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Neutrino-matter interactions play an important role in the post-merger evolution of neutron star-neutron star
and black hole-neutron star mergers. Most notably, they determine the properties of the bright optical/infrared
transients observable after a merger. Unfortunately, Boltzmann’s equations of radiation transport remain too
costly to be evolved directly in merger simulations. Simulations rely instead on approximate transport algo-
rithms with unquantified modeling errors. In this paper, we use for the first time a time-dependent general
relativistic Monte-Carlo (MC) algorithm to solve Boltzmann’s equations and estimate important properties of
the neutrino distribution function∼ 10 ms after a neutron star merger that resulted in the formation of a massive
neutron star surrounded by an accretion disk. We do not fully couple the MC algorithm to the fluid evolution,
but use a short evolution of the merger remnant to critically assess errors in our approximate gray two-moment
transport scheme. We demonstrate that the analytical closure used by the moment scheme is highly inaccurate in
the polar regions, but performs well elsewhere. While the average energy of polar neutrinos is reasonably well
captured by the two-moment scheme, estimates for the neutrino energy become less accurate at lower latitudes.
The two-moment formalism also overestimates the density of neutrinos in the polar regions by ∼ 50%, and
underestimates the neutrino pair-annihilation rate at the poles by factors of 2− 3. Although the latter is signifi-
cantly more accurate than one might have expected before this study, our results indicate that predictions for the
properties of polar outflows and for the creation of a baryon-free region at the poles are likely to be affected by
errors in the two-moment scheme, thus limiting our ability to reliably model kilonovae and gamma-ray bursts.

PACS numbers: 04.25.dg, 04.40.Dg, 26.30.Hj, 98.70.-f

I. INTRODUCTION

The recent detection by the LIGO-Virgo Collaboration of
gravitational waves (GWs) powered by a pair of merging
neutron stars (GW170817 [1]), followed by electromagnetic
(EM) observations of the same system by a wide range of
ground-based and space-based telescopes [2], represents a
major breakthrough for multi-messenger astronomy. This
event also shows the current limits of our ability to reliably
extract information about merging compact objects using EM
observations. For example, GW170817 was followed by a
bright kilonova [3–15], an optical/infrared transient powered
by radioactive decays in the neutron-rich ejecta produced by
the merger [16–20]. EM observations of that kilonova have
been used to infer plausible properties of the ejecta, and the
outcome of r-process nucleosynthesis in the outflows. Deter-
mining the properties of the merging objects from those of the
ejecta, however, remains difficult.

To better constrain the properties of the merging objects
from kilonova observations, we require numerical simulations
of neutron star mergers capable of accurately predicting the
properties of the ejected material. Unfortunately, despite rapid
improvements in the accuracy and physical realism of these
simulations, a few important issues are still limiting our ability
to make such predictions.

A first problem is that outflows are produced both during
the merger (dynamical ejecta), and over the much slower evo-
lution of the post-merger accretion disk (disk outflows), thus
requiring simulations covering a wide range of time scales and

length scales. Only a few simulations so far have attempted to
self-consistently include both phases of the evolution [21–23].

Another issue is that magnetic fields play a critical role
in driving disk outflows, and in the post-merger evolution of
the system [24–26]. Yet these fields grow from very small
scale instabilities that current simulations do not properly re-
solve [24]. So far, these effects have only been approximately
captured through the use of sub-grid models [27–29], or of
unphysically large initial magnetic fields (see e.g. [30, 31] for
reviews of the field).

Finally, neutrino-matter interactions play a critical role in
the evolution of the composition of the outflows [32, 33],
are the main source of cooling in the post-merger remnant,
can drive disk winds [22, 34], and deposit a large amount
of energy in the polar regions through pair annihilation [35–
40]. As Boltzmann’s equations of radiation transport remain
too costly to include in 3D simulations, however, we rely
on approximate transport methods to estimate the impact of
neutrino-matter interactions in merger remnants.

Here, we focus on the latter issue. In particular, we note that
approximate transport algorithms currently used in merger
simulations come with potentially significant and, more im-
portantly, so far unquantified errors. To work towards a more
rigorous determination of error budgets in simulations, we use
our recently developed general relativistic MC radiation trans-
port code [41] to evolve over a small time interval the rem-
nant of a binary neutron star merger. We do not fully couple
the MC evolution to the fluid evolution: neutrino-matter in-
teractions are still handled using our approximate, gray two-
moment scheme [42–44] with Minerbo closure [45]. Instead,
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we use the MC evolution to obtain more accurate estimates
of the neutrino distribution function. This allows us to con-
strain the accuracy of simulations that use approximate two-
moment transport schemes. Such error estimates are critical
to our ability to assess the robustness of kilonova models, as
simulations using the two-moment scheme are being used to
model merger outflows and to interpret kilonova observations.

This MC simulation also provides us with an opportunity
to study more carefully the properties of neutrinos emitted by
the remnant of neutron star mergers. For the first time, we
have at our disposal an estimate of the 7-dimensional neutrino
distribution function, f(νi)(t, x

i, pi) (with t the time, xi the
spatial coordinates, and pi the spatial components of the 4-
momentum of the neutrinos) for each neutrino species νi, ob-
tained from a time-dependent evolution of Boltzmann’s equa-
tions, in general relativity and with a realistic background for
the metric and fluid properties. Knowing f(νi), rather than its
lowest moments in momentum space, is important for accu-
rate estimates of the rate of νν̄ annihilations [35, 38], and for
studies of more complex neutrino processes currently not in-
cluded in merger simulations (e.g. neutrino oscillations [46–
49]). We illustrate this advantage of the MC scheme by pro-
viding the energy spectrum of neutrinos, their angular distri-
bution at selected points in the simulation, and the heating rate
of the fluid due to νν̄ annihilation in the polar regions.

II. METHODS

A. Evolution algorithm

In this work, we evolve the remnant of a binary neutron star
merger with our general relativistic radiation hydrodynamics
code, SpEC [50]. SpEC evolves Einstein’s equations of gen-
eral relativity on a pseudo-spectral grid, using the generalized
harmonic formalism [51]. The general relativistic equations
of hydrodynamics are evolved on a separate numerical grid
using high-order shock capturing finite volume methods [52].
A more detailed description of our latest methods to evolve
the metric and fluid in SpEC can be found in [53].

We also evolve the general relativistic equations of neutrino
radiation transport using a gray (i.e. energy-integrated) two-
moment formalism [54, 55]. We only use 3 distinct species
of neutrinos: electron neutrinos νe, electron antineutrinos ν̄e,
and heavy-lepton neutrinos νx. The latter class includes muon
and tau (anti)neutrinos, (νµ, ν̄µ, ντ , ν̄τ ). At the densities and
temperatures encountered in neutron star mergers, the frac-
tion of heavy-leptons (µ, τ ) in the fluid is much smaller than
the fraction of electrons/positrons, and we thus make the as-
sumption that the 4 species gathered in νx are largely inter-
changeable.1 A detailed description of our implementation
of the moment formalism is provided in [44, 57]. Here, we
limit ourselves to a discussion of the most important aspects

1 Muon production may however impact the equation of state of neutron star
matter, and indirectly affect the properties of the emitted neutrinos [56].

of the algorithm for the purpose of estimating errors in the
two-moment formalism.

In the moment formalism, we evolve the lowest moments
of the neutrino distribution function f(νi)(t, x

i, pi) in momen-
tum space. In a coordinate system comoving with the fluid,
the 0th, 1st, and 2nd moments are the energy density J , mo-
mentum densityHµ and pressure tensor Sµν . These moments
can be explicitly written as the momentum-space integrals

J(νi) =

∫
dνν3

∫
dΩf(νi), (1)

Hµ
(νi)

=

∫
dνν3

∫
dΩf(νi)l

µ, (2)

Sµν(νi)
=

∫
dνν3

∫
dΩf(νi)l

µlν , (3)

with ν the neutrino energy in the fluid frame,
∫
dΩ an integral

over solid angle on a unit sphere in momentum space, and

pµ = ν(uµ + lµ), (4)

the 4-momentum of neutrinos, with uµ the 4-velocity of the
fluid and lµuµ = 0. The stress-energy tensor of the neutrinos
is then, for species νi,

Tµν(νi)
= J(νi)u

µuν +Hµ
(νi)

uν +Hν
(νi)

uµ + Sµν(νi)
. (5)

In simulations, we also define the energy density E(νi), mo-
mentum density F(νi),µ and pressure tensor P(νi),µν measured
by an observer whose worldline is tangent to nµ, the unit nor-
mal to a t = constant hypersurface (inertial observer). The
stress energy tensor is then

Tµν(νi)
= E(νi)n

µnν + Fµ(νi)n
ν + F ν(νi)n

µ + Pµν(νi)
, (6)

with Fµ(νi)nµ = Pµν(νi)
nµ = Pµν(νi)

nν = 0. For convenience, in
the rest of this paper we drop the subscript (νi) when referring
to moments of f(νi), but moments should always be under-
stood as referring to a specific neutrino species. The moment
formalism provides us with evolution equations for E and Fi,
the spatial components of Fµ. They can be expressed in the
familiar form

∇µTµν(νi)
= Qν(νi) (7)

for some source terms Qν(νi) capturing interactions between
neutrinos of species (νi) and the fluid, as well as interac-
tions with other neutrino species. We also evolve the num-
ber density of neutrinos as measured by an inertial observer,
N (see [44]). This allows us to locally compute the average
energy of the neutrinos as measured by an inertial observer,

〈ε〉 =
E

N
. (8)

We note that, unless specified otherwise, average energy in
this manuscript refers to the number-density weighted average
of the neutrino energy, in a frame to be specified. Finally, the
evolution of the fluid is given by the equations

∇µTµνfl = −
∑
(νi)

Qν(νi), (9)

∇µ
(
ρ
√
−guµ

)
= 0, (10)
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with Tµνfl the stress-energy tensor of the fluid, ρ the baryon
density, and g the determinant of the 4-metric.

Eq. (7) is exact, but depends on the unknown pressure ten-
sor of the neutrinos, Pij . In SpEC, we close the system of
equations using the Minerbo closure [45]. Effectively, Pij
is estimated by interpolating between its analytically known
value in optically thick regions (isotropic pressure in thermal
equilibrium with the fluid) and its value for a single beam
of neutrinos propagating in vacuum. This is expected to be
very accurate in regions of high optical depth, qualitatively
correct in semi-transparent regions, and completely wrong in
optically thin regions if neutrinos come from more than one
direction. Once we have chosen a closure Pij(E,Fi), Eq. (7)
is a system of 4 equations for the 4 unknown (E,Fi), for each
neutrino species.

Besides a choice of closure, the gray two-moment scheme
relies on significant approximations in the computation of
Qν(νi). We include in Qν(νi) charged-current reactions

p+ e− ↔ n+ νe (11)
n+ e+ ↔ p+ ν̄e, (12)

νν̄ pair annihilation/creation

e+ + e− ↔ ν + ν̄, (13)

plasmon decays

γ ↔ ν + ν̄, (14)

and, for heavy-lepton neutrinos, nucleon-nucleon
Bremsstrahlung (note that ν̄x = νx in SpEC)

N +N ↔ N +N + νx + ν̄x. (15)

All of the emissivities and absorption opacities are
computed following [58], except for nucleon-nucleon
Bremsstrahlung [59]. We compute the neutrino absorption
opacities κa,(νi) due to charged-current reactions and the neu-
trino emissivities η(νi) due to other processes. The emissivi-
ties due to charged-current reactions and absorption opacities
due to other processes are computed by imposing Kirchoff’s
law, η = Bκa, withB the energy density of neutrinos in equi-
librium with the fluid. Using Kirchoff’s law guarantees that
we recover the correct neutrino energy density in optically
thick regions. We also compute the scattering opacities κs,(νi)
due to elastic scattering of neutrinos on neutrons, protons, and
heavy nuclei [58], and estimate

Qν(νi) = η(νi)u
ν − κa,(νi)Ju

ν − (κa,(νi) + κs,(νi))H
ν . (16)

We ignore inelastic scatterings, as well as all processes not
explicitly mentioned here.

An important issue when computing Qν(νi) is that the cross-
sections for the above reactions depend on the energy spec-
trum of the neutrinos. In a gray scheme, we can only guess
what that spectrum is. To compute opacities, we thus first as-
sume that the neutrinos are in thermal equilibrium with the
fluid. We then compute the average energy of the neutrinos
from their moments (E,Fi, N), and rely on a fairly complex

and somewhat arbitrary procedure to estimate the shape of the
neutrino spectrum in optically thin regions. We then correct
the absorption and scattering opacities, assuming a ν2 depen-
dence for the dominant neutrino-matter interactions (see [44]).

The situation is even worse in simulations that do not evolve
the number density N . Then, even finding a good estimate of
the average energy of neutrinos can be difficult. For neutron
star mergers, this leads to large errors in the absorption rate of
neutrinos in optically thin regions as well as in the composi-
tion of polar outflows [44].

Another problem with the two-moment scheme is that the
rate of νν̄ pair annihilation in optically thin regions is highly
dependent on the momentum distribution of neutrinos, as the
pair annihilation cross-section grows rapidly with the angle
between the direction of propagation of the neutrino and the
antineutrino. The pair annihilation rate is also very poorly ap-
proximated by Kirchoff’s law in regions where the number
density of electrons or positrons is low. We discuss below an
approximate treatment of these annihilation processes, pro-
posed by Fujibayashi et al. [38]. Within the framework of a
gray two-moment scheme, however, any estimate of νν̄ pair
annihilation has potentially large errors.

To quantify these errors in the two-moment scheme, we rely
on a newly developed MC scheme, described in detail in [41].
The MC algorithm implemented in SpEC is largely inspired
by earlier work on MC evolution of neutrinos in special rel-
ativity [60] and on general relativistic photon transport [61].
In particular, we evolve packets of neutrinos, each represent-
ing Nk neutrinos of 4-momentum pµk at position xik. The MC
representation of the neutrino distribution function is then

f(ν),MC =
∑
k

Nkδ
3(xi − xik)δ3(pi − pki ) (17)

while the stress-energy tensor of the neutrinos can be esti-
mated as [61]

Tµν,MC =
∑
k

Nk
pµkp

ν
k√

γαptk
δ3(xi − xik). (18)

In practice, we can estimate these functions by replacing
δ3(xi − xik) by a function f(xi) of unit norm (and, for f(ν),
by binning in momentum space). This is the procedure that
we follow in this paper, with either f(xi) = V −1 within a
volume V , or f(xi) a normalized Gaussian of width σ. The
stress-energy tensor can also be time-averaged to allow for the
accumulation of more packets, as proposed in [41].

The MC scheme can theoretically be used as a closure for
the two-moment algorithm. Doing this leads to a scheme that
evolves Boltzmann’s equations to numerical accuracy. For
this first use in merger simulations, however, we consider a
simpler, cheaper, and possibly more stable setup (the stability
of the coupled M1-MC system has not been demonstrated).
We evolve the equations of radiation-hydrodynamics using the
two-moment scheme with Minerbo closure (we refer to this as
the M1 scheme in the rest of this paper). The resulting time-
dependent fluid quantities are used as background for the MC
evolution. The MC evolution does not feed back onto either
the fluid or the two-moment evolution. Each MC packet is
created with a fluid frame energy of 10−11M�c

2.
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The MC algorithm implemented in SpEC is currently ca-
pable of handling isotropic emission of neutrinos in the fluid
frame, transport of neutrinos along geodesics, neutrino ab-
sorption, and elastic scattering. We use the publicly available
NuLib library [62] to generate a table of neutrino emissivi-
ties and absorption/scattering opacities as a function of fluid-
frame neutrino energy ν, fluid density ρ, fluid temperature T ,
and fluid electron fraction Ye. The table has 12 energy bins
spanning ν ∈ [0, 150] MeV, with a logarithmic spacing be-
tween bins (except that the first 2 bins have a width of 4 MeV).
We also use 51 equally spaced bins for Ye ∈ [0.035, 0.55], 82
logarithmically spaced bins for ρ ∈ [106, 3.16×1015] g/cm

3,
and 65 logarithmically spaced bins for T ∈ [0.05, 150] MeV.
In between tabulated points, we interpolate the logarithm of
the energy-dependent opacities (κa, κs) linearly in Ye and
logarithmically in the other variables. Following Richers et
al. [60], we always emit particles with a fluid-frame energy at
the center of an energy bin. The NuLib table uses the same set
of reactions as the moment scheme, except that it neglects all
pair processes for νeν̄e. The effective gray opacities derived
from the MC evolution could however be very different from
those in the moment scheme, as the MC algorithm is fully en-
ergy dependent while the moment scheme arbitrarily assumes
a given neutrino spectrum at each point.

An important property of our MC algorithm is that it ig-
nores regions of high optical depth, where the two-moment
scheme is reliable and the neutrino distribution function is
well approximated by a thermal distribution in equilibrium
with the fluid. The MC algorithm only evolves regions of the
post-merger remnant where κa(κa + κs) . κ2

crit. In any cell
that does not satisfy this condition, but with a neighboring cell
that does, MC particles are erased at the end of each time step
and re-drawn from an equilibrium distribution. This provides
a boundary condition for our MC algorithm. We note that
we evaluate opacities separately for each energy bin, and that
”neighbors” are determined in a 4D space (3 spatial dimen-
sions, plus ν).

We choose κcrit so that in any region where the charac-
teristic length scale for variation of the opacities is at least a
few grid cells, the assumption of an equilibrium distribution
of neutrinos in these “high-opacity” cells is reasonably accu-
rate. For example, for an optically thick sphere of constant
opacity κ0, the relative difference between the energy density
of neutrinos and the equilibrium density of neutrinos at dis-
tances ∆x from the surface is ∼ (0.08, 0.02, 0.005) for opti-
cal depth τ = κ0∆x = (1, 2, 3)2. For this first simulation, we
take κcrit∆x ∼ 1.2. Regions where the opacities vary rapidly
on the scale of a grid cell or less may be poorly approximated
by our boundary condition, but are also underresolved in the
two-moment scheme. A full MC evolution within these cells
would not help much either, as our MC scheme assumes con-
stant opacities and emissivities within any given cell. On the

2 We can also compute the ratio |F |/E, a measure of the anisotropy in the
neutrino distribution function. For the same values of κ0∆x, we have
|F |/E ∼ (0.056, 0.015, 0.005). These numbers are computed from the
known analytical solution for this problem [63].

FIG. 1. Difference in the pitch-angle distribution and energy spec-
trum of neutrinos between two simulations placing the boundary of
the MC evolution at different optical depth. We look at neutrinos
within a 3 km radius of a point on the polar axis (z = 45 km), about
5 ms after the beginning of the simulation. Errors are normalized by
the expected Poisson error in our reference simulation. Both simula-
tion have near-identical Poisson noise.

other hand, if the opacity varies on a length scale of more than
3 grid cells, our boundary condition should be accurate to bet-
ter than 1%.

To gain more confidence in this choice, we perform a
shorter simulation with κcrit∆x ∼ 12, and look at the neu-
trino distribution function above the neutron star (z = 45 km).
We choose this point because the polar cap of the neutron star
has the steepest opacity gradients, and we thus expect polar re-
gions to be particularly sensitive to a bad choice of κcrit. We
find that differences between the two simulations for the flux
of neutrinos, their energy spectrum, and their momentum dis-
tribution are close to the expected statistical noise, indicating
that our boundary condition is not a dominant source of er-
ror at the accuracy currently reached by our code. Fig. 1, for
example, shows deviations in the pitch-angle and energy dis-
tribution of the neutrinos, normalized to the expected Poisson
noise of one of the simulations (both simulations have simi-
lar Poisson noise). For an absolute error scale, we note that
this figure was generated using ∼ (4300, 7400, 2200) pack-
ets per simulation for (νe, ν̄e, νx). We also measured dif-
ferences in the average energy of the neutrinos of ∆〈ε〉 =
(0.15, 0.01, 0.7) MeV between the two simulations.

Our analysis of the MC results relies on two types of data.
First, we have at our disposal the individual packets evolved
by the MC scheme, and we log information about all MC
packets leaving the computational domain. This allows us to
obtain a MC estimate of the distribution function at any given
point, as long as we compute it on-the-fly, and to post-process
at will information about the neutrinos leaving the grid. Sec-
ond, we compute time-averages of moments of the neutrino
distribution function. These are meant to be used, eventually,
to provide a better closure to the two-moment scheme [41].
In this paper, they allow us to compare the M1 and MC re-
sults, and they also serve in the computation of the νν̄ pair-
annihilation rate. We use time-averaged moments so that a
lower number of MC packets can be used in the simulation.
This significantly reduces computational costs: in this study,
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the MC evolution is actually cheaper than the M1 evolution.
With κcrit∆x ∼ 1.2 and each MC packet having an energy
of 10−11M�c

2, we have roughly as many MC packets on the
grid as we have finite volume grid cells. All moments are
computed by averaging over 100 MC packets (or one time-
step if more than 100 packets are present in a cell)3, leading
to expected relative errors from Poisson noise of . 10%.

B. Post-merger initial conditions

We choose as initial conditions the result of one of our ex-
isting simulation of merging neutron stars [44]. The initial
binary is an equal mass, non spinning system. Each neu-
tron star has an ADM mass of 1.2M� in isolation. The neu-
tron star matter is described by the equation of state of Lat-
timer & Swesty [64] with nuclear incompressibility parame-
ter K0 = 220 MeV (LS220). We use the publicly available
NuLib table providing the fluid properties as a function of
density (ρ), temperature (T ), and electron fraction (Ye) for
this equation of state [65]. In this work, we begin from a
snapshot of the simulation 10ms after merger, and evolve the
post-merger remnant for 4.5 ms. This is longer than the dy-
namical timescale of the remnant neutron star, but shorter than
the cooling timescale of the remnant.

The fluid properties within poloidal and equatorial slices
through the remnant are shown in Fig. 2. The central ob-
ject is a hot, differentially rotating, massive neutron star. It
is surrounded by a thick accretion disk with temperature T ∼
5−10 MeV and electron fraction Ye ∼ 0.1−0.3. Shocked spi-
ral arms driven by the rotation of the distorted neutron star are
visible in the disk. Low-density outflows are observed in the
polar regions. Neutrino emission and absorption make these
outflows relatively proton-rich (Ye ∼ 0.3 − 0.5). In previous
work, we demonstrated that the composition of these outflows
is quite sensitive to the method used to compute the average
energy of the neutrinos [44]. The starting point of this study
is a simulation using our best energy estimate so far for neu-
trino energies, i.e. the estimate obtained by evolving both the
neutrino number density and the neutrino energy density.

Our existing simulation provides us with initial conditions
for the metric, the properties of the fluid, and the moments of
the neutrino distribution function evolved by the M1 scheme.
These have to be complemented with initial conditions for the
MC evolution. At the initial time, we randomly draw parti-
cles from a thermal distribution in equilibrium with the fluid.
While this is a fairly reasonable assumptions in the most op-
tically thick regions evolved by the MC algorithm, this is
clearly inexact in semi-transparent and optically thin regions.
The duration of the simulation is chosen to allow MC packets
to diffuse from the surface of moderate optical depth below
which we do not use the MC algorithm (discussed in the pre-
vious section), and then travel to the boundary of the domain.

3 The exact procedure to compute time-averaged moments is described
in [41]

In the rest of this paper, we largely ignore the first ∼ 3 ms of
evolution, and focus solely on times when we expect that the
properties of the MC packets are no longer influenced by our
choice of initial conditions.

C. Numerical grids

We set our numerical grids as in [44]. The pseudo-spectral
grid on which we evolve Einstein’s equations is constructed
from a small filled sphere centered on the neutron star rem-
nant, surrounded by 59 spherical shells. The number of basis
functions within each subdomain is chosen so that the trun-
cation error in the metric and in its spatial derivatives is less
than 5×10−4. Given the near-spherical symmetry of the high-
density regions of the post-merger remnant, this requires only
∼ 140k grid points.

The finite volume grid on which we evolve the equations of
hydrodynamics and the moments of the neutrino distribution
function is constructed from 4 levels of refinement. The finest
level has a grid spacing ∆x ∼ 300 m. At each subsequent
level, the grid spacing is multiplied by 2. All levels have the
same number of grid cells, 200 × 200 × 100, and are cen-
tered on the neutron star remnant. Each level is further sub-
divided in 144 patches, for parallelization. Each patch is then
extended by 3 ghost cells in each direction, for reconstruction
of the fluid variables from grid centers to faces. Overall, the
grid has 576 patches and a total of ∼ 28 million cells. As we
aim to estimate differences between the MC and M1 schemes
for a fixed setup and at a limited computational cost, we do
not attempt to vary the grid spacing or test the convergence of
the fluid evolution. Our grid spacing is fairly typical for neu-
tron star merger simulations with SpEC, and can capture the
dynamics of the post-merger remnant [44]. Our grid would,
on the other hand, be far too coarse to study the effects of
magnetic fields [66], which are entirely ignored in this work.

III. NEUTRINO MOMENTS AND DISTRIBUTION
FUNCTION

A. Overview: Polar and Equatorial Moments

Before beginning our detailed analysis of the M1 and MC
results, it is useful to examine the global properties and spatial
distribution of the neutrinos in our simulations. Table I lists
important overall properties of the neutrinos leaving the grid.
We see in particular that ν̄e are the dominant type of neutrinos
emitted by the remnant, both in terms of energy and number
emission (note that νx values should be divided by 4 to get per-
species results). We also observe the usual hierarchy of tem-
peratures, with νx being hotter than ν̄e, which are themselves
hotter than νe. Global quantities show relative differences of
(10− 20)% between the M1 and MC results, which could be
due either to the approximations made in the M1 scheme or
to the slightly different microphysics implemented in each al-
gorithm. We also note that the net flux of lepton number in
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FIG. 2. Poloidal (top) and equatorial (bottom) slices through the merger remnant. In each figure, solid lines show density contours of
log10(ρ/[1 g/cm3]) = (8, 9, 10, 11, 12, 13, 14). Color scales show the fluid temperature (left) and electron fraction (right).

the two schemes (i.e. number of νe minus number of ν̄e leav-
ing the grid) would likely be in closer agreement if the MC
scheme was coupled to the fluid, as the fluid would evolve
towards a new, slightly modified equilibrium composition.

Fig. 3 shows the energy density, average radial velocity, and
radial component of the pressure tensor along the vertical Z-
axis and along the X-axis, at the end of our simulation. The
neutrino energy density is largest in the optically thick regions
at the center of the star for ν̄e and νx, while νe are suppressed
in the neutron star core: νe are immediately absorbed by the
neutrons in the hot, protonizing core. Along the vertical di-
rection, a secondary peak in the neutrino energy density is
observed on the hot surface of the neutron star, while in the
equatorial plane, peaks in the neutrino distribution function
are associated with the hot, shocked tidal arms in the disk. At
large distances, the energy density falls as r−2, as expected.
The neutrino density far from the remnant is about 3 times

as large at the poles as on the equator, and dominated by ν̄e
everywhere. ν̄e are the most abundant species because the
equilibrium composition of the remnant is at a higher Ye than
its initial composition. The agreement between M1 and MC
appears to be quite good for νe and ν̄e, and for νx everywhere
but at the poles, where the M1 code overestimates the neutrino
energy density by a factor of 2.

The average radial velocity of the neutrinos (F‖/E) van-
ishes in the optically thick, rotating core, then rapidly grows
as the neutrinos decouple from the fluid. This decoupling oc-
curs over a short range of radii in the vertical direction. Dif-
ferences between species are more noticeable in the horizontal
plane: νx decouple closer to the core, then ν̄e, and finally νe.
In optically thin regions, F‖/E is an indicator of the width of
the distribution of neutrino pitch angle (the angle between the
direction of propagation of the neutrinos and the radial direc-
tion). F‖/E ∼ 1 indicates that all neutrinos propagate along
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FIG. 3. One dimensional profiles of the neutrino moments in the MC (solid lines) and M1 (dashed lines) code for each species of neutrinos (νx
values are for all heavy-lepton neutrinos combined), 14 ms after merger. We show the energy density (top), the parallel (radial) component of
the normalized transport flux (average velocity of the neutrinos, middle), and the parallel component of the Eddington tensor (bottom) along
the Z-axis (left) and X-axis (right). M1 values are computed by interpolation, while MC moments are computed using all packets within a ball
of radius of 300 m + 0.05 ∗ R centered on the desired point, with R the distance to the center of the remnant. All values are computed in the
inertial frame, without projection into an orthonormal frame (hence the few points where P‖ > E).
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TABLE I. Global properties of the neutrino emission 14 ms after
merger, according to the M1 and MC algorithm. The average energy
is weighted by the number of neutrinos. The effective temperature
and spectral index are defined by Eq. 19, and cannot be computed in
the (gray) M1 algorithm. νx values are for all 4 heavy-lepton species
combined. The M1 and MC scheme use slightly different definitions
of global quantities: the M1 scheme measures the total energy leav-
ing the grid, and computes average energies as observed by an inertial
observer at the domain boundary, while the MC scheme measures the
total number of particles leaving the grid, and estimate the average
energy of particles in a packet to be pt, an estimate of the energy of
the packets at infinity. These differences could explain mismatches
of order |1 − α| ∼ (2 − 3)% between the M1 and MC results, but
not the observed (10− 20)% mismatches.

νe ν̄e νx

M1 scheme
Luminosity [1052 erg/s] 5.8 11 11
Number flux [1057/s] 3.4 5.1 2.6
Average energy [MeV] 10.6 13.4 26.4

MC scheme
Luminosity [1052 erg/s] 5.0 10 11
Number flux [1057/s] 2.7 4.0 2.9
Average energy [MeV] 11.3 15.5 23.0

Effective temperature T(ν) [MeV] 1.9 2.7 9.0
Spectral index α 4.8 4.6 1.5

the radial direction, while lower values indicate less forward-
peaked distributions. We see that F‖/E grows to the speed of
light as the distance to the source increases, and the remnant
effectively becomes a point source. While qualitative agree-
ment between the MC and M1 results is still observed, the
growth of F‖/E in the vertical direction is faster in the M1
code - i.e. the M1 code expects the distribution of neutrinos
to be more forward-peaked than in the MC code.

Differences between the M1 and MC results are more ap-
parent in the pressure tensor, particularly in the polar regions.
Just above/below the remnant, the MC code finds P‖/E ∼
0.6 − 0.8, while the M1 code finds P‖/E ∼ 1. We argue in
the next sections that these differences are due to the inabil-
ity of the M1 code to handle converging streams of neutrinos,
even though converging neutrinos are an expected feature of
the polar regions. In optically thick regions, the M1 and MC
code agree, but that should not be a surprise: there, both codes
are constructed to enforce equilibrium between neutrinos and
the fluid.

Fig. 4 continues our description of the neutrinos along the
X-axis and Z-axis, by showing the average energy of the neu-
trinos as measured by an inertial observer, 〈ε〉 = E/N . Neu-
trino energies are naturally large in the hot neutron star core
(50− 100 MeV), and in other optically thick hot regions (e.g.
shocked tidal arms). However, lower-energy neutrinos have
a higher probability to escape the remnant, and the average
energy of the escaping neutrinos is ∼ 10 − 30 MeV (with νx
hotter than ν̄e, which are themselves hotter than νe). While the
M1 and MC code agree on the general hierarchy of tempera-
tures, pointwise estimates of the neutrino energies can differ
by up to ∼ 30% between the two algorithms. We will show

later than agreement is a little better when considering time-
averaged or spatially-averaged 〈ε〉. In particular, large oscilla-
tions in the average energies computed using the M1 code may
be a sign of other undesirable effects of approximate transport.

Finally, Fig. 5 shows the energy density of neutrinos along a
line 25◦ from the polar axis (in the Oxz plane). As along other
directions, agreement between the M1 and MC code is good
in optically thick regions. However, we now see significant
disagreement in optically thin regions, with up to a factor of
∼ 2 more neutrinos measured in the M1 code than the MC
code. We thus see that the agreement observed along the polar
axis and the X-axis is in no way universal. We discuss these
differences in more detail in the following sections.

B. Eddington tensor

We now consider the impact of one of the main assumption
of the two-moment scheme: the Minerbo analytical closure.
In Figs. 6-7, we show equatorial and poloidal slices through
the merger remnant, as for the fluid quantities plotted in Fig. 2.
The figures show various components of the Eddington ten-
sor fij = Pij/E, in an orthonormal frame constructed by
an inertial observer applying the Gram-Schmidt algorithm to
vectors tangent to spatial coordinate lines. For each compo-
nent we plot the MC results, and the difference between MC
and M1 results. Here, the MC moments are calculated as they
would be if we coupled the MC and M1 schemes, i.e. by time-
averaging over all packets passing through a given grid cell.
From the MC results, we see that statistical errors, roughly ap-
proximated as the noise in the MC predictions, are at the level
of a few percents, slightly better than expected.

The difference between MC and M1 is largest in the po-
lar regions, and for fzz . Errors of 0.1 − 0.3 are the norm
within a few neutron star radii of the surface of the remnant,
with the Minerbo closure consistently returning larger values
of fzz than the MC closure. That the Minerbo closure is par-
ticularly inaccurate in polar regions is no surprise: neutrinos
emitted by the hot neutron star and the accretion disk cross
paths there, and will create artificial radiation shocks when
the Minerbo closure is used. With this simulation, we can
quantify this long-standing assumption. We find that errors in
the polar regions are very significant: the MC results indicate
that fzz ∼ 0.5 − 0.7 at points where the difference between
MC and M1 is |∆fzz| ∼ 0.1 − 0.3. Outside of the polar
regions, we observe differences |∆fij | . 0.1. In some of
these regions, the difference between the MC and M1 results
is consistently of the same sign, and thus does not appear due
to statistical noise in the MC results. Regions with rapid varia-
tions in the error measurements (with typically ∆fij . 0.03),
on the other hand, most likely have larger MC errors than M1
errors. This is the case in most of the accretion disk, at least
at radii r . 70 km.

Overall, the Minerbo closure appears to do quite well in
the optically thick and semi-transparent regions where most
of the neutrinos are emitted, but has some clear issues far-
ther from the remnant, where we pay for the inaccuracies
of the optically-thin analytical closure. Large errors for the
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FIG. 4. Same as Fig. 3, but for the average energy of the neutrinos in the inertial frame.

FIG. 5. Energy density of neutrinos for all species in the M1 and MC
codes, along a line 25o from the polar axis.

closure in the polar regions have a couple of potentially im-
portant consequences for neutrino-matter interactions in these
systems. One is that the spatial distribution of neutrinos in
optically thin regions is inaccurate when using a M1 scheme.
This impacts the resulting rate of absorption of νe and ν̄e, and
thus the evolution of the composition of polar outflows. We
study the spatial distribution of neutrinos in more detail in
Sec. III D. Another consequence is that the inferred energy
deposition from νν̄ annihilations in polar regions may be dif-
ficult to accurately estimate when using the M1 scheme. We
consider that problem in Sec. IV.

C. Pointwise distribution function of neutrinos

To better understand the momentum-space distribution of
neutrinos, we now look at their direction of propagation and
their energy spectrum at individual points. As opposed to our
computation of the Eddington tensor, we do not perform any
time-averaging here. Instead, we study the properties of all
MC packets within a distance ∆d of a point xi at a fixed time
ti, following the procedure outlined after Eq. 17. We also limit
ourselves to optically thin regions, where differences between
the M1 and MC results are significant. As the distribution
function of neutrinos at a given time is 6-dimensional, and
different physical processes will require the visualization of
that distribution function in different ways, we do not attempt
to provide a complete view of the distribution function. We
limit ourselves to some notable properties of the distribution
function, provided as examples of what information can be
gleaned from our MC results.

At each point, the momentum of neutrinos is characterized
by the parameters (ε, θ, φ), where ε is the energy of the neu-
trinos measured by an inertial observer, θ the angle between
the momentum of the neutrinos and the radial coordinate in an
orthonormal tetrad constructed by an inertial observer (pitch-
angle), and φ an azimuthal angle for rotation around that same
radial axis. We first consider points along the polar axis, at
z = (45, 90, 135) km. At all 3 points, we find a flat distri-
bution in φ, within statistical errors and after marginalizing
over (ε, θ). This indicates that deviations from axisymmetry
in the hot neutron star and in the surrounding accretion disk
do not have a significant impact on the neutrino distribution
function at the poles. This result is particularly interesting if
we aim to use time-averaged MC moments to close the two-
moment evolution equations. It may be sufficient for the aver-
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FIG. 6. Poloidal slice through the merger remnant. The left column shows the diagonal and off-diagonal components of the Eddington tensor
fzz and fxz as measured with the MC code. Solid lines are contours of fzz, fxz separated by 0.1 (alternating red and black lines). This
provides an order-of-magnitude estimate of the statistical noise, with ∆fstat < 0.05. The right column shows the difference between the
MC and M1 Eddington tensors. In the massive neutron star, the difference is negligible. In the disk, it is dominated by statistical MC noise.
Outside of the remnant, large errors in the Minerbo closure dominate. In particular, ∆fzz ∼ 0.1− 0.3 in the polar regions. All results are for
νe neutrinos.

aging timescale to be short compared to the thermal evolution
timescale of the remnant, rather than its orbital timescale.

Fig. 9 shows the probability distribution of neutrinos with
respect to θ. As expected, it becomes more forward-peaked as
we move away from the remnant. We can also see clear differ-
ences between neutrino species. The pitch-angle distribution
is narrower for the heavy-lepton neutrinos, and wider for ν̄e.
For νe, the distribution function peaks at θ ∼ 45o rather than
θ ∼ 0o. This is due to the relative contribution of the neutron
star and accretion disk to the neutrino fluxes. Nearly all νx
are coming from the neutron star, while the disk contributes
significantly to the production of ν̄e and νe. The broad distri-
bution of f(θ) does not match the assumptions made by the
M1 scheme in these regions.

Finally, the energy spectrum of neutrinos is shown in
Fig. 10. The shift in the spectrum as we move away from the
remnant is too large to be due to gravitational redshift alone.

We expect a ∼ 6% shift in the average energy of the neutri-
nos between z = 45 km and z = 135 km, but observe a 20%
change between those points. The cooler spectrum at large
radii is a geometrical effect, accounting for a larger fraction
of the polar neutrinos coming from the disk rather than the
hotter neutron star as we move away from the remnant along
the polar axis. The spectra also show that the assumption of
a black-body (or softer) spectrum made in the gray moment
scheme [44] is not accurate. We fit the normalized spectra at
z = 135 km to the function

f(ε, T(ν), α) =
εα

Tα+1
(ν) Γ(α− 1)

e−ε/T(ν) . (19)

For a black body spectrum, and approximating the Fermi-
Dirac distribution of neutrinos by a Boltzmann distribution,
we would expect α = 2 and T(ν) would be the tempera-
ture of the neutrinos. Instead, for (νe, ν̄e, νx) we find α =
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FIG. 7. Same as Fig. 6, but for an equatorial slice through the remnant, and showing components fxx, fxy of the Eddington tensor. The Minerbo
closure is significantly more accurate here than in the polar regions, although some regions of the shocked spiral arms show consistent biases
in the Minerbo closure at a level ∆fij ∼ 0.1.

FIG. 8. Distribution probability of neutrinos as a function of the
azimuthal angle φ of their 4-momentum, at different points on the
polar axis. We sample all packets within ∆d = 0.1z of the target
point. We have 400− 2000 packets within each region and for each
type of neutrinos.

(4.2, 4.3, 1.7) and T(ν) = (2.5, 3.3, 9) MeV. The neutrino
spectrum is thus significantly harder than expected for νe and
ν̄e, and closer to a black body for heavy-lepton neutrinos. The
average energy of polar neutrinos evaluated from the gray mo-
ments (E,Fi, N), on the other hand, is quite close to the av-
erage energy measured in the MC code: the average energy
of neutrinos leaving the grid with a momentum misaligned by
less than 300 with respect to the polar axis, as measured in the
moment scheme, is within 10% of the MC results.

Given the expected dependence of the absorption and scat-
tering opacities of neutrinos in the square of the neutrino en-
ergies, we can estimate that these different spectral shapes
would lead us to underestimate reaction rates for νe and ν̄e
by up to ∼ 15%, if the average energy of neutrinos was accu-
rately estimated. As the average energy of the polar neutrinos
is within 10% of the MC results in the M1 scheme, absorption
and scattering opacities in the polar regions will be accurate
within ∼ 30%. We note that this is only true because we
evolve the neutrino number density in the M1 scheme, thus
obtaining a reasonably accurate local estimate of the average
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FIG. 9. Same as Fig. 8, but for the distribution probability with re-
spect to cos(θ), with θ the neutrino pitch angle. We show multiple
species for the closest point to the remnant, as the angular distribu-
tion is more sensitive to the finite size of the emitting region close to
the remnant.

FIG. 10. Same as Fig. 8, but for the distribution probability with
respect to the neutrino energy ε. We use 12 energy bins to generate
this figure, identical to the bins of the NuLib table.

neutrino energy. If we had approximated the neutrino energy
spectrum by a black-body distribution at the fluid temperature
(T(ν) ∼ (2 − 3) MeV, α = 2), the average neutrino energies
would have been off by factors of 2− 5.

We also study the properties of the neutrino distribution
function at points farther away from the polar axis, in the
y = 0 plane (i.e. the poloidal slice shown in Fig. 2). We
consider the points

(x, z) = [(45, 135), (90, 135), (135, 135), (135, 90),

(135, 45), (135, 0)] km. (20)

While at those points the probability distribution with respect
to the angle φ is no longer isotropic, the only asymmetries ob-
served in the neutrino distribution function are the expected
preference for neutrinos to come from the equatorial plane of

the remnant, and a more forward-peaked distribution function
at larger distances. This is consistent with what we observed
in the polar regions, and with our assumption that the neu-
trino distribution function does not vary significantly over the
rotation period of the remnant. The spectrum of the neutri-
nos remains well fitted with the same function as in the polar
regions, with a hard spectrum (α ∈ [4, 5]) for νe and ν̄e and
a near black-body spectrum for νx. The accuracy of the M1
results for ε decreases significantly as we move away from the
polar axis. We find relative errors of (10 − 30)% in the av-
erage neutrino energies, which could lead to close to a factor
of 2 errors in absorption/scattering opacities. In these regions,
however, the composition of the fluid is not as sensitive to es-
timates of ε as closer to the poles [44]. The impact of this
error on EM observables is thus likely to be reasonably small,
compared to other existing simulation errors.

Overall, we estimate that the error in the scattering and ab-
sorption opacities computed in the two-moment scheme are
likely . 30% in the polar regions, where they impact EM ob-
servables the most. Errors are larger farther away from the
poles, but this may not matter as much for modeling EM sig-
nals. However, computing the opacities is only one part of
the problem. The energy density of neutrinos also impacts
the reaction rate for neutrino-matter interactions. We show in
Sec. III D that this is a more significant issue.

D. Properties of escaping neutrinos

We now consider the properties of the neutrinos leaving the
computational domain, starting with their energy spectrum.
This illustrates differences between the energy of the neutri-
nos in the M1 and MC schemes, already discussed in the pre-
vious section. The spectrum of escaping neutrinos 14 ms af-
ter merger is shown on the left panel of Fig. 11, for all three
types of neutrinos. We bin the spectrum using the same 12
energy bins as in the NuLib table. It is worth noting, however,
that our ability to resolve the energy distribution of neutrinos
is understated in this plot. All MC packets are emitted with
the energy of the center of a bin, but their energies can then
be shifted due to gravitational and velocity redshift as well
as scattering events, so that for example a global shift of the
spectrum by a fraction of an MeV would be captured by the
MC code.

As for the pointwise data, the energy spectrum of νe and ν̄e
is well fitted by Eq. (19) with a hard spectral index (α = 4.8
and T(ν) = 1.9 MeV for νe; α = 4.6 and T(ν) = 2.7 MeV for
ν̄e). The spectrum of heavy lepton neutrinos is slightly softer
than a black body (α = 1.5, T(ν) = 9.0 MeV). The average
energy of escaping neutrinos is reasonably well estimated in
the moment scheme for νe and ν̄e (1 − 2 MeV errors), while
larger errors are observed for νx (4 MeV).

The right panel of Fig. 11 shows starker differences be-
tween the M1 and MC results. There, we show the proba-
bility distribution of neutrinos as a function of their latitude
in a spherical polar coordinate system with axis aligned with
the angular momentum of the remnant. Artificial shocks cause
neutrinos to accumulate close to the polar axis in the M1 code,



13

FIG. 11. Left: Energy distribution of the neutrinos leaving the computational domain (measured on the surface of a parallelepiped 6 grid
spacings from the subdomain boundary, i.e. approximately a parallelepiped of size [480 × 480 × 240] km centered on the origin), for all
3 species of neutrinos. In each plot, the dashed vertical line shows the average neutrino energy estimated by the M1 scheme, and the solid
vertical line the same quantity estimated by the MC scheme. The solid grey line shows our best fit to the spectrum. Right: Angular distribution
of the neutrinos leaving the grid. Here, θ is the usual spherical-polar coordinate, not the pitch angle of the neutrinos. Grey histograms show
the MC results, and red histograms the M1 results. Errors in the Minerbo closure lead to a large overestimate of the neutrino density in the
polar regions. In all plots, we integrate the neutrino fluxes over a 50µs interval 14ms after merger.

an effect that is avoided in the MC code. This results in an ex-
cess of neutrinos in the polar regions (θ . 350), by ∼ 50%
for νe and ν̄e and by nearly a factor of 2 for νx. This excess
is likely to have a more important impact on the evolution
of the polar outflows than the other sources of errors consid-
ered so far. The absorption rate of all flavors of neutrinos is

significantly boosted in M1 simulations, causing excess heat-
ing of the outflows. The effect of this error on the composi-
tion of the outflows is hard to determine with certainty. Gen-
erally speaking, overestimated neutrino-matter reaction rates
and fluid temperatures are likely to lead us to overestimate the
electron fraction of the outflows in the M1 code. Quantifying
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this error will require simulations in which the MC scheme
is fully coupled to the moment evolution (or directly to the
fluid).

IV. νν̄ PAIR ANNIHILATION

So far, we have discussed aspects of neutrino transport and
neutrino-matter interactions that are approximately modeled
in M1 simulations. We now move to a potentially important
physical effect that is entirely ignored in our existing M1 sim-
ulations: νν̄ → e+e− pair annihilation in low-density polar
regions. Existing estimates indicate that pair annihilation can
deposit enough energy in the polar regions to drive mildly rel-
ativistic outflows, and clear the poles of most baryons – al-
though on their own they are probably not sufficient to power
anything but the weakest short gamma-ray bursts [35–38, 40].
Pair annihilation has been included in 2D post-merger sim-
ulations using the two-moment approximation [37, 39], and
by post-processing late-time snapshots of a post-merger rem-
nant [40], but not in self-consistent 3D simulations of these
systems. One reason is that energy deposition due to pair an-
nihilation is strongly dependent on moments of the neutrino
distribution function that are not evolved by the M1 scheme,
mainly because counter-propagating neutrinos have a much
higher annihilation cross-section than neutrinos propagating
in the same direction.

To study this effect, let us follow Fujibayashi et al. [38] and
assume that the phase-space blocking factors and masses of
electrons and positrons are negligible. This is nearly certainly
a good approximation in the low-density polar regions where
pair annihilation plays an important role. The heating rate
Q

(+)
pair,νi

due to the neutrino species νi can then be computed
as a function of the moments of the neutrino distribution func-
tion through an integral over the phase space of neutrinos and
antineutrinos (see [35, 38]). If the energy in the fluid frame
ω(νi) can be factored from this integral and approximated by
the average energy 〈ω(νi)〉pair of neutrinos νi, then

Q
(+)
pair,νi

=
Cpair
νiν̄iG

2
F

3πh̄4c3
〈ω(νi)〉pair(JJ̄ − 2HµH̄µ + Sµν S̄µν)

(21)
with GF ≈ 4.5438(h̄c)3erg−2 the Fermi constant,
(J̄ , H̄µ, S̄µν) fluid-frame moments of antineutrinos,

Cpair = 1± 4 sin2(θW ) + 8 sin4(θW ) (22)

(with the plus sign for electron neutrinos and the minus signs
for heavy-lepton neutrinos), and sin2 θW ≈ 0.2319. The total
heating rate due to pair annihilation is then

Q
(+)
pair,tot = Q

(+)
pair,νe

+Q
(+)
pair,ν̄e

+ 4Q
(+)
pair,νx

, (23)

where the only difference between Q
(+)
pair,νe

and Q
(+)
pair,ν̄e

is
due to different average energies 〈ω(νi)〉pair for νe and ν̄e.
The neutrino annihilation number rate is naturally the same
for νe and ν̄e. Eq. (21) can be seen as a definition for the av-
erage energy 〈ω(νi)〉pair, yet computing that average energy

from information available in the M1 scheme is not possible.
Even in the MC algorithm if we want to compute the annihila-
tion rate from the stored moments of the neutrino distribution
function rather than by direct interaction between every pair of
neutrino packets, we do not currently store enough informa-
tion to exactly compute 〈ω(νi)〉pair. If neutrinos of different
energies all have the same angular distribution, 〈ω(νi)〉pair is
the energy-weighted average energy of neutrinos (rather than
the number-weighted average energy 〈ε〉 used in earlier sec-
tions). If neutrinos of different energies have different an-
gular distributions, however, there is no simple way to com-
pute 〈ω(νi)〉pair. Considering that low-energy neutrinos are
more likely to come from the accretion disk and thus have
a higher annihilation cross-section, it is quite likely that using
the energy-weighted average energy slightly overestimates an-
nihilation rates. Yet, this is probably a small contribution to
the error in the computation of Q(+)

pair,νi
in a moment scheme,

and for this study at least we approximate 〈ω(νi)〉pair by the
energy-weighted average energy (in the M1 scheme, convert-
ing from 〈ε〉 to 〈ω(νi)〉pair is done by assuming a thermal dis-
tribution of neutrinos).

The main issues with the computation of Eq. (21) in the
two-moment formalism are that it relies on M1 estimates of
the neutrino pressure tensor, and that it is significantly affected
by the over-density of polar neutrinos in the M1 scheme. To
study these effects, we rewrite Eq. (21) as

Q
(+)
pair,νi

=
Cpair
νiν̄iG

2
F

3πh̄4c3
〈ω(νi)〉pairκ(νi)EĒ, (24)

with κ(νi) a dimensionless factor capturing the angular distri-
bution of (anti)neutrinos. AsQ(+)

pair,νi
∝ EĒ, Fig. 11 provides

us with an estimate of the impact on Q(+)
pair,νi

of the M1 code’s
inaccurate values for the neutrino energy density. The M1
code would overestimate annihilation of electron neutrinos by
a factor of ∼ 2, and of heavy-lepton neutrinos by a factor of
∼ 3. The geometric factor κ has the opposite effect. In the
M1 approximation, the assumed distribution function of polar
neutrinos is more forward-peaked than what we find with the
MC code. As a result, κ is significantly underestimated when
using M1. This last effect is shown on Fig. 12: in most of the
polar regions, κ is larger by factors of 3 − 5 in the MC code
than in the M1 code, with peak ratios of ∼ 100. Accounting
for both effects, we estimate that, given a good estimate of
〈ω(νi)〉pair, the two-moment code captures the impact of pair
annihilations within a factor of 2− 3.

To help with future computations of the νν̄ annihilation rate
in two-moment simulations, we also provide direct measure-
ments of the geometric factor κ in the MC code (Fig. 12). We
note that, in the polar regions, κ is largely independent of lat-
itude, and mostly depends on the distance to the remnant. In
Fig. 13, we show that κ is reasonably well fitted by the ex-
pression

κ(r) = min(κ0, Ae
−r/W ) (25)

with r the radius and, for electron neutrinos, κ0 = 0.53, W =
37 km, while for heavy-lepton neutrinos, κ0 = 0.45, W =
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FIG. 12. Vertical slices through the merger remnant. Top: The specific energy deposition rate due to νν̄ pair annihilation using the neutrino
moments and average energy predicted by the MC code (right), and the ratio of the geometric factor κ obtained from the MC and M1 code (left).
The latter provides an estimate of the error due solely to the use of the Minerbo closure in the computation of Eq. 24. Bottom: The geometric
factor κ in Eq. 24, for νxν̄x annihilation (left) and νeν̄e annihilation (right). Note that as the MC code only store moments normalized to the
energy density E (i.e. F i/E, Pij/E), the computation of QMC still uses the energy density evolved by the M1 code.

43 km. In theory, it may be interesting to use these fits in
simulations performed with the M1 code. However, we should
note that this will not get rid of errors caused by inaccurate
neutrino energy densities in M1 simulations.

At the very least, we can use our results to estimate the
accuracy of existing approximations used to compute the
neutrino pair annihilation rate. For example, Fujibayashi et
al. [38] use two different methods to compute that rate in their
simulations: one using the pressure provided by the Minerbo
closure, and one assuming an isotropic distribution of neutri-
nos (κ ∼ 1.1). Our results indicate that the second is a slightly
more accurate approximation of κ than the first within 50 km
of the remnant, where most of the pair annihilation energy is
deposited. However, even there it is a factor of ∼ 2 too high,

and this error on κ acts in the same direction as the error due
to the overestimated energy density at the poles. Once both
source of errors are taken into account, it appears that consis-
tently using the Minerbo closure during all calculations is in
fact more accurate.

Finally, we can provide an estimate of the heating rate due
to pair annihilation in our simulation. In Fig. 12, we show the
heating rate per unit mass. Fujibayashi et al. [38] estimate that
the terminal Lorentz factor of the outflows is

Γf ∼ 1.1
(Q/ρ)

1024 erg/g/s

τheat

1 ms
, (26)

with τheat the time during which the outflows are heated at
a constant rate Q/ρ. The observed heating rate would make
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FIG. 13. Geometric factor κ in Eq. (24), along the polar axis. We
show results for electron and heavy-lepton neutrinos, as well as best-
fit curves using Eq. (25). The fits ignore the high-density regions
inside the remnant neutron star, where pair annihilation is a subdom-
inant process.

the polar outflows mildly relativistic, as observed in [38]. We
can also look at the total energy deposition rate in the polar
outflows, i.e. in regions with θ < 30o and ρ < 1010 g/cm3

(the exact value is not very sensitive to changes of the limiting
density, even by an order of magnitude). We find an energy
deposition Qpair,tot ∼ 3 × 1050 erg/s. If we assume that the
neutrino luminosity decreases on a timescale of ∼ 50 ms, as
in [38], we find a total energy deposition ∼ 1.5 × 1049 erg,
close to the kinetic energy of the polar ejecta measured in [38]
(∼ 1049 erg in their simulation using the Minerbo closure to
compute the annihilation rate). This qualitative agreement
is not overly surprising. Using our MC code, we have just
argued that an M1 estimate of the annihilation rate should
be correct within a factor of ∼ 2 − 3. Pair annihilation is
thus likely to play an important role in the dynamics of po-
lar outflows. Whether this would really result in mildly rel-
ativistic outflows is not, however, obvious. Both our simula-
tions and [38] neglect the impact of magnetic fields, and in
particular of viscous heating driven by magnetic turbulence.
Viscous radiation-hydrodynamics simulations in axisymme-
try [39] find polar outflows energized by a combination of
viscous heating and pair annihilation. Whether these outflows
can be driven to mildly relativistic speeds will presumably de-
pend on the unknown strength of the viscous heating and the
baryon loading of the polar regions.

Overall, we find that multiple approximations made in the
M1 scheme create errors of factors of a few in the computation
of the νν̄ annihilation rate. Yet, these errors partially cancel,
and we find that a two-moment scheme using the Minerbo
closure and informed by a reasonable estimate of the average

neutrino energy can capture the neutrino pair annihilation rate
within a factor of ∼ 2 − 3. While probably insufficient for
detailed studies of the impact of neutrino pair-annihilation on
the dynamics of polar outflows, such accuracy is a much more
favorable result for the two-moment scheme than one might
have assumed before comparison with MC results.

V. CONCLUSIONS

We perform the first time-dependent, general relativistic,
Monte-Carlo radiation transport simulation of neutrinos in the
remnant of a binary neutron star merger. The pre-merger sys-
tem was a 1.2M�− 1.2M� system with the neutron star mat-
ter described using the LS220 equation of state. That sys-
tem forms a massive neutron star — accretion disk remnant,
with bright neutrino emission from both the disk and the hot
neutron star. While we do not couple the MC evolution to
the fluid evolution, we use our results to estimate important
sources of errors in more approximate transport algorithms
currently used in merger simulations. In particular, we focus
on the limitations of the gray two-moment scheme with ana-
lytical Minerbo closure, as implemented in the SpEC code.

We find that the Minerbo closure providing us with an an-
alytical estimate of the neutrino pressure tensor is very inac-
curate in the low-density polar regions. These regions are of
great importance for EM counterparts to neutron star merg-
ers. It is there that the hot, high Ye material powering optical
kilonovae is most likely ejected. Neutrinos in polar regions
are also likely to impact the production of short gamma-ray
bursts. An important consequence of this inexact closure is
that the energy density of neutrinos in the polar regions is
strongly overestimated when using the M1 scheme, by∼ 50%
for electron-type neutrinos and 100% for heavy-lepton neutri-
nos.

The average energy of the neutrinos, on the other hand,
is relatively well approximated in the polar regions by two-
moment schemes that evolve both the energy and number den-
sity of neutrinos (within ∼ 10%), but inexact closer to the
equatorial plane. We also show that the energy spectrum of
electron-type neutrinos is harder than the black-body spec-
trum usually assumed in the gray M1 scheme.

Combining these various sources of errors, we can estimate
that the absorption rates for charged-current reactions respon-
sible for the evolution of the composition of the outflows may
be off by factors of ∼ 1.5 − 2 in M1 simulations, potentially
a fairly significant limitation to our ability to model the com-
position of the outflows, and thus kilonovae. The practical
impact of these errors in the M1 scheme on kilonova mod-
els remain, however, an open question. We already know that
including neutrino absorption in simulations radically change
the composition of the outflows [33], while errors in the es-
timated neutrino energy leading to factor of a few changes in
the absorption rate can modify the composition of the polar
outflows by ∆Ye ∼ 0.05 − 0.1 [44]. Considering our esti-
mate of the error in the neutrino absorption rate obtained us-
ing our most up-to-date M1 scheme, it may be reasonable to
assume that the change in Ye due to the remaining approxima-
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tions in the M1 scheme will be slightly smaller than the errors
observed in [44] : important for accurate kilonova modeling,
but not for our qualitative understanding of merger outflows.
Considering that neutron star mergers are complex nonlinear
systems, however, this cannot be rigorously demonstrated at
this point. A more accurate statement will have to wait for
simulations with a full coupling of the MC scheme (or another
improved neutrino transport method) to the fluid evolution.

We also consider the impact of the M1 approximation on
estimates of the νν̄ → e+e− annihilation rate. While two dif-
ferent issues in M1 simulations each induce errors of factors
& 2, these errors partially cancel. An M1 scheme with a good
estimate of the average energy of the neutrinos is likely capa-
ble of predicting the neutrino annihilation rate within factors
of 2 − 3. While certainly significant, these errors are smaller
than one might have guessed prior to this study. Including
pair-annihilation effects within a two-moment scheme proba-
bly leads to at least qualitatively correct behavior of the polar
outflows.

Another important objective of this simulation is to as-
sess the feasibility of using time-averaged moments computed
from a low-resolution MC evolution as closure for the two-
moment scheme, thus removing the need to use the approx-
imate Minerbo closure or to assume a given energy spec-
trum [41]. We find that the time dependence of the neu-
trino distribution function over the orbital timescale of the
remnant is relatively weak, partially justifying the use of mo-
ments averaged over timescales comparable to the dynamical
timescale of the system. Additionally, our choice to avoid per-
forming MC evolutions in high-optical depth regions (where
κ∆x & 1) and to instead simply provide boundary conditions
approximating a thermal distribution of neutrinos in these re-
gions does not appear to create significant errors, at least when
compared with a simulation placing that boundary deeper in
the remnant (κ∆x & 10).

We thus estimate that we can provide moments of the neu-
trino distribution function with statistical noise at the level of
a few percents with as little as ∼ 2.5 × 107 MC packets (for

a simulation with 2.8 × 107 finite volume cells!). This indi-
cates that the two-moment scheme with MC closure that we
recently proposed [41] is computationally affordable in simu-
lations of post-merger remnants, and if stable may provide a
convenient way to improve upon the standard two-moment al-
gorithm with Minerbo closure. At the current accuracy of the
MC scheme, and considering current errors in the M1 scheme
of up to a factor of 2 in the local energy density and expected
neutrino absorption rate, and ∼ 10% − 20% in the average
energy of the neutrinos, such a coupled algorithm could in
principle reduce relative errors in the two-moment scheme by
an order of magnitude.
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Canada. The operation of these supercomputers is funded by
the Canada Foundation for Innovation (CFI), NanoQuébec,
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