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The default assumption of early universe cosmology is that the postinflationary universe was ra-
diation dominated until it was about 47000 years old. Direct evidence for the radiation dominated
epoch extends back until nucleosynthesis, which began during the first second. However there are
theoretical reasons to prefer a period of earlier matter domination, prior to nucleosynthesis, e.g. due
to late decaying massive particles needed to explain baryogenesis. Axion cosmology is quantitatively
affected by an early period of matter domination, with a different axion mass range preferred and
greater inhomogeneity produced on small scales. In this work we show that such increased inhomo-
geneity can lead to the formation of axion miniclusters in axion parameter ranges that are different
from those usually assumed. If the reheating temperature is below 58 MeV, axion miniclusters can
form even if the axion field is present during inflation and has been previously homogenized. The
upper bound on the typical initial axion minicluster mass is raised from 10−10M⊙ to 10−7M⊙, where
M⊙ is a solar mass. These results may have consequences for indirect detection of axion miniclusters,
and could conceivably probe the thermal history of the universe before nucleosynthesis.

PACS numbers:

I. INTRODUCTION

The QCD axion, which was invented to solve the strong
CP problem[1, 2], is a well-motivated candidate for dark
matter. The axion mass and couplings are determined by
a single parameter, the axion decay constant fa. Labora-
tory, astrophysical and cosmological bounds on fa place
it well above the weak scale. As the axion mass and cou-
plings are inversely proportional to fa, the axion must be
extremely light, long lived, and weakly coupled.

If the axion exists, the misalignment mechanism pro-
duces axion dark matter, with an abundance that in-
creases with fa. It is often stated that there is an up-
per bound on fa of 1012 GeV so as to not overpro-
duce axions. This bound may be relaxed, e.g., if the
axion exists during inflation and our patch of the uni-
verse happens to have a small misalignment, or with
a new depletion mechanism[3]. Without such tuning
or depletion, the allowed value of fa is in the window
109GeV < fa < 1012GeV[4–11]. It has been argued
that string theory favors a higher value of fa [12–14] and
lighter axion than this window allows.

We can detect axions directly through the couplings
with SM particles, especially the axion-photon coupling
(For some reviews, see [15, 16]). However, there are
other interesting strategies for axion indirect detection.
The axion can form gravitational bound states on small
scales at very early times. If the axion is produced af-
ter inflation, then the axion field has an alignment an-
gle which varies over a scale on the order of the Hubble
horizon size of the universe at the time of formation[17].
Such inhomogeneities can grow and become gravitational
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bound states called axion miniclusters [18–21]. Axion
miniclusters could grow to bigger structures or boson
stars[22, 23], which could be detected by gravitational
microlensing[24, 25]. On the other hand, if the ax-
ion exists during inflation it is much more homogenous
initially[19, 26–29]. For some references on possible con-
sequences and observations connected with axion mini-
clusters and axion stars see refs. [30–44], and for work on
their structure and stability see refs [23, 41, 45–52]. For
work on the possible unique signatures of axion structure
formation due to their quantum mechanical properties as
light degenerate bosons see refs. [53–62].
The properties of axion miniclusters sensitively depend

on the thermal history at the critical time when the axion
starts to oscillate. For a radiation dominated universe,
the corresponding temperature is typically about 1—10
GeV. This critical time is before big bang nucleosynthesis
(BBN) and before the time when the big bang neutrinos
decouple, and is during a time which is not connected to
any established cosmological observable. If we consider a
different thermal history for the universe prior to a tem-
perature of a few MeV, we will see that the upper bound
on fa is relaxed, and there is a significant difference in
the formation history of axion miniclusters. With early
matter domination, axion miniclusters can form even if
the axion field has been homogenized by inflation, due
to the more rapid growth of small scale primordial per-
turbations of the axion. Such early growth of substruc-
ture during early matter domination has been considered
for other candidate dark matter particles[63]. The ax-
ion is special among dark matter candidates because its
free streaming effects are almost negligible, so very small
structures can form and survive.
In this paper we will consider the early cosmology of

the standard invisible QCD axion with a nonstandard
thermal history, with a period of early matter domina-
tion prior to nucleosynthesis. Such matter domination
can be due to a heavy, weakly coupled particle whose
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decays reheat the universe, as is required in some theo-
ries of low scale baryogenesis. We will briefly review the
theory of the axion and its corresponding cosmology, in-
cluding the axion relic density and the formation of axion
miniclusters in section II. In section III we will show how
the axion window is opened by early matter domination.
In section IV, a different story of axion minicluster for-
mation with early matter domination is discussed. We
will find that early matter domination potentially gives
a larger initial characteristic mass of axion miniclusters.

II. AXION COSMOLOGY

Here we review the axion and its cosmology. (For more
details about axion cosmology, see[34, 64–67].) The ax-
ion is a pseudo Nambu-Goldstone Boson resulting from
the spontaneous breaking of an approximate symmetry
known as the Peccei-Quinn (PQ) symmetry, due to the
vacuum expectation value of a complex field known as
the PQ field. We consider the following Lagrangian for
the PQ field, which we call φ:

Lφ =
1

2
∂µφ

†∂µφ−
λ

4
(φ†φ− f2

a )
2 + .... (1)

where the dots represent possible interaction terms with
other particles and fa represents the vacuum expectation
value of φ(x). The symmetry breaking will occur at a
temperature TPQ which is roughly at the scale fa. Clas-
sically, because of the PQ symmetry, the phase of φ is
undetermined by the potential. After the PQ symmetry
breaking, the phase of the PQ field receives a small po-
tential from nonperturbative QCD effects which is mini-
mized at a value for which the strong CP violation van-
ishes. Fluctuations of the phase about the minimum are
parameterized by the axion field a(x). Ignoring the en-
ergetically costly fluctations of the radial direction of φ,
we may write

〈φ(x)〉 = fae
ia(x)/fa . (2)

When the PQ transition occurs, the potential energy with
different values of a is nearly degenerate, so a is expected
to take on a random initial value. The expansion of the
universe will smooth out spatial variations in a(x) but the
average value of a(x) remains random until late times.
We say the field is misaligned with respect to its min-
imum, and the energy stored in this misalignment will
eventually become the dark matter. There are two dif-
ferent cases for the cosmological evolution. In case 1,
the reheating temperature of inflation is less than TPQ

and the PQ symmetry is broken during inflation and
never restored afterwards. In this case the axion field
is smoothed during inflation and randomly obtain a spa-
tially uniform vacuum expectation value αfa, where α is
known as the misalignment angle. Quantum fluctuations
in a are small and proportional to the Hubble scale dur-
ing inflation. As these fluctuations in a(x) are isocurva-
ture, and the cosmic microwave background observations

place a strong limit on isocurvature fluctations, in case 1
there is a strong upper bound on the scale of inflation[68–
73]. In case 2 the reheating temperature after inflation
is greater than TPQ, and the PQ symmetry breaks after
inflation. In this case the axion takes on random values
uncorrelated over scales which are larger than the Hubble
horizon at the time of PQ breaking. Topological axion
strings and domain walls are then formed after inflation.
Provided that there is no nontrivial unbroken discrete
subgroup of the PQ symmetry, every domain wall ends
on an axion string and the whole network of strings and
domain walls will eventually disappear[28, 74, 75]. The
cosmological restriction that in case 2 the PQ symmetry
must not have any exact discrete subgroup is a severe
but achievable constraint on axion model building.

The evolution equation of the axion field in the early
universe can be described by the equation

(
∂2
t + 3

Ṙ

R
∂t −

1

R2
∇2

x

)
a(x) + V ′(a) = 0 (3)

where R is the scale factor, the components of x are
the co-moving spatial coordinates of the universe, and
V (a) is the effective potential energy density of the axion
field. This potential comes from non-perturbative QCD
effects such as instantons[76], which break the UPQ(1)
symmetry to a Z(N) discrete subgroup[74]. In case 2,
we must have N = 1 in order to avoid overclosure of
the universe by a frustrated network of axion strings and
domain walls, while in case 1 any such defects are inflated
away (however, see ref. [77] for a conceivably observable
effect of axion strings outside our horizon). We can write
the instanton potential qualitatively as:

Va = f2
am

2
a(T )

[
1− cos

(
a

fa

)]
(4)

where ma is the axion mass, which is a function of tem-
perature T . The cosine form comes from the dilute in-
stanton gas approximation and is not exact. The form of
the axion potential at low temperatures may be found in
reference [78]. At high temperature (T >1 GeV), ma(T )
can be estimated by instanton effects and by lattice QCD.
While there is disagreement between different approaches
these disagreements will not significantly change our re-
sults [79]. The axion mass is constant when T is below
the QCD scale and the calculation at low energies is re-
liable due to chiral perturbation theory. However, we
cannot reliably predict the axion mass when T is be-
tween 0.2 GeV and 1 GeV. In standard thermal history,
this uncertainty will not affect our prediction of the ax-
ion relic density because the temperature at the critical
time is higher than 1 GeV. However, we will see in the
next section that early matter domination will decrease
the critical temperature. We will assume the axion mass
to be a continuous function of T , whose exact form will
not change our main results. The full expression we will
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use for the axion mass follows ref. [80]:

ma(T ) =





ma(0), T < 0.2 GeV

ma(0)(
0.2 GeV

T )6.5, 0.2 GeV ≤ T ≤ 1 GeV

bma(0)(
0.2 GeV

T )4, T > 1 GeV ,

(5)
where b = 0.018 and ma(0) = (78 MeV)2/fa, and ma(0)
is the axion mass at zero-temperature. Given the thermal
history of early universe, the axion mass is determined
by cosmic time. The first three terms in Eq.(3) are pro-
portional to t−2, which are the dominant terms until late
times. We define the critical time t1 at which the po-
tential term becomes important relative to the Hubble
expansion term to be:

H(t1) = ma(T (t1)) (6)

The mean value of the axion field does not evolve much
before the time t1. After t1 the axion field begins to os-
cillate and its energy density behaves approximately like
nonrelativistic matter. The energy density of a uniform
oscillating axion field may be interpreted as the energy
density of axion particles at rest. The number of axion
particles per co-moving volume is adiabatically conserved
because the axion mass changes slowly compared with
the oscillation period. In case 1, where axions were ho-
mogenized by inflation, axions at rest are the dominate
initial component of axions in the universe. In case 2,
some spatial variation in the axion field remains which
is interpreted as axions with non zero momentum, and
also a substantial number of axions are produced via the
decay of axion strings and domain walls. The number
density of axions at rest is[7–9]:

nvac,0
a (t) =

1

2
ma(t)f

2
aα

2 . (7)

In case 1, α is uniform throughout our universe and its
random value introduces uncertainties in our prediction.
We simply treat it as a O(1) constant and do not consider
the possible consequences of a small misalignment an-
gle. In case 2, α is randomly distributed taking on many
different values throughout our observable universe, and
is roughly uniform on scales on the order of the Hub-
ble horizon size at the time of PQ symmetry breaking.
As there are many such volumes contained within our
current horizon we may average over the different initial
values. The dominant source of theory uncertainty for
the axion density in case 2 is from the computation of
the number of axions produced from the decay of axion
strings and domain walls.

A. Axion Relic Density

In case 1, we can directly get the current energy density
of the axion:

ρvac,0a =
1

2
ma(0)ma(t1)f

2
aα

2

(
R1

R

)3

(8)

where t1 is the critical time when axion starts to oscillate
and R1/R is the ratio of the scale factor at the critical
time to that at present. The number of axions is approx-
imately conserved and the energy density is simply the
number density multiplied by ma(0). Combined with a
radiation dominated thermal history, we obtain the fol-
lowing energy density in case 1:

Ωa ∼ 0.15

(
fa

1012GeV

)7/6(
0.7

h

)2

α2 (9)

where h is defined to give the Hubble constant H0 =
100km/s · h ·Mpc.
Case 2 is more complicated because axion strings and

domain walls will decay to axions and give an extra con-
tribution to the axion relic density. There is a poten-
tial so-called domain wall problem when the PQ sym-
metry group UPQ(1) has non trivial discrete Z(N) sub-
group, as in this case there is an N fold degeneracy of
the vacuum[74]. We assume in case 2 that N = 1 for
viable axion cosmology [81, 82]. In this case the domain
walls are unstable and bounded by strings. The string de-
cay contribution to the axion relic density [75] is highly
uncertain and we simply parameterize the uncertainty.
Following ref. [83] we write:

ρstra = ma(0)n
str
a (t1)

(
R1

R0

)3

⋍ Yma(0)
f2
a

ma(t1)

(
R1

R0

)3

(10)
where ma(0) is the axion mass at zero temperature,
ma(t1) is the axion mass at the critical time when ax-
ion starts to oscillate, and Y is an order one factor which
is determined by details such as the efficiency of string
decay, the axion string number per horizon and average
energy of the axions emitted in a string decay. We sim-
ply assume a value for Y here and study what will be
different in a nonstandard thermal history.
The last step is to estimate the contribution from

higher momentum modes. Assume that axion field varies
by fa from one horizon to the next, we can obtain the
number density distribution of higher momentum modes
of the axion:

na

dω
∼

f2
a

2t2ω2
(11)

Only frequencies which enter the horizon are physically
relevant for this work. Integrating over ω > 1/H(t1) in
Eq.(11) gives us the contribution from vacuum realign-
ment of higher momentum modes:

ρvac,1a ∼
ma(0)f

2
a

2ma(t1)

(
R1

R0

)3

(12)

So the contribution from higher momentum modes is
roughly the same as that of the zero momentum mode.
Including an estimate of the contribution from higher mo-
mentum modes and string decays, the relic density could
be written as:

Ωa ∼ 0.6

(
fa

1012GeV

)7/6(
0.7

h

)2

(13)
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Notice that the axion relic density in case 2 is generally
greater than in case 1 for a given fa.
From Eqs.(9),(13), we see an upper bound for fa in

order to avoid overproduction of axion dark matter. The
upper bounds for case 1 and case 2 with standard thermal
history are respectively ∼ 1.4 × 1012 GeV and ∼ 4.4 ×
1011 GeV, with order one uncertainties in both cases.
Combined with other constraints, we obtain the so-called
axion window, 109 GeV < fa < 1012 GeV.

B. Axion Miniclusters

In case 2, where inflation happens before the PQ phase
transition, the initial misalignment angle will not be ho-
mogenized by inflation. Therefore, its value will vary
randomly from one horizon to another. An inhomogene-
ity with δρa/ρa = O(1) is produced when the axion mass
turns on. If not erased by the free-streaming effect, grav-
itationally bound objects , which are called axion mini-
clusters, may form at the time teq when energy density
of radiation and matter are equal[19, 22, 27, 28].
Because axions are typically very cold, free-streaming

effects will not restrain the form of axion miniclusters[27,
28]. In case 1, only zero mode axions due to vacuum mis-
alignment are produced and there is no velocity disper-
sion. In case 2, there are higher momentum modes pro-
duced by vacuum realignment axions produced by wall
decay and string decay. They will give us some non-zero
velocity dispersion but it can still be shown that free-
streaming will not homogenize the axions.
The characteristic minicluster mass is given by the to-

tal mass of axions contained within the horizon at the
critical time when the axion starts to oscillate:

Mmc =
1

2
ma(0)ma(t1)f

2
a

4π

3

(
1

H(t1)

)3

(14)

Since the number of axions per co-moving volume is con-
served, we must take the evolution of the axion mass into
consideration in computing the mass of axion miniclus-
ters. If we assume a standard thermal history where the
early universe is dominated by radiation, the correspond-
ing temperature of the critical time is:

T1 ≃ 1 GeV

(
1012GeV

fa

)1/6

(15)

Thus we obtain the mass of axion miniclusters in a
standard thermal history:

Mmc = 3.7× 10−10M⊙

(
fa

1012GeV

)5/3

(16)

where M⊙ is the solar mass. Note that there are vari-
ous strategies to estimate the mass of axion miniclusters,
such as calculating the axions contained within the hori-
zon at teq. A detailed study requires the calculation of
the mass function of axion minicluster through its power

spectrum. The evolution of axion miniclusters in the
nonlinear region should be also included, which allows
for the possibility of larger axion stars. Such evolution
is outside the scope of this paper. Our main goal is to
find what will be changed during a nonstandard thermal
history. Therefore, we focus on the linear region and give
the estimate of the change in the initial axion minicluster
mass with early matter domination.

III. OPENING THE AXION WINDOW

Nothing so far has been directly detected from the
epoch after inflation and before nucleosynthesis. The
“standard” assumption about that period is that the in-
flationary energy density decayed to a hot thermal rela-
tivistic plasma containing all the particles in the standard
model and possibly some extension[84–87], reheating the
universe, and the universe remained radiation dominated
until the temperature dropped below about 1 eV. How-
ever, the inflationary energy density could also decay to
some nonstandard massive particles, which could be long
lived and come to dominate the energy of the universe,
as the energy density of nonrelativistic particles evolves
with the scale factor R as R−3 while that of radiation
evolves as R−4. The success of standard nucleosynthesis
implies that any such massive long lived particles have
decayed and brought the universe to radiation domina-
tion before a temperature of order a few MeV. A pre-
nucleosynthesis epoch with energy dominated by non-
relativistic massive particles is called an Early Matter
Dominated Epoch (EMDE). Such a scenario is favored by
some baryogenesis models as a way to satisfy the out of
equilibrium Sakharov condition for producing the asym-
metry between matter and anti-matter. One top down
motivated example of an EDME is motivated by stabi-
lized moduli in string theory [88–90]. Another motivation
is to produce curvature perturbations in the curvaton
model[91–94]. There are other cosmological consequences
of a EDME scenario, such as boosting the thermal dark
matter annihilation rate[95–98].
An EDME will affect the axion relic density and ex-

pand the allowed range of fa. The co-moving entropy
density will increase during the decay of the massive par-
ticles, which will decrease the ratio of axions to photons
[99–103]. We may calculate the abundance of relic axions
with an EDME by solving Boltzmann equations. We will
use the example of matter domination by a particle Φ,
whose spin is irrelevant. In the three-fluid model for re-
heating, the evolution of energy density is give by:

dρΦ
dt

+ 3HρΦ = −ΓφρΦ

dρr
dt

+ 4Hρr = ΓφρΦ

(17)

where ρΦ is the energy density of Φ, ρr is the energy
density of radiation, ΓΦ is the decay rate of the massive
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particle and H is the Hubble parameter. We have ne-
glected the contribution from the axion field because it
contributes only a minor energy density to the early uni-
verse. Combined with the Friedmann equations we can
solve the exact energy density of the massive particle and
radiation as a function of cosmic time. We assume that
the radiation plasma reaches its equilibrium state instan-
taneously after Φ decays. This is reasonable since the
decay rate is relatively slow compared with the thermal-
ization rate of the light particles. In this way we can also
obtain the temperature in terms of cosmic time, which
also gives us the mass of the axion as a function of time.
Once we know the axion mass as a function of time, the
critical time t1 when the axion starts to oscillate can be
estimated from H(t1) = ma(t1). We then use the adia-
batic approximation with the co-moving number density
of axions conserved after the critical time, which gives
the evolution of axion number density at time t > t1:

na(t) =
1

2
ma(t1)f

2
a

(
R(t1)

R(t)

)3

. (18)

When the universe is dominated again by radiation, the
entropy density behaves exactly like R−3 and na/s is
conserved. The entropy of universe is dominated by ra-
diation. We can thus obtain the current axion density.
The axion energy density must be less than the dark
matter relic density. We can therefore obtain an upper
bound on the axion decay constant fa as a function of
the reheat temperature Trh. The reheat temperature is
directly determined by the decay rate of oscillating scalar
field.

π2

30
g∗(Trh)T

4
rh =

3E2
plΓ

2
φ

8
(19)

where g∗ is the effective number of degrees of freedom,
and Epl is the planck energy. The upper bound on fa
does not depend on the EDME unless the reheat temper-
ature is below the temperature at the critical time when
the axion field begins to oscillate. Thus, only a reheat
temperature greater than about 1 MeV (So it happens
before nucleosynthesis) and less than about 1 GeV is rel-
evant for a new story of axion cosmology.

IV. AXION MINICLUSTERS WITH EARLY

MATTER DOMINATION

Since the axion window is widened by early matter
domination, it is straightforward to show that the possi-
ble mass of axion miniclusters increases with a greater
axion decay constant. A nontrivial result is that the
formation of axion miniclusters is even allowed in case
1, which is not expected with a standard thermal his-
tory. The formation of miniclusters results because mat-
ter density perturbations will grow linearly with the scale
factor during the EMDE while they only grow logarithmi-
cally during radiation domination. Generally an EDME

FIG. 1: New upper bound on the axion decay constant un-
der early matter domination with reheating temperature Trh,
assuming the various undetermined constants are of order 1.
The blue curve is for case 1 and black curve is for case 2.

allows for an increase in small scale dark matter struc-
ture formation[63, 104]. But axion miniclusters are es-
pecially sensitive to such a period because axions are ex-
tremely cold. Free streaming effects are negligible for
axions which allows for tiny structures.

For miniclusters in case 2, the correction to the ax-
ion minicluster mass from early matter domination is
straightforward. We simply estimate the critical time
with early matter domination and use the same formula
Eq.(14). However, in case 1 with standard thermal his-
tory axion miniclusters do not generally form. In con-
trast, the primordial perturbations of axion field that
enter the horizon during the EDME can grow linearly,
and form an axion minicluster. If such structures form
during the EDME then they are dominated by the mas-
sive particles which will decay to reheat the universe, and
when those particles decay the structures will be erased.
But structures that form during and after the radiation
dominated epoch persist. We estimate the initial size of
such structures as follows. We assume a nearly scale in-
variant primordial perturbation of about 10−4[105]. Ax-
ions are frozen before the critical time at which axion
oscillations begin. When there is a period of EDME and
the reheating time is later than the critical time, initial
inhomogeneities which are inside the horizon will grow
linearly with the scale factor. We therefore find the scale
at which perturbations of a given scale size enter the hori-
zon during the EDME, and grow to δρ/ρ of order 1 at
the end of the early matter domination epoch. Contin-
ued logarithmic growth of these structures will allow for
axion minicluster formation at the end of radiation dom-
ination. Only specific combinations of fa and Trh will
allow the formation of axion miniclusters in case 1. In
general larger axion decay constants lead to a later criti-
cal time at which the axion starts to oscillate, and these
structures grow linearly with the scale factor only dur-
ing the EDME. In case 1, formation of axion miniclusters
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implies a reheating temperature dependent upper bound
on fa.

A. Cosmological Perturbations

In order to obtain the axion minicluster mass in case
1, we need to find the perturbation growth during early
matter domination. Generally the perturbations will
grow linearly with the scale factor if the universe is dom-
inated by matter. In principle the situation is more com-
plicated for the axion because its mass is also changing
with time, however the term from the changing mass is
negligible compared with the linear growth term for the
following reasons: 1. The temperature is typically less
than 1 GeV at the critical time when the axion perturba-
tion starts to grow. The axion mass will not change much
at that time. 2. The axion mass is temperature depen-
dent and gives perturbations proportional to Ṫ /T , which
is actually a logarithmic growth term. We can treat the
oscillating scalar field, the radiation and cold axions as
perfect fluids with energy momentum tensors[106–108]:

T µν = (ρ+ p)uµuν + pgµν (20)

Where uµ ≡ dxµ/dλ is the four-velocity. For cold axions
and Φ particles, the pressure is zero and for radiation
p = ρ/3. Due to the decay of Φ particles, different fluids
exchange energy covariantly:

∇((i)T µ
ν ) = Q(i)

ν (21)

Where i denotes different fluids. For the energy exchange
vector:

Qφ
ν = (φ)Tµνu

µ
φΓφ

Qr
ν = −Qφ

ν −Qa
ν

Qa
ν = −(a)Tµνu

µ
a

ṁa

ma

(22)

During the early matter domination, Qa ≪ Qφ. So the
the perturbation in axions should not change the evolu-
tion of the radiation perturbation. To obtain the pertur-
bation equations, we start with the perturbed metric

ds2 = −(1 + 2Ψ)dt2 + a2(t)δij(1− 2Ψ)dxidxj (23)

Thus we have the perturbation of the four-velocity:

u0 = 1−Ψ

uj
i = (1−Ψ)V j

(i)

(24)

where V j
(i) ≡ dxj/dt is the fluid velocity of the ith fluid.

With the perturbation of energy density of each fluid
ρi = ρ0i (1 + δi), we can write the dominant term and the

first order perturbation term of Q

Q
(φ)
0 = Γφρ

0
φ(1 + δφ +Ψ)

Q
(φ)
j = −Γφρ

0
φa

2δkjV
k
φ

Q
(a)
0 = −

ṁa

ma
ρ0a(1 + δa +Ψ)

Q
(a)
j =

ṁa

ma
ρ0aa

2δkjV
k
a

(25)

Γφ and ṁa

ma

are significantly different. One is a constant
and the other has perturbation determined by the tem-
perature perturbation of the radiation. Compared with
the Hubble parameter, Γφ is usually negligible but ṁa

ma

may be important for the perturbation function.
ExpressingQν with in terms of the zero-order and first-

order perturbations, we can combine equation (1) and (2)
to get simple results that determine the perturbation:

dδ

dt
+ (1 + w)

θ

a
+ 3(1 + w)

dΨ

dt
=

1

ρ0
[Q

(0)
0 δ −Q

(1)
0 ] ,

dθ

dt
+ (1− 3w)Hθ +

∇2Ψ

a
+

w

1 + w

∇2δ

a

=
1

ρ0

[
∂iQi

a(1 + w)
+Q

(0)
0 θ

]
,

(26)

where w = p/ρ is the fluid’s equation of state parameter,
and θ = a∂iV

i is the divergence of fluid’s conformal ve-

locity. Q
(0)
0 and Q

(1)
0 are respectively the zero-order and

first-order components of Q.
It can be generally shown that the metric perturbation

is frozen in a matter-dominated universe. We define the
beginning of early matter domination as a = 1 and its
corresponding Hubble parameter is H0. For convenience,

we also define dimensionless parameter θ̃φ ≡ θφ/H0, k̃ ≡
k/H0. Therefore we can represent our equations during
early matter domination in the following way:

a−1/2δ
′

φ(a) + θ̃φ(a) = 0 ,

a1/2θ̃
′

φ(a) + a−1/2θ̃φ(a) + k̃2Ψ = 0 ,

a1/2θ̃
′

a(a) + a−1/2θ̃a(a) + k̃2Ψ = 0 ,

a−1/2δ
′

a(a) + θ̃a(a) =
aṁa

maH(t1)
Ψ ,

(27)

where a prime represents the derivative to scale factor,
and H(t1) is the Hubble parameter at the critical time.
It is not hard to show that the term aṁa

maH(t1)
only causes a

logarithmic growth, which could be neglected compared
with the linear growth. Eventually the perturbation for
modes that have already entered horizon before the crit-
ical time is:

δa(a, k) = 2Ψ0 +
2k2

3H(t1)2
aΨ0 (28)

where Ψ0 represents the primordial perturbation of quan-
tum fluctuation during inflation, which is about 10−4.
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Now it is clear that perturbations grow linearly with
scale factor a during early matter dominated epoch. To
form axion miniclusters efficiently at the end of radia-
tion domination, δa must be grow up to about 1. Ac-
tually the formation of axion minicluster is complicated
here because the growth depends on momentum. We can
actually obtain the transfer function for axion generally
and calculate the mass function of axion minicluster with
Press-Schechter formalism. However, axion perturbation
grows to the nonlinear region very early and it is hard
to predict its later evolution. In this paper we just es-
timate the original axion minicluster mass and leave its
evolution for future research.

B. Formation of Axion Miniclusters

A perturbation δa(a, k) will start to grow when k enters
the horizon. The momentum modes which have already
entered the horizon at the critical time (k > H(t1)) will
grow the largest. Typically large k represents smaller ax-
ion miniclusters so we only care about k < H(t1). There-
fore the criterion for axion miniclusters formation in case
1 is if δa(ae, H(t1)) is larger than 1, where ae is the scale
factor at the end of early matter domination. It can be
drawn together with the upper bound for allowed axion
density (See FIG.(2)). Parameters must be below the
bound from axion density to not overproduce axions. To
form axion miniclusters, the parameters must be below
the orange curve. For case 1, if all the dark matter is
axions, the reheating temperature must be below about
60 MeV in order to obtain axion miniclusters.
The final step of this chapter is to determine the mass

of axion miniclusters with early matter domination. In
case 2 it is can be straightforwardly done by substituting
the new critical time. In case 1, suppose that we have
some kc < H(t1) which satisfies:

δa(ae, kc) = 1 (29)

where ae is the scale factor at the end of early matter
domination. kc represents the characteristic modes that
eventually grow to axion miniclusters. Suppose that kc
enters the horizon at time tc, H(tc) = kc. The corre-
sponding axion number density at tc is:

nac =
1

2
ma(t1)f

2
a

(
R(t1)

R(tc)

)3

(30)

where t1 is the critical time and R is the scale factor of
universe. Therefore axion minicluster mass mass could
be estimated by:

Mmc =
4

3
πma(0)

(
1

kc

)3

nac (31)

As an example, we calculate how the axion minicluster
mass changes with the axion decay constant at a reheat-
ing temperature of 3 MeV, as shown in FIG.(3). From

FIG. 2: The blue and black curve which indicate the bound on
fa from the relic axion density is part of FIG.(1). The orange
curve represents the upper bound for axion decay constant
if growth is sufficient for formation of axion miniclusters in
case 1. (In case 2, due to larger initial inhomogeneity on
small scales, axion miniclusters can generally form.) The ax-
ion density increases with the axion decay constant. When
the reheating temperature is sufficiently low, dark matter ax-
ions can comprise all of the dark matter as well as form axion
miniclusters in case 1, because the blue curve is below the
orange curve.

minicluster mass 2

minicluster mass 1

10
9

10
10

10
11

10
12

10
13

10
14

10
15

10
-22

10
-19

10
-16

10
-13

10
-10

10
-7

fa(GeV)

M
(M

⊙
)

FIG. 3: The black curve and the blue curve respectively rep-
resent the axion minicluster mass in case 1 and case 2 when
the reheating temperature is 3 MeV.

FIG.(3) we can see that the upper limit on the axion
minicluster mass has increased to 10−8M⊙, where M⊙

is the solar mass. In comparison, from Eq.(16), with the
standard thermal history the maximum minicluster mass
is ∼ 3.7 × 10−10M⊙. It is worth noting that the initial
axion minicluster mass is typically less than the critical
mass at which an axion star becomes unstable to either
a Bosenova or gravitational collapse into a black hole
[39, 48, 50, 52]. The order of magnitude for the miniclus-
ter mass at which a gravitational collapse instability sets
in is ∼ M2

p/ma ∼ 10−5M⊙fa/(10
12 GeV) which is much



8

larger than the initial minicluster mass.

V. CONCLUSIONS

We have shown that the axion window is wider and the
formation history of axion miniclusters is significantly af-
fected by a period of matter domination prior to nucle-
osynthesis. The axion can be lighter, and the maximum
mass of axion miniclusters is increased. Furthermore ax-
ion miniclusters can form even in the case where the
PQ symmetry breaking occurs before inflation. In this
work we have estimated the characteristic mass of axion
miniclusters at the time of formation. More detailed nu-
merical study about the evolution of axion miniclusters
is needed to obtain the information about axion mini-
clusters at present, including the mass function of axion
miniclusters, the percentage of axions that form axion

miniclusters, and the percentage of axion miniclusters
that form boson stars or black holes. The evolution of
axion miniclusters after their formation and the fraction
of axions that finally become gravitationally bound ob-
jects requires detailed numerical study, which is beyond
the scope of this paper. Such work would be important,
as indirect detection of axion miniclusters could possi-
bly provide evidence for both the existence of the axion
and for a nonstandard thermal history of the very early
universe.
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