting more exotic sources that might be missed by
dedicated continuous-wave techniques. We apply the algorithm to simulated Gaussian noise. We
project the strain amplitude sensitivity assuming circularly polarized signals for the LIGO network
in the first observing run to be ho & 1.2 x 1072* (1% false alarm probability, 10% false dismissal
probability). We include a treatment of instrumental lines and detector artifacts using time-shifted

LIGO data from the first observing run.

I. INTRODUCTION

With the first observations of a binary neutron star
inspiral GW170817 [13] and multiple black hole merg-
ers [9, 14, 16, 17, 52] by Advanced LIGO [40] and Ad-
vanced Virgo [19], it is clear that nature provides us
with a unique way to study electromagnetically invis-
ible processes using gravitational radiation. The dis-
covery of persistent gravitational-wave emission remains
an interesting prospect for gravitational-wave astronomy.
In this work, we develop a method for detecting quasi-
monochromatic, persistent gravitational waves from un-
known sources using data from advanced detectors.

Searches for continuous gravitational waves are de-
signed to be as sensitive as possible to rotating neutron
stars. However, to achieve this, they employ a highly
tuned signal model. If neutron stars emit gravitational
waves in a way that does not match standard models,
or if there are exotic sources of persistent gravitational
waves, the signal could be missed by current continuous-
wave searches. The radiometer [3, 6, 10, 26, 54] provides
a solution. By cross-correlating data from two or more
detectors, it is possible to discover weak signals without
a model for the signal phase evolution. Due to computa-
tional limitations, previous radiometer searches were ei-
ther targeted (pointing in one direction) and narrowband
(considering many different frequencies) or all-sky (look-
ing in all directions) but broadband (averaging over all
frequencies). Since it seems unlikely that point sources
of persistent gravitational waves would be broadband, it
is desirable to carry out an all-sky narrowband search?.
In [56] it was pointed out that sidereal folded data [20]
can be used to carry out a computationally cheap search
that is both all-sky and narrowband. In this paper, we
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1 After this paper was submitted for publication, a preprint ap-
peared proposing gravitational waves from networks of primor-
dial black holes connected by strings [22]. It seems possible to
us that such a network could produce broadband point sources.

employ the method from [56] to demonstrate the tech-
nique on an end-to-end study of Monte-Carlo noise. Us-
ing limited data from LIGO’s first observing run (O1),
we show how vetoes can be used to manage instrumental
artifacts found in real data.

The rest of the paper is organized as follows. Section 1T
provides the motivation for a search for unmodeled per-
sistent sources. In Section 111, we provide an overview of
the narrowband radiometer with folded data. Section IV
describes how we handle instrumental artefacts and other
data quality issues. In section V, we demonstrate the de-
tection of simulated signals. In Section VI, we calculate
the sensitivity of the search.

II. MOTIVATION
A. Astrophysical sources

Accreting neutron stars in binaries are considered to be
promising candidate sources of persistent gravitational
waves. Optimistic models predict for such systems to
have an asymmetrical quadrupole moment of inertia due
to either deformation of the stellar interior [46] or lo-
calized mass accumulation [59]. In either scenario, the
quadrupole moment of inertia evolves through accretion
and the influence of the neutron star magnetic field. The
quadrupole moment may be sustained even when accre-
tion has abated. Gravitational-wave driven instabilities
of r-mode oscillations are another source of a quadrupole
moment [50, 57]. If accretion is persistent, and neglect-
ing torque from gravitational waves emission, neutron
stars are expected to eventually spin up to their break
up frequency f =~ 1400Hz [30]. However, the highest
yet observed frequency is f =~ 716 Hz for a millisecond
pulsar [42] and f =~ 600 Hz for an accreting millisec-
ond pulsar [49], which is consistent with a hypothesis
that emission of persistent gravitational waves prevents
further spin up of neutron stars. This is known as the
torque balance hypothesis [27, 60].

Searches for continuous gravitational waves specifically
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target neutron stars. However, in certain circumstances
these searches can be sub-optimal. For example, when a
neutron star is in a binary system, it is computationally
challenging to search the full signal parameter space. An-
other example is a neutron star glitch, a sudden increase
in the rotation frequency, a phenomenon observed in the
timing of many radio pulsars [35]. It has been shown
that neutron star glitches can cause a loss of a substan-
tial fraction of a signal-to-noise ratio in continuous wave
searches [24].

Another motivation for the method discussed here is
to explore the possibility of unknown persistent and nar-
rowband signals. One such theoretical scenario is gravi-
tational waves from super-radiance of massive clouds of
ultralight axions around a Kerr black hole [34]. The fre-
quency of gravitational waves from this long-lived reso-
nance depends on the mass of a hypothetical axion par-
ticle. Thus, a narrowband emission is expected. Axions
with a mass of ~ 107 — 107 eV could possibly be
detected by Advanced LIGO [29].

B. Searches for persistent gravitational waves

Currently there are several methods for persistent
gravitational wave searches. In this section of the pa-
per, we outline what niche the narrowband radiometer
search occupies. A comprehensive overview of current
searches for persistent gravitational waves can be found
in [51].

One of the main difficulties in searches for persistent
gravitational wave is the amount of computational re-
sources that are required to probe the parameter space
of possible gravitational-wave frequencies and their time
derivatives. Searches have to account for Doppler modu-
lations of the gravitational-wave signal due to motion of
the Earth. Moreover, torque exerted on a neutron star
by accretion from a companion star may change with
time, resulting in wandering of the neutron star spin fre-
quency [37].

Knowing orbital parameters for some sources of per-
sistent gravitational wave emission eliminates the prob-
lem of searching over gravitational-wave frequencies and
their derivatives. Using the data from radio and gamma-
ray observations, recent searches placed upper limits on
gravitational-wave strain from 200 known pulsars [11]. If
the target is an accreting neutron star in a binary system,
it may be possible to narrow down a parameter space by
looking at X-ray pulsations [36].

There are three kinds of searches. Searches for neu-
tron stars with known sky position and known fre-
quency are referred to as targeted searches. Directed
searches target specific sky locations without assump-
tions about the gravitational wave frequency. All-sky
searches employ no assumptions for either sky location or
frequency. Targeted searches can employ matched filter-
ing [44], a Bayesian approach [33], and the “Five-vector”
method [25].

In a directional search one faces a problem of explor-
ing a vast parameter space of frequency and its deriva-
tives. Fully coherent searches are too computation-
ally expensive for all-sky searches, and are adapted to
limited observation time and/or specific sky directions
[32, 62]. In semi-coherent searches one instead sums re-
sults from coherent analysis over much shorter time in-
tervals, for longer observation time [61]. Semi-coherent
methods are less computationally expensive than fully
coherent ones, and sometimes they are used for all-
sky searches. TwoSpect is an example of a template-
based semi-coherent all-sky search, which tracks Earth’s
rotation-induced modulations of gravitational waves in
doubly Fourier transformed data [39]. Polynomial algo-
rithm uses a bank of frequency polynomials for matched
filters [58]. Hidden Markov model tracking method
using a Viterbi algorithm [53] for matched filtering.
Other semi-coherent searches include “Stack Slide” [28],
the Hough approach [23, 43, 45], Powerflux [31], and
Einstein@Home [18], a volunteer-distributed computing
project. These semi-coherent search strategies rely on
signal models of gravitational-wave emission from neu-
tron stars. They are in some sense limited by computa-
tional resources.

A different approach to the problem of a frequency
modulated signal is to formulate a model-independent
search. The radiometer technique is used to identify
signals with the cross-correlation of Fourier-transformed
strain from two or more gravitational wave detectors [26],
and it underpins the method described in this paper.
Cross-correlation contains information about the source
sky location. The radiometer works with minimum as-
sumptions about a signal, only presuming it is persistent
and narrowband.

Scorpius X-1 is the second brightest persistent X-ray
source in the sky [38]. It is believed to be an accreting
neutron star. According to the torque balance hypoth-
esis, this system is a source of persistent gravitational
waves. Using simulated Scorpius X-1 signals, it has been
estimated that the targeted radiometer algorithm has less
sensitivity than CrossCorr, a comparable sensitivity to
TwoSpect, while at the same time it uses less than 1%
of computational resources of these pipelines [48]. It
has been demonstrated that a lossless data compression
technique called folding can complement the narrowband
radiometer, further reducing a computational cost and
solving a data storage problem [56]. By combining fold-
ing with radiometry, we seek to extend the radiometer to
carry out a computationally efficient all-sky search.

III. METHOD

In this section we describe a procedure of transforming
a gravitational wave strain sj o(t) measured by two in-
terferometers into the radiometer signal-to-noise ratio,
which will serve as the basis for our detection statis-
tic. In subsection IIT A we explain the process of cross-



correlation. Subsection IIIB describes an implementa-
tion of data folding. In subsection IIIC we apply the
directional narrowband radiometer on a folded dataset.

A. Cross-correlation

Following the procedure from [56], we divide the data
into discrete segments indexed by start time ¢2. There
are important considerations that determine a suitable
choice of segment duration. On one hand, longer time
segments lead to a better frequency resolution. On the
other hand longer segment duration decreases search sen-
sitivity at high frequencies due to the rotation of the
Earth; see Eq. 12 and the surrounding discussion in [55].
The overall range of frequencies we consider is between
20 Hz and 1800 Hz. The maximum frequency imposes
requirements on our segment duration. In this analysis
we pick a segment duration time for the Fourier transfor-
mation to be 32 s. This choice guarantees < 5% decrease
in the signal to noise ratio at 1800 Hz due to the rotation
of the Earth.

For each segment, we calculate the Fourier transform
of the strain time series §1 2(¢, f). The subscript refers to
the detector number. Noise power spectral densities for
each individual detector P; 5 are calculated for the back-
ground estimation using adjacent time segments. Next,
complex-valued estimators v(t, f) and o(¢, f) are com-
puted for each sidereal day of the observation:

o(t, 1) = 51° (6 £)salt, f) € C (1)
ot f) = 5\ P DD ER ()
oty = 200 e ¢ ®)

o(t, f)

In Eq 1, N is a normalization constant defined in [26]. It
is introduced so that v(¢, f) has units of power spectral
density. Note that v(t, f) is equivalent to ) in [56].

Next, we apply a coarse-graining operation [55]
by combining neighboring frequency-domain points of
v(t, f) and P{’Q:

u(t, fea) = v Z (t, fi) (4)

p+q 1

Py ,(t, fea) = Z Py o(t, f), (5)

2 We use the variable t to denote both segment start time and
sampling time. The meaning of any particular ¢ should be clear
by context.

where

1

fee = §(fi+fz'+q—1)- (6)
Choosing the degree of coarse-graining is a balancing
act like choosing the segment duration. If we make the
coarse-grained bins too wide, we needlessly add noise on
top of the signal. If the coarse-grained bins are too small,
the signal may wander outside of the bin. In this analysis,
we coarse-grain power spectra from an intrinsic frequency
resolution of 1/32 Hz to 1 Hz. Varying the coarse-grained
resolution to consider a variety of scenarios is possible,
but this lies outside our present scope.

B. Data folding

Due to the rotation of the Earth, the expectation value
of p(t|f) for a persistent narrowband signal at a frequency
f is a periodic function, with a period equal to one side-
real day. Folding is a data compression technique that
uses this symmetry to transform any dataset into only
one sidereal day of data [20].
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FIG. 1: An illustration of how LIGO data is arranged
into segments prior to the folding operation.

First, we select a GPS time that corresponds to sidereal
time = 0 for the first sidereal day. We define an array
of evenly-spaced, 32s segments starting from this zero
time. Segments that overlap between sidereal days are
removed. The first complete segment in a sidereal day
becomes the first segment of that day.

Fragments of data that do not fit into the new time
segments are truncated (Figure 1). Interferometer lock
segments shorter than 700 seconds are removed as well.
Applying these cuts to data from LIGO’s first observing
run, approximately 6% of the data is removed.

Next, following [56], we sum over sidereal days k in or-
der to fold the data into just one sidereal day pgo1a(f, t|k),
using o(f,t) as weight coefficients:

>k Uk(t, f)ok (. f)
Zk k (7 )

vrold (t, fIk) = (7)
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FIG. 2: Representation of data folding. Each element of
the helix with a fixed radius represents a real part of
the pgo1a(t]f) data set at a fixed frequency, while each
revolution of the helix represents one sidereal day of

observations. The ring below the helix represents a
folded dataset peo1a(t, f|k), where each element is
calculated on a basis of the above cells of the helix.

C. Radiometry

Gravitational-wave radiometry [26] has been used in
searches for persistent gravitational waves [3, 7, 10].
The first LIGO radiometer analysis was carried out in
2007 [7]. Narrowband radiometry provides us with a
spectrum of a gravitational wave strain data at each sky
location. Following [26, 56], the signal-to-noise ratio is
given by:

3, Re(proa(t; f)e2 A0 /)¢ 5 (1|2)
> €3 ()

SNR(f|€) =

(10)
Here €2 is the unit vector pointing to the sky position of
the source, AZ(t) is the separation vector of detectors,

¢ is the speed of light, and e15(¢[€2) is the sidereal-time-
dependent efficiency factor.
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Here Fy (t|Q) are antennae factors [41] for two
interferometers; A = [+, x| are polarization states.
Previous studies using Monte-Carlo data showed that
radiometry with 20 days of folded data can be used to
recover persistent gravitational wave signal with a strain
amplitude hg = 1.5x 10724 at 600 Hz at the LIGO design
sensitivity using two detectors with SNR ~ 50 [56].

D. Simulated signals

To test the sensitivity of the algorithm, we simulate
persistent gravitational waves. Our simulated signals are
circularly polarized with a fixed strain amplitude and a
sinusoidally evolving phase. The amplitude of the strain
measured in each detector is modulated by the antenna
factors, which change over the course of the sidereal day
due to the rotation of the Earth; see, e.g., [56]. Injec-
tions are performed at an arbitrary fixed sky position
(ra,dec) = (21hr,9°). According to Figure 7b from [54],
the radiometer sensitivity to strain power, averaged over
a sidereal day, varies by about 40% depending on the sky
location. Therefore we expect strain amplitude sensitiv-
ity to vary by about 20% for different sky locations. The
simulated signals are injected into Gaussian noise corre-
sponding to Advanced LIGO at design sensitivity [40].
Technically, in order to simulate a signal with the char-
acteristics of a continuous wave source in a binary, one
ought to include time-dependent Doppler modulation.
However, we ignore this effect in our simulation since
our frequency bins are typically much wider than the ex-
pected Doppler modulation from binary motion.

IV. DATA QUALITY

Advanced LIGO comprises two detectors at Hanford
and Livingston in the USA, and its first observing run
(O1) took place between September 12, 2015 and January
19, 2016. It is necessary to remove instrumental lines to
avoid false positives. We provide a three-step technique
to remove noise artifacts without accidentally removing
an astrophysical signal.

The first step is to remove known instrumental lines
from the frequency domain. We employ a list of lines
from the recent directed search for persistent gravita-
tional waves using radiometry [10].

The second step is to remove times associated with
non-stationary noise (glitches). Since we are looking for
a weak, persistent signal, we employ a relatively robust
time-domain cut without fear of throwing out the signal.
Our time-domain cut eliminates any times that contain
N, = 6 or more p(t, f)—spectrogram pixels with p >
(pmax = 7). This cut removes on average 0.5% of O1
data (Figure 6a) and none of Monte-Carlo data.

While the first cut eliminates known lines (instrumen-
tal artifacts with known origins), there are additional
“unknown” lines that we remove because they do not



match our signal model. The next step is to remove
these unknown lines. We apply an additional cut that
eliminates any p(¢, f)—spectrogram pixels with p > pmax-
This cut removes on average 0.3% of the remaining O1
data and 0.1% of the remaining Monte-Carlo data. The
values of N, and pyax are chosen to produce real-data
distributions of p(¢, f) that are comparable to distribu-
tions generated from Gaussian noise.

Next, we look at the standard deviation of pgoa (t|f, k)
with respect to sidereal time,

Stdt [pfold(t‘f’ k)] (12)

While high values of pg1q can be evidence of a signal,
large scatter in the values of p(t, f) is more likely to be
due to a detector artifact. We calculate the standard
deviation in for each frequency bin as per Eq. 12. Us-
ing injection studies, we set a maximum threshold on the
standard deviation, which we denote ;. We determine
that oyt = 1.7 is a suitable choice for vetoing instrumen-
tal artifacts while preserving signals. This is illustrated
in Fig. 3 and Fig. 6b. We plot the signal-to-noise ratio,
maximized over all sky directions

SNR(f) = max SNR(f]€2), (13)

versus the standard deviation of pgq defined in Eq. 12.
Dots represent data from different frequency bins. Red
represents time-shifted O1 data, blue represents Monte-
Carlo noise, and green represents injected signals in
Monte-Carlo noise. If the data falls into the red zone
on the plot, it gets vetoed.

In addition to the above veto test using circularly-
polarized signals, we perform an additional veto test us-
ing a linearly-polarized signal with an inclination angle
of + = 90° and a polarization angle of ¢» = 0°. By vary-
ing the integration time, we recover the signal multiple
times with an SNR between 4 and 50 at the injection
frequency and sky location. The veto threshold o for
the linearly-polarized signal is not exceeded.

V. DETECTION STATISTIC

The goal of this section is to design a statistic for iden-

tifying the brightest point source on the sky and deter-
mining the associated statistical significance.
First, we find the brightest patch in the sky for all fre-
quency bins, which we denoted SNR(f). In this work we
probe 360 equally-spaced radial components of angle Q
times 180 equally-spaced polar components for a a total
of 64800 sky locations.

Next, we look for the frequency bin with the most sig-
nificant SNR(f). Naively, one might expect that this is
accomplished by choosing the maximum of SNR(f) over
all frequencies. However, this naive method for finding
the loudest frequency bins presumes that the noise distri-
bution of SNR(f) is independent of frequency. In reality,

T T T T
Veto zone
151 . —
i
i
1
=10F .
= Y
Z.
n
5 _
* Time-shifted O1
* Monte-Carlo noise (MC)
e %% * Injected signasin MC
ok “°_o &l I I I
0 1 2 3 4

std(pfola)

FIG. 3: The standard deviation of pga(t]f, k) on the
x-axis is used to veto frequency-domain data. The
signal-to-noise ratio SNR(f) on the y-axis quantifies
significance. Some frequency bins in the time-shifted O1
data (red) with a high with a high pga(t|f, k) in the
veto zone of the plot would provide a great SNR( f |f2) if
the veto were not applied.

the distribution changes as a function of frequency due
to the fact that the diffraction limited resolution dy is a
function of frequency:

c 1 1000 Hz\ _,
o=~ () "

At high frequencies, there is a relatively higher number
of effective sky locations. Since there are more effective
sky locations, fluctuations in the noise lead to greater
SNR(f) due to a trial factor effect. We therefore must
define a new statistic in order to avoid a preference for
higher frequency signals.

Our solution is to define a new statistic A(f), which
rescales SNR(f) to take into account the frequency de-
pendence of the diffraction limited resolution:

maxg SNR(f, Q) — e (f)
Uﬁt(f)

The functions og:(f) and pge(f) are measured empiri-
cally with simulations so that A(f) is approximately flat
in frequency when we analyze noise. The final detection
statistic is

Af) =

(15)

)\Emfax)\(f). (16)

To assign a statistical significance to A\, we perform
background simulations to generate a distribution of
{Ai}. For each realization, we simulate an array of folded
data p},4(t, f). Every (¢, f) pixel is drawn from a nor-
mal distribution with mean=zero and with a variance



determined from time-shifted data. While individual seg-
ments of data are known to exhibit non-Gaussian noise,
we expect that folded data to be nearly Gaussian dis-
tributed due to the central limit theorem. This assump-
tion is supported by previous cross-correlation analyses,
e.g., [1-6, 10, 12]. We carry out Ny, = 10% background
realizations. The false alarm probability (FAP) of A is
given by:

FAP() = YA =N (17)
Nsim

where N(A; > M) is the number of simulated backgrounds
that exceed A (the measured detection statistic). In the
remainder of the paper, we set FAP = 1% as a fiducial
threshold for identification of a statistically interesting
signal. We find that FAP = 1% corresponds to a lambda
value of \g = 7.6.

VI. SENSITIVITY CALCULATION

In this section, we estimate the gravitational-wave
strain amplitude ho(f) that we can detect with false
alarm probability FAP = 1% and false dismissal prob-
ability FDP = 10%. Our simulated signals are described
in Section IIID. For each frequency bin, we vary hg and
determine the value such that we exceed the FAP = 1%
threshold A\ at least 1 — FDP = 90% of the time.

—— Linear fit to injections
False dismissal probability 10%

o
~

0.2
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FIG. 4: Signal-to-noise ratio at the sky location where
the signal was injected as a function of the effective
injected signal to noise ratio.

In Figure 4, we plot the recovered signal-to-noise ratio
SNR(f|€0) as a function of the effective injected signal-
to-noise ratio h2(f)/P(f). The recovered signal-to-noise
ratio is linearly proportional to the injected signal-to-
noise ratio:

SNRou(f) = a (18)

where a depends on details of the windowing procedure,
but for our choice of parameters, a = 74.9. For a fixed
injected signal-to-noise ratio, there is a distribution of
recovered signal-to-noise ratios, the width of which is in-
dicated in Fig. 4 by the yellow-orange band. The require-
ment that the false dismissal probability is FDP = 10%
can be visualized using the green line, below which 10%
of the injections are recovered for a fixed value of h3/P.
We define A as the vertical distance between the yellow
and green lines; it is the difference in SNR required to go
from FDP = 50% to FDP = 10%. The strain amplitude
sensitivity is

ho = \/P;f) (SNRO(f) —A), (19)

where SNRg(f) is the threshold for a statistically signif-
icant signal-to-noise ratio given A\g. That is,

SNRo(f) = ot (f) Ao + pge. (20)

LI |

10—23

hyo

1024

Frequency, Hz

FIG. 5: Sensitivity to the strain amplitude ho(f) for 2

folded days of the Monte-Carlo background peo1a(t, f|k)

for LIGO at design sensitivity. We assume 1% FAP and
10% FDP.

Our results are summarized in Fig. 5. At the most
sensitive frequency bin, corresponding to f = 245Hz, the
strain amplitude sensitivity is hg = 1.3 x 10724, For the
current analysis with = 2 sidereal days of Monte-Carlo
noise at the level of LIGO design sensitivity we used a
total of 4650 time segments 32 seconds long. The signal-
to-noise ratio scales like SNR(f|€2) o /Tobs [56]. At
f = 600Hz we project the strain amplitude sensitivity
ho =~ 3.9 x 1072%, for a two-detector network operat-
ing at the level of LIGO design sensitivity for one year.
This prediction is the same order of magnitude as in [56]
(ho ~ 2 x 107%%). For analysis of LIGO’s O1 run we
project a strain amplitude sensitivity ho ~ 1.2 x 10724
at f = 245Hz. The expected sensitivity for linearly-
polarized signals is expected to be worse by a factor of
approximately 2.6 [47].



We compare this result to upper limits from recent
searches for continuous and persistent gravitational radi-
ation with LIGO’s O1 data. All-sky searches for continu-
ous, nearly-monochromatic circularly-polarized gravita-
tional waves in the 20-475 Hz band reported 95% con-
fidence upper limits that reach hg ~ 1.5 x 1072° in
the 150 - 250 Hz region [15]. Directional radiometer
search using LIGO’s O1 data provides 90% confidence
upper limits on persistent gravitational waves, reaching
ho &~ 4.0 x 10725 [10].

VII. CONCLUSION

We apply an all-sky radiometer algorithm to simu-
lated Gaussian noise, which has been compressed us-
ing sidereal-day folding. The data are cleaned using
a data-quality procedure developed with time-shifted
data from LIGO’s first observing run. We project that
the algorithm achieves a strain amplitude sensitivity of
~ 1.2 x 10724 (1% false alarm probability, 10% false dis-
missal probability) for a two-detector network operating
at design sensitivity for the time of the LIGO first observ-
ing run O1. This corresponds to a sensitivity to neutron
star ellipticity of [8]

~ _5{0.4\ /10* g cm? T 600 Hz \ >
o0 () () (i) (77
(21)

where [ is an orientation factor, G is the gravitational
constant, r is the distance to the source, and I is the
moment of inertia.

Several improvements for narrowband searches with
folded data can be implemented in the future. Vary-
ing the coarse-grained frequency bin width can be used
to achieve an optimal sensitivity for simulated signals.
Computational improvements for data folding have been
suggested [21] as well.
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IX. APPENDIX
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FIG. 6: Figure 6a represents amounts of data removed from 14 days of time-shifted LIGO O1 data on the second
data quality cut, described in Section IV, that removes time segments. Figure 6b represents the standard deviation
of prora(t|f, k) for time-shifted data from LIGO’s O1 run.
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