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I. Introduction

Einstein’s theory of general relativity (GR) in its canonical formulation is a constrained system. The phase space is
parametrized by the symmetric 3-metric tensor and its conjugate momentum components, which together amount to
6+6 local degrees of freedom. However, only 4 of them are physical. The extra 8 components represent gauge degrees
of freedom and they are accounted by the 4 diffeomorphism constraints, 1 time-like and 3 space-like, resulting from
the canonical analysis of the Einstein-Hilbert action after the ADM decomposition of the spacetime manifold. The
fact that each constraint kills 2 degrees of freedom follows from the first class nature of their algebra and it is related
to the fact that the constraints are, at the same time, the generator of the local gauge symmetry (diffeo invariance in
this case).

In the first order Ashtekar connection formulation [1], an extra gauge redundancy is introduced. In fact, in this
case, the phase space configuration variable becomes a gauge connection and its conjugate momentum is a densitized
triad (out of which the induced metric of the 3D space-like hypersurface of the foliation is reconstructed) for a total
of 18 degrees of freedom. The additional (with respect to the metric formulation) 6 components are taken care of
by 3 extra first class constraints associated to the local rotational invariance of the triad, yielding again a total of 4
physical degrees of freedom.

The presence of all this gauge symmetry is what makes it so difficult to find explicit general solutions of GR
and the reason why physical applications are often times limited to symmetry reduced cases, where exact solutions
representing good approximations to real physical situations can explicitly be found. In the quantum theory, these
difficulties are further amplified by the presence of ordering ambiguities in the quantization procedure and anomalies
in the resulting constraint algebra. Therefore, also in the quantum theory one would like to implement a symmetry
reduction scheme for physical applications. For instance, quantum dynamics in canonical Loop Quantum Gravity
(LQG) is implemented by the imposition of the Hamiltonian constraint on the states of the kinematical Hilbert space.
However the Hamiltonian constraint is notoriously not tractable in practice, and this fact has stimulated investigations
of symmetry reduced sectors of the theory, in which the dynamics may become more tractable.

However, the symmetry reduction strategy is crucially affected by an important choice: The order in which we
perform the symmetry reduction and the quantization procedures. It is indeed well known that the two steps in
general do not commute and the relation between the quantum theories outcome of the two alternative choices (first
reduction and then quantization or the other way around) is often hard to asses.

The easiest path to follow is usually the one of a classical symmetry reduction, since it is conceptually clearer
(the notion of classical, continuum symmetry becomes often times fuzzy, or at least subtle, at the quantum level,
where discrete structures emerge) and it makes the quantization process considerably easier. This is indeed the choice
commonly explored in canonical quantum gravity when one applies LQG techniques to cosmology and black hole
physics (see [2–6] and references therein). However, performing the symmetry reduction at the classical level usually
hides the field theory aspects and it yields a quantum system with less degrees of freedom than the one obtained by
the second choice of symmetry reduction at the quantum level following a Dirac approach (when this is possible to
accomplish). This can cast some shadows on the reliability of the physical results obtained through the former choice.
In the context of LQG, these shadows manifest themselves in the ambiguity about the precise relation between Loop
Quantum Cosmology and the full theory, in the cosmological case (see [7–11] for an ongoing investigation of this
issue), and about the role of the Immirzi parameter in the recovery of the Bekenstein–Hawking entropy-area law, in
the black hole case (for different proposals see, e.g., [12–21]).

Recently, motivated by its application in a LQG framework, a new strategy has been proposed which interpolates
between the two alternatives of reduction first or quantization first.1 This new approach, dubbed ‘Quantum Reduced
Loop Gravity’ (QRLG), comprises two main steps, corresponding to a classical and a quantum analysis, and it was
originally applied in a cosmological setting [9, 10, 29–35]. We want to extend the program to the spherically symmetric
sector of GR in the first order connection formulation, in order to apply it to the quantization of a Schwarzschild
black hole geometry with LQG techniques. In this manuscript we concentrate on the first part of the analysis and
we recast the classical phase space in a ‘orthogonal ’ gauge (defined below), compatible with a spherical symmetry
reduction, by completing the Dirac analysis; the quantization part will be carried out in a following work.

Before entering the technical part of the paper, let us summarize in a bit more detail the main aspects of our
program. Firstly, the partial gauge fixing conditions that one would like to impose in order to eventually implement
the classical symmetry reduction are written down explicitly and added to the original set of constraints (this is done
in Section II); we then study the algebra of this new set and, if second class constraints appear, we use the gauge

1Let us point out that an example of symmetry reduction implementation at the quantum level is provided by the Group Field Theory
(GFT) reformulation of LQG in a second quantization language. This has been obtained by modeling cosmological [22–25] and black hole
[26–28] quantum spacetimes in terms of quantum gravity condensates within the full theory. The results achieved through the construction
of GFT condensates have allowed to recover the outcome of the previous LQG treatment and, at the same time, to clarify some of the
ambiguities present in the literature.
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unfixing procedure [36–39] to impose them. This allows us to work directly with the reduced phase space2 and the
ordinary Poisson bracket, however we will now be left with a new set of residual first class constraints preserving
the gauge fixing, which will be linear combinations of the original constraints. As it will be explicitly shown in
Section III, the gauge unfixing procedure is completely equivalent to the Dirac bracket treatment of second class
constraints; however, the price to pay is that the new form of the (first class) constraints left to impose will now be
more complicated and, in particular, it will contain non-local terms (the explicit expressions are derived in Section
IV). This is the most relevant result of the classical analysis performed here.

In fact, the second part of our program does not intend to quantize the symmetry reduced phase space, but we
will start with the standard LQG quantization of the full GR phase space and proceed to the weak imposition of the
gauge fixing conditions at the quantum level by means of the standard holonomy-flux algebra representation [40–42].
This will yield the partially (orthogonal) gauge fixed kinematical Hilbert space of LQG. The dynamics of the theory
will now be encoded in the new expression of the Hamiltonian constraint obtained in the first part of the analysis;
this will contain the gauge fixed version of the original Hamiltonian constraint plus extra, non-linear terms which are
fundamental in order to guarantee the consistency the of partial gauge fixing procedure under time evolution of the
system. The main goal of this second part of the program is to obtain quantum corrections to physical semi-classical
results by solving the evolution equations for initial data. At a first level of approximation, such effective equations
can be obtained through expectation values on coherent states constructed out of reduced spin network states adapted
to our choice of gauge fixing and encoding the information of a given semi-classical geometry. It is thus at the level
of the quantum states that the symmetry reduction is implemented.3

The gauge unfixing procedure for the ‘radial’ gauge applied to the case of spherical symmetry, as well as full 4d
general relativity in the metric formulation was previously considered in [45, 46]. While our implementation of the
gauge unfixing procedure closely parallels that of [46], the main difference is represented by our use of Ashtekhar
variables and in how we gauge fix the radial sector of the spatial metric. In fact, what the authors call ‘radial’ gauge
in these works is slightly, but crucially (for the resulting final form of the Hamiltonian constraint) different from our
gauge choice. That is why, to avoid confusion with previous literature, we have decided to refer to our gauge choice
as ‘orthogonal’ rather than ‘radial’. The construction of connection variables for the spherically symmetric case was
sketched in [45] and then investigated in much more detail in [47] (see also Appendix B of [8]), in order to apply LQG
techniques to implement reduction to spherical symmetry at the quantum level. In these other works the authors
introduce a Peldan hybrid spin connection, different from the Ashtekar–Barbero connection considered here, and they
partially relax the gauge restriction on the radial part of the metric with respect to the one of [45, 46]. This choice
of radial gauge is more similar to the one adopted in this work. However, the authors of [47] as well as [8] introduce
an extra gauge condition on the radial shift, imposing that this does not depend on the angular coordinates; in this
way, the correction terms to the radial diffeo constraint are not computed explicitly since those would depend exactly
on the angular derivatives of the radial shift, as it will be the case also in our analysis (see the results of Section IV).
Moreover, the Hamiltonian constraint is not included in the analysis of those works and no extended version for it is
derived. Therefore, it is not possible for us to explicitly compare our results with those of [8, 47]. In light of these
differences with previous applications of the gauge unfixing procedure to implement some version of partial gauge in
full GR, the results we derive in Section IV for the extended radial diffeo and Hamiltonian constraints represent the
main original results of this manuscript.

Concerning the quantization scheme of [47] for a spherically symmetric spacetime, the use of a Peldan hybrid spin
connection leads to the construction of a kinematical Hilbert space where techniques of the full LQG framework are
applied, but still relying also on the notion of point holonomy for some of the degrees of freedom. Point holonomies
are used also in [8] in order to quantize some of the phase space configuration variables (although different ones
with respect to [47]). This allows for some technical simplifications in the quantum theory, yielding for instance a
diagonal volume operator, but it represents as well a departure from the standard LQG Hilbert space built on a
full SU(2) Ashtekar-Barbero connection. This different kinematical structure would eventually reflect on the kind
of quantum corrections that can be derived for an effective Hamiltonian, for instance. We are not going to present
any result concerning the application of our classical analysis of the gauge unfixing procedure performed here to the
quantum reduction of full LQG to spherical symmetry (see the Conclusions Section V though, for some details on
our quantization strategy and [48] for its explicit implementation); however, we anticipate that application of QRLG
techniques to a spherically symmetric spatial manifold will still rely on the SU(2) Ashtekar-Barbero connection for all
of the kinematical degrees of freedom, with proper restrictions applied in order to implement the quantum reduction.
In this way, we still have only SU(2) holonomies, although just a restricted set of representation matrix elements
will be allowed, so that the reduced flux operators become diagonal in the QRLG Hilbert space for our orthogonal

2It is important to clarify that, at this stage, by ‘reduced’ we intend ‘partially gauge fixed’, not ‘symmetry reduced’.
3The first complete treatment of a vacuum Schwarzschild spacetime in a geometrodynamical setting is due to the seminal work of

Kuchař [43], although a previous canonical analysis in the Ashtekar formalism was performed by Thiemann and Kastrup in [44], containing
very similar results for the parametrization of the symmetry (see footnote 2) reduced phase space.
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gauge. Similarly to the formulation of [47], this has the advantage of greatly simplifying calculations involving the
Hamiltonian constraint operator. However, since in the QRLG construction we won’t have to rely on point holonomies,
there will be more degrees of freedom captured by the reduced kinematical Hilbert space, making our construction
closer to the one of the full theory and yielding different quantum corrections in the effective dynamics. The classical
investigation performed here is tailored for this briefly sketched quantum construction, which differs from previous
attempts; this thus provides further motivation for the analysis of this manuscript. We will spell out and comment
on these differences more in detail at several points through the paper.

Let us stress out that, while our main motivation is to apply the results obtained here to the LQG quantization of
a black hole [48], the classical analysis we perform is interesting on its own, since it represents a successful treatment
of a second class Hamiltonian system according to the Dirac procedure, allowing us to recast full 4D general relativity
in the first order formulation in a partial gauge.

II. Constraints and gauge conditions

We want to impose gauge conditions in vacuum GR compatible with a reduction to spherical symmetry. Let us
assume that the spacetime admits a foliation by smooth 3D hypersurfaces Σt. We will work in the Ashtekar canonical
formulation of vacuum GR, in which, after imposition of the time gauge, the action takes the form

S =
1

16πG

∫

dt

∫

Σt

d3x

[

2

γ
Ea

i £tA
i
a −NH −NaVa − ΛiGi

]

, (1)

where γ is the Immirzi parameter. The action (1) defines the phase space coordinates in terms of an SU(2) connection
configuration variable A and its conjugate momentum E (densitized triad), and it describes a pure constraint theory,
with N,Na,Λi playing the role of Lagrange multipliers. The explicit expressions of the constraints are

Gi = ∂aE
a
i + ǫ k

ij Aj
aE

a
k , Gauss constraint (2a)

Va = F i
abE

b
i , Vector constraint (2b)

H =
γEa

i E
b
j

2
√

det(E)

[

ǫ
ij
kF

k
ab − 2(1 + γ2)Ki

[aK
j

b]

]

, Hamiltonian constraint (2c)

where

F i
ab = ∂aA

i
b − ∂bA

i
a + ǫijkA

j
aA

k
b (3)

is the curvature of the Ashtekar connection Ai
a.

Let us now introduce a local set of coordinates to parametrize a neighborhood of a point in a given constant time
slice Σt. Relying on the geometrical construction of [49], we coordinatize Σt by spherical coordinates (r, θ, φ). Such set
of coordinates, which relies of the use of radial geodesics, can always be defined locally and, in general, they can only
take value in a finite range. In the following, we do not need to specify the finite interval for the angular coordinates
and we assume the radial coordinate to take values in the finite range r ∈ [0, r̄] (in the case of a spherically symmetric
geometry one can extend the validity of these spherical coordinates to their full range, up to non-trivial topologies).
Moreover we make the further restricting requirement that the radial evolution vector has vanishing shift; this implies
that ra, the unit space-like radial vector, is proportional to δar.

Given the above setup, the spatial index a takes values a = r, θ, φ, and the integration element in (1) is d3x =
dr dθ dφ. The SU(2) internal index i takes, as usual, values i = 1, 2, 3. The canonical Poisson brackets (PB) induced
by (1) are

{Ai
a(~x), E

b
j (~y)} = 8πGγδbaδ

i
jδ(~x− ~y) , (4)

where δ(~x − ~y) = δ(rx − ry)δ(θx − θy)δ(φx − φy). The algebra of the constraints determined by (4) turns out to be
first class.

We want to fix the system in a gauge conveniently adapted to the foliation of Σt. We choose an ‘orthogonal’ gauge
defined by Ea

3 being aligned with ra, which, by the previous discussion, is equivalent to require

Er
I = 0 , I = 1, 2 , (5a)

EA
3 = 0 , A = θ, φ , (5b)



5

where we made a decomposition along radial and tangential indices. In particular, we use capital letters I, J,K, . . .
to label internal indices 1, 2. Similarly, we use capital letters A,B,C, . . . to label tangential coordinates θ, φ. We can
understand Eq.s (5) as a set of four gauge conditions for our original theory (1).

The block-diagonalness structure of the gauge choice (5) can be better appreciated by rewriting the fluxes in a
matricial form with internal indices 3, I labelling rows and space indices labelling columns, namely





Er
3 0 0

0 Eθ
1 E

φ
1

0 Eθ
2 E

φ
2



 (6)

It is then evident the similarity with the radial gauge choice structure of the spatial metric hab adopted in [45, 46],
where hab is a block diagonal 3x3 matrix of the form





hrr 0 0
0 hθθ hθφ

0 hφθ hφφ



 . (7)

However, the block-diagonalness structure (5) leaves more freedom than the conventional ‘radial’ gauge considered
in [45, 46], in which the component hrr is fixed to 1. In fact, Er

3 is left unconstrained and thus hrr is still a degree of
freedom in our constraint system4. As we will point out below, this apparently minor difference in gauge choice can
actually lead to quite different extended Hamiltonian constraint in the GU procedure, thus a comparison with the
analysis of [45, 46] in the general full GR case is not straightforward (however, we will comment on the differences
when specializing to the spherically symmetric case at the end of the paper). In light of these differences, we use the
expression ‘orthogonal’ gauge to denote the block-diagonalness in the sense explained above.

We must check the PB algebra between the gauge conditions (5) and the constraints (2). To this aim, it is convenient
to replace the vector constraint Va with the diffeomorphisms constraint

Ha = Va −Ai
aGi , (8)

which generates spatial diffeomorphisms on Σt:
5

{Ea
i ,

~H [ ~N ]} = γ£ ~N
Ea

i = γ
(

N b∂bE
a
i − Eb

i ∂bN
a + ∂bN

b Ea
i

)

, (9a)

{Ai
a,

~H [ ~N ]} = γ£ ~N
Ai

a = γ
(

N b∂bA
i
a +Ai

b∂aN
b
)

, (9b)

where Ai
a transforms as an ordinary covector while Ea

i transforms as a vector density. Here ~H[ ~N ] denotes the smeared
diffeomorphisms constraint

~H[ ~N ] =

∫

d3xNa Ha. (10)

In order to facilitate the computation of the PB between the constraints and the gauge conditions, we adopt the

following notation. We denote by ~Na a smearing vector field having non-vanishing component only along the a-th

direction, (Na)b = ηaδab.6 Correspondingly the smearing ~H [ ~Na] selects only the a-th component of Hb; for example,

Nθ ≡ (0, ηθ, 0), and ~H [ ~Nθ] ≡
∫

ηθHθ. Similarly we denote by ~Λi a vector in the internal space with nonvanishing

component only along the i-th internal direction, (Λi)j = λiδij . Therefore, ~G[ ~Λi] selects only the i-th component of

Gj ; for example, Λ1 ≡ (λ1, 0, 0) and ~G[ ~Λ1] ≡
∫

λ1G1.
With these conventions we find that, on the gauge surface selected by (5), (9a) gives7

{Er
I ,

~H [ ~NA]} ≈ −γEB
I ∂Bη

AδAr = 0 , (11a)

{Er
I ,

~H [ ~N r]} ≈ −γEA
I ∂Aη

r , (11b)

and

{EA
3 ,

~H[ ~NB]} ≈ −γEr
3∂rη

BδAB , (12a)

{EA
3 ,

~H[ ~N r]} ≈ −γEr
3∂rη

rδAr = 0 , (12b)

4The condition hrr = 1 implies, in terms of fluxes, Er
3
= ǫ3

IJEθ
I
E

φ
J
.

5From now on we work in units 8πG = 1.
6As usual, indices in the same positions are not summed over, unless otherwise specified.
7In this paper we assume vanishing boundary conditions for the smearing functions.
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where the symbol ≈ denotes projection of the phase space onto the gauge surface (5). We thus see that Er
I is second

class only with Hr, while EA
3 is second class only with HA.

Regarding the Gauss constraint, G3 is first class with both Er
I and EA

3 . This was already expected from the
geometrical meaning of G3, since it generates internal rotations orthogonal to the third internal direction. On the
other hand, we have

{Er
I ,

~G[ ~ΛJ ]} ≈ −γλJǫJIE
r
3 , (13a)

{EA
3 ,

~G[ ~ΛJ ]} ≈ γλJ ǫJIEA
I , (13b)

meaning that both Er
I and EA

3 are second class with GI .
The PB between the gauge conditions and the Hamiltonian constraint are not explicitly needed in the rest of the

paper, but we show them here just for completeness. They read

{Er
I , H [N ]} ≈ −γ2ǫJI∂A

(

NEA
J E

r
3

√

det(E)

)

+ γ2 NEA
I E

r
3

√

det(E)

(

A3
A −

(1 + γ2)

γ
K3

A

)

, (14a)

{EA
3 , H [N ]} ≈ −γ2ǫIJ∂B

(

NEA
I E

B
J

√

det(E)

)

+ γ2 NEA
I E

r
3

√

det(E)

(

AI
r −

(1 + γ2)

γ
KI

r

)

. (14b)

III. Implementation of the second class constraints

The treatment of a second class Hamiltonian system follows the Dirac procedure [50]. This consists of splitting the
set of the original constraints and of the gauge conditions, all of which we collectively refer to as ‘the constraints’, in
two subsets: the first class subset, consisting of those constraints that commute with each other and with the second
class constraints; and the second class subset, in which every member does not commute with at least another one.

There is some ambiguity in this splitting. However, it is clear that, in order to preserve the number of physical
degrees of freedom of the phase space, the second class constraints must be twice as many as the gauge conditions.
In our case this implies that, since (5) are four conditions, four and only four out of the original seven constraints Gi,
Ha and H are second class with them.

In turn, this leaves three residual first class constraints. They do not necessarily coincide directly with three
constraints from the initial set, but they can come in linear combinations with the others (this is the source of the
splitting ambiguity). Indeed, from (11)-(13), only G3 is directly first class. Therefore, the remaining two first class
constraints must be expressed as linear combinations of the original ones.

Once this splitting is completed, one must invert the Dirac matrix, i.e. the antisymmetric matrix whose elements are
the PB of the second class constraints. The inverse of the Dirac matrix then allows us to implement the second class
constraints by deforming the Poisson brackets into the so called Dirac brackets. The remaining first class constraints
and the dynamics of the theory can be finally imposed with the Dirac brackets.

However, finding a representation of the Dirac brackets can be problematic, introducing serious obstructions to the
completion of the quantization process. It is hence useful to follow an alternative, but equivalent, route to impose the
second class constraints. One possibility is represented by the so-called ‘gauge unfixing’ procedure (GU) introduced
in [36–38] (see also [39]). The advantage of the GU is that one works directly with the reduced phase space variables,
while still using the ordinary Poisson brackets. Moreover, it gives a direct way to compute the gauge invariant residual
first class constraints.

A. The gauge unfixing procedure

The GU consists of finding an extension of the phase space invariant under the flow of the gauge conditions. In the
case of (5), this amounts to find extensions of AI

r and A3
A. To avoid confusion, these extensions are denoted with a

tilde: ÃI
r and Ã3

A. They are obtained by adding to AI
r and A3

A terms proportional to the original constraints.
Before going into the details, let us explain the procedure in a more formal way. Our application of the GU

procedure is somehow the reverse of what usually done. Usually, the GU is applied to an original second class system
of constraints in order to turn a subset of them into a first class system. In our case, we start with a first class
system and we transform it into an auxiliary second class one by imposing a set of gauge fixing conditions for some
of the phase space coordinates. At this point, by applying the GU procedure to the auxiliary second class system we
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can obtain a new first class system, in which we have traded some of the original constraints with the gauge fixing
conditions that we have chosen.

More precisely, let Qa and P a be, respectively, the configuration and momentum fields of our field theory with
Poisson brackets

{P a(~x), Qb(~y)} = γ δab δ(~x− ~y) , (15)

where now a, b, c, . . . stand both for internal and tangential indices.
The theory is supposed to be equipped with a set of first class constraints {Vi}:

{Vi(~x), Vj(~y)} = 0 , (16)

where i, j, k, . . . are constraint labels.
We impose as gauge conditions

χa ≈ 0 , (17)

that a subset of the configuration fields {Qa} vanishes. The enlarged set of constraints {Vi, χa} is now second class.
At this point we run the GU machinery to turn the {χa} into first class constraints, while interpreting a subset {Ci}
of equal number of the original constraints {Vi} as gauge conditions for the {χa}.

In order to do so, we have to find gauge invariant extensions of the corresponding momenta {P a
χ}. Let P̃ a

χ be

P̃ a
χ (~x) = P a

χ (~x) +

∫

d~y Ci(~y)N
ia(~y, ~x) + . . . , (18)

where the dots indicate terms of higher powers of the Ci’s. In (18) N
ia is a distributional matrix and, together with

its higher power counterparts, it must be fixed by requiring the gauge invariance of P̃ a
χ , i.e.

{χa(~x), P̃
b
χ(~y)} ≈ 0. (19)

Finally, by replacing P a
χ with P̃ a

χ in the other remaining constraints, we manage to promote the auxiliary second class
constraints {Vi, χa} to a new first class set.

In general, imposing (19) gives recursive relations for N
ia, and for its higher power counterparts, that are not easy

to solve. However a great simplification occurs when the Ci’s depend on the momenta Pχ at most linearly: in this
case the higher power terms in (18) drop out, and N

ia becomes independent of the Pχ’s. We will see in a moment a
direct example of such simplifications. In fact, observe that the constraints Gi and Ha are all linearly dependent on
the fields Ai

a; therefore, if we choose the Ci’s among them, as we will actually do, these simplifications apply. This is
the main reason why we replaced the vector constraint Va with the diffeomorphisms constraint Ha.

B. Extended phase space

With these simplifications in mind, combining (18) and (19) we obtain

0 ≈ −γ δab δ(~x− ~z) +

∫

d~y {χb(~z), Ci(~y)}N
ia(~y, ~x) , (20)

from which we see that N
ia is the inverse of the matrix

Aai = γ−1{χa(~z), Ci(~y)}. (21)

The application of the GU procedure thus boils down to finding the inverse matrix (A−1)ia and replacing N
ia = (A−1)ia

inside (18). Finally, promoting P a
χ to P̃ a

χ , we end up with a theory invariant under the gauge conditions, and we can
work only with the physical degrees of freedom and the eventual gauge residual ones.

Notice that, once the replacement P a
χ → P̃ a

χ is performed inside the remaining constraints, these are mapped into
linear combinations of the original ones with the Ci’s. This is a direct way of obtaining the true gauge invariant first
class constraints.

In order to invert the matrix Aai, it is convenient to define its smeared version

A(~x, α)ai = γ−1{χa(~x), Ci[α]} , (22)



8

where all the Ci’s are smeared with the same smearing function α(~x). Then the inverse (A−1)ia is the matrix such
that

∫

d~y(A−1)ia(~x, ~y)A(~y, α)aj = δijα(~x). (23)

Let us now have a closer look to the matrix Aai and show how to invert it in the case of interest described in the
previous section. First of all, we must choose the constraints Ci. Guided by the physical meaning of the constraints,
we observe that, to implement the gauge, two rotations generated by G1 and G2 align rI along the third internal
axis, while two diffeomorphisms generated by Hθ and Hφ make the angular components of ra vanish. Henceforth, we
choose Ci = GI , HA. The matrix A(~x, α)ai then becomes

A(~x, α) =

[

cAJ aAB

bIJ ∅IB

]

, (24)

where

aAB(~x) =
{

EA
3 (~x), HB [α]

}

= −Er
3(~x)∂rα(~x)δ

A
B , (25a)

bIJ(~x) = {Er
I (~x), GJ [α]} = α(~x)ǫIJE

r
3(~x) , (25b)

cAJ(~x) =
{

EA
3 (~x), GJ [α]

}

= α(~x)ǫ K
J EA

K(~x) , (25c)

∅IB(~x) = {Er
I (~x), HB[α]} = 0 , (25d)

and we used Eq.s (11)-(13).
The inverse matrix (A−1)ia, that we derive in the Appendix A, reads

A
−1(~x, ~y) =

[

∅IB (b−1)IJ

(a−1)AB dAJ

]

, (26)

where

(a−1)AB(~x, ~y) =
δAB

Er
3(~y)

Θ(ry − rx) δ(θx − θy) δ(φx − φy) , (27a)

(b−1)IJ(~x, ~y) = −
ǫIJ

Er
3(~y)

δ(~x− ~y) , (27b)

dAJ(~x, ~y) =
δJKEA

K(~y)

(Er
3(~y))

2 Θ(ry − rx) δ(θx − θy) δ(φx − φy) , (27c)

and Θ is the Heaviside step distribution.
We can now compute the extended momenta:

Ã3
A(~x) = A3

A(~x) +

∫

d~yHB(~y)(a
−1)BA(~y, ~x)

= A3
A(~x) +

1

Er
3(~x)

∫

dr′ HA(r
′)Θ(r − r′)

=
1

Er
3(~x)

∫ r

0

dr′
[

DA + Er
3∂AA

3
r

]

r′
, (28)

where we have defined

DA ≡ EB
I ∂AA

I
B − ∂B

(

AI
AE

B
I

)

. (29)

In the last step of (28) we have used the boundary condition A3
A(r = 0, θ, φ) = 0.

Similarly,

ÃI
r(~x) = AI

r(~x) +

∫

d~y HA(~y)d
AI(~y, ~x) +

∫

d~y GJ(~y)
(

b−1
)JI

(~y, ~x)

= AI
r(~x) +

δIJEA
J (~x)

(Er
3(~x))

2

∫ r

0

dr′ HA(r
′) +

ǫIJ

Er
3(~x)

GJ (~x)

=
ǫIJ∂AE

A
J (~x)

Er
3(~x)

+
δIJEA

J (~x)

(Er
3(~x))

2

∫ r

0

dr′
[

DA + Er
3∂AA

3
r

]

r′
, (30)
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where again in the last step we have used A3
A(r = 0, θ, φ) = 0.

We have thus obtained the extended phase space. The next step consists of replacing (28) and (30) into the
remaining constraints, in order to generate their extended representation.

Before going on, let us observe that Eq.a (28) and (30) are equivalent to solve directly the constraints on the gauge
surface, i.e.

HA ≈ 0 =⇒ A3
A(~x) ≈

1

Er
3(~x)

∫ r

0

dr′
[

DA + Er
3∂AA

3
r

]

r′
, (31)

which, in turn, implies

GI ≈ 0 =⇒ AI
r ≈

ǫIJ∂AE
A
J (~x)

Er
3(~x)

+
δIJEA

J (~x)

(Er
3(~x))

2

∫ r

0

dr′
[

DA + Er
3∂AA

3
r

]

r′
. (32)

However, the main advantage of the GU with respect to the direct solution of the second class constraints is the
possibility to obtain the expression of the gauge invariant operators in a straightforward manner. Indeed, through the
replacement P a

χ → P̃ a
χ and using (18), it is easy to distinguish the original operator from the corrections induced by

the requirement of gauge invariance, which are proportional to the second class constraints.
Moreover, notice also that we have the freedom to choose the Dirac matrix as

D =

[

∅ A

−A
T ∅

]

, (33)

where A is the same as in (33). Indeed, this corresponds to select GI and HA as the second class constraints.
We easily see that such a choice is compatible with the counting of the phase space degrees of freedom. In the

un-gauged original theory one starts with 18 phase space degrees of freedom minus 2×(7 first class constraints), which
gives 4 physical degrees of freedom.8 When we impose the gauge fixing, we have 18 degrees of freedom minus 2×(3
irreducible first class constraints) minus 4 second class constraints minus 4 gauge conditions, which gives again 4
physical degrees of freedom.

Therefore the GU procedure is equivalent to the inversion of the Dirac matrix. In this case, the main advantage
of the GU is that the Poisson brackets are not modified, while in the Dirac method the correction of the Poisson
brackets makes it harder to implement them at the quantum level.

IV. Extended representation of the remaining constraints

The extended representation of the remaining constraints (G3, Hr and H) is obtained from the original ones, by

promoting A3
A and AI

r to their extended versions Ã3
A and ÃI

r , and specifying the result to the gauge surface (5).
The Gauss constraint G3[Λ

3] is not affected, as it is clear from its geometrical meaning.
The radial diffeomorphism constraint Hr[N

r] acquires extra terms in the form of linear combinations of HA and
GI , namely

H̃r[N
r] ≈ Hr[N

r] +HA[γ
A] +GI [γ

I ] , (34)

where

γA =

∫

d~r′
(

EB
I ∂BN

r
)

r′
dAI(~r′, ~x)

=

∫ r̄

r

dr′
(

δIJEA
I E

B
J

(Er
3)

2
∂BN

r

)

r′
, (35)

and

γI =

∫

d~r′
(

EB
J ∂BN

r
)

r′
(b−1)IJ (~r′, ~x)

= −
ǫIJEA

J

Er
3

∂AN
r . (36)

8Recall that a first class constraint freezes two phase space degrees of freedom, while a second class constraint freezes only one.
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Alternatively, let us define the reduced radial diffeomorphisms Hr, consisting of those parts of Hr that do not contain
A3

A and AI
r , explicitly

Hr =
(

∂rA
I
A

)

EA
I −A3

r∂rE
r
3 . (37)

Then, using the last line of (30), we obtain

H̃r[N
r] ≈ Hr[N

r] +

∫

d~x (∂AN
r)

[

ǫIJEA
I ∂BE

B
J

Er
3

+
δIJEA

I E
B
J IB

(Er
3)

2

]

(38)

where, to shorten the notation, we have defined

IA ≡

∫ r

0

dr′
[

DA + Er
3∂AA

3
r

]

r′
. (39)

Notice that the extension of the radial diffeomorphism constraint above depends on the angular partial derivatives
of the radial shift, as pointed out also in [47]; however, in that analysis a further partial gauge fixing was introduced
so that the radial shift does not depend on the angular coordinates and, therefore, no explicit form of the non-local
terms was derived.

The Hamiltonian constraint splits into its Lorentzian and Euclidean parts. In the quantum theory, the Lorentzian
part is traditionally treated by rewriting it in terms of commutators of the Euclidean part with the volume operator.
Therefore let us focus here only on the Euclidean part HE. The extended Euclidean Hamiltonian can be written in
the form

H̃E ≈ HE[N ] +HA[γ
A] +GI [γ

I ] , (40)

where now

γA =

∫ r̄

r

dr′

[

∂B

Er
3

(

NE
[A
I E

B]
J ǫIJ

√

det(E)

)

+
EA

I ∂B

(Er
3 )

2

(

NǫIJEB
J Er

3
√

det(E)

)

−
NEA

I
√

det(E)

(

EB
J δIJA3

B

Er
3

+AI
r +

ǫIJ

Er
3

GJ

)

−
NEA

I E
B
J δIJ

√

det(E)(Er
3)

2

∫ r′

0

dr′′ HB(r
′′)

]

r′

, (41)

and

γI = −
∂A

Er
3

(

NδIJEA
J E

r
3

√

det(E)

)

−
NǫIJEA

J A
3
A

√

det(E)
. (42)

Observe that, since the Hamiltonian is quadratic in the momenta, the second class constraints appear also as arguments
of the smearings in (41).

As in the case of the radial diffeomorphisms, we can also define a reduced Euclidean Hamiltonian HE, neglecting
the terms containing A3

A and AI
r , explicitly

HE ≈
γ

√

det(E)

(

Er
3E

A
I ǫ

I
J∂rA

J
A + EA

I E
B
J AI

[AA
J
B] + Er

3E
A
I A

3
rA

I
A

)

. (43)

Then, the extended representation of the Euclidean Hamiltonian constraint, written in its unsmeared version, reads

H̃E ≈ HE

+
γ

√

det(E)

{

EA
I E

B
J

[

−δIJ
IAIB
(Er

3)
2
+ ǫIJ∂A

(

IB
Er

3

)]

− Er
3E

A
I

[

ǫIJ(∂BE
B
J )IA

(Er
3 )

2
+ ∂A

(

ǫIJEB
J IB

(Er
3)

2
−

δIJ∂BE
B
J

Er
3

)]}

.

(44)

Notice that det(E) reduces to

det(E) ≈
1

2

(

ǫrABǫ
IJEA

I E
B
J

)

Er
3 . (45)
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The expression (44) for the extended Euclidean Hamiltonian constraint, or equivalently (40), (41), (42), represents
the main result of this work.

We could now try to compare our final result for the extended Hamiltonian constraint with the one obtained in
[46] through the use of metric variables. However, as pointed out above, due to the imposition of the further gauge
restriction hrr = 1 in [46], we do not expect the final expressions to be equivalent. A possible way to see this is to
restrict to the spherically symmetric case. If we replace the spherically symmetric connection and flux components
that one can find for instance in [51], we can see that all the extra, non-local terms in (44) simplify, yielding the
local term of the symmetry reduced Hamiltonian encoding the connection component A3

φ; this is what we expected
since this is the only connection component conjugate to a gauge fixed flux appearing in the spherically symmetric
Hamiltonian constraint. On the other hand, due to the extra gauge condition hrr = 1, the spherically symmetric
Hamiltonian derived in [46] still contains non-local terms; only upon relaxing this constraint one recovers the standard
Hamiltonian of [43] and the two results match.

V. Conclusions

We have considered the canonical coordinates of GR phase space parametrazied by the Ashtekar-Barbero SU(2)
connection and its conjugate momentum and introduced some partial gauge fixing conditions. These conditions bring
in second class constraints in the theory, which we have implemented in our canonical analysis by means of the gauge
unfixing procedure. As clarified above, such treatment of second class constraints is equivalent to the inversion of
the Dirac matrix, as well as to the direct solution of the constraints; however, it presents the advantage that we can
still use the standard Poisson bracket between the remaining (reduced) phase space coordinates, thus avoiding the
complications of having to deal with the quantum representation of the Dirac bracket, at the price of introducing
some non-local extra terms in the remaining first class constraints. We have thus shown that the Dirac program for
second class constraint systems can be completed in order to reduce the gauge freedom of general relativity.

This analysis lays the basis for the quantum description of black holes performed in [48]. More precisely, the
orthogonal gauge fixing performed here is useful to deal with the spherical symmetry reduction of a 3D spatial
geometry. The strategy is to generalize techniques introduced for cosmological applications within the framework of
Quantum Reduced Loop Gravity [9, 10, 29–34] to impose the gauge fixing conditions in terms of expectation values on
kinematical quantum states of the full theory. We can then use these reduced spin networks to build coherent states
for a Schwarzschild quantum geometry, thus implementing the spherical symmetry reduction at the quantum level.
The proper quantum dynamics will be encoded in the operatorial version of the extended Euclidean Hamiltonian
constraint (44) (and its Lorentzian contribution as well). Time evolution of the Schwarzschild geometry initial data
according to resulting modified semi-classical Hamiltonian is expected to generate an effective quantum corrected
metric.

Let us point out that, for the nice property of the volume operator to be diagonal with a simple spectrum on the
quantum reduced states, as mentioned in the Introduction I and at the base of all the great simplifications when
dealing with the quantum constraint operators, it is crucial to employ the orthogonal gauge. This is a previous and
separate step with respect the symmetry reduction, which allows us to build reduced spin network basis states out of
which coherent states can then be defined [48]. In this sense, the classical analysis performed here for GU procedure
applied to the case of orthogonal gauge is a necessary step in order to then have a correct implementation of the
remaining first class (extended) constraints, consistent with the quantum gauge reduction. This gives us access to
technical tools crucial to go beyond previous application of coherent state construction to the spherically symmetric
case, see for instance [52], where the difficulty to deal with the quantum dynamics (like, e.g., the explicit evaluation
of the volume operator expectation value) prevented the derivation of an effective Hamiltonian coming from the full
theory.
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A. Derivation of A
−1

The matrix

A(~x, α) =

[

cAJ aAB

bIJ ∅IB

]

(A1)

has the symbolic structure

A =

[

c a
b 0

]

. (A2)

If a, b, c were just numbers, the inverse would be

A−1 =

[

0 b−1

a−1 −a−1c b−1

]

. (A3)

We must then find a distributional equivalent of (A3). The equivalent of a−1 is a distribution (a−1)AB(~x, ~y) such that

∫

d~y (a−1)AB(~x, ~y) a
B
C(~y) = δAC α(~x) . (A4)

Similarly,
∫

d~y (b−1)IJ(~x, ~y) bJK(~y) = δIK α(~x) . (A5)

From (25a)-(25b), and from the fact that α(~x) is a smearing function obeying vanishing boundary conditions, it is
straightforward to verify that the expressions (27a)-(27b) are the correct inverses.

The distibutional equivalent of −a−1c b−1 is the matrix

dAJ (~x, ~y) =

= −

∫

d~z

∫

d~w (a−1)AB(~x, ~w) c̃
B
I(~w, ~z)(b

−1)IJ(~z, ~y)
(A6)

where c̃AI is the distributional matrix such that

∫

d~y c̃AI(~x, ~y)α(~y) = cAI(~x) . (A7)

Then, from (25c),

c̃AI(~x, ~y) = ǫ J
I EA

J (~x) δ(~x, ~y) . (A8)

Inserting (A8) into (A6), and using (A3)-(A5), it is immediate to show that dAJ (~x, ~y) corresponds to Eq. (27c).
This completes our derivation of A

−1.
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