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Enhanced density fluctuations on small scales would lead to the formation of numerous dark
matter minihalos, so limits on the minihalo abundance can place upper bounds on the small-scale
primordial power spectrum. In particular, the ultracompact minihalo (UCMH), a dark matter

structure hypothesized to possess a ρ ∝ r−9/4 density profile due to its formation at z ≥ 1000, has
been used to establish an upper bound on the primordial power spectrum at scales smaller than
2 Mpc. The extreme slope of this density profile amplifies the observational signals of UCMHs.
However, we recently showed via N-body simulations that the ρ ∝ r−9/4 density profile does not
develop in realistic formation scenarios, throwing UCMH-derived power spectrum constraints into
question. Instead, minihalos develop shallower inner profiles with power-law indices between −3/2
and −1. In this paper, we expand on that result and discuss its implications. Using a model that is
calibrated to simulation results and predicts halo structures in spiked power spectra based on their
formation times, we calculate new upper bounds on the primordial power spectrum based on limits
on the dark matter annihilation rate within the Galaxy. We find that despite assuming shallower
profiles, this minihalo model actually yields stronger constraints than the previous UCMH picture
owing to its inclusion of all minihalos instead of only the earliest-forming ones.

I. INTRODUCTION

Ultracompact dark matter minihalos have emerged as
a powerful probe of early-Universe physics. Overdense
regions with δ ≡ δρ/ρ >∼ 10−3 at horizon entry seed
the formation of dark matter minihalos near the time
of recombination (z ' 1000) [1], and such early forma-
tion yields highly compact structures potentially visible
through dark matter annihilation [2–18] or by their gravi-
tational signatures [1, 19–21]. The nondetection of these
structures thus constrains the amplitude of primordial
density fluctuations, making it a probe of the primordial
power spectrum [7–11, 21–24] and hence of inflationary
models [25] and the thermal history of the Universe [26].

These ultracompact minihalos (UCMHs) provide ac-
cess to perturbations on scales too small to be directly
observed. Cosmic microwave background (CMB) obser-
vations indicate that the primordial power spectrum of
curvature fluctuations Pζ(k) is consistent with a slightly
red-tilted but otherwise featureless power law [27] with
amplitude As = (2.142 ± 0.049) × 10−9 [28], and the
Lyman-α forest tells a similar story [29]. However, these
observations are only able to probe wavelengths longer
than 2 Mpc, and numerous inflationary models predict
an enhancement in small-scale power [30–55]. Certain
nonstandard thermal histories, such as an early matter-
dominated era [56–59] or an era dominated by a fast-

∗ Electronic address: delos@unc.edu
† Electronic address: erickcek@physics.unc.edu

rolling scalar field [60], also enhance small-scale fluctua-
tions. Thus, probing the small-scale power spectrum is
key to understanding early-Universe physics.

Unfortunately, at sub-Mpc scales, we only have up-
per bounds on density fluctuations, which are obtained
through the absence of secondary effects. Density con-
trasts of order 0.3 at horizon entry would form primordial
black holes, so constraints on their abundance constrain
Pζ(k) <∼ 3× 10−2 over a wide range of scales [61]. An
excess of integrated power would imprint distortions onto
the CMB blackbody spectrum, so their nonobservation
constrains Pζ(k) <∼ 2× 10−5 for k <∼ 104 Mpc−1 [62].
However, UCMHs supply the strongest constraints. The
nondetection of gamma rays from dark matter anni-
hilation in UCMHs constrains Pζ(k) <∼ 3× 10−7 for

k <∼ 107 Mpc−1 [9].

However, with one recent exception [7], all constraints
derived from UCMHs have been calculated assuming
they develop the ρ ∝ r−9/4 density profile, which is
drawn from analytic radial infall theory [63, 64] and taken
to apply to halos forming at z >∼ 1000 due to the small
velocity dispersion at those times [1]. This profile has a
much steeper inner form than is typically observed in
simulations (e.g. [65]), a property that enhances the
observational signatures of UCMHs. The applicability
of this profile was first called into question in Ref. [66],
and in Ref. [67], hereafter Paper I, we showed by means
of N-body simulations that halos forming in a Gaussian
field—even UCMHs forming as early as z = 1000 from
fluctuations as extreme as 6.8σ—do not develop the
ρ ∝ r−9/4 density profile. Instead, they develop shallower
inner density profiles: ρ ∝ r−γ with 1 ≤ γ ≤ 3/2. In
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this paper, we present our results in greater detail and
discuss the implications of this discovery. In addition
to the ρ ∝ r−9/4 assumption, previous UCMH-derived
power spectrum constraints employed only the minihalos
that form at z ≥ 1000. Since we have shown that all
minihalos develop shallower density profiles, there is no
need to make this restriction. We show that the resulting
new bounds on the power spectrum are stronger than the
previous UCMH constraints.

The ρ ∝ r−9/4 density profile has been taken to be a
consequence of nearly radial mass infall onto a halo that
formed at z >∼ 1000 [1], so we replicate this scenario as
closely as possible in our simulations by finding extremely
rare 6.8σ density peaks that collapse near z = 1000.
The UCMH formation scenario is tested in two power
spectra at the opposite extremes that are motivated by
inflationary phenomenology. First, we use a spiked power
spectrum with fluctuations enhanced over a narrow range
of scales. Second, we use a stepped power spectrum
with fluctuations enhanced over all scales accessible to
the simulation. In the narrowly enhanced power spec-
trum, halos develop in relative isolation, a situation that
might be expected to reproduce the radial infall solution.
However, we find that all halos, even the UCMHs forming
at z ' 1000, develop ρ ∝ r−3/2 inner density profiles. In
fact, this profile also appears in another context: it is the
density profile seen in the smallest halos forming above a
free-streaming cutoff [68–73]. Meanwhile, the broadly en-
hanced power spectrum builds halos hierarchically from
smaller halos and yields density profiles of the Navarro-
Frenk-White (NFW) form [74–76],

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (1)

with a ρ ∝ r−1 inner profile. This is the same form
that appears in simulations of galaxy-scale structure.
Evidently, UCMHs, which we define as halos forming at
z ≥ 1000, develop the same density profiles as halos that
form at much later times.

We also introduce a new model for predicting the
density profiles of minihalos that form from spiked power
spectra based on their formation times. Spectral spikes
can arise from steps in the inflaton potential [31–34] or
from particle production during inflation [35–37]. Near
the free-streaming cutoff, the power spectrum imprinted
by an early matter-dominated era is also similar to a
spike [56–59]. Moreover, spiked power spectra are less
well constrained than flatter power spectra by CMB
spectral distortions, which limit the power integrated
over a broad range in k-space [62]. In this paper, we
begin an investigation of halos forming from spiked power
spectra that we will expand upon in the next paper of this
series [77], hereafter Paper III (in preparation).

Finally, we discuss the impact of our result on the
capacity for minihalos to constrain the primordial power
spectrum. We use our model to calculate an upper
bound on the amplitude of spiked power spectra that
incorporates the new shallower minihalo density profiles.

This upper bound is based on limits from Fermi-LAT [78]
on gamma rays from dark matter annihilation. Despite
the reduced annihilation rate implied by the shallower
profile, this constraint is stronger than an equivalent
UCMH constraint derived using the ρ ∝ r−9/4 density
profile. Our model provides a stronger constraint because
it accounts for all halos, whereas the old UCMH model
only counted halos forming at z >∼ 1000. Our calcula-
tion demonstrates the continued viability of minihalos as
probes of the small-scale power spectrum, and we discuss
future avenues for improvement.

This paper is organized as follows. In Section II,
we select power spectra and detail the setup of our
simulations. Section III presents the simulation results.
The UCMH density profile is the main result, but we
also make remarks on UCMH growth and the effects
of mergers. In Section III D, we sample later-forming
minihalos to develop a general model for minihalo density
profiles, and Section IV employs this model to calculate
new constraints on the primordial power spectrum. In
Section IV D, we discuss how the new minihalo picture
differs from the old UCMH picture. Section V concludes
and outlines the ways in which our calculation can be
improved in future work. Appendices A and B contain
additional information about our simulations, including
numerical convergence tests. Appendices C, D, and E
contain further details about our calculation of the power
spectrum constraint.

II. SIMULATION PREPARATION

We carry out simulations of halos forming at z ' 1000
from extreme peaks in the density field. This picture
is intended to match the UCMH formation scenario [1],
and we aim to show conclusively that the ρ ∝ r−9/4

single-power-law density profile does not arise in halos
forming due to an enhancement of the primordial power
spectrum.

A. Power spectrum

In order to perform numerical experiments on such
early-forming minihalos, we must start with an enhanced
power spectrum. Inflationary models supply a rich phe-
nomenology in this respect. Steps, kinks, or second-
derivative jumps in the inflaton potential would imprint
spikes, steps, or bends, respectively, on the primordial
power spectrum [30–34]. Particle production during
inflation can produce a spike in the power spectrum [35–
37], while multifield inflation can imprint steps [38–40]
or oscillations [41, 42]. Inflation aside, an early matter-
dominated era enhances perturbations that enter the
horizon prior to the onset of radiation domination [56–
59], and an era dominated by a fast-rolling scalar field
generates a similar enhancement [60].
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Figure 1. The dimensionless primordial power spectrum of
curvature fluctuations used in our UCMH simulations. The
solid line shows the spike modification, while the dotted line
shows the step. The vertical dashed line indicates the smallest
k (largest scale) accessible in the simulations.

For our simulations, we consider two examples from
these possible power spectrum enhancements. First,
we consider a narrow spike in the power spectrum.
This shape has possible inflationary origins, as discussed
above, and is also qualitatively similar to the enhance-
ment generated by an early matter-dominated era at
scales close to the free-streaming cutoff. Next, we con-
sider a step in the power spectrum, intended to represent
the opposite extreme where fluctuations are enhanced
over a broad range of scales. The two power spectra
are plotted in Fig. 1. We superpose these modifications
on a conventional power spectrum with amplitude As =
2.142× 10−9 and spectral index ns = 0.9667 [28]. The
spike contains 90% of its added power inside 1 e-fold in
k, while the step amplifies fluctuations over the full range
of scales accessible to the simulation. We will focus on
the spiked power spectrum for most of Section III and
return to the step in Section III E.

Halos forming from more extreme density contrasts are
both more spherically symmetric [79] and less affected by
nearby structure. To best simulate the UCMH formation
scenario, we tune our power spectra so that halos forming
by z = 1000 are exceedingly rare. In particular, the
spiked power spectrum is tuned so that a 6.8σ fluctuation
is necessary to seed such early collapse, and we generate
a large number of random fields in order to obtain a
handful of boxes to use as initial conditions for our
simulations. This procedure may be contrasted with that
of Ref. [66], who simulated a typical box whose most
extreme peak was 4.3σ. UCMHs forming from peaks
as extreme as 6σ are employed to derive observational
constraints [9], so we wish to exceed this amplitude to
conclusively rule out the ρ ∝ r−9/4 profile.

B. Simulation setup

A matter power spectrum is calculated at z = 1000
from the primordial power spectrum using the Boltzmann
code Camb Sources [80, 81]. To match simulation
behavior, this power spectrum is evolved back to an

earlier time using the Mészáros equation [82]

d2δ

dy2
+

2 + 3y

2y(y + 1)

dδ

dy
− 3

2y(y + 1)
δ = 0, (2)

which describes the subhorizon (Newtonian) evolution
of dark matter density perturbations when baryons and
radiation fluctuations are neglected. Here y ≡ a/aeq,
where aeq is the scale factor at matter-radiation equality.
The physical solution to this equation is obtained by
matching its general solution to the asymptotic behavior
δ ∝ ln(0.44a/aH) during radiation domination, where aH
is the scale factor when the perturbation mode enters the
horizon. This physical solution is [83]

δ ∝
[
ln

(
k

0.12h Mpc−1

)
− ln

(√
1 + y + 1√
1 + y − 1

)](
y +

2

3

)
+ 2
√

1 + y, (3)

which provides a convenient prescription for calculating
the evolution of a density contrast δ at linear order during
mixed matter-radiation domination.

We choose to study fluctuations of order 0.2 kpc, so
the spectral spike of Fig. 1 is centered at wavenumber
ks = 6.8 kpc−1. The starting redshift is chosen to be
z = 8 × 106 so that a density contrast that collapses at
z ' 1000 is initially of order 0.1. We do not expect our
results to depend significantly on either of these choices.
We fix a comoving box size of 7.4 kpc and search periodic
Gaussian random fields generated at the initial redshift
for candidate peaks to collapse near z = 1000. Our
search proceeds by first generating a Gaussian random
field on a grid at the initial redshift using our spiked
power spectrum. We then linearly evolve that field to
z = 1000 and check whether the evolved density field has
a peak1 with δ > 1.686, the linear threshold for collapse.
If so, we use that grid, and if not, we generate a new
one. Once we have a suitable density field, we use the
Zel’dovich approximation to perturb a particle grid into a
corresponding initial particle distribution. Since our sim-
ulations begin while the Universe is radiation-dominated,
initial velocities are computed by differentiating Eq. (3);
see Appendix A for details.

For the spiked power spectrum shown in Fig. 1, we
generate 2.3 million random density fields. Nine of them
meet the collapse criterion, so we use these as the initial
density fields and simulate them to z = 50. We also pick
out one such density field, which we label the primary,
to simulate at higher resolution and perform convergence
tests; a slice of its initial density field is shown in Fig. 2.
Notice how extreme the most overdense region is com-
pared to its surroundings: this is indeed a rare event.

1 For simplicity, we require δ > 1.686 in one grid-cell in our 5123-
cell density field, which corresponds to a smoothing scale of
1.4× 10−2 kpc. Because the power is concentrated in the spike,
the precise choice of smoothing scale is unimportant.
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Figure 2. A slice of the 7.4 kpc density field used as initial
conditions for the primary simulation run. Lighter regions
are denser. The circle indicates the spherical region for a
high-particle-density simulation.

We also resimulate each of these density fields with
increased simulation-particle density by resampling the
initial field at higher resolution and including only a
sphere of radius 0.93 kpc (with vacuum boundary con-
ditions) around the most overdense point. This cut-out
region is drawn in Fig. 2. This procedure allows us to
probe smaller scales, and in Appendix B, we demonstrate
that it does not change the density profile of the UCMH
in the primary density field at z = 100. This convergence
does not hold for the UCMHs in all nine fields: some
of them begin to be influenced by structure outside the
sphere as early as z ∼ 200. Consequently, we only carry
out these cut-out simulations up to z = 400 for the other
eight density fields.

C. N-body code

We use the cosmological simulation code Gadget-2
[84, 85] for our numerical experiments. Gadget-2 is
a hybrid N-body code that computes short-range forces
using a tree method and long-range forces using Fourier
techniques on a mesh. A discussion on our choices of
simulation parameters can be found in Appendix B, along
with convergence studies. We also model all matter as
collisionless dark matter with Ωm = 0.3089 [28]: at
the scales we study, dark matter halos cannot capture
significant baryon content.

In order to accurately simulate a halo collapse at
z ' 1000, our experiments must begin during radiation
domination, so our N-body code must account for ra-
diation. However, fluctuations in the radiation density
field decay rapidly after horizon entry (see e.g. [86]),
so it is only necessary to model the effect of a smooth
radiation component on the expansion rate. We modified
the publicly available release of Gadget-2 to include
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Figure 3. The density field for the primary run at different
redshifts. Top: A (0.24 kpc)2 × 0.06 kpc slice showing the
collapse of the UCMH near z = 1000. The color scale
is logarithmic in units of the background matter density.
Bottom: The full (7.4 kpc)3 projected density field at z = 715.
There is still only one halo, a testament to its rarity.

such a radiation component. Tests of the accuracy of
this code can be found in Appendix A.

III. SIMULATION RESULTS

A visual inspection of the primary simulation box
yields some key insights. First, we note that our criterion
for early collapse, that the linear density contrast be
δ > 1.686 by z = 1000, has worked as expected. Fig. 3
shows a slice of the density field evolving from z = 1255
to z = 941 at the location of the extreme density peak
where we expect the UCMH to form, and we see that
the density at the central point grows astronomically
around z = 1000, an indication of collapse. To emphasize
the rarity of this event, we also show the density field
at z = 715: the UCMH is still the only halo to have
collapsed by this redshift.

Next, we look at the density field at a much later
redshift. Fig. 4 shows the density field at z = 100
projected along one axis. The imprint of the spike in the
power spectrum is evident, for we see an almost uniform
distribution of halos with no large-scale structure. This
is quite unlike a hierarchical growth picture (c.f. Fig. 10).
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UCMH

Figure 4. The projected density field of the primary
simulation box at z = 100. Top: The full 7.4 kpc field.
Bottom: Expanded pictures of the UCMH. The left (right)
panel shows the projected density field for the surrounding
1.5 kpc (0.3 kpc) cube. Note that the expanded pictures do
not fully match the white boxes because they are projected
over smaller depths.

There is also minimal small-scale structure: these halos
appear generally isolated and are only linked by fila-
ments. These points are emphasized in the enhanced
pictures of the main halo, where we see more clearly the
lack of small-scale structure. We also see the beginning
of fragmentation of the filaments into halos, but this
fragmentation is a numerical artifact; see Appendix B.

According to the Rockstar halo finder [87], there are
530 halos with masses above 1.5M� at z = 100, and these
halos contain 24% of the total mass of the simulation box
within their virial radii. Such an abundance of halos is
clearly expected in any picture that can produce a halo
that collapses by z ' 1000, but later halos have been
neglected in prior UCMH treatments because they are
expected to be less compact. We will explore in Sec-
tion III D whether younger halos have the same structure
as the oldest ones.

A. Density profiles

We now study the spherically averaged density profiles
of the UCMHs. We simulated the UCMH in the pri-
mary simulation box at the highest particle density (see
Appendix B for details), so we first focus our study on
that halo. This halo has mass M = 31M� at z = 100,
and Fig. 5 shows its density profile at z = 50, z = 100,
z = 200, and z = 400 plotted in physical (not comov-
ing) coordinates. We first note that this halo clearly
does not follow a ρ ∝ r−9/4 or similar single-power-law
form, contradicting the assumption made in prior UCMH
treatments. We have conducted extensive convergence
testing to confirm the validity of this result, as described
in Appendix B. The actual density profile is shallower,
which will substantially reduce the observational signals
of these halos, as we discuss in Section IV. However, the
inner profile is still steeper than the ρ ∝ r−1 behavior
of the NFW profile given by Eq. (1). In fact, the inner
density profile approaches ρ ∝ r−3/2, and the full density
profile is fit well by the double-power-law form

ρ(r) =
ρs

(r/rs)3/2(1 + r/rs)3/2
(4)

which scales as ρ ∝ r−3/2 at small r and ρ ∝ r−3 at
large r. We will call Eq. (4) the Moore profile due to its
similarity to the form in Ref. [88].

Inner profiles ρ ∝ r−γ with index γ ranging from 1.3 to
1.5 have previously been observed in the smallest halos
forming above a cutoff in the power spectrum [68–72],
and Ref. [73] found that the emergence of ρ ∝ r−3/2

is connected to the presence of a uniform-density core
in the precursor density peak. In this light, it is not
surprising that ρ ∝ r−3/2 arises in our spiked power
spectrum, since like a cutoff power spectrum, it lacks
power below the scale of the spike and produces cored
peaks in the primordial density field. The physical origin
of the ρ ∝ r−3/2 profile is not well understood, but it is
known to be markedly less rotationally supported than
the NFW profile [73].

We next remark that the inner density profile does
not appear to change in time: observe the remarkable
concordance between the inner density profiles at differ-
ent redshifts. This behavior was noticed in the radial
infall solution [63, 64], and it is explained in that context
by the steepness of the potential well: newly accreted
matter passes through the central regions too quickly to
significantly affect the density there. This effect is only
enhanced in a three-dimensional picture, where newly
accreted matter is likely to possess too much angular
momentum to pass through the central parts of the halo
at all. The stability of the density profile in time is
important to us for two reasons. First, it allows us to use
the measurement of the inner density profile at an early
redshift as a proxy for the inner density profile at a later
redshift, when the expansion of the comoving coordinates
has brought the inner profile beyond our resolution limits
(due to force softening; see Appendix B). In other words,
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Figure 5. The spherically averaged density profile of the UCMH in the primary density field at z = 400, z = 200, z = 100,
and z = 50. The vertical axis is scaled by r3/2 to reduce the vertical range and better exhibit asymptotic behaviors; this
practice will be adopted without remark in later figures. The density profile approaches ρ ∝ r−3/2 at small r and ρ ∝ r−3 at
large r and is fit well by Eq. (4) (solid curve). The solid vertical line shows the physical scale of the power spectrum spike at
z = 1000, while the vertical dashed lines show the halo virial radius at different redshifts. Inset: The same plot without y-axis
scaling. A ρ ∝ r−9/4 curve is shown for comparison. We plot physical, not comoving, quantities. We show results from the
vacuum-bounded sphere inside rvir for z ≤ 100, and results from the full box otherwise. The smallest radius at each redshift is
set by r > 2.8ε, where ε is the force-softening length parameter (see Appendix B), and contains N > 3000 particles.
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Figure 6. Radial density profiles at z = 400, z = 200,
z = 100, and z = 50 of all nine UCMHs. These density
profiles are cut off above the virial radius at each redshift.
Evidently, all of our UCMHs possess similar density profiles
to the one depicted in Fig. 5 (which is also plotted here).

we view the innermost points in Fig. 5, present only at
high z, as also representing the density profile at later z,
e.g. z = 50. This argument allows us to claim that we
have probed radii down to 10−3.5rvir at z = 50, where rvir

is the UCMH virial radius. (If one does not accept this
argument, we have still probed radii down to 10−2.5rvir at
z = 100.) Second, this stability means we can study the
density profile at redshifts of order z ∼ 100 and assume
that—in the absence of disruptive events—the profile is

the same today. Observational signals can therefore be
calculated using this profile (see Section IV).

Finally, we remark on the fitting parameters ρs and rs
of the Moore profile [Eq. (4)] for the UCMH shown in
Fig. 5. The scale radius rs that separates the ρ ∝ r−3/2

behavior from the ρ ∝ r−3 behavior appears to be set by
the physical scale associated with the spike in the power
spectrum at z = 1000, obeying rs ' 0.7[(1 + z)ks]

−1.
Similarly, the scale density ρs is close to the background
physical density at z = 1000, obeying ρs ' 30(1 + z)3ρ̄0,
where ρ̄0 is the background matter density today. These
correlations suggest that the ρ ∝ r−3/2 inner profile is
set during the earliest stages of the halo’s growth while
the ρ ∝ r−3 outer profile grows during late accretion. We
will develop these ideas in more detail in Section III D.

All of these results come from the UCMH in the
primary simulation run. We also simulated eight other
UCMHs, and we show the density profiles of all nine of
them in Fig. 6. All of these halos collapsed near z = 1000,
and there is clearly little deviation in the structure of
these halos. In particular, all of them exhibit the same
ρ ∝ r−3/2 inner density profile, providing further evi-
dence that the ρ ∝ r−9/4 pure power law density profile
does not arise in a realistic formation scenario.
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B. Mass accretion

We briefly remark on the mass accretion history of the
UCMHs. UCMHs have been previously assumed to grow
as M ∝ a [1], but this is a result from radial infall theory
[64]. This theory describes an overdense region in an
unperturbed background, which is very different from the
Gaussian random field from which a realistic halo would
form.

Figure 7 shows the growth of our UCMHs in virial
mass Mvir. For z <∼ 400 (a >∼ 2.5× 10−3), the mass of
these halos appears to be logarithmic in a. We do not
claim that this logarithmic behavior necessarily contin-
ues to later times: halos that form from flatter power
spectra have been observed to grow with redshift z as
M ∝ e−αz for some α [89], which becomes slower than
logarithmic, and halos in a spiked power spectrum could
exhibit similar growth. However, we have confirmed that
these halos grow much more slowly than prior UCMH
treatments have assumed.

C. Mergers

We noted earlier that halo density profiles are expected
to remain stable over time in the absence of disrupting
events. Halo mergers, however, are disruptive events and
may be expected to alter the inner density profile. In
fact, this topic has been already explored in the context
of the steeper inner profiles (ρ ∝ r−γ with γ > 1) that
arise in the smallest halos above a cutoff in the power
spectrum [90]. Consecutive mergers cause these halos
to relax toward shallower ρ ∝ r−1 inner density profiles.
However, these simulations used halos with concentration
parameter c = rvir/rs ' 2, where rvir is the halo virial
radius and rs is the scale radius. Halos forming in a
spiked power spectrum are sufficiently isolated that they
may be expected to have concentration parameters of
order 10 or higher by the time a merger takes place. A
systematic study of the effect of halo mergers on highly
concentrated halos is beyond the scope of this paper, but

z=134 z=86 z=79

10−43× 10−5 3× 10−4

r (kpc)

106

3× 105

ρ
r3

/
2

(M
�

k
p
c−

1
)

z = 50

z = 100

Figure 8. A merger event and its result. Top: A (1.5 kpc)2×
0.7 kpc (projected) region showing the first merger event
experienced by the larger halo, which formed at z ' 1000.
Bottom: The change in the density profile of this UCMH as a
result of the merger. Mass is dispersed from the inner region.

we will briefly discuss in this section the effect of a merger
on one of our UCMHs.

Three of our nine UCMHs underwent mergers between
z = 100 and z = 50, with another two impending.
One such event occurring at z ' 86 is depicted in the
upper panel of Fig. 8. The UCMH had concentration
c = 12 at this time. The lower panel shows the density
profile of this halo at z = 100 and z = 50 before and
after the merger takes place, and we see that this event
has been energetic enough to disperse mass out of the
center of the halo and make the inner profile shallower.
Unfortunately, we do not have the resolution at these
redshifts to determine the slope of the inner profile after
the merger, but the fact that the density profile at r < rs
is altered indicates that the stability we observed in
Section III A does not hold after mergers.

D. Other minihalos

So far, we have studied only the exceptionally rare
halos that form at z ' 1000. In this section, we explore
a sample of other halos in the simulation box shown in
Fig. 4. We pick 10 halos, including the UCMH, with
masses evenly distributed between 3 M� and 32 M� at
z = 100. Figure 9 shows the density profiles of these
halos. As we discussed in Section III A, we expect that
each halo will obey

rs ∝ ack
−1
s (5)

ρs ∝ a−3
c ρ̄0, (6)
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Figure 9. The density profiles of a sample of 10 halos in the
same simulation box at z = 100. Top: The density profiles in
physical coordinates. Bottom: The density profiles scaled to
each halo’s formation time using Eqs. (5) and (6).

where ac is the scale factor at the halo’s formation.
To test this hypothesis, we must determine ac for each
halo. We do so using linear theory in the following way.
We find the earliest time at which Rockstar identifies
the halo and map the location of the halo at this time
onto the initial density grid. Then we walk from this
grid-cell to a local maximum in the density field by
successively moving to the densest neighboring cell. This
local maximum is taken to be the amplitude δpk of the
protohalo peak. Finally, we evolve the grid using linear
theory, Eq. (3), and find the time at which δpk = 1.686,
the linear threshold for collapse. The scale factor at this
time is taken to be ac.

With a formation time ac now associated with each
halo, we test Eqs. (5) and (6) by plotting in Fig. 9 the
same density profiles with ρ scaled to a−3

c ρ̄0 and r scaled
to ack

−1
s for each halo. We find that the scatter in the

density profiles is greatly reduced, with the bulk of the
halos obeying

ρsr
3/2
s ' 17ρ̄0k

−3/2
s a−3/2

c (7)

(ρsr
3/2
s is the r � rs asymptote of ρr3/2 for a Moore

profile). The two halos lying farthest below this line have
formed only slightly before the time z = 100 at which we
are seeing them, so it is plausible that their inner profiles
are still growing.

We do not attempt to study the scaling of ρs and rs
separately because this requires fitting functional forms
to the density profiles, which is unreliable with the res-

olution to which we are limited here. However, ρsr
3/2
s

alone is a useful combination because it determines most

of the annihilation signal of the halo (see Section IV). Our
ultimate goal is to predict halo density profiles from the
power spectrum in order to place constraints thereon, and

we find the spread in ρsr
3/2
s to be well within a factor of 2

of Eq. (7), which is promising. However, our halo sample
is small and we are biased by resolution toward larger
halos. We are also limited to a single power spectrum.
We will carry out in Paper III a more systematic study
of the density profiles of halos forming from spiked power
spectra.

E. Power spectrum with step

We finally step away from the spiked power spectrum
to verify that a picture with power evenly distributed
across scales still produces NFW halos even in the UCMH
scenario involving the early collapse of rare extreme
overdensities. We used the step power spectrum shown
in Fig. 1 and prepared a set of initial conditions in a
(7.4 kpc)3 periodic box using the procedure described
in Section II. Boxes were repeatedly generated until the
z = 1000 collapse criterion was met, which occurred
after about 2300 boxes. We began the simulation run
at z = 8 × 106 and ended it at z = 100; the resulting
UCMH at z = 100 is shown in Fig. 10. It is evident from
the density field that this is a very different picture from
what we have seen with our spiked power spectrum. The
large-scale power has caused much of the mass within
the box to collapse into the UCMH, while at the same
time, the small-scale power has given this halo abundant
substructure.

Figure 10 also shows the radial density profile of this
halo. It follows the NFW form well, and does not fit the
Moore form at all. Moreover, we resolve an inner density
profile that is at least as shallow as ρ ∝ r−1. Even halos
that collapse near z ' 1000 still possess the shallow inner
profiles characteristic of hierarchical clustering.

A natural question to ask is how the density profiles
behave in the transition between a spiked and a scale-
invariant power spectrum. A careful treatment is beyond
the scope of this paper, but we will see in Paper III
that the answer is ultimately related to mergers. As we
discussed in Section III C, mergers induce shallowing of
the inner density profile toward ρ ∝ r−1. Meanwhile,
mergers occur more frequently when the power spectrum
spike is wider, culminating in the hierarchical cluster-
ing characteristic of conventional power spectra. These
concepts explain, at least qualitatively, the shift from
ρ ∝ r−3/2 to ρ ∝ r−1 inner profiles when the spike in the
power spectrum is replaced by a step.

As a final remark, we have found between the spiked
and step power spectra that UCMHs develop the same
density profiles as halos that form at much later times.
The spike produces UCMHs with similar density profiles
to those of the smallest halos forming above a free-
streaming cutoff, while the step produces UCMHs with
density profiles resembling those of the galactic halos
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Figure 10. A halo at z = 100 that collapsed at z ' 1000 from
the step power spectrum shown in Fig. 1. Top: The projected
full (7.4 kpc)3 density field and an expanded picture of the
1.5 kpc cube surrounding the UCMH. Bottom: The density
profile of this halo. It is fit well by the NFW profile.

created by hierarchical clustering. In retrospect, this is
not surprising. Ref. [1] conceived of UCMHs as the late
stage of rare non-Gaussian density fluctuations, so they
assumed a conventional (unenhanced) power spectrum
when calculating the velocity dispersion at z ' 1000.
The small velocity dispersion that resulted was the basis
for the argument that radial infall theory would apply,
but this velocity dispersion would be increased by any
power spectrum enhancement. There is no difference,
aside from the emerging dominance of a radiation or dark
energy component, between halos forming from a boosted
power spectrum at early times and halos forming from
a conventional power spectrum at late times. However,
the velocity dispersion is not the only obstacle to the
ρ ∝ r−9/4 profile. As we noted in Paper I, this profile
results specifically from the collapse of an overdense
region in an unperturbed background, which is not an
instance of a peak that forms in a Gaussian random field.
We will revisit this topic in Paper III when we explore the
relationship between a collapsed halo and its precursor
density peak.

IV. CONSTRAINING THE POWER
SPECTRUM

UCMHs have been employed to constrain the primor-
dial power spectrum through nonobservation of their
predicted signals in a variety of contexts. For thermal-
relic dark matter models, such as the weakly interacting
massive particle (WIMP) model [91–93], the dark matter

annihilation rate is greatly increased by the compactness
of the assumed ρ ∝ r−9/4 density profile. The strongest
constraints therefore come from nonobservation of the
strong gamma-ray [7–9] or neutrino [10, 11] signals that
are expected from WIMP annihilation within such dense
clumps. These annihilation signals would also lead to
other observable effects, such as heating of the intergalac-
tic medium [13, 14] and galactic gas [15] and interactions
with the CMB or other background photons [16–18].
The primordial power spectrum can also be constrained
by searching for UCMHs using astrometric microlensing
[21] or macrolens distortions [19] or by constraining the
UCMH abundance using pulsar timing arrays [20, 24].

However, with the exception of Ref. [7], all of these
works used only minihalos that form at z >∼ 1000 and

assumed these halos possessed the ρ ∝ r−9/4 density
profile. We showed in Section III that minihalos forming
in an enhanced power spectrum, even UCMHs forming
at z >∼ 1000, develop significantly shallower profiles.
We also found that younger minihalos possess the same
density profiles as the oldest ones. In this section, we
explore the impact of this discovery. The observational
signatures of UCMHs forming at z >∼ 1000 are weakened
by the shallower density profile, but our analysis is now
able to include minihalos forming at z < 1000. As we
saw in Figure 4, these younger minihalos are far more
abundant than the rare UCMHs.

Broadening to the entire population of minihalos
brings new challenges. Minihalo-minihalo mergers will
reduce the minihalo count and alter their density profiles
[90], and tidal interactions within galactic structures will
have more impact on the shallower density profiles [94].
These considerations are beyond the scope of this paper,
but to motivate further study, we calculate in this section
how the new minihalo picture directly alters previous
constraints on the power spectrum derived from UCMHs.
To this end, we focus on the upper bound derived by
Bringmann, Scott, and Akrami [9] (hereafter BSA) based
on the gamma-ray signal from WIMP annihilation within
UCMHs. In our calculation, we adopt our new minihalo
model from Section III D but otherwise replicate BSA’s
calculation as closely as possible. In particular, we
employ the same Fermi-LAT data and, like BSA, when
deriving bounds from diffuse emission, we consider only
a Galactic contribution and neglect the possibility of
improving constraints by including extragalactic sources
(e.g. Refs. [4, 7]).

The derivation of a constraint on the power spectrum
using WIMP annihilation in minihalos proceeds in three
steps:

1. The annihilation signal of a minihalo is calculated.

2. A constraint on the number density of minihalos
is calculated from the nonobservation of such an
annihilation signal.

3. The number density constraint is converted into a
constraint on the primordial power spectrum using
the statistics of Gaussian random fields.
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In past studies, such as BSA, UCMHs are assumed to
collapse at z ' 1000, so the UCMH luminosity is solely a
function of its size. We now have the machinery to study
minihalos collapsing at any redshift, so we calculate the
minihalo luminosity L as a function of both its formation
time and the scale of the density fluctuation that sourced
it.

A. Halo luminosity

We assume that the density profile of a minihalo fol-
lows the Moore fitting form given by Eq. (4). In addition,
we found in Section III that the Moore fitting parameters
rs and ρs can be predicted from the halo formation time
as

rs = f1k
−1
s ac

ρs = f2ρ̄0a
−3
c , (8)

where ρ̄0 = Ωcρcrit is the background dark matter density
today, ks is the (comoving) wavenumber associated with
the spike in the power spectrum, and ac is the halo forma-
tion time in a spherical collapse model. The coefficients
f1 and f2 are determined from simulations; they possess
some scatter between halos, but we will neglect that scat-
ter for the purpose of this calculation. The annihilation
signal of the Moore profile depends dominantly on the
combination f2

2 f
3
1 and only logarithmically on f2 alone,

so we will use f2f
3/2
1 = 17 from Eq. (7), which was

derived from a sample of halos forming at different times,
along with the more approximate value f2 ' 30 derived
from the UCMHs alone.

The gamma-ray signal L of a halo with density profile
ρ(r) may be calculated as

L = 4πg

∫ R

0

r2ρ2(r)dr, (9)

where R is the radius of the halo and g is a factor related
to the annihilation mechanism. For threshold photon
energy Eth,

g =
∑
k

∫ mχ

Eth

E
dNk
dE

dE
〈σkv〉
2m2

χ

, (10)

where dNk/dE is the differential photon yield of the k-
th annihilation channel and 〈σkv〉 is its cross section.
Eq. (10) describes the energy flux; for the photon flux,
the factor of E is removed from the integrand.

For now, we keep our calculations model-independent
and return to Eq. (9). Equation (9) diverges for a ρ ∝
r−3/2 profile, but this implies that annihilations would
have smoothed out the central cusp within some small
radius. We use the standard estimate [95]

ρmax =
mχ

〈σv〉(t− ti)
(11)

for the maximum density at time t in a structure that
formed at ti, where mχ is the mass of the WIMP and 〈σv〉
is its thermally averaged velocity-weighted cross section
(in the zero-velocity limit). Note that t − ti ' t today
if halo formation occurs at z >∼ 10, and we will see in
Section IV D that this is true for the minihalos relevant
to power spectrum constraints. Thus, we take t − ti to
be the age of the universe today, making ρmax the same
for all minihalos. For a canonical WIMP with 〈σv〉 =
3× 10−26 cm3s−1 and mχ = 1 TeV, ρmax ∼ 1016ρ̄0.

We now evaluate Eq. (9) for a Moore profile as given
by Eq. (4) modified to have maximum density ρmax. The
choice of radiusR has negligible impact as long asR > rs,
so taking R→∞, we obtain

L = 4πgρ2
sr

3
s

[
1

3
+ ln(1 +D)− 3 + 2D−1

2(1 +D−1)2

]
, (12)

where D ≡ (ρmax/ρs)
2/3 = (f−1

2 ρmax/ρ̄0)2/3a2
c . For

halos collapsing at z <∼ 1000, we find that D >∼ 104 � 1
for a canonical WIMP, so Eq. (12) simplifies to

L ' Bk−3
s a−3

c ln(βac) (13)

with

B ≡ 8πgf2
2 f

3
1 ρ̄

2
0, β ≡ e−7/12

(
ρmax

f2ρ̄0

)1/3

. (14)

B and β are independent of the scale ks of the spike in the
power spectrum, and since we are neglecting scatter in f1

and f2, they are the same for all halos. We remark that
since β ∼ 105, the logarithmic dependence on ac is weak
for ac >∼ 10−3. If halos relax to a ρ ∝ r−1 inner profile
due to mergers or other disruptive dynamics, a similar
calculation with the NFW profile yields L ' Bk−3

s a−3
c /6,

which is smaller by a factor of ∼ 30 for formation time
z ∼ 100. In this case, Eq. (9) converges, so the effect of
ρmax is negligible.

B. Halo abundance

We use observational detection limits to constrain
the minihalo number density based on the luminosity
we computed above. Following BSA, we employ two
approaches that utilize different observations and yield
different constraints. First, we treat the minihalos as
point sources and use their nonobservation to constrain
their number density. Next, we consider the diffuse
background flux from minihalos within the Milky Way
and use the observed background gamma-ray flux to
constrain the minihalo number density.

1. Point sources

The gamma-ray flux F from a point source is related
to its luminosity L and distance d by F = L/(4πd2).
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If our detecting instrument has flux sensitivity Fmin to
point sources, then this imposes a maximum observable
distance dobs =

√
L/(4πFmin) corresponding to the ob-

servable volume

Vobs =
1

3
√

4π

L3/2

F
3/2
min

. (15)

If Vobs were the same for all halos, then the expected
number of observable objects would be λ = nVobs, where
n is the halo number density, and we could use Poisson
statistics to constrain n from our knowledge of Vobs.
However, in our model, L, and hence Vobs, is a function
of the formation time ac of the minihalo. Instead of the
total number density n, we must consider the differential
number density dn/dac of minihalos forming at a = ac.
The expected number of observable minihalos is now

λ =

∫ 1

0

dac

(
dn

dac

)
obs

Vobs(ac), (16)

where we write (dn/dac)obs to clarify that we are re-
ferring to the number density of minihalos within Vobs,
which in general differs from the cosmological mean
dn/dac.

From Poisson statistics, the probability that there is
at least one observable object is P (Nobs > 0) = 1− e−λ.
If the confidence level associated with the flux threshold
Fmin is x, then the probability of observing at least one
object is Pobs = x(1− e−λ). If we observe no objects, an
upper bound on λ with confidence level y is obtained by
setting Pobs ≤ y, implying λ ≤ − ln(1−y/x). Combining
this result with Eqs. (15) and (16), we find∫ 1

0

dac

(
dn

dac

)
obs

L3/2(ac) ≤ −3
√

4π ln(1− y/x)F3/2
min,

(17)
which gives us the prescription for constraining the
local number density of minihalos based on the non-
observation of point sources. Due to the dependence
of a minihalo’s luminosity on its formation time, we
constrain a formation time-weighted density instead of
a total UCMH density.

To complete the calculation, we need to relate
(dn/dac)obs to the cosmological mean dn/dac that is
predicted by the power spectrum. To do this, we assume
that the spatial distribution of minihalos is proportional
to that of dark matter at large2; that is, n(x) ∝ ρ(x).
We define µ(d) ≡ 3M(d)/(4πd3ρ̄0) as the ratio of the
dark matter mass M(d) contained within distance d from
Earth to the cosmological mean dark matter mass con-
tained within an equal volume. Then the mean minihalo

2 Galactic tides and other disruptive processes would realistically
alter the spatial distribution of minihalos, but we neglect them
here.
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Figure 11. The ratio µ(d) = 3M(d)/(4πd3ρ̄0) of the
dark matter mass M(d) within distance d of Earth to the
cosmological mean dark matter mass in an equal volume. An
NFW profile is assumed for the Milky Way with parameters
from Ref. [96]. Minihalos are assumed to follow this spatial
distribution.

number density within dobs is related to the cosmological
mean by the factor µ(dobs), implying(

dn

dac

)
obs

= µ

√ L(ac)

4πFmin

 dn

dac
. (18)

We evaluate µ(d) in Appendix C and plot it in Fig. 11
assuming an NFW profile for the Milky Way with param-
eters from Ref. [96]. For dobs

<∼ 8 kpc, the distance to
the Galactic center, µ(dobs) ' 2 × 105 is approximately
constant.

2. Diffuse flux

The calculation is simpler for the case of a diffuse
gamma-ray flux. If dF/dΩ is the upper bound on the ob-
served differential gamma-ray flux that can be attributed
to minihalos, then we can relate this to the differential
flux summed over all minihalos along the line of sight,

dF
dΩ
≥
∫ ∞

0

s2ds

∫ 1

0

dac
dn

dac

ρ(s)

ρ̄0

L(ac)

4πs2
, (19)

where s is the line-of-sight distance. Here we have
inserted the factor ρ(s)/ρ̄0 to account for the Milky Way
density field at distance s from Earth. Following BSA,
we are only interested in the Galactic contribution to
the diffuse flux, so we truncate the density field beyond
the Milky Way, eliminating the need to redshift distant
sources. The minihalo abundance constraint from the
diffuse flux at angle θ to the Galactic center now becomes∫ 1

0

dac
dn

dac
L(ac) ≤

4π

K(θ)

dF
dΩ

, (20)

where

K(θ) ≡
∫ ∞

0

ds
ρMW(

√
s2 + r2

0 − 2sr0 cos θ)

ρ̄0
, (21)

ρMW(r) is the Milky Way density profile, and r0 is the
solar orbital radius.
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C. The power spectrum

Finally, we must find the relationship between dn/dac
and the power spectrum P(k). The standard way to
relate a halo population to a power spectrum is Press-
Schechter theory [97]. For any power spectrum with a
small-scale cutoff, including a spiked power spectrum, it
is necessary to employ a sharp k-space smoothing filter
to avoid overpredicting structure below the cutoff scale
[98–100]. However, there are additional challenges in
adapting Press-Schechter theory to our purposes. Halo
formation times can be obtained from the conditional
mass function [101], but these yield the average formation
time of progenitor halos. It is necessary to construct
merger trees to study the first progenitor. Also, Press-
Schechter theory always destroys a halo when two halos
merge. For unequal-mass mergers, a remnant of the
smaller halo is generally expected to survive as a subhalo
with its central structure intact [94].

For our calculation, we employ a more direct approach.
Bardeen, Bond, Kaiser, and Szalay [79], hereafter BBKS,
formulated a description of the statistics of peaks in a
Gaussian random field. In this approach, each peak
in the primordial density field is to be identified with
a halo at late times. Spiked power spectra are very
natural arenas for peak theory because they possess finite
integrated power and generate peaks around a particular
scale, so it is not necessary to use any smoothing filter.
To represent a spike centered at wavenumber ks, we
consider a delta-function matter power spectrum of the
form P(k) ∝ D(a)2ksδ(k − ks), where D(a) is the linear
growth function. We will see in Section IV D that the
minihalos contributing to our power spectrum constraint
form in matter domination, so D(a) = a, and we may
write

P(k) = Aa2ksδ(k − ks), (22)

where A parameterizes the integrated area of the spike.
We use the BBKS formalism to calculate the number
density of peaks with δ > δc, where δc = 1.686 is the lin-
ear collapse threshold. The identification of these peaks
with halos leads to a number density n that increases
in time solely due to halo formation, implying we can
differentiate it with respect to scale factor a to obtain the
distribution of halos by formation time. A disadvantage
to this procedure is that minihalo-minihalo mergers are
not automatically accounted for and must be handled
separately, a task that is beyond the scope of this paper3.

As detailed in Appendix D, we obtain

dn

dac
=
k3
s

ac
h

(
δc

A1/2ac

)
, (23)

3 However, as we will see in Paper III, mergers become rare as
the power spectrum spike is narrowed. With a delta-function
spike in the primordial power spectrum, we suspect that they
are negligible.
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Figure 12. The upper bound on the integrated area A0 of a
spike in the primordial curvature power spectrum centered at
scale wavenumber ks. Black curves use point sources, while
red curves employ the diffuse flux. The shaded regions are
ruled out in the new minihalo picture with shallower density
profiles. The dashed lines show the corresponding constraints
in the old UCMH model calculated using the abundance
constraints in BSA. As another comparison, the dotted lines
show the constraints using shallower density profiles while still
restricting to UCMHs forming at z ≥ 1000. While the new
density profiles slightly weaken the upper bound, the inclusion
of all minihalos ends up leading to stronger constraints.

where h(ν) is the distribution of peak heights given by
Eq. (D3) (see Fig. 22). With the minihalo signal given
by Eq. (13), the abundance constraints given in Eqs.
(17) and (20), and this relation between dn/da and the
power spectrum, we can place an upper bound on the
amplitude A of the spike in the matter power spectrum.
The final step is to convert this bound into a bound on
the primordial curvature power spectrum. We adopt a
similar delta-functional form for the primordial power
spectrum,

Pζ(k) = A0ksδ(k − ks), (24)

with amplitude A0. The transfer function given by
Eq. (D7) converts the bound on A into a bound on A0.

To carry out the calculation, we assume a canonical
WIMP with cross-section 〈σv〉 = 3× 10−26 cm3s−1 and
mass mχ = 1 TeV that annihilates into bb̄ pairs. We
take the Fermi-LAT point-source sensitivity for energies
above 100 MeV to be Fmax = 4× 10−9 cm−2s−1 for
a 5σ detection, and we set y = 0.95 in Eq. (17) for
a 95% confidence limit. For the diffuse flux, we use
dF/dΩ = 1.2× 10−5 GeVcm−2s−1sr−1 as the 2σ limit
(with systematic error alone) in the energy flux from the
Galactic poles as measured by Fermi-LAT [102]. Finally,
we take the Milky Way to have an NFW density profile
with parameters determined in Ref. [96]. All of these
choices are picked solely for parity with BSA, and further
detail can be found there.
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Figure 12 shows the resulting upper bound on the
integrated area A0 of a spike in the primordial curvature
power spectrum if the spike is located at wavenumber ks.
We show the constraints from point sources and diffuse
flux separately, and the shaded regions are forbidden.
We wish to compare this constraint to the upper bound
derived in BSA under the UCMH picture, but BSA as-
sumed a locally scale-invariant power spectrum for their
analysis. Therefore, we employ the UCMH abundance
constraints in BSA to derive a constraint on the spiked
power spectrum of Eq. (22). This calculation is detailed
in Appendix E, and the results are plotted on Fig. 12 as
dashed lines. Evidently, new minihalo constraints can be
stronger than old UCMH constraints despite employing
shallower density profiles. For comparison, we also show
as dotted lines the upper bounds that employ the shal-
lower density profiles while restricting to UCMHs forming
by z ≥ 1000. These bounds are calculated by altering
the upper limit of the integrals in Eqs. (17) and (20).
We noted in Paper I that the shallower density profiles
reduce the signal from each halo by a factor of 200, and
we see now that this reduction weakens the upper bound
on the power spectrum by roughly a factor of two4.
The inclusion of all minihalos, instead of only the rare
UCMHs that form by z = 1000, more than compensates
for this loss.

D. Discussion

To develop a better understanding of the power spec-
trum constraints in this new minihalo picture, we spe-
cialize to the diffuse flux and to point sources in the
small-object limit where dobs is sufficiently short that
µ(dobs) ≡ µ is constant5. In these cases, it is possible
to derive the analytic constraints (see Appendix D)

A
(

ln
βδc
A1/2

)2/9 [(
ln

βδc
A1/2

)
I3/2 − J3/2

]4/9

≤
(
−3
√

4π ln(1− y/x)

µ

)4/9(
δ3
cksFmin

B

)2/3

(25)

for point sources in a uniform field with µ times the
background density and

A
[(

ln
βδc
A1/2

)
I1 − J1

]2/3

≤
(

4πδ3
c

K(θ)B

dF
dΩ

)2/3

(26)

4 In the next section, we discuss why power spectrum constraints
derived from UCMHs are so insensitive to reductions in the
UCMH signal. This feature is a consequence of the restriction
to halos forming at z ≥ 1000 and is no longer applicable once all
minihalos are included.

5 The small-object limit produces the power-law branch of the
point-source constraint in Fig. 13, implying that this limit cor-
responds to ks >∼ 20 Mpc−1.

for diffuse sources. Here, I3/2 = 0.228, J3/2 = 0.370,
I1 = 0.0477, and J1 = 0.0478 are different moments of
the peak height distribution h(ν).

We first note that if we neglect logarithms6, the con-
straint on A is proportional to B−2/3 and hence to
the −2/3 power of the WIMP annihilation rate within
minihalos [see Eq. (13)]. This relationship implies that
the upper bound on A is highly sensitive to the WIMP
model. For example, if the annihilation cross section 〈σv〉
were increased by a factor of 8, the upper bound on A
would be reduced by a factor of 4. This behavior is a
stark contrast to that of constraints in the old UCMH
picture, which exhibit a very weak dependence on WIMP
model (see BSA Fig. 5).

The same distinction arises when considering the ob-
servational flux constraint Fmin or dF/dΩ. The upper
bound on A is more sensitive to these observational
constraints in the new minihalo picture than in the old
UCMH picture. Therefore, improved observational limits
are far more valuable in the new picture. This property is
also responsible for how, as depicted in Fig. 12, the point-
source constraint in the new picture exhibits markedly
stronger ks-dependence: larger objects are more visible,
and this heightened visibility now significantly strength-
ens the upper bound on the power spectrum on the
corresponding scales. Likewise, we saw in the last section
that reducing the UCMH gamma-ray signal by a factor
of 200 only weakens the UCMH-derived power spectrum
bounds by a factor of two. A similar change to the
luminosity of all minihalos would weaken the bounds in
the new picture by a factor of 34.

These differences in sensitivity can be understood in
the following way. Upper bounds on minihalo abundance
(f in BSA; n or dn/dac here) are always highly sensitive
to minihalo signals and observational flux constraints,
whether we restrict to UCMHs or not; compare Eqs.
(17) and (20) to BSA Eqs. (26) and (29). However, the
sensitivity of a power spectrum bound to these abun-
dance constraints depends on the types of minihalos that
contribute. In the old UCMH picture, constraints were
dominated by halos forming from initial overdensities
that correspond to 5σ-6σ fluctuations. These peaks are
so far out in the Gaussian tail of the density distribution
that altering their abundance only marginally changes
the distribution’s spread7. In the new minihalo picture,
constraints are influenced by the bulk of the peaks, so an
alteration to the abundance of these peaks now changes
the spread of the distribution more drastically. We

6 Using Fig. 13, β ∼ 105 � A1/2, so the logarithmic dependence
of Eqs. (25) and (26) on A is weak.

7 The (differential) abundance of a density excess δ is proportional
to exp

(
− 1

2
δ2/σ2

)
if δ is distributed with spread σ. If δ/σ

is large, then a large change in the abundance—the quantity
constrained by observations—corresponds to a small change in
σ, which sets the power spectrum normalization. (This is just
an illustration: to be precise, we should use the cumulative
distribution function.)
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Figure 13. The constraint on the integrated area A of the
spiked matter power spectrum Eq. (22). Note that this is not
the primordial power spectrum; see Fig. 12 for that constraint.

also remark on another consequence of this difference in
statistics: the constraints will no longer be as sensitive
to possible small deviations from Gaussianity that would
significantly affect the tails of the distribution [103].

The influence of the peak population on the power
spectrum constraint is encoded in the moments I3/2,
J3/2, I1, and J1 of the peak distribution. These are
integrals over peak height ν = δ/σ, and their integrands
exhibit most of their support between ν = 2 and ν = 4
(see Appendix D). Consequently, the integrals in Eqs.
(17) and (20) that determine the upper bounds on the
power spectrum are dominated by peaks with amplitudes
between 2σ and 4σ, which confirms the difference in
statistics from the old UCMH picture. We can also
use this information to find the formation times of the
corresponding halos. The upper bound on A, which
parameterizes the matter power spectrum, is shown in
Fig. 13 and lies between 3× 102 and 6× 104. The root-
mean-squared density variance of the spiked power spec-
trum is aA1/2 at scale factor a, implying that the collapse
time ac of a peak with amplitude ν is ac = δc/(νA1/2). It
follows that peaks contributing significantly to the power
spectrum constraint would have formed between z = 20
and z = 600, confirming that matter domination was a
valid approximation.

Finally, we remark on a similar constraint that was
recently published by Nakama, Suyama, Kohri, and Hi-
roshima in Ref. [7] (hereafter NSKH). Unlike previous
UCMH works, this work did not employ the ρ ∝ r−9/4

density profile. Instead, NSKH assumed that miniha-
los developed NFW density profiles, and like us, they
constrained a delta-spiked power spectrum. Thus, a
comparison is warranted: despite assuming shallower
density profiles, NSKH were able to derive comparable
or stronger constraints on the integrated area A0 (A2 in
their paper) of the power spectrum spike.

To model the NFW fitting parameters for their miniha-
los, NSKH assumed that halo concentrations c = rvir/rs
grow at the rate c ∝ a1.575. However, as we discussed
in Section III, the inner profiles of dark matter halos
tend to remain stable in time in the absence of disruptive
events. Under the same conditions, the virial radius rvir

in physical coordinates grows approximately as a. If the
concentration is growing much faster than a, then this

implies that the physical scale radius is shrinking in time
and the halo center is becoming denser. Our simulations
suggest that this is not the case: the concentrations of our
minihalos grow as c ∝ a. The rate c ∝ a1.575 was drawn
from a previous work [104] that simulated structure
growth from scale-free power spectra. With these power
spectra, halo mergers are common, and these can cause
halo physical virial radii rvir to grow significantly faster
than a. This fact may explain the large concentration
growth rate: it reflects rapid growth in virial radius rvir

rather than shrinkage in scale radius rs. Since halos that
form from a spiked power spectrum do not experience
these mergers, their concentrations grow more slowly.

Their assumption of a faster concentration growth
rate likely explains why the constraints in NSKH are
so strong. The annihilation rates within such concen-
trated minihalos would be greatly enhanced. However,
NSKH also employed the diffuse gamma-ray flux from
extragalactic sources, whereas we, for parity with BSA,
assumed only Galactic sources. This could contribute to
the strength of their constraints: as we discuss above,
the upper bound on the power spectrum is now highly
sensitive to observational limits on the gamma-ray flux.

V. CONCLUSION

Expanding on the results of Paper I, we have shown
that the minihalos that form due to a power spectrum en-
hancement do not develop the single-power-law ρ ∝ r−9/4

density profile even when they form by z = 1000 from ex-
tremely rare (6.8σ) peaks. Instead, they develop density
profiles with inner power-law indices between −3/2 and
−1, depending on the range of scales that are enhanced.
This finding contradicts the assumption made by previ-
ous UCMH work [8–11, 21–26], throwing into question
power spectrum constraints that have been derived from
this theory. However, we have also offered hope. We
constructed a new model based on our simulation results
for minihalos that form from a spiked power spectrum,
and we calculated a new power spectrum constraint in
this model using Fermi-LAT constraints on gamma rays
from WIMP annihilation. The resulting upper bound
on the primordial power spectrum is stronger than an
equivalent constraint derived in the old UCMH picture.
It turns out that the drop in signal from each early-
forming halo is more than compensated by the vast
increase in the number of halos that contribute to the
expected gamma-ray signal.

Our constraint is specialized to a power spectrum en-
hanced over a narrow range of scales. Such spiked power
spectra have motivations in inflationary phenomenology
[31–37] and in nonstandard thermal histories of the Uni-
verse [56–59], but halos forming from these spectra have
not been numerically studied prior to this work and
Refs. [66, 67]. Our model for halos forming from spiked
power spectra predicts halo density profiles based on their
formation time: the characteristic density is set by the
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background density at formation, while the characteristic
scale is set by the spike scale at formation. However, we
developed this model based a single power spectrum. We
also neglected any scatter in the density profiles of halos
forming at the same time. In Paper III, we will extend
this model by quantifying its scatter and its applicability
to different power spectra.

Inflationary phenomenology also includes less scale-
localized power spectrum boosts such as steps or bends
[30–34, 38–40]. We have found that the halos forming
from a stepped power spectrum develop the same den-
sity profiles as later-forming galaxy-scale halos. Conse-
quently, there is already a vast body of literature on mod-
eling the density profiles of these halos (e.g. [75, 76, 104–
128]), and we expect that these results may be adapted
toward constraining steps or bends in the power spec-
trum.

Our constraint also employed only gamma rays from
WIMP annihilation in Galactic or near-Galactic sources.
We made this restriction in order to facilitate a direct
comparison between an upper bound on the power spec-
trum derived in the shallower minihalo picture and an
equivalent bound derived using the results of Ref. [9],
which made the same restriction, used UCMHs forming
at z ≥ 1000, and assumed the ρ ∝ r−9/4 profile. As a
result, we have left open the possibility of immediately
improving the power spectrum constraints by considering
the diffuse annihilation signal from extragalactic miniha-
los as Refs. [4, 7] do. We have also not explored the
impact of the shallower density profiles on gravitational
probes such as astrometric microlensing [21] and pulsar
timing arrays [20, 24].

Most pressingly, we neglected the influence of disrup-
tive events on the minihalo abundance and their density
profiles. Minihalo-minihalo mergers are one such disrup-
tive event. They can be counted by means of Press-
Schechter theory [101]8 with a sharp k-space filter [98–
100], but their physical impact, especially on minihalos
with ρ ∝ r−3/2 inner profiles, is not yet well understood.
Ref. [90] simulated controlled halo mergers and observed
that successive mergers cause the inner density profiles
of these halos to relax toward shallower forms, an effect
that we confirmed. However, they also found that the
merger product can have a higher central density than
its progenitor halos. Moreover, for highly unequal-mass
mergers, a remnant of the smaller halo is expected to
survive within the larger one [94].

Figure 14 illustrates the possible impact of mergers on
the minihalo-derived constraints on the primordial power
spectrum. If we naively assume that minihalos develop
NFW profiles with the same scale parameters rs and
ρs, then the shallower inner profiles weaken the power
spectrum bound by roughly a factor of 10. If mergers
additionally halve the minihalo count, the constraint is

8 However, the self-consistency of Press-Schechter merger rates is
questioned in Ref. [129]; see also Ref. [130] for a counterpoint.
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Figure 14. Possible upper bounds on the integrated area
A0 of a spike in the primordial curvature power spectrum
centered at scale wavenumber ks when mergers are taken
into account. The black curve shows the bound with mergers
neglected, which is the same constraint shown in Fig. 12. The
blue curve shows the bound if minihalos develop NFW profiles
with the same scale parameters rs and ρs, while the red curve
additionally halves the number of halos.

weakened by another factor of 1.6. We suspect that this
latter constraint, depicted as the red curve in Fig. 14,
represents a pessimistic estimate of how mergers may
weaken the upper bound on the power spectrum. First,
we neglected the increased central densities that can
result from mergers. Second, we assumed that all halo
profiles fully relax to NFW form, while Ref [90] showed
that such relaxation is a gradual process occurring over
multiple mergers. Finally, mergers are relatively rare in
spiked power spectra, and even if more than half of the
minihalo population is ultimately destroyed by mergers
(not even becoming subhalos), smaller halos, which con-
tribute less to observational signals, are preferentially
destroyed. Hence, we expect that a careful accounting
of mergers will produce a result between the black and
red curves of Fig. 14.

Disruption of minihalos can also occur by the tidal
influence of larger galactic potentials or by high-speed
encounters with objects, such as other substructure or
stars, within these galactic potentials. This topic has
been studied in a number of previous works, such as
Refs. [131–137], and a recent overview of such disruptive
processes can be found in Ref. [138]. It is also possible to
bypass the issue of galactic disruption by only considering
minihalos that have not accreted onto galactic halos, as
Ref. [7] does.

Our goal in this paper was to show that despite them
not possessing the ρ ∝ r−9/4 density profiles that were
previously assumed, minihalos are still able to yield com-
petitive constraints on the primordial power spectrum.
The plethora of minihalos that now contribute to ob-
servational signals counteracts the loss of signal from the
rarest of these halos. This finding motivates their further
study, and we have discussed avenues for future work.
With a better understanding of disruptive processes,
minihalos can become strong and robust cosmological
probes.
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Appendix A: Simulations prior to the
matter-dominated era

For our numerical experiments, we employ a modified
version of Gadget-2 that includes a smooth radiation
component, and we begin the simulations long before
matter-radiation equality. The simulation starting red-
shift of z = 8 × 106 is necessary so that our enhanced
fluctuations are still in the linear regime with amplitude
δ <∼ 0.1. However, the assignment of initial particle
velocities is more complicated in this picture than during
matter domination, and we use the Zel’dovich approxi-
mation to compute them in the following way.

We begin with the density contrast field δ(q) as a
function of the comoving grid coordinate q. We wish
to convert this description into a comoving position field
x(q) and velocity field ẋ(q) treating q as a Lagrangian
coordinate assigned to each particle. The position calcu-
lation proceeds by writing

x(q) = q + s(q), (A1)

where the displacement vector s is related to δ at linear
order by ∇ · s = −δ. If we assume s is irrotational,
then s ∝ ∇δ, and the Fourier-transformed quantities are
related by

s(k) =
ik

k2
δ(k). (A2)

Eqs. (A1) and (A2) determine the initial positions and
are valid regardless of the composition of the universe.

We next turn to the velocity field ẋ(q) or its Fourier
transform ẋ(k) = ṡ(k). Let t0 be the time at which we
are generating initial conditions, and write s as a function
of time, using a new function D(k, t) to encode its time
dependence:

s(k, t) = D(k, t)s(k). (A3)

We define s(k) ≡ s(k, t0) so that D(k, t0) ≡ 1. During
matter domination, D(k, t) = a(t)/a(t0) independent of
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Figure 15. The power spectrum growth from z = 8× 106 to
z = 996: a comparison between Gadget-2 with an added ra-
diation component and linear theory. In matter domination,
the power spectrum would have instead grown by a factor of
about 6× 107.

k, but radiation complicates the picture. However, it
is evident from Eq. (A2) that s and δ evolve identically
in time, implying D(k, t) = δ(k, t)/δ(k, t0). The initial
velocity becomes

ẋ(k, t0) =
δ̇(k, t0)

δ(k, t0)
s(k) =

d ln δ(k, t)

dt

∣∣∣∣
t=t0

s(k), (A4)

which is evaluated using Eq. (3) with d/dt ≡ aH(a)d/da.
To test the modified simulation code and initial condi-

tions, we compare simulation results to linear theory. We
produce a matter power spectrum at z = 8 × 106 using
the procedure described in Section II B, but we leave
it unenhanced so that density contrasts near matter-
radiation equality are well in the linear regime. We
draw initial conditions from this power spectrum in a
(7.4 kpc)3 periodic box and then evolve this box to
z = 996 using our modified version of Gadget-29.
All simulation parameters are the same as those of the
reference simulation described in Appendix B. Fig. 15
shows the growth of the power spectrum during this
simulation. It matches the linear-theory prediction of
Eq. (3), including the scale-dependent growth. Note that
without the radiation component, the power spectrum
would have instead grown by a factor of about 6× 107.

As another demonstration, we also evolve the initial
density field to z = 996 using linear theory by apply-
ing the evolution specified by Eq. (3) to the Fourier-
transformed density field; we may then compare the
resulting density field to the one evolved using Gadget-
2. In Fig. 16, we plot a slice of the density field at
z = 996 evolved using both methods. Our modified
version of Gadget-2 with initial conditions described
above successfully reproduces the results of linear theory.

9 The fluctuations drawn from an unenhanced power spectrum
have amplitude δ ∼ 10−3 at z = 8 × 106, which results in
extremely small particle accelerations. To evade errors result-
ing from floating-point precision, we also set Gadget-2 to use
double-precision arithmetic. All simulations in this paper employ
this setting.
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Figure 16. Fractional overdensity fields evolved to z = 996
from the same initial box at z = 8×106. The figure depicts a
(7.4 kpc)2 × 1.5kpc slice. The left and right panels show the
results of linear theory and modified Gadget-2 respectively.

Appendix B: Convergence testing and simulation
parameters

1. Simulation parameters

We carry out a reference simulation run and five
convergence-testing runs: one with improved force accu-
racy, one with improved integration accuracy, two with
respectively increased and reduced softening scales, and
one with higher particle count. Our parameter choices
for these runs are summarized in Table I and described
below. We refer the reader to Ref. [84] for further detail
on these parameters.

a. Particle count N In our reference run, we use
N = 5123 particles arranged in a 3-dimensional grid.
In the high-particle-count run, we increase this to
N = 10243. At the final redshift, the UCMH in the
reference run has 2.7× 105 particles within its virial
radius rvir while the UCMH in the high-particle-count
run has 2.2× 106 particles.

b. Particle mesh size Nmesh This parameter de-
scribes the size of the particle mesh used for the long-
range force calculation. In our reference run, we
set Nmesh = N . In the force-accuracy run, we set
Nmesh = 23N to increase the accuracy of the long-range
force calculation.

c. Short/long-range split rs Gadget-2 computes
the long-range force using a particle mesh and the short-
range force using an octree. The parameter rs determines
the splitting scale in units of mesh cells. In our reference
run, we set rs = 1.25 mesh cells. In the force-accuracy
run, we increase this to rs = 2.5 mesh cells, which
effectively leaves the splitting scale unchanged since we
also double the mesh frequency.

d. Short-range cutoff rcut The short-range force cal-
culation (using an octree) is cut off beyond rcut mesh
cells. In our reference run, we set rcut = 4.5 mesh
cells. In the force-accuracy run, we increase this to
rcut = 9.0 mesh cells, which similarly leaves the cutoff
scale unchanged since we also double the mesh frequency.

Table I. Simulation parameters for convergence runs. See the
text for descriptions of the symbols.

label N Nmesh
N

rs rcut α η dtmax
ε

∆r

reference 5123 1 1.25 4.5 0.005 0.025 0.03 0.03
force acc. 5123 23 2.5 9.0 0.002 0.025 0.03 0.03

integration 5123 1 1.25 4.5 0.005 0.01 0.01 0.03
softening ×2 5123 1 1.25 4.5 0.005 0.025 0.03 0.06
softening × 1

3
5123 1 1.25 4.5 0.005 0.025 0.03 0.01

N ×8 10243 1 1.25 4.5 0.005 0.025 0.03 0.03

e. Tree-force error parameter α Gadget-2’s short-
range (octree) force calculation only opens a tree node if
the estimated force error from truncating it is less than
α times the estimated total force. In our reference run,
we set α = 0.005. In the force-accuracy run, we set
α = 0.002 to increase the accuracy of the short-range
force.

f. Adaptive timestep parameter η Gadget-2 uses
individual adaptive timesteps with an accuracy parame-
ter η. Roughly, the timestep is set so that the maximum
displacement due to a particle’s acceleration over one
timestep is smaller than η times the force-softening scale.
In the reference run, we set η = 0.025, while in the
integration-accuracy run, we set η = 0.01 to reduce the
particle timesteps.

g. Maximum timestep dtmax In order to avoid large
integration errors at early redshifts when accelerations
are small, Gadget-2 imposes a maximum particle
timestep dtmax, which is expressed in units of the Hubble
time (so it is actually d ln a). In the reference run, we set
dtmax = 0.03, while in the integration-accuracy run, we
set dtmax = 0.01 to improve the integration accuracy at
early times.

h. Force softening scale ε Gadget-2 softens the
gravitational force based on the length parameter ε,
which we set to be a fraction ε/∆r of the initial in-
terparticle spacing ∆r ≡ box size/N1/3. Note that
the force becomes fully Newtonian at 2.8ε; ε itself is
defined to be the minimum radius that can appear in
the point-particle potential. In the reference run, we
set ε/∆r = 0.03. Larger softening lengths can minimize
discreteness artifacts, but they also systematically bias
the forces and prevent smaller scales from being resolved.
We perform two runs with altered softening: one with a
larger softening scale ε/∆r = 0.06 and one with a smaller
softening scale ε/∆r = 0.01.

2. Procedure, results and discussion

We conduct convergence testing on the primary simu-
lation run of Section III. The density field is generated
with 10243 cells but reduced to 5123 cells for all but the
high-particle-count run by averaging 8 neighboring cells.
Each convergence run is carried out as in Section III with
only the simulation accuracy parameters changed. We
study here the spherically averaged density profile ρ(r)
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of the UCMH at z = 100.
We find that the density profile at each radius rapidly

fluctuates between closely-spaced snapshots, and that
these fluctuations differ between simulation runs with
different parameters. Moreover, we will see later that
these fluctuations are a discreteness artifact (although
they are not merely the Poisson noise in each radial bin,
which is much smaller), so we wish to ignore them. To
do so, we obtain density profiles in 16 snapshots between
z = 100 and z = 99 and average them. We also compute
the root-mean-squared variance between the snapshots as
an estimate of the magnitude of this time variation. Such
a small time range was chosen so that we only smooth
over rapid fluctuations and not over significant global
evolution (such as growth). Nevertheless, this time is
short enough that it fails to average over fluctuations at
large radii where the particle motion is much slower. We
may estimate the upper limit of the range over which
rapid fluctuations are smoothed as the radius rlim where

σr(rlim)∆t = rlim, (B1)

where σr(rlim) is the radial velocity dispersion at radius
rlim and ∆t is the time difference between z = 100 and
z = 99. rlim is thus the radius at which particles are
moving fast enough that their radial distance traveled
over the averaging period is of the same order as their
radial position. For r < rlim, there can be no significant
correlation between the positions of a particle at the
beginning and at the end of the averaging period, so we
expect to have averaged over these discreteness artifacts.

There is also an obvious lower limit to the range of radii
over which we expect our results to be representative,
and that is where the radius is equal to 2.8ε, where ε
is the gravitational softening length. Below this radius,
all forces are non-Newtonian, and the density profile will
unphysically flatten out.

Our main results are shown in Fig. 17. The dotted
lines indicate the density profile of the reference simu-
lation run, with the gray shading representing the root-
mean-squared variance in snapshots between z = 100 and
z = 99. The solid lines with colored shading depict
alternate runs.

a. Force accuracy

In the force-accuracy run, we reduce the tree-force
error parameter α to increase the accuracy of the short-
range force and simultaneously double the resolution of
the particle mesh in order to increase the accuracy of the
long-range force. We change the short/long range split-
ting parameters rs and rcut only to keep the short/long
range split the same, since those parameters are ex-
pressed in mesh cells. The result is shown in Fig. 17.
We see that for r < rlim, the density profile of the
force-accuracy run matches well that of the reference run,
suggesting that the reference force-accuracy parameters
were sufficient.

b. Integration accuracy

In the integration-accuracy run, we reduce the inte-
gration timestep in order to reduce error from the nu-
merical integration of particle trajectories. Specifically,
we reduce the adaptive timestep parameter η as well as
the maximum timestep dtmax. The first change should
improve integration accuracy at late times when parti-
cles are experiencing large accelerations, and the second
should improve integration accuracy at early times when
accelerations are small. The result is shown in Fig. 17.
We see that for 2.8ε < r < rlim, the density profile of the
integration-accuracy run matches that of the reference
run, indicating that the reference integration-accuracy
parameters were sufficient.

c. Force softening

The gravitational force softening length ε is a more
difficult parameter to tune [139–144]. Forces are softened
at short range to account for the way the numerical sim-
ulation uses discrete particles to represent a continuous
mass distribution. Thus, a larger ε reduces the influence
of discreteness artifacts such as two-body collisions. On
the other hand, a larger ε also introduces a bias due to
the forces being weaker than Newtonian, and a smaller ε
can allow smaller scales to be probed. Unlike the other
parameters we consider, there is no clear direction of
greater accuracy in ε. Ref. [141] suggests a minimum
softening length εacc ≡ rvir/

√
Nvir (Nvir is the number

of particles in the halo virial radius), which follows from
the criterion that the maximum two-body acceleration
caused by a close approach be smaller than the minimum
mean-field acceleration within the system. We adopt the
choice ε = 0.03∆r, where ∆r is the initial interparticle
spacing, in our reference run, which results in ε ' 2.3εacc

at z = 100. We also execute two other simulation runs
with ε at respectively a third and twice the reference
value.

The results are shown in the bottom right of Fig. 17.
The vertical solid line represents 2.8ε for the reference
run, while the two vertical dotted lines represent 2.8ε for
the runs with altered softening. As one would expect, the
density profile for each run flattens out for r < 2.8ε. We
hope to find convergence for 2.8ε < r < rlim (recalling
that each run has a different ε), but while the density
profiles in these ranges are close, there is a systematic
flattening as ε becomes larger. What has happened here
may be elucidated by performing a Moore fit [Eq (4)]
to each run and rescaling ρ and r to the fitting param-
eters ρs and rs. The rescaled plot is shown in Fig. 18.
Evidently, each run can still be fit by the same form in
the range 2.8ε < r < rlim but has a different Moore
concentration parameter c ≡ rvir/rs: the reference run
has c = 9.6, the reduced softening run has c = 10.2, and
the increased softening run has c = 9.2. This discrepancy
is likely the result of a force bias: the softening is causing
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Figure 17. Radial density profiles averaged between z = 100 and z = 99; the shading indicates the root-mean-squared variance
over this interval. Clockwise from top left: force-accuracy, integration-accuracy, softening-length, and particle-resolution
convergence comparisons. The vertical solid (dotted) lines indicate 2.8ε for the reference run (alternate runs), the range
beyond which forces are exactly Newtonian. The dot-dashed line indicates rlim, the radius beyond which fluctuations are likely
not averaged (see text for details). (ρ̄ is the background matter density.)

a slight enlargement of the system. Fortunately, the
effect is small. If we assume that either rs or c is a linear
function of ε, then with a purely Newtonian force, we
would have c ' 10.4, corresponding to an 8% reduction
in rs relative to the reference simulation. Moreover, the
softening length does not affect the major conclusion
regarding the shape of the density profile: all runs fit
the Moore form well for r > 2.8ε.

d. Particle count

We use 5123 = 1.3 × 108 particles in the reference
run, which places 2.7 × 105 particles within the virial
radius of the UCMH at z = 100. To avoid strong dis-
creteness effects, we must use enough particles that two-
body collisions have negligible impact. To estimate this,
we consider the two-body relaxation timescale trelax, the
time scale over which two-body encounters significantly
alter a particle’s energy. For a region of radius r about
the halo center containing N simulation particles with
total mass M , trelax = N/(8 lnN)tcross (e.g. [145]) with

tcross ' r/
√
GM/r. The relaxation timescale should be

much longer than the dynamical age of the halo, which is
essentially the age of the universe at z = 100. We calcu-
late trelax for the UCMH in the reference simulation and

10−1 100

r/rs

4× 10−1

ρ
r2
/(
ρ
s
r2 s
)

reference
softening ×1/3

softening ×2

Figure 18. The softening-length convergence test with ρ and
r rescaled for each run to its Moore fitting parameters. The
thick dashed line shows the fit, which is the same for all runs
by construction. (Shading and vertical lines have the same
meaning as in Fig. 17.)

find that even at the smallest relevant radius, r = 2.8ε,
trelax is 100 times the age of the universe at z = 100.
This calculation suggests that the reference simulation
contains enough particles that collisional artifacts are
unimportant.

Nevertheless, Fig. 17 shows a comparison between the
density profiles in the reference run and in a simulation
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Figure 19. Root-mean-squared variance in the density
profile across 16 snapshots between z = 100 and z = 99.
The reference and high-particle-count runs are compared.
(Vertical lines have the same meaning as in Fig. 17.)

8× particle count

reference

force accuracy

Figure 20. The filament to the left of the UCMH (see Fig. 4)
for different simulation parameters. This figure demonstrates
the presence of artificial fragmentation: the filament frag-
ments differently for different parameters.

run with 8 times as many particles. As expected, the two
density profiles match well in the range 2.8ε < r < rlim,
implying that the simulation is converged with respect
to particle count in these regions. Moreover, the time-
fluctuations in the density profile, measured as the root-
mean-squared variance across snapshots between z = 100
and z = 99, are smaller in the high-particle-count sim-
ulation than in the reference simulation, a fact that we
confirm in Fig. 19. This observation confirms our claim
that the fluctuations are a discreteness artifact.

These fluctuations may be related to the artificial frag-
mentation of filaments that occurs in simulations with
a small-scale cutoff in the power spectrum [146, 147].
We observe artificial fragmentation in our simulations
using the spiked power spectrum, as evidenced in Fig. 20,
which shows one of the filaments connected to the UCMH
for different simulation parameters. Like the density
fluctuations, the frequency and size of these fragments is
correlated with the simulation particle resolution, while
their positions vary with force-accuracy parameters. The
fluctuations in the density profile could be caused by the
accretion of artificial fragments.
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Figure 21. A comparison between the UCMH simulated in
a (7.4 kpc)3 periodic box with a halo from the same initial
overdense region simulated in a sphere of radius 0.92 kpc with
vacuum boundary conditions. (Vertical lines have the same
meaning as in Fig. 17.)

3. The smallest resolved radius

We have shown that the density profile of the UCMH
in the reference version of the primary simulation run
is converged with respect to simulation parameters at
z = 100 for radii r between 2.8ε = 0.012rvir and rlim =
0.11rvir. This halo has rvir = 1.0× 10−3 kpc (in physical
coordinates) at z = 100, so the converged radius range is
1.2× 10−5 kpc < r < 1.1× 10−4 kpc. Moreover, we can
regard the density profile above rlim = 1.1× 10−4 kpc
as converged in its long-range behavior, with only the
small-scale fluctuations being not converged. Unfortu-
nately, the lower limit of 1.2× 10−5 kpc imposed by the
force softening is not sufficient to capture the asymptotic
behavior in ρ(r) at small r (see Fig. 5).

We can double the resolution by employing the high-
particle-count simulation run, but we would like to go
still deeper into the halo. While it is computationally
challenging to simulate the full box with more than 10243

particles, it is also unnecessary. A common practice in
N-body simulations is to resample the halo progenitor at
higher particle resolution and embed this high-resolution
region into the same periodic box. Because the halos
we consider are much more isolated than halos in a
hierarchical growth picture, we need not even go this far:
we can simply isolate a sphere around the halo progenitor
and use vacuum boundary conditions. Fig. 21 shows the
comparison between the periodic box with 10243 parti-
cles and an otherwise identical simulation of a vacuum-
bounded sphere of radius 0.92 kpc around the UCMH.
The spherical region is depicted in Fig. 2. The sphere
requires only 1/122 as many particles for an identical
result. We therefore exploit this method to simulate the
UCMH in the primary simulation at 64× particle density
and the other UCMHs at 8× particle density relative to
the reference simulation with 5123 particles.

However, this concordance does not hold at z = 50, nor
is it guaranteed to hold at z = 100 in other boxes. The
longer the simulation run, the more likely the UCMH is
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Table II. The particle count N , particle mass m, simulation region size (side length or diameter), and ending redshift for each
simulation used to produce the results in Section III. The π/6 factor in the particle count comes from isolating a spherical
region. The number of particles Nvir within the UCMH is also shown at each redshift from which results are presented. For
the secondary simulations, an average figure is given.

description N m (M�) size (kpc) region end z Nvir|z=400 Nvir|z=200 Nvir|z=100 Nvir|z=50

primary 10243 1.5× 10−5 7.4 periodic 100 5.5× 105 1.3× 106 2.2× 106 -
primary, z = 50 5123 1.2× 10−4 7.4 periodic 50 - - - 4.3× 105

primary, vacuum b.c. π/6× 5123 1.8× 10−6 1.85 sphere 100 4.6× 106 1.1× 107 1.9× 107 -
secondary 5123 1.2× 10−4 7.4 periodic 50 7.1× 104 1.7× 105 2.8× 105 4.2× 105

secondary, vacuum b.c. π/6× 2563 1.5× 10−5 1.85 sphere 400 5.8× 105 - - -
step 5123 1.2× 10−4 7.4 periodic 100 - - 1.2× 107 -

to be influenced by structure that originated outside of
the sphere. Therefore, we restrict our use of the vacuum-
bounded sphere to the primary simulation box (which we
tested here) up to z = 100 and to other initial boxes up
to z = 400. For the UCMH in the primary simulation
box, this brings the smallest resolved radius down to
3.0× 10−6 kpc (physical coordinates) at z = 100, which
is sufficient to resolve the beginning of the ρ ∝ r−3/2

asymptote. This radius contains 3× 104 particles at
z = 100.

Due to the stability of the density profile in time,
we can probe still smaller radii by viewing the density
profile at earlier times, as discussed in Section III. By
this method, we probe radii as small as 9.0× 10−7 kpc
in Fig. 5 using the density profile at z = 400. This
radius contains 4000 particles at z = 400 and is sufficient
to demonstrate that the density profile shows no sign of
leveling off toward a shallower power-law index than 3/2.

4. Summary of simulation choices

We now summarize the simulation parameters we use
to study the UCMHs in Section III. Aside from the
particle count N , all simulation runs use the reference
parameters of Table I. We employ two classes of simu-
lation region: a comoving cube with periodic boundary
conditions or an isolated comoving sphere with vacuum

boundary conditions. Table II shows the particle counts
and simulation region sizes for all simulation runs. The
mass m of the simulation particle is also shown for clarity.

The primary simulation box is the same 7.4 kpc box we
used for convergence testing. The full box is simulated
at 8 times the reference particle density (10243 particles)
and a sphere around the main halo at 64 times the
reference particle density up to z = 100, and a third run
simulates the full box at reference particle density up to
z = 50. The density profile of the UCMH shown in Fig. 5
comes from the isolated sphere at 64× reference particle
density up to z = 100 and from the full box at reference
density at z = 50. Secondary simulations (Fig. 6) are
executed at reference particle density up to z = 50
and at 8× reference density in an isolated sphere up to
z = 400. The Nvir figures for the secondary simulations
in Table II are average values and vary by up to 25%
between simulations of different UCMHs. The density
profiles of younger halos (Section III D) come from the
full primary box at 8× reference density at z = 100.
Finally, for the stepped power spectrum, we simulated a
full box with reference parameters to z = 100.

All density profiles are averaged over 16 snapshots
within 1/100 of a Hubble time to suppress fluctuations.
Density profiles are binned logarithmically in intervals
separated by a factor of 1.1 (corresponding to an interval
of 0.041 in log10 r), but we have checked that the results
depend negligibly on this choice.

Appendix C: Constraining point-source abundance in the Milky Way

In Section IV, we defined µ(d) = 3M(d)/(4πd3ρ̄0), where M(d) is the dark matter mass contained within distance
d of Earth. If we are at distance r0 from the Milky Way center, then we may write

µ(d) =
3

2d3ρ̄0

∫ d

0

s2ds

∫ 1

−1

dx max

{
ρMW

(√
s2 + r2

0 − 2xsr0

)
, ρ̄0

}
, (C1)

with ρMW(r) being the density profile of the Milky Way. This expression approximates the extragalactic density field
as a uniform background. Taking the Milky Way to have an NFW profile with scale radius rS and scale density ρS
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and the sun to be at distance r0 from the center, the integral in Eq. (C1) evaluates to

µ(d) ' 3r3
SρS

2r0ρ̄0d3


(r0 + rs) ln

(
r0+rS+d
r0+rS−d

)
− 2d d < r0

2rSarctanh
(

r0
d+rS

)
+ r0 ln

(
(d+rS)2−r20

e2r2S

)
r0 < d < rmax

2r0

[
−rmax

rmax+rS
+ ln

(
1 + rmax

rS

)
+ ρ̄0

3r3SρS
(d3 − r3

max)
]

d > rmax

(C2)

where rmax is defined such that ρMW(rmax) = ρ̄0. The first two cases in Eq. (C2) come from an exact evaluation of the
integral in Eq. (C1) for the Milky Way without a background, while the third case approximates r0 ' 0 to evaluate
the extragalactic contribution. Figure 11 shows a plot of µ(d).

Appendix D: Constraining the power spectrum
using the statistics of peaks

In Section IV, we used the statistics of peaks as for-
mulated in Ref. [79] (BBKS) to relate the differential
halo number density by formation time, dn/dac, to the
power spectrum P(k). We describe that calculation in
more detail here. The differential number density of
peaks according to their height ν = δ/σ and steepness
parameter x is given in BBKS Eq. (A14), where σ is
the root-mean-squared density variance10 and δ is the
peak density contrast. For the spiked power spectrum
given by Eq. (22), σ = A1/2a. Moreover, the spectral
parameter γ [BBKS Eq. (4.6)] has value γ = 1, causing
the x-exponential in BBKS Eq. (A14) to become a delta-
function. We obtain the halo abundance by integrating
this differential number density over x and ν subject to
the collapse requirement νσ > δc, with result

n =
k3
s

(2π)233/2

∫ ∞
δc/(A1/2a)

e−ν
2/2f(ν)dν (D1)

where the function f(ν) is defined by BBKS Eq. (A15).
We seek dn/da, which is obtained by differentiation as

dn

da
=
k3
s

a
h

(
δc
A1/2a

)
(D2)

with

h(ν) ≡ ν

(2π)233/2
e−ν

2/2f(ν). (D3)

As we noted in Section IV C, the number density n in-
creases monotonically due to halo formation alone. Thus,
Eq. (D2) gives us precisely dn/dac, which we can combine
with Eq. (17) or (20) to constrain the integrated area A
of the power spectrum.

For the general case of point sources with non-constant
µ(d), we have little choice but to numerically invert the
integral in Eq. (17) to obtain an upper bound on A as
a function of ks. However, in a limiting case where µ is

10 There is no smoothing filter, so σ is the pointwise variance,
σ2 =

∫
dk
k
P(k).

constant, or to derive a bound from the diffuse flux, we
can fully extract the A-dependence from the integral. In
these cases, we have an integral of the form∫ 1

0

dac
dn

dac
Lp(ac) = k3

s

∫ ∞
0

dν

ν
h(ν)Lp

(
δc

νA1/2

)
=
ApA3p/2

δ3p
c k

3p−3
s

∫ ∞
0

h(ν)ν3p−1

(
ln

Bδc
νA1/2

)p
dν

=
ApA3p/2

δ3p
c k

3p−3
s

[(
ln

Bδc
A1/2

)p
Ip −

(
ln

Bδc
A1/2

)p−1

Jp

]
,

(D4)

with p = 3/2 or p = 1 for point sources or the diffuse flux
respectively, and where Ip and Jp are defined as

Ip ≡
∫ ∞

0

h(ν)ν3p−1dν, Jp ≡ p
∫ ∞

0

h(ν)ν3p−1 ln ν dν.

(D5)

In the first line, we use Eq. (D2) with ν = δc/(A1/2a).
We saw in Section IV D that the integral in Eq. (D4) is
dominated by minihalos forming at z >∼ 20, so we exploit
the negligible contribution to this integral of minihalos
forming at a > 1 to extend the lower limit of the integral
on the right-hand side to ν = 0. In the second line, we
specialize to the Moore density profile using Eq. (13). In
the last line, we take advantage of the limited support of
h(ν) to claim that ln ν � ln

(
Bδc/A1/2

)
so that we can

use a binomial expansion (and this is exact for p = 1).
Note that the integrands in Eq. (D5) tell us the range
of peaks that are relevant to constraints: as we see in
Fig. 22, most of their support lies in peaks between
roughly 2σ and 4σ.

For point sources with µ ' const, we now have

A
(

ln
Bδc
A1/2

)2/9 [(
ln

Bδc
A1/2

)
I3/2 − J3/2

]4/9

≤
(
−3
√

4π ln(1− y/x)

µ

)4/9(
δ3
cksFmin

A

)2/3

, (25)

while for diffuse sources, we have

A
[(

ln
Bδc
A1/2

)
I1 − J1

]2/3

≤
(

4πδ3
c

K(θ)A

dF
dΩ

)2/3

. (26)
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Figure 22. Plots of the the function h defined in Eq. (D3)
along with the integrands in Eq. (D5). Each function is
scaled to its maximum value to emphasize the support of these
functions. The black curves are relevant to point-source con-
straints, while the red curves determine diffuse constraints.
This figure shows that constraints are set primarily by peaks
between 2σ and 4σ.

These expressions follow from Eqs. (17), (20), and (D4).
The numbers I3/2, J3/2, I1, and J1 have approximate
values

I3/2 = 0.228, J3/2 = 0.370

I1 = 0.0477, J1 = 0.0478 (D6)

Eqs. (25) and (26) are now algebraic equations for the
upper bounds on A.

The constraint on A is not our final goal, but it is close.
Aa2 is the power associated with the spike in the (linear)
matter power spectrum during matter domination. We
seek instead the powerA0 associated with the spike in the
primordial curvature power spectrum. These quantities
are related by a transfer function such as [148]

δ(k, a) =
2

5

k2

ΩmH2
0

ζ(k) T
(√

Ωrk

H0Ωm

)
a, (D7)

which relates the matter density contrast δ during matter
domination to the primordial curvature fluctuation ζ.
Here

T (x) =
45

2x2

(
−7

2
+ γE + ln

(
4x√

3

))
(D8)

is a dimensionless transfer function that is valid at x� 1
or k � 10−2Mpc−1 (γE ' 0.577 is the Euler-Mascheroni
constant). Hence, by squaring Eq. (D7),

A0 =
(Ωr/Ωm)

2A
81
[
− 7

2 + γE + ln
(

4
√

Ωrks√
3H0Ωm

)]2 (D9)

yields the desired constraint on the primordial power
spectrum.

Appendix E: The UCMH constraint on a spiked
power spectrum

Bringmann, Scott, and Akrami [9] (BSA) calculated
an upper bound on the number density of UCMHs (as
a function of scale wavenumber k) using the ρ ∝ r−9/4

density profile from Ref. [1]. They then converted this
constraint into an upper bound on the primordial power
spectrum under the assumption of local scale invariance.
We followed the calculation in BSA as closely as possible
in Section IV so as to facilitate a direct comparison in
constraining strength between our new minihalo model
and the old UCMH model. However, because a spiked
power spectrum does not exhibit local scale invariance,
we must return to the UCMH abundance constraint
in BSA and convert it into a constraint on the delta-
spiked power spectrum given by Eq. (22). We show that
calculation here.

BSA Fig. 1 shows their constraint on the fraction f of
matter contained in UCMHs. This fraction is readily
converted into a number density n = fρm/MUCMH,
where BSA took

MUCMH = 4× 1013

(
k

Mpc−1

)−3

M�. (E1)

Here we have employed R = 1/k, where R is the co-
moving radius of the precursor overdense region; this is
the same relation BSA used. The UCMHs are taken to
follow the dark matter distribution, so n and ρm are
the comoving background UCMH number density and
matter density respectively.

This procedure has given us a constraint n on the
comoving number density of halos of scale wavenumber k
forming at z >∼ 1000. In the delta-spiked power spectrum
given by Eq. (22), all halos form from fluctuations with
wavenumber ks, the wavenumber of the spike, so we will
take k = ks in Eq. (E1). We can then use Eq. (D1) with
a = 10−3 to convert this upper bound on the abundance
of halos that form at z ≥ 1000 into a constraint on the
primordial power spectrum, which is shown in Fig. 12.
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[114] J. Muñoz-Cuartas, A. Macciò, S. Gottlöber, and
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