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Abstract

Black hole (BH) shadows in dynamical binary BHs (BBHs) have been produced
via ray-tracing techniques on top of expensive fully non-linear numerical relativity
simulations. We show that the main features of these shadows are captured by a simple
quasi-static resolution of the photon orbits on top of the static double-Schwarzschild
family of solutions. Whilst the latter contains a conical singularity between the line
separating the two BHs, this produces no major observable effect on the shadows,
by virtue of the underlying cylindrical symmetry of the problem. This symmetry is
also present in the stationary BBH solution comprising two Kerr BHs separated by a
massless strut. We produce images of the shadows of the exact stationary co-rotating
(even) and counter-rotating (odd) stationary BBH configurations. This allow us to
assess the impact on the binary shadows of the intrinsic spin of the BHs, contrasting
it with the effect of the orbital angular momentum.
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1 Introduction

Bound pairs of spinning black holes (BHs) orbiting around each other, known as binary BHs
(BBHs), have only very recently been observed. The first gravitational waves detected by
LIGO [1] confirmed the existence of BBHs in the Universe, by detecting the final stages
of their inspiral and their merger. The subsequent LIGO-Virgo detections [2–5] confirmed
an abundant BBHs population, when one considers mildly cosmological distances. In our
galaxy, on the other hand, BBH mergers will be extremely rare events, but indirect evidence
from the electromagnetic channel, supports the existence of BH binaries. For instance, recent
observations have detected an abundant number of binary systems that contain stellar-mass
BHs in the central parsec of the Galactic Centre, where the supermassive BH, Sagittarius A*
resides [6]. This finding is in agreement with the current models of galactic stellar dynamics,
which also predicts a population of isolated BHs and of BBHs in this central galactic region.
Thus, BBHs are expected to be common astrophysical systems.

Theoretical and phenomenological properties of BBHs have been studied for a long time
- see, e.g. [1, 7–12]. A particularly interesting feature is their strong lensing effect. Like
stationary isolated BHs, dynamical BBHs bend light in their proximity creating deformed
images, or even multiple images of background bright objects. Moreover, these dynami-
cal sources cast shadows - regions in the local sky lacking radiation, associated with null
geodesics that, when propagated backwards in time are absorbed by the BHs (see [13, 14]
for reviews). Solving for the lensing effects, including their shadows, of general-relativistic
BBHs is, however, more challenging than for isolated cases. The spacetime geometry cre-
ated by astrophysical binaries is dynamical and not known analytically. Thus, the lensing
effects/shadows are typically resolved to high accuracy via performing ray tracing on top of
dynamical fully non-linear numerical simulations. Specific features of the shadows of BBHs
have been identified in these numerical studies. For instance, in dynamical BBHs there are
two prominent visible shadows, each associated with one of the two BHs, with narrow sec-
ondary ‘eyebrow’ shadows close to the outside of each primary shadow. Such eyebrows also
occur in static double BH configurations [15–18]. In this static binary systems one typically
has axial symmetry, with the lensing images, that include aligned eyebrows and main shad-
ows, manifesting this symmetry. In dynamical BBHs, by contrast, both the intrinsic spin of
each BH and the orbital spin of the binary are responsible for frame-dragging, producing a
shift of the eyebrow’s position in the direction opposite to the spin, as shown in [19].

Motivated by the recent BBHs discoveries, in this paper we report on a computationally
simpler method to reproduce, as a proxy, what an observer in the vicinity of a BBH would
see, due to the strong lensing of light induced by the dynamical binary. In particular, this
conceptually simple method is able to reproduce the leading effects of the orbital angular
momentum of the binary.

The method presented herein is based on a quasi-static approach to resolve the photon
orbits for BBHs. The strategy is to locally compute null geodesics on top of an exact
static or stationary BBH background, such as the double Schwarzschild (a.k.a. Bach-Weyl)
geometry [20], and periodically adjust them by small rigid rotational corrections along an
axial vector field that does not coincide with the axi-symmetry of the exact solution, thus
mimicking the orbital spin of the BHs. These corrections along the photon positions will be
discrete rotations, with the frame of the two BHs fixed. This procedure provides a proxy to
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computing the paths of light rays that meet an observer in the vicinity of a truly dynamical
binary. A snapshot of such a quasi-static evolution of the geodesics on a static double-
Schwarzschild BH solution [21], using an image of the Milky Way as background, is depicted
in Fig. 1. Supplementary movies for the shadows and lensing due to this quasi-static BBHs
can be found in [22]. As we shall illustrate below the leading characteristic features of the
shadows of the full dynamical BBHs are replicated by this procedure.

Figure 1: Shadows and lensing in a quasi-static binary BH, using ESO’s Milky Way sky [23] as
background. The separation between the (equal mass) BHs is zo = 3M , where M is the mass of
each component, and the counter-clockwise rotation is ωM = 0.02 (see Section 2). Supplementary
movies can be found in [22].

To study the effects of the intrinsic (rather than orbital) angular momenta of the BHs
in the BBHs system we also compute the shadows of stationary (non dynamical) spinning
BBHs solutions of general relativity. We shall use the double-Kerr BH solutions [24–28] that
are known exactly. These are asymptotically flat metrics that represent two Kerr BHs with
a conical singularity between them (in the representation we use). Similar conical defects are
found in the double-Schwarzschild BH solutions. In the latter case, it was observed in [18]
that thanks to the underlying cylindrical symmetry, of both the geometry and the spatial
part of the fundamental photon orbits, the conical singularity has essentially no observable
effect on the shadows. Since a cylindrical symmetry is also present in the double Kerr
solution, we also expect no observable effect in the shadows due to the conical singularities.
This is confirmed by computing the null geodesics in these backgrounds: we are able to
produce images of the shadows of the co-rotating (even) and counter-rotating (odd) exact
stationary BBHs configurations. Our resulting images show complex and in some cases
self-similar structure across different angular scales. Among the stationary BBHs there is a
set of extremal, maximally spinning solutions. The extremal configurations have finite size
(event horizon area) and zero temperature. While we present a few images of the shadows of
stationary BBHs spinning near extremality, images of the first representations of the exactly
extremal BBHs will be presented in a forthcoming publication, where we shall make contact
with the recent analysis of the near horizon geometry of these BH binaries [29].
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In what follows we describe, in Section 2, the shadows of quasi -static BBHs, to address
the effect of orbital angular momentum on the lensing. We focus on explaining the method
we developed to trace light rays and present our results. In Section 3, we turn to the effect
of the intrinsic spin on the lensing, considering the double-Kerr BBHs where we do not
consider any kind of orbital spin. In section 3.1, we compute the shadows of the stationary
double-Kerr BH [25,26] with co-rotating (even) spins. And in section 3.2 we find and analyze
the shadows of the stationary counter-rotating (odd) double-Kerr BH [27, 28]. These more
analytical approaches that we introduce (compared to ray tracing on numerical simulations)
will hopefully enable a better understanding of the shadows of astrophysical BBHs.

2 Quasi -static Binary Black Holes

The double-Schwarzschild BH is a static solution of the vacuum Einstein’s equations. Start-
ing from it, however, we can construct a rotation proxy that mimics the leading effects of a
fully dynamical BH binary, in what concerns lensing effects. In this section we will describe
such a proxy, focusing on signatures at the level of the shadows.

The rotation of the binary will be assumed to be adiabatic-like, i.e. the BHs will move
rather slowly when compared with the light ray travel time for a typical photon reaching
the observer. Under this approximation, photons will locally follow null geodesics in the
double-Schwarzschild (static) background, with the trajectory periodically suffering small
corrections due to the rotation of the BHs. These corrections will simply be discrete (active)
rotations of the photon position along their path, with the frame of the two BHs fixed,
with such a procedure being straightforward to implement numerically. At the end of the
trajectory the photon position is rotated back into the observer’s frame. This system will
be dubbed a quasi -static BH binary.

The static BH binary (the double Schwarzschild solution) will be described in Weyl
coordinates xα = (t, ρ, ϕ, z) - see [18] for the details of the solution. Consider then a map

Ω : M→M (1)

xα → xα
′
= Ωα′(xα) , (2)

where xα
′

= (t′, ρ′, ϕ′, z′), that takes each point of our manifold M to another point in M.
In order to naively mimic a Cartesian rotation, the map Ω is defined as follows (in Weyl
coordinates):



t′ = t

ρ′ =
√
x′2 + y′2

ϕ′ =


asin

y′

ρ′
if (x′ > 0)

π − asin
y′

ρ′
if (x′ < 0)

z′ = z′,

,

 x′

y′

z′

 =

 1 0 0
0 cosωδt sinωδt
0 − sinωδt cosωδt

 x
y
z

 ,

and x + iy = ρeiϕ. Hence, after a time interval δt, the photon position is corrected by
changing its initial location P = (t, ρ, ϕ, z) to a new point P ′ = (t′, ρ′, ϕ′, z′) under the map
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Ω. We remark that Ω is well defined even when (ωδt)� 1, although this will not be usually
the case during the numerical integration of the trajectory.

The next issue is how the photon’s 4-momentum should be modified. The vector p = pµ∂µ
at point P can be projected via Ω into the push-forward vector (Ω∗p) at P ′ [30, 31]:

(Ω∗p) = pµ∂µΩα′∂α′ = pt∂t′ + (pi∂iΩ
a′)∂a′ ,

where i ∈ {ρ, ϕ, z} and a′ ∈ {ρ′, ϕ′, z′}. However, restrictions have to be imposed to (Ω∗p),
in order for it to represent the 4-momentum at P ′. We impose the new momentum p̃ should
satisfy the following two requirements:

• The photon’s local energy E is the same for a static observer in P and P ′, i.e. E =√
−gtt pt =

√
−g′tt p̃t

′
[32]. This is reasonable because the physical rotation is performed

by the BHs, and an observer in P can be identified with one in P ′.

• The norm of p̃ vanishes, i.e. p̃α
′
p̃α′ = 0.

It follows that the new momentum p̃ at P ′ is then defined as

p̃ =

(√
gtt
g′tt

pt
)
∂t′ + γ

(
pi∂iΩ

a′
)
∂a′ ,

where the (positive) factor γ enforces the vanishing of the norm. We further remark that this
procedure modifies the values of the photon’s energy E = −pt and axial angular momentum
L = pϕ with respect to infinity, which otherwise would be Killing constants of motion. This
implies that a photon can in principle escape the system with more (or less) energy than
it started with. We stress that this operation does not amount (generically) to a simple
coordinate transformation.

Although the angular frequency ω of the BH binary is a free parameter that was intro-
duced in the model, a physically reasonable value of ω can be estimated from the Keplerian
orbital frequency:

ω ∼ (∆z + 1)−3/2 M−1,

where M is the ADM mass, and ∆z is the proper distance between the two BHs. The latter
can be computed with a complete elliptic integral of the second kind (see [33]):

∆z = (2zo + 1)

(
1− 1

4z2o

)
E

(
2zo − 1

2zo + 1

)
.

The parameter zo in the previous expression parametrises the BH distance and is the same
that was used in [18].

Implementing the approach we have just described to the double Schwarzschild solution,
using the same setup as used in [18], we obtain the lensing and shadows displayed in Fig. 2.
With the exception of the shadow (represented in black), each color in the image represents
the ray-tracing endpoint on a far away sphere with four color quadrants, all imprinted with
a regular grid (see also [32, 34, 35]). The first column of Fig. 2 displays the lensing and
shadows of a static double Schwarzschild BH with zo = 3M , already discussed in [18]. The
second column displays the corresponding quasi-static binary with ω = 0.02M−1, with the
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BHs rotating counter-clockwise in the image (see movie in [22]). Observe that the shadows
are twisted clockwise in the image with respect to the static case. This can be interpreted
as follows. The observation image was taken at coordinate time t = 0; at this time the
binary had the same vertical orientation as in the static case. Since light takes a finite
amount of time to get to the observer, the shadows are actually recording the BH positions
at a past time (t < 0), when the BHs were rotated clockwise with respect to t = 0. The
shadow eyebrows are a second order lensing effect, related to a time even further into the
past, thus presenting an additional clockwise rotation with respect to the main shadows.
For illustration purposes we have included Fig. 1 with the same lensing and shadows of the
rightmost image of Fig. 2, but replacing the colored background with an image of the Milky
Way (see movie in [22]).

Figure 2: Top row: Lensing of a static (left) quasi-static (right) BH binary with zo = 3M and
ωM = {0 , 0.02}. Bottom row: Shadows of the previous images. The observer sits along the axis
of orbital rotation (the x-axis). The BHs rotate counter-clockwise in the image for positive ω.

To assess the accuracy of the method described above as a proxy to the lensing in a
dynamical BBH, we perform, in Fig. 3 a lensing comparison of a fully dynamical binary in [19]
close to merger with a similar quasi-static binary. Despite clear differences concerning specific
details of the lensing, the overall qualitative resemblance between both cases at the level of
the shadow structure is uncanny. Still, in order to have a more quantitative comparison
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between both images in Fig. 3, we define two parameters χ, ψ. The first parameter, χ,
is the ratio between the shadow area1 of the main shadows and the one of the associated
eyebrows; one obtains χ ' {15, 20}, respectively for the left (right) image of Fig. 3. The
second parameter, ψ, is an angle that parametrises the eyebrows’ angular displacement with
respect to the main shadows. By first computing the average position of all points within
each shadow element, one can draw two straight lines connecting similar average position
points, e.g. eyebrow to eyebrow and main shadow to main shadow. It is then possible to
define ψ as the angle formed between these two lines. We obtain ψ ' {42◦, 33◦} respectively
for the left (right) image of Fig. 3. We remark that ψ = 0 for the static BH binary, by
symmetry (see left image of Fig. 2).

Although the values χ, ψ are not exactly the same for both images in Fig. 3, the quasi-
static binary is here displayed mainly as a proof of concept. In particular, the values of {zo, ω}
of the quasi-static binary are quite ad-hoc, leaving some room for optimization. Moreover,
note that we have chosen a binary BBH close to merger, in which case the adiabatic ap-
proximation of the quasi-static binary is starting to break down, as the BHs change their
positions on a time scale comparable to the light ray’s travel time towards the observer. In
addition, unusual effects at the level of the shadow start to be noticeable, in particular a
non-smooth edge (i.e. a cusp) due to the combination of the conical singularity and rotation.

Figure 3: Left: Shadows and lensing of a fully dynamical binary of equal-mass BHs with no spin
(adapted from [19], c© IOP Publishing. Reproduced with permission. All rights reserved). Right:
Quasi-static BH binary with zo = 1.5M and ω = 0.06M−1.

3 Stationary Binary Black Holes

The previous section illustrated the mimicked effect of the orbital angular momentum of a
dynamical binary in the lensing of light, by using the double Schwarzschild solution in a

1The shadow area corresponds to a solid angle in the observer’s sky.
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quasi-static approximation. Generically, however, dynamical binaries also have intrinsic BH
spin. We now show that the lensing effect of the intrinsic spin is taking into account by
considering a stationary binary, rather than static, described by the double Kerr solution.
We shall be interested in the particular cases of the Kerr solution describing two equal mass
BHs with either equal (even case) or opposite (odd case) spins. In both cases the double Kerr
solution has a conical singularity in between the BHs and is described by the line element,
in Weyl coordinates:

ds2 = −f(dt− ω dϕ)2 +
e2γ

f

(
dρ2 + dz2

)
+
ρ2

f
dϕ2, (3)

where the metric functions f, γ, ω only depend on the coordinates ρ, z.

3.1 Equal-mass, aligned spins (even case)

For two equal mass and equal spin BHs, the metric functions are defined as [25,26]:

f =
AĀ−BB̄

(A+B)(Ā+ B̄)
, e2γ =

AĀ−BB̄
K2
oR11R01R10R00

ω = 4a−
2Im

{
(Ā+ B̄)G

}
AĀ−BB̄

,

where the overbar denotes complex conjugation and

A = 4z2o(R11 −R01)(R10 −R00)− 4σ2 (R11 −R10) (R01 −R00) ,

B = 8zoσ

[
(zo + σ)(R01 −R10)− (zo − σ)(R11 −R00)

]
,

G = −zB+8zoσ

[
zo(R01R00−R11R10)+σ(R11R01−R10R00)−(z2o−σ2)(R11−R01−R10+R00)

]
,

Rjk(ρ, z) =
−2(εσ + κzo) + 2id

1 + 4(κzo + ia)(εσ + ia)

√
ρ2 + (z + κzo + εσ)2, ε = 2j − 1, κ = 2k − 1,

σ =

√
1

4
− a2 + d2 (4z2o − 1 + 4a2)−1, Ko = 16σ2

{
(2z2o + zo + 2a2)2 − a2

(zo + 1/2)2 + a2

}
,

d =
a(4z2o − 1 + 4a2)

(4z2o + 2zo + 4a2)
,

with quantities normalized to the ADM mass M of the solution. This solution has two free
parameters, zo and a, with zo denoting the coordinate position of each BH in the z-axis (see
Fig. 4), whereas a is a spin parameter related to ADM axial angular momentum J = 2a− d.
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ρ

z

2σ

{
zo

2σ

{
(-zo)

1

Figure 4: Schematic representation of the equal double-Kerr BH system with identical BHs. The
solid black rods along the z-direction represent each a BH while the dashed line in between these
rods correspond to the conical singularity. The quantity σ is proportional to the horizon tempera-
ture [26].

The physical domain of the parameter space {zo, a} obeys the condition zo > σ > 0, with
σ and all metric functions real. The domain with a > 0 has the following limits (see Fig. 5):

I. Double-Schwarzschild solution (a = 0 =⇒ J = 0), with zo > 1/2;

II. Single Kerr BH, given by σ = zo; this leads to a2 + z2o = 1/4 (blue dashed line in
Fig. 5);

III. Extremal limit, provided by σ = 0 =⇒ vanishing temperature (green solid line in
Fig. 5);

IV. Two isolated Kerr BHs with zo →∞.

We remark that there is an additional independent region which also satisfies zo > σ > 0
but for which the metric can have Closed-Timelike-Curves (CTCs) [31]; it is thus discarded
as unphysical.

The shadows and lensing of four solutions, marked in Fig. 5 with red dots, are displayed
in Fig. 6. There appear to be no strikingly new features in the shadows. In particular the D-
like shadow profile, characteristic of a fast spinning (single) Kerr BH, still holds in the double
Kerr case (namely solution 3), as one could have naively anticipated. The third row of Fig. 6
also displays observations outside the equatorial plane, with θo = acos(z/

√
z2 + ρ2) = π/4.
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Figure 5: Parameter space (zo, a) of the double-Kerr solution with identical co-rotating BHs. The
shaded regions are considered unphysical, with the dashed (solid) line representing the limit II (III).
The shadows of the configurations 1 → 4 are displayed in Fig. 6.

Figure 6: Lensing of configurations 1→ 4 of Fig. 5 (columns from left to right). The second (third)
row displays only the shadows, as observed with θo = π/2 (θo = π/4).
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3.2 Equal-mass, anti-aligned spins (odd case)

For two equal mass and opposite spin BHs, the metric functions are defined as [36] [27] [28]:

f =
AĀ−BB̄

(A+B)(Ā+ B̄)
, e2γ =

AĀ−BB̄
(4zoσ)4R11R01R10R00

ω = −
2Im

{
(Ā+ B̄)G

}
AĀ−BB̄

,

where the overbar denotes complex conjugation and

A = σ2(R11R01 +R10R00) + z2o(R11R10 +R01R00)+

+(R11R00 +R01R10)
(zo

2
+ σ2[8z2o − 1]

)
− 4iaσzo(2zo − 1)(R11R00 −R01R10),

B = 4σ2z2o(R11 +R01 +R10 +R00)− σzo
(

1 + 2ia[2zo − 1]

)
(R11 −R01 −R10 +R00),

G =− zB + 2σ2zo(R10R00 −R11R01) + 2σz2o(R01R00 −R11R10)+

+ zoσ(zo + σ)(R11 −R00)

(
4zoσ − 1− 2ia[2zo − 1]

)
+

+ zoσ(zo − σ)(R01 −R10)

(
4zoσ + 1 + 2ia[2zo − 1]

)
,

Rjk(ρ, z) =
√
ρ2 + (z + κzo + εσ)2, ε = 2j − 1, κ = 2k − 1,

σ =

√
1

4
− a2

(
2zo − 1

2zo + 1

)
,

with quantities normalized to the ADM mass M of the solution. Again, this solution has two
free parameters, zo and a, with zo denoting the coordinate position of each BH in the z-axis
(see Fig. 4), whereas a is a spin parameter proportional to the (Komar) angular momentum
of the lower BH J− = a/2. We further remark that the total ADM angular momentum
vanishes since the upper BH has J+ = −a/2.

Again, the physical domain of the parameter space {zo, a} obeys the condition zo > σ > 0,
with σ and all metric functions real. The domain with a > 0 has the following limits (see
Fig. 7):

I. Double-Schwarzschild solution (a = 0 =⇒ J± = 0), with zo > 1/2;

II. Single BH, given by σ = zo = 1/2; (vertical dotted line in Fig. 7);

III. Extremal limit, provided by σ = 0 =⇒ a = ±1
2

√
(2zo + 1)/(2zo − 1) (blue line in

Fig. 7);
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Figure 7: Parameter space (zo, a) of the double-Kerr (odd) solution with counter-rotating BHs.
The shaded regions are considered unphysical. The shadows of the configurations 1 → 6 are
displayed in Fig. 8.

IV. Two isolated Kerr BHs with zo →∞ and opposite rotation.

The boundary II corresponds to a Schwarzschild BH when a = 0 and zo = 1/2, whereas
for a 6= 0 and zo = 1/2 the horizon is singular [27]. Nevertheless, in terms of shadows and
gravitational lensing, the boundary II appears to be indistinguishable from the Schwarzschild
case.

The shadows and lensing of six solutions, marked in Fig. 7 with red dots, are displayed
in Fig. 8.2 The lensing and shadows appear to display a rotation effect, similar to that in
Fig. 2. However, despite the apparent similarities, both cases are quite different, with the
anti-symmetry of the (odd) double-Kerr only giving the appearance of an image rotation.
For instance, notice that the surface z = 0 is not a totally geodesic sub-manifold, i.e. a
geodesic initially tangent to that plane can leave the latter, going up or down the plane
depending on the sign of the geodesic angular momentum L. This effect together with anti-
symmetric frame-dragging leaves the perception of a rotation at the level of the lensing.
The image is stationary and not dynamical, in contrast to the quasi-static case in Fig. 2.
Another observation is that as a → ∞ the shadows look increasingly Schwarzschild like,
although there is still some shadow inner structure that quickly becomes imperceptible (see
configuration 1 in Fig. 8). In addition, the shadow topology changes along the solutions,
with configuration 3 displaying a shadow close to a topological transition.

4 Discussion

In this paper we have studied the effect of the orbital and intrinsic angular momentum in
the lensing of light due to a BH binary, by using analytically known solutions of General
Relativity. In order to consider the effect of the orbital angular momentum, we have stud-
ied the double-Schwarzschild solution, which is static, under a quasi-static procedure that

2Geodesics in the counter rotating Kerr-Newman solution were previously discussed in [37].
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Figure 8: Lensing of configurations 1 → 6 of Fig. 7 (from left to right and from top to bottom).

mimics an orbital rotation. The corresponding lensing is able to reproduce the main fea-
tures of the shadows observed in dynamical binaries, obtained through a considerably more
complex procedure which relies on producing fully non-linear numerical evolutions of BHs
and performing ray tracing on top of these numerical evolutions.

To observe the effect of the intrinsic spin of the BHs in the binary, we have considered the
double-Kerr solution, which is stationary, for two particular cases: equal masses and equal
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or opposite spins. The lensing effects and shadow structure can be quite different in these
two cases. In particular for the odd case, an effect on the shadows similar, to some extent,
to that of the orbital angular momentum can be observed, that can be traced back to the
opposite dragging effects acting in the vicinity of the two BHs.

One obvious further step would be to apply the quasi-static method of Section 2 to the
double-Kerr stationary binaries of Section 3. Whereas the procedure should be straightfor-
ward, the involved nature of the double-Kerr metric makes it cumbersome. We expect the
end result for the shadows to be a superposition of the orbital effect seen in Section 2 with
the corresponding intrinsic spin effect seen in Section 3.
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