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Observations of gravitational-wave signals from binary neutron-star mergers, like GW170817, can
be used to constrain the neutron-star equation of state (EoS). One method involves modeling the
EoS and measuring the model parameters through Bayesian inference. A previous study [1] has
demonstrated the effectiveness of using a phenomenologically parameterized piecewise polytrope
to extract constraining information from a simulated population of binary neutron-star mergers.
Despite its advantages compared to more traditional methods of measuring the tidal deformability
of neutron stars, notable deficiencies arise when using this EoS model. In this work, we describe
in detail the implementation of a model built from a spectral decomposition of the adiabatic index
that was used by the LIGO-Virgo Collaboration in Ref. [2] to constrain the neutron star EoS
from GW170817. We demonstrate its overall consistency in recovering the neutron star EoS from
a simulated signal to the piecewise polytropic implementation used in Ref. [1] and explain any
differences that arise. We find that both models recover consistent tidal information from the
simulate signals with tightest constraints on the EoS around twice nuclear saturation density. As
expected, the statistical error that arises in the piecewise polytropic representation near the fixed
joining densities is greatly reduced by using the spectral model. In addition, we find that our choice
of prior can have a dominant effect on EoS constraints.

I. INTRODUCTION

Gravitational-wave signals from coalescing binary
neutron-star (BNS) systems offer a new way to probe the
physics of nuclear matter in the cold, high-density region
of its equation of state (EoS) accessible only by neutron
stars. An EoS is a relationship between state variables,
such as pressure and density, of matter. Though the nu-
clear EoS has remained largely unconstrained at supranu-
clear densities [3], future electromagnetic missions such
as NICER [4] promise to tighten our understanding of
the exotic states of matter found in neutron stars. Still,
gravitational waves will provide essential, independent
inference to compliment and enhance any electromag-
netic measaurements. Indeed, the LIGO-Virgo Collabo-
ration has already used the first BNS gravitational-wave
signal GW170817 to place constraints on the tidal de-
formability of the two stars before merger [5–7]. Mea-
surements of both the mass and tidal deformability of
the system’s neutron stars lead directly to constraints on
the neutron-star EoS, as several followup studies have
demonstrated [8–19].

With more gravitational-wave detections assuredly on
the way, it is vital to establish sophisticated yet tractable
methods for extracting the neutron-star EoS from the
multi-source analysis of future BNS signals. Modeling
the neutron-star EoS instead of mapping macroscopic
properties of the neutron stars, like the masses and tidal
deformability or radius, to the EoS has distinct advan-
tages in this regime [1, 20–22]. For instance, operating
under the assumption that the neutron-star equation of
state is universal [23], each detection will yield measure-
ments of the same relationship, which makes combin-
ing information from each subsequent system straight-
forward. Additionally, the Bayesian prior is defined on
the EoS itself, as opposed to any exterior parameters like

the tidal deformability or radius. Lastly, any additional
physical or observational EoS information can be easily
folded into the analysis through the prior.

A previous study [1] has demonstrated the effective-
ness of measuring the parameters of a phenomenolog-
ically motivated piecewise polytropic parameterization
of the neutron-star EoS [24] from a population of sim-
ulated BNS gravitational-wave events. Increased statis-
tical error in the recovered EoS arose at the fixed joining
densities of the piecewise model, motivating a different
choice of parameterization. In this work, we detail the
implementation of an EoS model built from a spectral
decomposition of the adiabatic index [25] chosen because
it better matches a wide variety of candidate EoSs than
piecewise polytrope models with the same number of pa-
rameters, as shown in Refs. [25, 26]. We compare these
two implementations and find that the model based on a
spectral decomposition of the adiabatic index alleviates
the increased statistical error in the density regions cor-
responding to the fixed stitching points of the piecewise
polytrope model. We also touch on the important effect
of one’s choice of prior when performing EoS inference.

This paper is organized as follows: In Sec. II A, we out-
line the Bayesian parameter estimation techniques used
to infer the source parameters of a gravitational-wave
event. In Sec. II B, we present the waveform models and
settings used in our study. In Sec. II C and II D, we dis-
cuss the two EoS models compared. Finally, in Sec. III
and IV, we discuss the results of the comparison and
future work.
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II. METHODS

A. Bayesian Inference

To compare the utility of the two parameterized models
for measuring the EoS, we seek to estimate the posterior
probability density function (PDF) p(θ|d), where d rep-
resents the LIGO and Virgo data, and θ represents the
source parameters of the emitting system. Bayes’ Theo-
rem relates the posterior PDF to the prior PDF p(θ) and
the likelihood p(d|θ):

p(θ|d) =
p(d|θ)p(θ)

p(d)
(1)

∝ p(d|θ)p(θ). (2)

The evidence p(d) is effectively a normalization factor to
satisfy the condition that the posterior density function
must integrate to one. The prior PDF represents any a
priori knowledge about the source parameters. The like-
lihood is the probability that the data d is reproduced by
a system with source parameters θ. The single-detector
likelihood takes the functional form

p(d|θ) ∝ exp

[
−2

∫ ∞
0

|d(f)− h(θ, f)|2

Sn(f)
df

]
, (3)

assuming stationary, Gaussian noise, where Sn(f) is the
one-sided power spectral density (PSD) of the noise, d(f)
is the Fourier transform of the data, and h(θ, f) is a grav-
itational waveform model in the frequency domain. Our
analysis includes simulated data from three detectors, the
two Advanced LIGO detectors and the Advanced Virgo
detector, for which the network likelihood is just the
product of the single-detector likelihoods.

The direct calculation of the posterior over a large
parameter space is formidable. For a typical gravita-
tional waveform model, the dimensionality of the pa-
rameter space can exceed fifteen. We therefore rely on
sampling techniques like the Markov-chain Monte Carlo
(MCMC) algorithm, which draws samples from the un-
derlying posterior PDF. Specifically, we use the LALIn-
ference gravitational-wave parameter estimation software
package [27] found in the open-source LIGO Algorithm
Library (LAL) for our analysis [28].

B. Waveform, injection, and settings

We use the TaylorF2 waveform approximant with lead-
ing order and next-to-leading order tidal corrections to
the phase (see Ref. [29] and references therein) as the
waveform templates used in the likelihood calculations.
These tidal corrections depend on just two parameters:
the tidal deformability Λ = (2/3)k2[c2R/(Gm)]5 of each
star, where k2 is the second Love number, R is the star’s
radius and m is its mass. The inspiral of the wave-
form is computed from a frequency of 30 Hz to the fre-
quency at the innermost stable circular orbit, fisco =

c3/(63/2πGM), of a test particle about a Schwarzschild
black hole of mass M . Though neutron stars with stiff
EoSs may merge before fisco, this was found to affect EoS
measurability by less than 5% [29] and was ignored in
this study. Consistent with Refs. [1] and [29], we inject a
simulated signal into zero noise. However, we still incor-
porate detector noise in our analysis through the PSDs
included in our likelihood calculations. This approach
insulates our study from the statistical fluctuations of
individual noise realizations while preserving the overall
effect of the noise [30, 31]. We use the zero-detuned high
power configuration for the Advanced LIGO PSDs [32]
and an Advanced Virgo PSD based on Eq. 6 of Ref. [33].
Additionally, we also use the tidally-corrected TaylorF2
waveform for our injected signal to avoid the systematic
error associated with waveform modeling [1, 29].

The strength of the signal relative to the noise is given
by the signal-to-noise ratio (SNR), which for a single de-
tector is defined to be

SNRn =

√
4

∫ ∞
0

|h(θ, f)|2
Sn(f)

df. (4)

For a network of n detectors, the SNR is

SNRnet =

√∑
n

ρ2
n. (5)

For this study, we perform our analysis on just the
highest-SNR event from the baseline BNS population an-
alyzed in Ref. [1]. This corresponds to a 1.52-1.52 M�,
non-spinning BNS system with the MPA1 EoS [3, 34] and
SNRnet = 64. The EoS is recovered using two different
parameterizations: a four-parameter piecewise polytrope
and a four-parameter spectral decomposition of the adi-
abatic index, discussed in sections II C and II D, respec-
tively.

C. Piecewise polytrope

The piecewise polytrope parameterization of the EoS is
constructed by stitching together three individual poly-
tropes in the high-density portion of the EoS and an-
choring to a fixed low-density EoS [24]. Expressed as
a relationship between the pressure and density of the
neutron star, the piecewise polytrope takes the form

p(ρ) = Kiρ
Γi , (6)

where p is the pressure, ρ is the baryon mass density, Ki

is a constant of proportionality, Γi is the adiabatic index,
and i labels the segment of the piecewise function. The
model requires four parameters: log(p1), Γ1, Γ2, and Γ3.
The model is constructed by dropping a polytrope with
adiabatic index Γ1 anchored at pressure p1 and a fixed
joining density ρ1 = 1014.7 g cm−3 ≈ 1.8 ρnuc, where
the nuclear saturation density ρnuc ∼ 2.8× 1014 g cm−3,
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down to the fixed low-density EoS. A second polytrope
with adiabatic index Γ2 is then attached from (ρ1, p1) to
a fixed joining density ρ2 = 1015.0 g cm−3 ≈ 3.6 ρnuc.
Finally, the EoS is completed by attaching a third poly-
trope with adiabatic index Γ3 at ρ2. This form of the EoS
has been shown to reproduce macroscopic observables for
a wide range of candidate EoSs to within a few percent
with just four free parameters [24], motivating its use in
a gravitational-wave parameter estimation context.

For our analysis, we assume a uniform prior on all
EoS parameters, asserting that log(p1) ∈ [33.6, 35.4],
Γ1 ∈ [2.0, 4.5], and Γ2,Γ3 ∈ [1.1, 4.5] for all EoS sam-
ples, consistent with Ref. [1]. The flat prior ranges are
chosen to encompass a wide range of candidate EoSs and
impose thermal stability (dε/dp > 0). In addition to uni-
form priors on each parameter, we require the following
of all EoS samples:

1. Causality: the speed of sound vs =
√
dp/dε must

be less than the speed of light up to the central
pressure of the heaviest neutron star supported by
the EoS.

2. Observational consistency: the EoS has a maxi-
mum mass above observed neutron star masses.

3. The components are neutron stars: the mass of
each component is supported by the same EoS.

Since the piecewise polytropic parameterization repro-
duces macroscopic observables to within a few percent,
in practice we only enforce the causality prior when
vs > 1.1 c to allow for the possibility of causal EoSs being
fit by acausal polytropic representations. When imposing
the observational prior, we require that all EoS samples
support a maximum neutron-star mass of 1.97M�, which
corresponds to the 1σ lower bound of the mass measure-
ment of pulsar PSR J0348+0432 in Ref. [35]. If any of
these conditions are not met, the prior value is set to
0 and the set of parameters is rejected by the MCMC
sampler.

We used LALSimulation’s preexisting support for the
piecewise polytrope model and modified LALInference
to sample in the model’s parameters [28], which is an
intentional deviation from the two-stage approach of
Ref. [1]. The EoS parameters (log(p1),Γ1,Γ2,Γ3) and
masses (m1,m2) of each sample are mapped to the tidal
deformabilities Λi(mi; log(p1),Γ1,Γ2,Γ3) of each star via
an integration of the Tolman-Oppenhimer-Volkoff (TOV)
equations [36]. The two tidal deformability parameters
(Λ1,Λ2) are then used to compute the gravitational wave-
form. Although the execution of this approach varies
slightly from the methods described in Ref. [1], we found
that it produces entirely consistent results.

D. Spectral decomposition

The adiabatic index of the EoS can be spectrally de-
composed onto a set of polynomial basis functions,

Γ(x) = exp

(∑
k

γkx
k

)
, (7)

where γk are the expansion coefficients, and x =
log(p/p0) is a dimensionless pressure variable taken with
respect to some reference pressure, p0 [25]. Since the ba-
sis functions are differentiable, the discontinuities in the
derivative of the EoS that are present in the polytropic
representation are absent in this model. From the adia-
batic index, the EoS can be constructed in the form of
energy density as a function of pressure by direct inte-
gration of

dε

dp
=

ε+ p

pΓ(p)
, (8)

which can be reduced to quadratures:

ε(p) =
ε0
µ(p)

+
1

µ(p)

∫ p

p0

µ(p′)

Γ(p′)
dp′, (9)

where µ(p) is

µ(p) = exp

(
−
∫ p

p0

dp′

p′Γ(p′)

)
. (10)

Because the adiabatic index is decomposed onto polyno-
mials, Eqs. 9 and 10 can be calculated to double preci-
sion via Gaussian quadrature numerical integration with
just ten evaluation points per integral. The spectral pa-
rameterization has smaller residuals than the piecewise
polytrope with fewer parameters when fitting to a wide
range of candidate EoSs [25]. Even in cases in which
the candidate EoSs contain phase transitions, the spec-
tral fit with four parameters is about as accurate as the
piecewise polytrope model.

We choose to use a four-parameter spectral represen-
tation for this comparison, since the piecewise polytrope
model is built on four parameters. Just as with the poly-
trope model, we impose uniform priors on all of the spec-
tral model parameters: γ0 ∈ [0.2, 2.0], γ1 ∈ [−1.6, 1.7],
γ2 ∈ [−0.6, 0.6], and γ3 ∈ [−0.02, 0.02]. We assume
that the system is a BNS and enforce the causality and
observational priors outline in Sec. II C. We again use
vs > 1.1 c for our causality constraint to allow acuasal
fits of causal EoSs. Finally, we also require that the
adiabatic index be confined to Γ(p) ∈ [0.6, 4.5]. These
priors were chosen to encompass a wide variety of can-
didate EoSs and to explore at least as much of the EoS
parameter space as the polytrope model.

The high density EoS is stitched to a low-density
EoS at p0. We chose the SLy EoS of Ref. [37] for our
low-density EoS. We also made two distinct choices for
where to start the spectral EoS representation, and we
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FIG. 1. 1D posterior PDFs on the measurable tidal informa-
tion Λ̃ (left panel) and the two component masses m1 and
m2 (right panel) of the simulated BNS signal. The polytrope
model (red), the low-p0 spectral model (blue), and the high-p0
spectral model (green) recover similar PDFs indicating that
each extract the same EoS-dependent information from the
signal. Note that for the component mass PDFs, we take
m1 > m2 and plot both PDFs for a given model in the same
color.

present both choices here. We first chose p0 ≈ 5.3 ×
1030 dyne cm−2, which is just below the lowest density
that the polytrope model attaches to its low-density EoS
within our chosen prior range on the parameters. This
choice was made in order to fully encompass the EoS pa-
rameter space accessible to the polytrope model for this
comparison study. This choice effectively resulted in an
extremely conservative prior on the low-density portion
of the spectral EoS, which is discussed in Sec. III. How-
ever, since densities below 0.5 ρnuc do not significantly al-
ter the macroscopic observables of neutron stars [38, 39],
we next chose p0 ≈ 5.4 × 1032 dyne cm−2, which corre-
sponds to a density just below 0.5 ρnuc on our low-density
EoS. This choice reflects that the nuclear EoS is relatively
well-constrained below ρnuc [40].

We added this spectral decomposition model to the
LALSimulation software package and modified LALIn-
ference to sample in the model’s parameters [28]. The
EoS parameters (γ0, γ1, γ2, γ3) and masses (m1,m2) of
each sample are mapped to the tidal deformabilities
Λi(mi; γ0, γ1, γ2, γ3) of each star via an integration of the
TOV equations. The two tidal deformability parame-
ters (Λ1,Λ2) are then used to compute the gravitational
waveform.

III. RESULTS

As discussed in Sec. II B, we perform our comparison
on the highest-SNR event from the baseline BNS popu-
lation of Ref. [1]. For simplicity, in this section we refer
to the piecewise polytrope model outlined in Sec. II C as
simply the polytrope model; we refer to the spectral de-
composition model outlined in Sec. II D stitched to the
low-density EoS at p0 ≈ 5.3 × 1030 dyne cm−2 as the

low-p0 spectral model; and we refer to the spectral de-
composition model stitched to the low-density EoS at
p0 ≈ 5.4× 1032 dyne cm−2 as the high-p0 spectral model.

In Fig. 1, we present 1D marginalized histograms of
the component masses m1 and m2 and Λ̃, which is the
dimensionless version of λ̃ from Ref. [41] and defined to
be [42]

Λ̃ =
8

13

[
(1 + 7η − 31η2)(Λ1 + Λ2)

+
√

1− 4η (1 + 9η − 11η2)(Λ1 − Λ2)
]
, (11)

where η = m1m2/(m1 + m2)2. Λ̃ is the contribution
to the compact binary coalescence waveform of the in-
dividual tidal deformabilities Λ1 and Λ2 that is mea-
surable with advanced ground-based interferometers [29].
Throughout we assume that m1 > m2. Fig. 1 shows that
all three models, the polytrope model (red), the low-p0

spectral model (blue), and the high-p0 spectral model
(green), recover nearly identical marginalized PDFs on
the component masses and the measurable tidal infor-
mation, Λ̃, of the system. This demonstrates that each
model is extracting the same information from the signal,
and any difference between the EoS constraints from any
of the three models is only due to the mapping from this
information onto the EoS and differences in the incorpo-
rated priors.

In Fig. 2, we present these constraints on p(ρ) using
each EoS parameterization. To make these plots, the
credible regions are determined by first discretizing the
density space in Fig. 2, which yields a set of density points
ρi. We then compute p(ρi) for every EoS sample and his-
togram the resulting pressure distribution for each den-
sity. Finally, the 90% credible region is computed for
each histogram and stitched together to bound the cred-
ible region in pressure-density space. The p/ptrue panels
divide each pressure value by the pressure value of the in-
jected EoS (MPA1) at each considered density. In the left
panels of Fig. 2, we overlay the 90% credible regions from
the polytrope model (red) and the low-p0 spectral model
(blue); and in the right panels, we overlay the 90% credi-
ble regions from the low-p0 spectral model (blue) and the
high-p0 spectral model (green).

Since the EoS is often mapped to mass-radius space
when considering neutron stars, we also present this map-
ping in Fig. 3. In just the same way that we produce p(ρ)
credible intervals, we discretize the mass space in Fig. 2,
which yields a set of points mi. We then compute R(mi)
by solving the TOV equations for every EoS sample and
histogram the resulting radius distribution for each mass.
If the EoS sample does not support a neutron star at mass
mi, it is excluded from the histogram, which accounts for
the credible region turnover above 1.97M�. Finally, the
90% credible region is computed for each histogram and
stitched together to bound the credible region in radius-
mass space. In the left panel of Fig. 3, we overlay the 90%
credible regions from the polytrope model (red) and the
low-p0 spectral model (blue); and in the right panel, we
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overlay the 90% credible regions from the low-p0 spectral
model (blue) and the high-p0 spectral model (green).

Each credible region in Fig. 2 is narrowest just above
ρ = 1014.7 g cm−3, which is the first fixed joining den-
sity of the polytrope model. However, there is a notice-
able widening of the credible regions near the piecewise
polytrope fixed joining densities, consistent with the find-
ings of Ref. [1], which is mitigated by using the spectral
model. The ostensibly improved constraint at low den-
sities with the polytrope model compared to the low-p0

spectral model (see left panels of Fig. 2) is an artifact
of the overly-conservative prior on the low-p0 spectral
model. This is made clear by comparing the low-density
credible regions of these two models against those of the
high-p0 spectral model (see right panels of Fig. 2). This
feature also manifests itself in radius-mass space, shown
in Fig. 3, where it appears as though the polytrope model
results in tighter constraints than the spectral model.
However, again comparing these constraints against the
high-p0 spectral model demonstrates that this is merely
a difference in prior. If we applied similarly tight priors
to the low-density portion of the polytrope EoS model, it
too would see tighter credible intervals in these regions.

IV. CONCLUSIONS AND OUTLOOK

In this work, we used Bayesian inference to extract the
EoS information inherent in a simulated gravitational-
wave signal from a binary neutron-star system. We ac-
complished this by modeling the EoS and measuring the
model parameters. We used two different EoS param-
eterizations for this study: a piecewise polytrope and
a spectral decomposition of the adiabatic index. We
successfully implemented both models into LIGO’s flag-
ship parameter estimation software package LALInfer-
ence [27], which is an improvement to the method out-
lined in Ref. [1], and used this software to analyze a sim-
ulated high-SNR BNS signal. We then compared the
recovered posterior distributions using each model and
presented our main findings in Figs. 2 and 3.

Figs. 2 and 3 show that the spectral implementation
recovers EoS constraints that are very consistent with the
implementation of the polytrope model first published in
Ref. [1] and improved and reproduced here. Notice that
the measurement of the EoS is happening roughly around
ρ ≈ 2 ρnuc for both models. However, the spectral model
mitigates the widening of the 90% credible intervals near
the piecewise polytrope joining densities. Note that this
does not indicate an inherent advantage over piecewise
polytrope models. These credible interval widenings are
a direct result of the fixed joining densities of the poly-
trope implementation and could likewise have been mit-
igated by using a piecewise polytrope model with fewer
pieces and parameterized joining densities. Implement-
ing such a model is a subject of future work. Lastly, it is
clear that choosing an appropriate prior has a noticeable
impact on the credible intervals in these spaces. Model-

ing the EoS is an effective way to connect the measure-
ments of the EoS around 2 ρnuc from gravitational-wave
observations to low-density EoS constraints made in the
laboratory. In making these measurements, more impor-
tant than the EoS model used is the choice of prior.

Here, we reconstructed the neutron-star EoS from just
a single simulated BNS detection. However, this ap-
proach naturally allows for the inclusion of any number
of neutron star detections [1]. In particular, systems with
distinctive source parameters will constrain slightly dif-
ferent regions of the EoS. For example, a high-mass BNS
system could contain complementary EoS information to
a system with smaller masses. Thus, combining informa-
tion from multiple observations would result in tighter
constraints on the equation of state as a whole [1, 43, 44].

The flexibility of the spectral parameterization allows
for some interesting future developments. Including more
degrees of freedom in the model may compromise com-
putational efficiency for higher accuracy if the EoS being
recovered has sharp curvature. Since the spectral model
is robust to a higher number of parameters, this could be
studied by performing the same analysis discussed here
with a higher or lower number of expansion parameters
and comparing Baye’s factors to determine an optimal
number to use. The possibility also exists that there is
no fixed optimal value for the number of terms to include
in the decomposition. A potential supplement to the pa-
rameter estimation routine could be to include the num-
ber of expansion coefficients as a parameter itself. This
would allow the data to inform the optimal number of
terms to include and simultaneously determine their val-
ues, similar to methods described in Ref. [45]. A similar
analysis could be performed for a more generic piecewise
polytrope model, if implemented.

Recently, a modification to the spectral model explored
in this work has been proposed in which the causality
constraint is self-imposed [26]. This elegant addition to
the model would lead to improved computational effi-
ciency. Implementing the modified spectral model will
also be a subject of future work.

Lastly, each EoS model with some finite number of pa-
rameters will presumably never perfectly fit the true EoS.
In future work, we will quantify this modeling error on
a large set of candidate EoSs so that we can marginalize
over this error, similar to what is done in Ref. [46].
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“Tidal deformability from gw170817 as a direct probe
of the neutron star radius,” The Astrophysical Journal
Letters 857, L23 (2018).

[19] Elias R Most, Lukas R Weih, Luciano Rezzolla, and
Jürgen Schaffner-Bielich, “New constraints on radii and
tidal deformabilities of neutron stars from gw170817,”
arXiv preprint arXiv:1803.00549 (2018).

[20] Thomas E Riley, Geert Raaijmakers, and Anna L Watts,
“On parametrised cold dense matter equation of state
inference,” Monthly Notices of the Royal Astronomical
Society (2018).

[21] Geert Raaijmakers, Thomas E Riley, and Anna L Watts,
“A pitfall of piecewise-polytropic equation of state infer-
ence,” arXiv preprint arXiv:1804.09087 (2018).

[22] Tiziano Abdelsalhin, Andrea Maselli, and Valeria Fer-
rari, “Solving the relativistic inverse stellar problem
through gravitational waves observation of binary neu-
tron stars,” Physical Review D 97, 084014 (2018).

[23] Norman K Glendenning, Compact stars: Nuclear physics,
particle physics and general relativity (Springer Science
& Business Media, 2012).

[24] Jocelyn S. Read, Benjamin D. Lackey, Benjamin J.
Owen, and John L. Friedman, “Constraints on a phe-
nomenologically parametrized neutron-star equation of
state,” Phys. Rev. D 79, 124032 (2009).

[25] Lee Lindblom, “Spectral representations of neutron-star
equations of state,” Phys. Rev. D 82, 103011 (2010).

[26] L. Lindblom, “Causal Representations of Neutron-
Star Equations of State,” ArXiv e-prints (2018),
arXiv:1804.04072 [astro-ph.HE].

[27] John Veitch, Vivien Raymond, Benjamin Farr, W Farr,
Philip Graff, Salvatore Vitale, Ben Aylott, Kent Black-
burn, Nelson Christensen, Michael Coughlin, et al., “Pa-
rameter estimation for compact binaries with ground-
based gravitational-wave observations using the lalinfer-
ence software library,” Physical Review D 91, 042003
(2015).

[28] LIGO Scientific Collaboration et al., “Lalsuite: Lsc algo-
rithm library suite,” (2015).

[29] Leslie Wade, Jolien D. E. Creighton, Evan Ochsner, Ben-
jamin D. Lackey, Benjamin F. Farr, Tyson B. Litten-
berg, and Vivien Raymond, “Systematic and statistical
errors in a bayesian approach to the estimation of the
neutron-star equation of state using advanced gravita-
tional wave detectors,” Phys. Rev. D89, 103012 (2014),
arXiv:1402.5156 [gr-qc].

[30] Carl L Rodriguez, Benjamin Farr, Vivien Raymond,
Will M Farr, Tyson B Littenberg, Diego Fazi, and Vicky
Kalogera, “Basic parameter estimation of binary neutron
star systems by the advanced ligo/virgo network,” The
Astrophysical Journal 784, 119 (2014).

[31] Samaya Nissanke, Daniel E Holz, Scott A Hughes, Neal
Dalal, and Jonathan L Sievers, “Exploring short gamma-
ray bursts as gravitational-wave standard sirens,” The



8

Astrophysical Journal 725, 496 (2010).
[32] “Advanced LIGO anticipated sensitivity curves,”

https://dcc.ligo.org/LIGO-T0900288/public.
[33] Alessandro Manzotti and Alexander Dietz, “Prospects

for early localization of gravitational-wave signals from
compact binary coalescences with advanced detectors,”
arXiv preprint arXiv:1202.4031 (2012).
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