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Abstract

A crucial property of Weyl gravity is its conformal invariance. It is shown how
this gauge symmetry is exactly reflected by the two constraints in the Hamiltonian
framework. Since the spatial 3-metric is one of the configuration variables, the phase
space of Weyl gravity can be extended to include internal gauge freedom by triad
formalism. Moreover, by canonical transformations, we obtain two new Hamiltonian
formulations of Weyl gravity with an SU(2) connection as one of its configuration
variables. The connection-dynamical formalisms lay the foundation to quantize Weyl
gravity nonperturbatively by applying the method of loop quantum gravity. In one of
the formulations, the so-called Immirzi parameter ambiguity in loop quantum gravity
is avoided by the conformal invariance.

PACS numbers: 04.50.Kd, 04.20.Fy, 04.60.Pp.

1 Introduction

Modified gravity theories have received increasingly attention due to motivations coming
from cosmology, astrophysics as well as quantum gravity. One of the most interesting
theories of modified gravity is the Weyl gravity [1], whose action is defined by the square
of the Weyl tensor Cµνρσ as

I = −1

4

∫

d4xCµνρσC
µνρσ

√−g, (1)

where we consider 4-dimensional Lorentzian spacetimes and use the geometrical unit sys-
tem, g denotes the determinant of the spacetime metric gµν . Besides the diffeomorphism
invariance, the other intriguing property of this theory is its invariance under the local
conformal transformation of the spacetime metric, gµν → Ω2gµν . As a higher-order deriva-
tive theory of gravity, it is argued that its perturbative quantization is renormalizable [2].
Moreover, Weyl gravity is closely related to supergravity [3,4] and it also emerges from the
twistor string theory [5]. Furthermore, Weyl gravity is also closely related to Einstein’s
general relativity (GR). This fact can be seen by comparing the equations of motion of the
two theories [6]. It is also argued that Weyl gravity could be employed to account for the
dark matter problem (see [6] and references therein).
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The variation of action (1) leads to the following Bach equation [7]

2∇β∇αC
αµνβ + CαµνβRαβ = 0. (2)

Alternatively, action (1) can also be written as

I =

∫

2(RµνR
µν − 1

3
R2)

√−gd4x+

∫

G
√−gd4x, (3)

where the integral of the term G will give the Gauss-Bonnet-Chern topological invariant [8].
Hence this term does not contribute to the equations of motion. The variation of the first
term in action (3) leads to the following equivalent form of Bach equation [6]

0 =
1

2
gµνR;α

;α +Rµν;α
;α −Rµα;ν

;α −Rνα;µ
;α − 2RµαRν

α

+
1

2
gµνRαβR

αβ − 2

3
gµνR;α

;α +
2

3
R;µ;ν +

2

3
RRµν − 1

6
gµνR2.

Then it is straightforward to see that the solution of vacuum Einstein equation, Rµν = Λgµν
(with the cosmological constant Λ allowed to be zero or non-zero), is also a solution of
vacuum Weyl gravity. Hence, the solution set of vacuum Weyl gravity contains all solutions
of vacuum Einstein gravity. An interesting question is whether the different conformally
equivalent classes of the solutions of Weyl gravity can be characterized by the different
solutions of GR? The answer is negative. In particular, it is shown that there exist solutions
to Bach equation that are not conformally equivalent to Einstein spaces [9–11]. This fact
implies richer structures in Weyl gravity than those in GR. Hence Weyl gravity may bring
more interesting physical phenomena in our eye shot.

The goal of this paper is to set up a classical Hamiltonian formulation towards nonper-
turbative quantization of Weyl gravity. It is well known that loop quantum gravity (LQG)
has been widely investigated for quantizing GR [12–16] as well as scalar-tensor theories of
gravity [17,18]. One of the impressive aspects of LQG is the so-called background indepen-
dence. This background-independent quantization approach relies on the key observation
that classical GR and scalar-tensor gravity can be cast into the connection-dynamical for-
malism with the structure group of SU(2) [19–21]. Bases on the geometrodynamics of Weyl
gravity in [22], this paper is devoted to establish the connection-dynamical formalism for
Weyl gravity.

In section 2, we discuss the two conformal constraints in the Hamiltonian framework of
Weyl gravity, which turn out to be generators of spatial and temporal conformal transfor-
mations respectively. In section 3, we bring triad language into the spatial metric for the
sake of going towards connection-dynamical formalism. The triad formalism has an addi-
tional constraint with respect to the rotation gauge freedom of the triad. The first-class
property of the constraint algebra is unchanged as the rotation constraint is imposed. The
gauge transformations generated by the constraints are analysed. In section 4, we derive
the connection-dynamical formalisms of Weyl gravity in two different schemes by canonical
transformations from its triad formalism. The Gaussian and diffeomorphism constraints in
the connection formalism are similar to those of GR coupling to matters [14]. The so-called
Immirzi parameter ambiguity can be avoided in one of the schemes. The results of this
paper are summarized and remarked in the last section.

2 Conformal constraints in canonical Weyl gravity

2.1 Geometrodynamics

In this subsection we briefly outline the geometrical dynamics of Weyl gravity obtained
in [22]. By a (3+1) decomposition of spacetime, one obtains the induced spatial 3-metric
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hab and the extrinsic curvature Kcd of the foliation hypersurface Σt. The action (1) can
be written as

I =

∫

dt

∫

Σt

d3xN
√
h
(

Cabc
n
Cabcn − 2Ca b

n n
Canbn

)

, (4)

where h represents the determinant of hab, we have denoted Cabcn ≡ Cµνρσh
µ
ah

ν
bh

ρ
cn

σ and
Canbn ≡ Cµρνσh

µ
ah

ν
bn

ρnσ respectively, with nσ being the unit normal of Σt. Note that the
Weyl tensor contains the derivative of the extrinsic curvature as

Canbn = −1

2

(

δcaδ
d
b −

1

3
habh

cd

)(

£nKcd −Rcd −KcdK − 1

N
DcDdN

)

(5)

and
Cabcn = 2D[aKb]c +DdK

d
[ahb]c −D[aKhb]c, (6)

where N is the lapse function, £n denotes the Lie derivative along nν and Da denotes the
spatial covariant derivative compatible with hab. One could check that action (4) is still
invariant for conformal transformations gµν → Ω2gµν .

The 3+1 form consists of basic variables (hab,Kab,£tKab, N,Na), where Na is the shift
vector. In order to reduce this higher order derivative theory into second-order derivative
one, a Lagrangian multiplier λab is introduced into the action as

I =

∫

dt

∫

Σt

d3xN
√
h
(

Cabc
n
Cabcn − 2Ca b

n n
Canbn + λab(£nhab − 2Kab)

)

. (7)

Then the basic variables are increased as (hab,£thab,Kab,£tKab, N,Na, λab). In Hamilto-
nian formulation, one obtains momentum variables conjugate to the 3-metric and extrinsic
curvature respectively as

πcd = λcd
√
h,

Pcd = 2Cc d
n n

√
h,

(8)

with the canonical relations

{hab(x), πcd(y)} = {Kab(x),Pcd(y)} = δc(aδ
d
b)δ

3(x, y). (9)

From action (7), one can easily derive the diffeomorphism constraint Ha and Hamiltonian
constraint H0 as

Ha = −2habDcπ
bc + PbcDaKbc − 2Db(PbcKac)

∗
= 0,

H0 = 2πabKab −
PabPab

2
√
h

+ PabRab + PabKabK +DaDbPab −
√
hCabcnC

abc
n

∗
= 0,

(10)

where the sign “
∗
=” means “equal on the constraint surface”. Moreover, one obtains the fol-

lowing two conformal constraints due to the traceless of Pcd and its consistency condition:

P = habPab ∗
= 0,

Q = 2habπ
ab +KabPab ∗

= 0.
(11)

One can check that all the constraints are of first class. Hence the physical degrees of
freedom of Weyl gravity reduce to 6(= 6 + 6− 4− 2).
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2.2 Conformal gauge transformation

The conformal invariance of action (1) is encoded in the constraints (11) in the Hamil-
tonian formalism. In this subsection we will show how to generate spacetime conformal
transformations by those constraints. In order to become functions on the phase space,
the two constraints (11) should be smeared over suitable test fields ωℓ(x) and ω⊥(x) as

P(ω⊥) =

∫

Σt

d3xPω⊥,

Q(ωℓ) =

∫

Σt

d3xQωℓ.

(12)

Then it is straightforward to get

{hab,Q(ωℓ)} = 2ωℓhab,

{πab,Q(ωℓ)} = −2ωℓπ
ab,

{Kab,Q(ωℓ)} = ωℓKab,

{Pab,Q(ωℓ)} = −ωℓPab,

(13)

and
{hab,P(ω⊥)} = 0,

{πab,P(ω⊥)} = −ω⊥Pab,

{Kab,P(ω⊥)} = ω⊥hab,

{Pab,P(ω⊥)} = 0,

(14)

respectively. Note that the infinitesimal transformations of πab in (13) and (14) imply that
the Lagrange multiplier λab introduced in action (7) has to be transformed as

λab → Ω−5(λab − 2Ca b
n n

nµ∂µ ln Ω) (15)

under a finite conformal transformation: gµν → Ω2gµν . The finite spacetime conformal
transformation induces transformations on Σt as

hab → Ω2hab,

Kab → ΩKab + habn
µ∂µΩ,

Pab → Ω−1Pab,

(16)

where nµ → Ωnµ and Kab =
1
2£nhab are used. The relation between the conformal factor

Ω and the test fields ωℓ and ω⊥ can be explored, if the transformations (13) and (14)
generated by constraints Q(ωℓ) and P (ω⊥) contribute the infinitesimal version of (16).

Note that finite conformal transformations on the phase space can be constructed by
the exponential maps of the Hamiltonian vector fields dual to functions Q(ωℓ) and P(ω⊥).
However, (13) and (14) imply that the action order of the exponential maps exp[XQ(ωℓ)]
and exp[XP(ω⊥)] will effect the resulted transformation of the extrinsic curvature Kab. A
straightforward calculation gives

exp[XP(ω⊥)] exp[XQ(ωℓ)] ◦Kab =

∞
∑

k=0

1

k!

{(

∞
∑

n=0

1

n!
{Kab,Q(ωℓ)}(n)

)

,P(ω⊥)

}

(k)

=Ω̄Kab + ω⊥Ω̄hab,

(17)

where Ω̄ ≡
∑∞

n
1
n!ω

n
ℓ = eωℓ , and the suffix on the Poisson bracket denotes the iteration:

{Kab,Q(ωℓ)}(n+1) = {{Kab,Q(ωℓ)}(n),Q(ωℓ)}. On the other hand, another order of action
gives

exp[XQ(ωℓ)] exp[XP(ω⊥)] ◦Kab = Ω̄Kab + ω⊥Ω̄
2hab. (18)
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Therefore it is obvious that

exp[XP(ω⊥)] exp[XQ(ωℓ)] 6= exp[XQ(ωℓ)] exp[XP(ω⊥)]. (19)

This noncommutative property can be understood as follows. The Poisson algebra

{P(ω⊥),Q(ωℓ)} = P(ωℓ · ω⊥), (20)

together with Jacobi identity

{{Kab,Q(ωℓ)},P(ω⊥)}+ {{Q(ωℓ),P(ω⊥)},Kab}+ {{P(ω⊥),Kab},Q(ωℓ)} = 0, (21)

gives
{{Kab,Q(ωℓ)},P(ω⊥)}+ ωℓω⊥hab = {{Kab,P(ω⊥)},Q(ωℓ)}, (22)

which implies (19). However, there is no such a problem for the spatial metric hab due to
{hab,P(ω⊥)} = 0.

Suppose that the Hamiltonian vector field of the linear combination,

C(ωℓ, ω⊥) = Q(ωℓ) + P(ω⊥), (23)

generates a spacetime conformal transformation (16). By imploying the Lie product for-
mula in Lie group theory,

exp[XQ(ωℓ) +XP(ω⊥)] = lim
n→∞

(

exp
[

X 1

n
Q(ωℓ)

]

exp
[

X 1

n
P(ω⊥)

])n

= lim
n→∞

(

exp
[

X 1

n
P(ω⊥)

]

exp
[

X 1

n
Q(ωℓ)

])n

,
(24)

the above order ambiguity can be avoided. A straightforward calculation (see Appendix
A) shows that the test fields are related to the conformal factor by

ωℓ = lnΩ
∣

∣

Σt
, (25)

ω⊥ =
(lnΩ)nµ∂µΩ

Ω2 − Ω

∣

∣

∣

Σt

. (26)

3 Triad formalism

3.1 Canonical variables in extended phase space

In this subsection we will extend the phase space of Weyl gravity coordinatized by (hab, π
cd;Kab,Pcd)

to triad formalism in order to bring some internal gauge degrees of freedom into the the-
ory. Let eai (i = 1, 2, 3) be any triad on Σt such that hab = eai e

b
jδ

ij . The densitized triad

is defined as Ea
i :=

√
heai . We denote the inverse of Ea

i by E
j
a and the determinant of Ea

i

by E. Suppose π
j
b is the variable conjugate to Ea

i . We equip the extended phase space
coordinatized by (πi

a, E
b
j ;Kij ,Pkl) with symplectic structure defined by

{πi
a(x), E

b
j (y)} = δbaδ

i
jδ

3(x, y),

{Kij(x),Pkl(y)} = δk(iδ
l
j)δ

3(x, y),
(27)

and

{πk
a(x),Kij(y)} = {πi

a(x),Pkl(y)} = {Eb
k(x),Kij(y)} = {Eb

i (x),Pkl(y)} = 0. (28)
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Note that the canonical variables πi
a(x) and Eb

j (y) have 9 degrees of freedom respectively,

while Kij(x) and Pkl(y) have 6 respectively. The new variables are related to the original
variables by

hab = δijE
i
aE

j
bE, πcd = to be determined,

Kab = KijE
i
aE

j
bE, Pcd = E−1PklEc

kE
d
l .

(29)

Note that by contracting with the triad, the canonical variables Kab and Pcd can be
expressed as internal tensors Kij and Pkl. So the key issue is to find the expression of

πcd in terms of new variables. Let πcd = πcd(πj
b , E

a
i ,Kij , P

kl). We can solve it from the
following equations with respect to the symplectic structure (27) and (28),

{hab(x), πcd(y)} = −
∫

Σt

δhab(x)

δE
f
i (z)

δπcd(y)

δπi
f (z)

d3z = δc(aδ
d
b)δ

3(x, y),

{Kab(x), π
cd(y)} =

∫

Σt

(

−δKab(x)

δE
f
i (z)

δπcd(y)

δπi
f (z)

+
δKab(x)

δKij(z)

δπcd(y)

δPij(z)

)

d3z = 0,

{Pab(x), πcd(y)} =

∫

Σt

(

−δPab(x)

δE
f
i (z)

δπcd(y)

δπi
f (z)

− δPab(x)

δPij(z)

δπcd(y)

δKij(z)

)

d3z = 0.

(30)

Let πcd ≡ π̄cd − U cd, where

π̄cd =
1

2E
(E

(c
k E

d)
l πl

fE
fk −Ec

kE
dkπl

fE
f
l ) (31)

and U cd = U cd(Ea
i ,Kij ,Pij). Note that the Euclidean metric δij is employed to up or

down the internal indices i, j, k, · · · , while hab is employed to up or down the external
spatial indices a, b, c, · · · . Then the first equation in (30) is satisfied automatically, while
the second and third equations in (30) give

U cd = E−1Ki
lP ljE

(c
i E

d)
j . (32)

Hence we recover πcd in extended phase space as

πcd =
1

2E

(

E
(c
i E

d)
j π

j
fE

fi − Ec
iE

diπk
fE

f
k

)

− 1

E
Ki

lP ljE
(c
i E

d)
j . (33)

By a tedious calculation, the Poisson bracket between two πab reads

{πab(x), πcd(y)} =
1

16
(hacGdb + hbcGda + hadGcb + hbdGca)(y)δ3(x, y), (34)

where Gab = E−1Ea
i E

b
jG

ij with Gij ≡ 2π
[i
c E

j]c + 4K
[i
l
Pj]l. Note that on the extended

phase space Gij generates exactly the internal SO(3) rotations of the new variables, which
keep the original variables (hab, π

cd;Kab,Pcd) invariant. Hence to go back to the original
phase space, we need to impose the “rotation” constraint

G(Λ) :=
1

2

∫

Σt

d3xGijΛ
ji ∗
= 0 (35)

on the extended phase space, where Λij is an arbitrary internal anti-symmetric tensor-
valued test function. In addition, the functions G(Λ) constitute a closed constraint algebra
as

{G(Λ), G(Λ′)} = G([Λ,Λ′]). (36)

It is easy to check that

{G(Λ), hab(x)} = 0,

{G(Λ), πcd(x)} = 0,

{G(Λ),Kab(x)} = 0,

{G(Λ),Pcd(x)} = 0.

(37)
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3.2 Triad formalism as a first-class system

We want to show that all previous constraints together with the rotation constraints on
the extended phase space constitute a first-class constrained system. Note that except for
G(Λ), all other constraints can be obtained by naive substitution of hab, πcd, Kab and
Pcd in (10) and (11) with (29) and (33), which denote as P ′, Q′, H ′

a and H ′
0 respectively.

Since the expressions of P ′,Q′,H ′
a and H ′

0 may contain the rotation constraint which
can be neglected on the constraint surface, one usually use some alternative expressions
of those constraints without the terms containing the rotation constraint. We denote
P ≡ P ′ + ZP , Q ≡ Q′ + ZQ, Ha ≡ H ′

a + Za, and H0 ≡ H ′
0 + Z0, where ZP , ZQ, Za and

Z0 vanish on the constraint surface of the rotation constraint. Since P ′, Q′, H ′
a and H ′

0

are defined in terms of (29) and (33), (37) ensures that P ′, Q′, H ′
a and H ′

0 are invariant
under the internal rotation generated by G(Λ). Together with (36), we conclude that

{G,P}, {G,Q}, {G,Ha}, {G,H0} ∝ G
∗
= 0.

Thus G form an ideal of the constraint algebra. Since (10) and (11) are indeed first-class,
we have shown that P,Q,Ha,H0 together with Gij are also first-class in extended phase
space. Since the constraint algebra in the original phase space is known [22], one can
use the symplectic reduction formulas (30) and (34) to derive the constraint algebra in
extended phase space. For instance, let H ′

0(ξ) ≡
∫

Σt
ξH ′

0d
3x and H ′

0(η) ≡
∫

Σt
ηH ′

0d
3x be

the smeared Hamiltonian constraints. To calculate {H ′
0(ξ),H

′
0(η)}, we can first calculate

{H ′
0(ξ),H

′
0(η)} =

∫

Σt

(

δH ′
0(ξ)

δπi
a(x)

δH ′
0(η)

δEa
i (x)

+
δH ′

0(ξ)

δKij(x)

δH ′
0(η)

δPij(x)
− (ξ ↔ η)

)

d3x

={H̄0(ξ), H̄0(η)}|Γ0
+

∫

Σt

d3x

∫

Σt

δH̄0(ξ)

δπab(x)

δH̄0(η)

δπcd(y)
{πab(x), πcd(y)}d3y,

(38)

where H̄0 = H̄0(hab, π
cd,Kab,Pcd) is the Hamiltonian constraint coordinatized by (hab, π

cd;Kab,Pcd),
and {H̄0(ξ), H̄0(η)}|Γ0

takes the same result as that of the original constraint algebra. Then
we substitute all functions of (hab, π

cd;Kab,Pcd) by functions of (πi
a, E

b
j ;Kij ,Pkl). Thus

we obtain the constraint algebra in extended phase space by naive substitution as

{H ′
0,H

′
0} ∝ H ′

a ⊕ P ′ ⊕G, {H ′
a,H

′
b} ∝ H ′

c ⊕G, {H ′
0,H

′
a} ∝ H ′

0 ⊕G,

{P ′,H ′
0} ∝ P ′ ⊕Q′, {Q′,H ′

0} ∝ P ′ ⊕H ′
0 ⊕G, {Q′,H ′

a} ∝ Q′ ⊕G,

{P ′,H ′
a} ∝ P ′, {P ′,Q′} ∝ P ′.

(39)

Then it is straightforward to calculate the algebra for the constraints with G linear com-
bination as

{H0,H0} = {H ′
0 + Z0,H

′
0 + Z0} = {H ′

0,H
′
0}+ {Z0, Z0},

{Ha,Hb} = {H ′
a + Za,H

′
b + Zb} = {H ′

a,H
′
b}+ {Za, Zb},

{H0,Ha} = {H ′
0 + Z0,H

′
a + Za} = {H ′

0,H
′
a}+ {Z0, Za},

· · ·

(40)

Since the constraints form a first-class system in extended phase space, the physical degrees
of freedom of Weyl gravity can also be read as 6 = 9 + 6− 3− 1− 2− 3.

3.3 Conformal, diffeomorphism and rotation constraints in extended

phase space

The naive substitution of the conformal constraints (11) in terms of new variables reads

P ′ = P =δijP
ij ∗
= 0,

Q′ = Q =− (2πi
aE

a
i +KijPij)

∗
= 0.

(41)
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It is easy to check that they Poisson commute with G(Λ),

{G(Λ),P(ω⊥)} = {G(Λ),Q(ωℓ)} = 0, (42)

where we omitted the “primes”. Q(ωℓ) and P(ω⊥) still generate conformal transformations.
Note that the minus sign in the expression of Q arises from the fact that in the new
coordinates we employed the densitized triad Eb

j as the momentum variable conjugate to

πi
a.

The naive substitution of the diffeomorphism constraint in (10) reads

H ′
a = Eb

iDaπ
i
b −Db(π

i
aE

b
i ) + PijDaKij +

1

2
(GijE

bjDaE
i
b −Db(GijE

i
aE

bj))
∗
= 0. (43)

By removing the terms containing the rotation constraint, we obtain

Ha = Eb
iDaπ

i
b −Db(π

i
aE

b
i ) + PijDaKij

∗
= 0. (44)

It turns out that it is Ha rather than H ′
a generates the spatial diffeomorphisms of the new

variables, since the smeared version of Ha takes the form

Ha(ξ
a) =

∫

Σt

d3xξa
(

Eb
iDaπ

i
b −Db(π

i
aE

b
i ) + PijDaKij

)

=

∫

Σt

d3x
(

Ea
i £ξπ

i
a + Pij

£ξKij

)

,

(45)

where ξa is any test vector field on Σt satisfying suitable boundary condition.
The Poisson bracket between two rotation constraints can be calculated as

{G(Λ), G(Λ′)} = G([Λ,Λ′]). (46)

It is easy to see that the canonical transformations generated by G(Λ) on (πi
a, E

b
j ) are

exactly the internal rotation as in GR [12, 14]. G(Λ) also generates internal rotations on
(Kij ,Pkl) as

{Kij(x), G(Λ)} = Λ l
i Klj(x) + Λ l

j Kil(x) = [Λ,K]ij(x),

{Pij(x), G(Λ)} = Λi
lP lj(x) + PilΛj

l(x) = [Λ,P]ij(x).
(47)

The infinitesimal conformal transforms generated by Q(ωℓ) and P(ω⊥) are calculated
as

{πi
a(x),Q(ωℓ)} = −2ωℓπ

i
a(x),

{Ea
i (x),Q(ωℓ)} = 2ωℓE

a
i (x),

{Kij(x),Q(ωℓ)} = −ωℓKij(x),

{Pij(x),Q(ωℓ)} = ωℓPij(x),

(48)

and
{πi

a(x),P(ω⊥)} = 0,

{Ea
i (x),P(ω⊥)} = 0,

{Kij(x),P(ω⊥)} = δijω⊥(x),

{Pij(x),P(ω⊥)} = 0,

(49)

respectively. The conformal generator P only affects Kij and thus U cd part of πcd.
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4 Connection-dynamical formalism

4.1 The first scheme

In the triad formalism studied in last section, the configuration variable πi
a is a Lie algebra

so(3) (or su(2)) valued one-form. However, πi
a is not a connection since the rotation

constraint is not the Gaussian constraint of a gauge theory. Similar to the case of GR,
we can construct a su(2) connection by a canonical transformation on the extended phase
space as:

Ai
a = Γi

a + γπi
a, (50)

where Γi
a is the su(2) spin connection determined by Eb

j

Γi
a =

1

2
ǫijkebk(∂beaj − ∂aebj + eale

c
j∂be

l
c), (51)

and γ is an arbitrary nonzero real number. We further define (γ)Eb
j = 1

γ
Eb

j . Then

(Ai
a,

(γ)Eb
j) constitute a new canonical pair. Combining the rotation constraint Gijǫijk

∗
= 0

with the compatibility condition:

DaE
a
i = ∂aE

a
i + ǫijkΓ

j
aE

ak = 0, (52)

we obtained the standard Gaussian constraint:

Gi = ∂a
(γ)Ea

i + ǫijkA
j
a
(γ)Eak + ǫijkK

j
lP lk ∗

= 0. (53)

Hence Ai
a is an su(2) connection, and the internal tensor Kij and Pkl play the role of the

source of this gauge theory.
The fundamental Poisson brackets can be derived from the symplectic structure (27)

and (28) as

{Ai
a(x),

(γ)Eb
j (y)} = δijδ

b
aδ

3(x, y), {Kij(x),Pkl(y)} = δk(iδ
l
j)δ

3(x, y),

{Ai
a(x), A

j
b(y)} = {Ak

a(x),Kij(y)} = {Ai
a(x), P

kl(y)} = 0,

{(γ)Ea
i (x),

(γ)Eb
j (y)} = {(γ)Ea

j (x),Kij(y)} = {(γ)Ea
i (x), P

kl(y)} = 0.

(54)

Since the Gaussian constraint is a linear combination of the rotation constraint and the
compatibility condition, it also contributes a closed constraint algebra:

{G(Λ),G(Λ′)} = G([Λ,Λ′]). (55)

The curvature of Ai
a reads

F i
ab = 2∂[aA

i
b] + ǫijkA

j
aA

k
b . (56)

One can define a new covariant derivative Da associated with connection Ai
a by

DaV
i = ∂aV

i + ǫijkA
j
aV

k. (57)

The original geometric variables can be rewritten in terms of new variables as

hab = γ(γ)E(γ)Ei
a
(γ)Ebi,

πcd =
1

2γ(γ)E

[

(γ)E
(c
j

(γ)E
d)
i (Ai

a − Γi
a)

(γ)Eaj − (γ)Ec
j
(γ)Edj(Ai

a − Γi
a)

(γ)Ea
i − 2Ki

lP lj (γ)E
(c
i

(γ)E
d)
j

]

,

Kab = γ(γ)E(γ)Ei
a
(γ)E

j
bKij ,

Pcd = γ−1(γ)E−1(γ)Ec
k
(γ)Ed

l Pkl.

(58)
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Then the constraints can be recast as

Gi = Da
(γ)Ea

i + 2ǫijkK
j
lP lk ∗

= 0,

P = δijPij ∗
= 0,

Q = −2(Ai
a − Γi

a)
(γ)Ea

i −KijPij ∗
= 0,

Ha = F i
ab

(γ)Eb
i + PijDaKij − γπi

aGi
∗
= 0,

H0 = γ−
3

2HA + γ−1HB +HC + γ
1

2HD
∗
= 0,

(59)

where Ha and H0 can be derived from (44) and (10) by naive substitution respectively,
and the terms HA, HB, HC and HD can be expressed in term of new variables as

HA =− 1

2
√

(γ)E
PijPij,

HB =(γ)Ea
(i
(γ)Eb

j)
(γ)E−1

[

DaDbPij − 4ǫikl(γ)πakDbPj
l − 2ǫiklPj

lDb
(γ)πak + 6Pjk(γ)πak

(γ)πi
b

− 4Pij (γ)πak
(γ)πk

b − 2δijPkl
(γ)πk

a
(γ)πl

b

]

+ (γ)E−1P j
i

(γ)Ea
j
(γ)Eb

kR
ik
ab,

HC =Kij
(γ)πi

a
(γ)Eaj − 3K(γ)πi

a
(γ)Ea

i − 2KijK
i
lP lj ,

HD =−
√

(γ)ECabcnC
abc

n
.

(60)
Note that (γ)πi

a ≡ γπi
a = Ai

a −Γi
a does not depend on γ actually, and we have made use of

the conformal constraints Q and P for sake of obtaining HB and HC . The expression of
CabcnC

abc
n

reads

CabcnC
abc

n
= ǫabdǫfgc(DaKbc)DfKgd + ǫabdǫ

fg
d(DaKbc)DfK

c
g , (61)

which can be rewritten in term of new variables as

CabcnC
abc

n
=(γ)E−1(γ)Ea

m
(γ)Eb

nǫ
ijmǫkln

(

DaKil − 2(γ)πp
aK

r
(iǫl)pr

)(

DbKjk − 2(γ)πq
bK

s
(jǫk)qs

)

+ (γ)E−1(γ)Ea
p
(γ)Ebp

(

DaKij − 2(γ)πk
aK

l
(iǫj)kl

)(

DbK
ij − 2(γ)πm

b Kn(iǫ
j)
mn

)

− (γ)E−1(γ)Eai(γ)Eb
j

(

DaK
jl − 2(γ)πk

aK
m(jǫ

l)
km

)(

DbKil − 2(γ)πn
b K

p

(iǫl)np

)

.

(62)

Note that except for the Hamiltonian constraint, all of the rest constraints do not contain
the parameter γ explicitly. Hence γ does not affect the gauge transformations they gen-
erate. However, the Hamiltonian constraint consists of 4 polynomials of γ with different
powers. This fact may lead to different dynamics for different values of γ in the quantum
theory.

The Poisson bracket between connection variable Ai
a(x) and conformal constraint Q(ωℓ)

reflects the spatial conformal transformation of the connection variable. The conformal
constraint reads

Q(ωℓ) = −
∫

Σt

d3x
[

2(Aj
b − Γj

b)
(γ)Eb

j +KjlPjl
]

ωℓ. (63)

Hence we have

{Ai
a(x),Q(ωℓ)} = −2ωℓ(x)[A

i
a(x)− Γi

a(x)] + ǫijk(γ)Eaj
(γ)Eb

k∂bωℓ(x). (64)
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4.2 The second scheme

Unlike GR, Weyl gravity is conformally invariant. Eq.(48) shows that the conformal trans-
formations of the conjugate pair πi

a and Eb
j admit the form in the canonical transformation

in last subsection. Thus it is reasonable to consider the possibility that the canonical trans-
formations with different values of γ are actually conformally equivalent to each other. This
is not the case for the canonical transformations defined in last subsection, since the other
conjugate pair Kij and Pkl remains unchanged there while it should be changed by the
conformal transformations. In fact, the conformally equivalent canonical transformations
can be defined as

πi
a → Ai

a = Γi
a + γπi

a,

Eb
j →

1

γ
Eb

j ≡ (γ)Eb
j ,

Kij →
√
γKij ≡ (γ)Kij ,

Pkl → 1√
γ
Pkl ≡ (γ)Pkl.

(65)

Then the original geometric variables are related to the new variables by

hab = γ(γ)E(γ)Ei
a
(γ)Ebi,

πcd =
1

2γ(γ)E

[

(γ)E
(c
j

(γ)E
d)
i (Ai

a − Γi
a)

(γ)Eaj − (γ)Ec
j
(γ)Edj(Ai

a − Γi
a)

(γ)Ea
i − 2(γ)Ki

l
(γ)P lj (γ)E

(c
i

(γ)E
d)
j

]

,

Kab = γ
1

2
(γ)E(γ)Ei

a
(γ)E

j
b
(γ)Kij,

Pcd = γ−
1

2
(γ)E−1(γ)Ec

k
(γ)Ed

l
(γ)Pkl.

(66)
The constraints can be recast as

Gi = Da
(γ)Ea

i + 2ǫijk
(γ)K

j
l
(γ)P lk ∗

= 0,

P =
√
γδij

(γ)Pij ∗
= 0,

Q = −2(Ai
a − Γi

a)
(γ)Ea

i − (γ)Kij
(γ)Pij ∗

= 0,

Ha = F i
ab

(γ)Eb
i +

(γ)PijDa
(γ)Kij − (γ)πi

a
(γ)Gi

∗
= 0,

H0 = γ−
1

2

(

(γ)HA + (γ)HB + (γ)HC + (γ)HD

)

∗
= 0,

(67)

where

(γ)HA =− 1

2
√

(γ)E

(γ)Pij (γ)Pij ,

(γ)HB =
1

(γ)E
(γ)Ea

(i
(γ)Eb

j)

[

DaDb
(γ)Pij − 4ǫikl(γ)πakDb

(γ)Pj
l − 2ǫikl(γ)Pj

lDb
(γ)πak

+ 6(γ)Pjk(γ)πak
(γ)πi

b − 4(γ)Pij (γ)πak
(γ)πk

b − 2δij (γ)Pkl
(γ)πk

a
(γ)πl

b

]

+
1

(γ)E
(γ)P j

i
(γ)Ea

j
(γ)Eb

kR
ik
ab,

(γ)HC =(γ)Kij
(γ)πi

a
(γ)Eaj − 3(γ)K(γ)πi

a
(γ)Ea

i − 2(γ)Kij
(γ)Ki

l
(γ)P lj ,

(γ)HD =− 1√
(γ)E

[

(γ)Ea
m

(γ)Eb
nǫ

ijmǫkln
(

Da
(γ)Kil − 2(γ)πp

a
(γ)Kr

(iǫl)pr

)(

Db
(γ)Kjk − 2(γ)πq

b
(γ)Ks

(jǫk)qs

)

+ (γ)Ea
p
(γ)Ebp

(

Da
(γ)Kij − 2(γ)πk

a
(γ)K l

(iǫj)kl

)(

Db
(γ)Kij − 2(γ)πm

b
(γ)Kn(iǫ

j)
mn

)

− (γ)Eai(γ)Eb
j

(

Da
(γ)Kjl − 2(γ)πk

a
(γ)Km(jǫ

l)
km

)(

Db
(γ)Kil − 2(γ)πn

b
(γ)K

p
(iǫl)np

) ]

.

(68)
Note that the Hamiltonian constraint in (67) consists of 4 terms of γ with the same power.
In this connection-dynamical formalism, different values of the parameter γ of the basic
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variables can be generated by particular conformal transformations. Since Weyl gravity
is conformally invariant, the so-called Immirzi parameter ambiguity can be avoided in the
corresponding loop quantum Weyl gravity. This observation can be confirmed by the fact
that the parameter γ can be removed from the expressions of all the constraints in (67).

5 Summary

In previous sections, the Hamiltonian structure of Weyl gravity has been studied in details.
The conformal invariance of the theory is encoded in the conformal constraints Q(ωℓ) and
P(ω⊥), which generate spatial and temporal conformal transformations respectively. The
relation of the smeared fields ωℓ and ω⊥ with the conformal factor Ω is worked out as (25)
and (26). The Hamiltonian geometrodynamics of Weyl gravity is then recast into triad
formalism by including the internal gauge degrees of freedom of a triad. The relation of the
basic variables in triad formalism and the original ones is worked out as (29) and (33). The
rotation constraint (35) is imposed for recovering the phase space of geometrodynamics
from the extended phase space. It is shown that the new constrained system is still first
class as that in geometrodynamics. In comparison to the case of original phase space, the
conformal transformations generated by P(ω⊥) on the extended phase space take simpler
forms. The variable πi

a conjugate to the densitized triad Eb
j keeps unchanged by the

temporal conformal transformations, and only the diagonal elements of the components of
the extrinsic curvature Kij are affected by it.

The main purpose of this paper is to construct certain connection dynamical formalism
of Weyl gravity, in order to apply the method of LQG to this theory. This purpose has been
realized by two schemes of canonical transformations on the extended phase space. In the
first scheme, only the conjugate pair (πi

a, E
b
j ) are transformed into an SU(2) connection

and its momentum, while the other conjugate pair (Kij ,Pkl) keep unchanged. The so-
called Immirzi parameter γ ambiguity in LQG of GR exists also in the corresponding
quantum theory of Weyl gravity in this formalism. However, in the second scheme, both
conjugate pairs are transformed, and the canonical transformations with different values
of the parameter γ are related by certain conformal transformations generated by the
constraint Q(ωℓ). Therefore, the connection formalisms with different values of γ belong
to a conformally equivalent class. There will be no Immirzi parameter ambiguity in the
corresponding quantum theory in this formalism. This intriguing feature of connection
formalism of Weyl gravity deserves further investigating in its loop quantization. Another
interesting issue in both schemes is the role played by the conjugate pair (Kij ,Pkl) in
the connection-dynamical formalism. From the expressions of the Gaussian constraint and
diffeomorphism constraint in (59) or (67), (Kij ,Pkl) or ((γ)Kij ,

(γ)Pkl) look like certain
internal tensor valued matter fields in GR. This implies possible geometrical origin of
certain matter fields from Weyl gravity, which also deserves further investigating in its
quantum theory.
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A Conformal transform by assembled generator

One can write down the 0th and first order terms of exp[C(ωℓ, ω⊥)]Kab, and then iterate
the procedure to obtain

0th Kab

1st ωℓKab + ω⊥hab

2nd ω2
ℓKab + 3ωℓω⊥hab

3rd ω3
ℓKab + 7ω2

ℓω⊥hab

4th ω4
ℓKab + 15ω2

ℓω⊥hab

· · ·
nth ωn

ℓ Kab + (2bn−1 + 1)ωn−1
ℓ ω⊥hab

(n+ 1)th ω
(n+1)
ℓ Kab + (2bn + 1)ωn

ℓ ω⊥hab

(69)

Thus we have to solve the sequence bn+1 = 2bn + 1 and get its solution as bn = 2n − 1.
Therefore the Taylor series of exp[C(ωℓ, ω⊥)] ◦Kab are expressed by two equations























Ω̄ = Ω|Σt
=

∞
∑

n

1

n!
ωn
ℓ = eωℓ

nµ∂µΩ = ω⊥

∞
∑

n=0

2n − 1

n!
ω
(n−1)
ℓ

(70)
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