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While a fully-coherent all-sky search is known to be optimal for detecting signals from compact bi-
nary coalescences (CBCs), its high computational cost has limited current searches to less sensitive
coincidence-based schemes. For a network of first generation GW detectors, it has been demon-
strated that Particle Swarm Optimization (PSO) can reduce the computational cost of this search,
in terms of the number of likelihood evaluations, by a factor of ≈ 10 compared to a grid-based
optimizer. Here, we extend the PSO-based search to a network of second generation detectors and
present further substantial improvements in its performance by adopting the local-best variant of
PSO and an effective strategy for tuning its configuration parameters. It is shown that a PSO-based
search is viable over the entire binary mass range relevant to second generation detectors at realistic
signal strengths.

I. INTRODUCTION

The advanced Laser Interferometric Gravitational-
wave Observatory (LIGO) [1] and the Advanced Virgo [2]
detectors have detected gravitational waves (GWs) from
several compact binary coalescence (CBC) events over
their recently concluded observation runs. Among the
detected signals, GW150914 [3], GW151226 [4], and
GW170104 [5] are binary black hole (BBH) mergers de-
tected in two-way coincidence between the LIGO detec-
tors, while GW170814 [6] is a BBH merger detected in
three-way coincidence after Virgo joined the LIGO obser-
vation runs. GW170817 [7], the final event in the last ob-
serving run, was a binary neutron star (BNS) inspiral. Its
prompt localization on the sky by the LIGO-Virgo net-
work allowed the detection of an electromagnetic (EM)
counterpart [8], establishing BNS mergers as the source
of some short gamma-ray bursts.

Over the next few years, LIGO and Virgo will be
joined by the KAGRA [9] detector in Japan and LIGO-
India [10]. Combining the data from this network of ge-
ographically distributed second generation detectors will
significantly increase both the detection sensitivity and
sky localization of CBC sources [11, 12].

It is known that the optimal data analysis methods
for the detection and estimation of CBC signals with a
network of GW detectors are the Generalized Likelihood
Ratio Test (GLRT) and Maximum Likelihood Estimation
(MLE) respectively [13]. In the GW literature, the GLRT
is called the fully coherent all-sky search. (For a single
detector, the GLRT is the matched filter [14].)

In both GLRT and MLE, the joint likelihood function
of data from a network of detectors needs to be maxi-
mized over the space of CBC signal parameters. How-

ever, the computational cost of this task has proven to
be a limiting factor in running the GLRT as an always-on
search. The difficulty of the optimization stems from a
combination of (i) the high dimensionality of the search
space, and (ii) the high computational cost of evaluat-
ing the likelihood at a given point in the search space.
The latter is due to the requirement of correlating pairs
of time series that involve O(106) samples each (for low
binary component masses).

To circumvent the computational bottleneck above,
current CBC searches use a coincidence-based semi-
coherent approach in which the GLRT is only used when
(i) computationally cheaper single-detector matched fil-
ter searches result in the crossing of preset detection
thresholds in any pair of detectors, and (ii) the cor-
responding estimated signal parameters are proximal
within some preset tolerances. As shown in [15], a semi-
coherent search trades-off a significant amount of sensi-
tivity for the reduced computational cost, with the detec-
tion volume being ∼ 25% smaller than a fully-coherent
search.

It has recently been demonstrated in [16], henceforth
referred to as WM, that Particle Swarm Optimization
(PSO) [17], a family of stochastic global optimization
methods based on the behavior of biological swarms, can
potentially solve this challenge. Simulation of a four de-
tector network, coinciding with the location and orien-
tation of the LIGO Hanford (H), LIGO Livingston (L),
Virgo (V), and KAGRA (K), showed that the number of
likelihood evaluations required by PSO is ∼ 1/10 that of
a grid-based search in which the search space is popu-
lated densely with a fixed set of sampling locations.

The results in WM were derived under the following
limitations. (i) It was assumed that the noise in each
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detector had a Power Spectral Density (PSD) given by
the initial LIGO design sensitivity curve [18]. This was
primarily done to keep signal lengths short (. 30 sec)
and the computational run time manageable given the
matlab [19] based implementation of the search. (ii)
As with any stochastic optimization algorithm, PSO is
not guaranteed to converge to the global optimum. For
the so-called global-best variant of PSO used in WM,
this led to a small but non-zero reduction in detection
probability of . 2.5%. (iii) A PSO-based search can be
parallelized efficiently in a multi-processor environment
but the code did not implement all of the possible layers
of parallelization.

In this paper, we develop the PSO-based fully-coherent
all-sky search further by overcoming the above limita-
tions. (i) We shift to the advanced LIGO design sensitiv-
ity and examine the performance of PSO for both short
(O(1) min) and long (O(30) min) data lengths. (ii) We
use the local-best variant of PSO and find it to be signif-
icantly better in terms of convergence, achieving . 0.5%
loss in detection probability for ≈ 1 min long data at
lower signal strengths than the one used in WM. (iii)
Besides translating the code into the C language, a two-
layered parallelization scheme is implemented that speeds
up execution by a factor of ≈ 7.5.

The rest of the paper is organized as follows. Sec II sets
up the data model used in this paper and provides perti-
nent details of the fully-coherent all-sky search. Sec. III
describes the local best PSO algorithm and a general pur-
pose strategy for tuning its performance on parametric
GW data analysis problems. The simulation setup and
results on detection and estimation performance of the
PSO-based search are presented in Sec. IV. The com-
putation time of the current code is discussed in Sec. V
along with possible future avenues that could reduce it
substantially. The conclusions from our study are pre-
sented in Sec VI.

II. FULLY-COHERENT ALL-SKY SEARCH

While the review of the data model and the fully-
coherent all-sky search in this section provides a self-
contained background for the rest of the paper, we refer
the reader to WM and references therein for a compre-
hensive presentation of mathematical details.

A. Data and Signal Models

Consider the ith detector in a network of D detectors.
A segment of the strain time series recorded by the de-
tector is given by

xi(t) =

{
ni(t); H0,
hi(t) + ni(t); H1

(1)

where hi(t) is the detector response to the incident GW
and ni(t) denotes detector noise. H0 and H1 correspond

to the two hypotheses one can propose about the data
where a signal is, respectively, absent or present.

We will assume that ni(t) is a realization of a zero-
mean, stationary Gaussian stochastic process,

E[ni(t)] = 0; (2)

E[ni(t)ni(t′)] =
1

2

∫ ∞
−∞

dfe2πjf(t−t′)Sn(f) , (3)

with Sn(f) denoting the one-sided noise power spectral
density (PSD). It does not carry a detector index in this
paper because we assume identical PSD for all the detec-
tors.

For a source located at azimuthal angle α and po-
lar angle δ in the Earth Centered Earth Fixed Frame
(ECEF) [20], the detector responses are given by,


h1(t+ ∆1(α, δ))
h2(t+ ∆2(α, δ))

...
hD(t+ ∆D(α, δ))

 = F(α, δ, ψ)

(
h+(t)
h×(t)

)
, (4)

where the ith row of the antenna pattern ma-
trix F(α, δ, ψ) contains the antenna pattern functions
(F i+(α, δ, ψ), F i×(α, δ, ψ)) of the ith detector, h+(t) and
h×(t) are the TT gauge polarization components of the
GW plane wave incident on the origin of the ECEF, and
∆i(α, δ) is the time delay between the plane wave hitting
the ECEF origin and the ith detector. The polarization
angle ψ gives the orientation of the wave frame axes with

respect to the fiducial basis formed by −α̂ and δ̂ in the
plane orthogonal to the wave propagation direction.

The condition number [21] of the antenna pattern ma-
trix as a function of α and δ plays an important role in
determining the errors in the estimation of the source lo-
cation [22]. In general, the errors worsen as the condition
number at the source location increases. However, as will
be apparent in Sec. IV C, the influence of the condition
number is more subtle than this empirical rule of thumb.

In this paper, we use a four-detector network consisting
of the two LIGO detectors at Hanford (H) and Livingston
(L), Virgo (V) and KAGRA (K). For simplicity, we as-
sume the advanced LIGO design PSD [23] corresponding
to the “ZERO DET high P” configuration for the noise in
each detector. The orientations and locations of the de-
tectors, listed in table II of WM, match their real-world
values. A sky map of the condition number of the an-
tenna pattern matrix for the above detector network is
shown in Figure 4 of WM.

The polarizations h+(t) and h×(t) used in this paper
are given by the restricted 2-PN waveform from a cir-
cularized binary consisting of non-spinning compact ob-
jects [24] that depends on the following parameters. (i)
The component masses m1 and m2 expressed through
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the chirp times τ0 and τ1.5,

τ0 =
5

256π
f−1
∗

(
GM

c3
πf∗

)−5/3

η−1 , (5)

τ1.5 =
1

8
f−1
∗

(
GM

c3
πf∗

)−2/3

η−1 , (6)

M = m1 +m2 , µ =
m1m2

M
, η =

µ

M
, (7)

where f∗, set to 10 Hz in this paper, is the lower cutoff
frequency of the detector arising from the steep rise in
seismic noise. (ii) The time tc at which the end of the in-
spiral signal arrives at the ECEF origin. (iii) The phase
of the signal at tc given by φc. (iv) The overall ampli-
tude of the signal denoted by A. The duration of the
signal starting from the time at which its instantaneous
frequency equals f∗ to tc is given by τ0 + τ1 − τ1.5 + τ2
where,

τ1 =
5

192π
f−1
∗

(
GM

c3
πf∗

)−1

η−1

(
743

336
+

11

4
η

)
, (8)

τ2 =
5

128π
f−1
∗

(
GM

c3
πf∗

)−1/3

η−1

(
3058673

1016064
+

5429

1008
η +

617

144
η2

)
, (9)

are additional chirp times for the 2PN waveform.

B. Likelihood ratio for a detector network

Under our assumption of Gaussian, stationary noise,
the log-likelihood Ratio (LLR) [25] for the ith detector is
given by,

ln λi = 〈xi|hi〉 − 1

2
〈hi|hi〉 , (10)

where, with ã(f) denoting the Fourier transform of any
function a(t) of time,

〈 p | q 〉 = 4 Re

∫ ∞
0

df
p̃(f)q̃∗(f)

Sn(f)
. (11)

If we assume the noise in different detectors to be sta-
tistically independent, the log-likelihood for a D detector
network is given by,

ln λ =

D∑
i=1

[
〈xi|hi〉 − 1

2
〈hi|hi〉

]
. (12)

It follows that, for a given data realization, the
log-likelihood is a function of the parameters θ =
{τ0, τ1.5, α, δ, tc}, A, ψ, and φc.

The GLRT statistic is the global maximum of the LLR
over the parameters mentioned above. Adopting the no-
tation in [26], we use the equivalent of the GLRT statistic
defined as

ρ2
coh = 2 max

A,ψ,φc,θ
lnλ , (13)

and call ρcoh the coherent search statistic.
The Maximization can be carried out as,

ρ2
coh = max

θ
γ2(θ) , (14)

γ2(θ) = 2 max
A,ψ,φc

lnλ . (15)

The inner maximization can be performed analytically,
while the outer maximization over θ must be carried out
numerically.

For fixed {τ0, τ1.5, α, δ}, the maximization over tc can
be carried out very efficiently using the Fast Fourier
Transform (FFT) [26]. The FFT-based approach is
made especially convenient by the fact that the polariza-
tion waveforms can be generated directly in the Fourier
domain using the stationary phase approximation [27].
Thus, the outer maximization can be further split over
Θ = {τ0, τ1.5, α, δ} and tc. We call

Γ2(Θ) = max
tc

γ2(θ) ⇒ ρ2
coh = max

Θ
Γ2(Θ), (16)

the coherent fitness function. The computational cost of
maximizing the coherent fitness over Θ is the main chal-
lenge in the implementation of a fully coherent search.

In any practical implementation of the fully-coherent
all-sky search, the data streams from GW detectors must
be analyzed in finite length segments. Consequently, for
fixed Θ, γ2(θ) is not valid for tc greater than the length
of the segment being analyzed. However, the FFT-based
calculation generates γ2(θ) for tc going up to the sum of
the segment length and the length of the signal corre-
sponding to Θ. To account for this effect, the spurious
values of γ2(θ) are deleted and consecutive data segments
are overlapped by at least the length of the signal. In
this paper, we analyze simulated data realizations that
are generated independently of each other. Hence, there
is no need to overlap them. However, care is taken to en-
sure that the signal embedded in the data has a tc that
is sufficiently small. As long as the estimated tc does
not stray too far from its true value, which was verified
to be the case in our simulations, ignoring deletion and
overlapping does not affect our results.

III. PARTICLE SWARM OPTIMIZATION

Although PSO started off as a single algorithm, the
term now refers to a diverse set of algorithms and it
is viewed more properly as a metaheuristic – a general
approach to optimization based on a particular type of
physical or biological model. In the case of PSO, the
model happens to be the flocking or swarming behav-
ior of biological agents (birds, fish etc.). In fact, the PSO
metaheuristic is one among many others that are inspired
by nature.

PSO uses a fixed number of samples (called particles)
of the function to be optimized (called the fitness func-
tion). The particles move in the search space following
stochastic iterative rules called the dynamical equations.
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In WM, the PSO algorithm used was the global-best (or
gbest) variant. In this paper, we use the local-best (or
lbest) variant of PSO described below that leads to a sig-
nificantly improved performance.

A. The lbest PSO algorithm

We adopt the following notation in this section for de-
scribing lbest PSO.

• f(x): the scalar fitness function to be maximized,
with x = (x1, x2, . . . , xd) ∈ Rd. In our case, x = Θ,
f(x) is the coherent fitness function Γ2(Θ) (c.f.,
Eq. 16) and d = 4.

• S ⊂ Rd: the search space defined by the hypercube
ai ≤ xi ≤ bi, i = 1, 2, . . . , d. Among a set of lo-
cations in S, the best location is the one with the
maximum fitness.

• Np: the number of particles in the swarm.

• xi[k]: the position of the ith particle at the kth

iteration.

• pi[k]: the best location found by the ith particle
over all iterations up to and including the kth. pi[k]
is called the personal best position of the ith parti-
cle.

f(pi[k]) = max
j≤k

f(xi[j]) . (17)

• ni[k]: a set of particles, called the nearest neighbors
of particle i, ni[k] ⊆ {1, 2, . . . , Np} \ {i}. There are
many possibilities, called topologies, for the choice
of ni[k]. In this paper, we use the ring topology
with 2 neighbors in which

ni[k] =

 {i− 1, i+ 1} , i /∈ {1, Np}
{Np, i+ 1} , i = 1
{i− 1, 1} , i = Np

. (18)

• li[k]: the best location among the particles in ni[k].
li[k] is called the local best position of the ith par-
ticle.

f(li[k]) = max
j∈{i}∪ni[k]

f(xj [k]) . (19)

• pg[k]: The best location among all the particles
over all iterations up to and including the kth.

f(pg[k]) = max
1≤j≤Np

f(xj) . (20)

The dynamical equations for lbest PSO are as follows.

vi[k + 1] = w[k]vi[k] + c1r1(pi[k]− xi[k]) +

c2r2(li[k]− xi[k]) . (21)

xi[k + 1] = xi[k] + zi[k + 1] , (22)

zji [k] =


vji [k], −vjmax ≤ v

j
i [k] ≤ vjmax

−vjmax, vji [k] < −vjmax

vjmax vji [k] > vjmax

, (23)

Here, vi[k] is called the “velocity” of the ith particle, w[k]
is a deterministic function known as the inertia weight
(see below), c1 and c2 are constants, and ri is a diagonal
matrix with independent, identically distributed random
variables having a uniform distribution over [0, 1]. The
second and third terms on the RHS of Eq. 21 are called
the cognitive and social terms respectively.

The iterations are initialized at k = 1 by indepen-
dently drawing (i) xji [1] from a uniform distribution over

[aj , bj ], and (ii) vji [1] from a uniform distribution over
[−vjmax, v

j
max]. The algorithm terminates when the num-

ber of iterations reaches a prescribed number Niter. The
solutions to the maximizer and maximum value of the
fitness found by PSO are pg[Niter] and f(pg[Niter]) re-
spectively.

To handle particles that exit the search space, we use
the “let them fly” boundary condition under which a par-
ticle outside the search space is assigned a fitness values
of −∞. Since both pi[k] and li[k] are always within the
search space, such a particle is eventually dragged back
into the search space by the cognitive and social terms.

Every practical stochastic optimization method, in-
cluding PSO, has two fairly distinct phases, called explo-
ration and exploitation, of behavior. In the case of PSO,
the exploratory phase involves a rapid increase in the best
fitness value as the particles quickly find better locations
compared to their initial ones. At some point the behav-
ior of the particle swarm transitions into the exploitative
phase in which the particles converge to a promising re-
gion of the search space where the improvement in the
best fitness value becomes considerably slower.

The role of the inertia weight, w[k], is to control the
degree of exploration of the search space by allowing
a particle to overcome the attractive cognitive and so-
cial terms. In the version of PSO used here, the inertia
weight w[k] decreases linearly with k from an initial value
wmax to a final value wmin. Decreasing the inertia weight
transitions PSO from the initially exploratory to a final
exploitative phase, and the longer the interval, namely
Niter, over which this happens, the later the onset of the
transition.

B. PSO tuning metric

As mentioned earlier, PSO is not guaranteed to con-
verge to the global optimum of a fitness function and,
as with any stochastic optimization algorithm, its pa-
rameters need to be tuned for it to perform well on
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a given fitness function. Fortunately, extensive studies
have shown that most of the parameters of PSO can
be set at near-fiducial values across a wide range of fit-
ness functions [28]. In WM, the only parameter that
was tuned was Niter, while the rest were fixed as follows:
Np = 40, c1 = c2 = 2.0, wmax = 0.9, wmin = 0.4, and
vmax = 0.2.

For a given Niter, the probability of convergence can
be increased by the simple strategy of running multiple
runs of PSO on the same data realization and choosing
the best fitness value found across the runs. The proba-
bility of missing the global optimum decreases exponen-
tially as (1 − Pconv)Nruns , where Pconv is the probability
of successful convergence in any one run. This strategy
was used in WM with an ad hoc choice for Nruns. In this
paper, we propose a metric-based objective process for
tuning both Nruns and Niter.

The metric we use for tuning PSO follows from [29]
and is based on the fact that estimation error is caused
by a shift of the global maximum of the coherent fitness
function away from the true signal parameters. There-
fore, the minimum expectation from any optimization
method is that the value found for the coherent fitness
be higher than its value at the true signal parameters. A
failure of this condition indicates that the global maxi-
mum of the coherent fitness function was not found. It
is important to emphasize here that a failure in locating
the global maximum does not necessarily mean a failure
in detecting a signal. This point is discussed further in
Sec. IV B.

Stated formally, let ρ′coh(Nruns, Niter) be the best co-
herent fitness value found over Nruns independent runs of
PSO, with Niter iterations per PSO run. (We will occa-
sionally drop Nruns and Niter and simply use ρ′coh when

there is no scope for confusion.) Let ρ
(0)
coh be the coherent

fitness value for the true signal parameters. (Note that

ρ
(0)
coh is a random variable due to noise in the data.) The

metric, denoted by M(Nruns, Niter), is defined as

M(Nruns, Niter) = Pr
(
ρ′coh(Nruns, Niter) ≤ ρ(0)

coh

)
,(24)

where Pr represents probability. The goal of tuning PSO
should be to reduce M(Nruns, Niter) to an acceptable
level, with M(Nruns, Niter) = 0 being the most stringent
requirement.

Performing multiple runs of PSO does not add to the
execution time of the overall search if the runs can be
implemented in parallel. Hence, Nruns need not be tuned
carefully if one has access to a sufficient number of pro-
cessors. In most situations, however, where the user of a
supercomputer is billed by the number of hours and pro-
cessors consumed, tuning Nruns can be beneficial. The
tuning of Nruns is, of course, a definite requirement in
situations where it affects the execution time of a search.

IV. RESULTS

The performance of PSO is analyzed using simulated
realizations of data, following the model described in
Sec II A, for the H, L, V, and K detector network.

The simulated signals are normalized to have a speci-
fied optimal network signal to noise ratio (SNRopt), de-
fined as,

SNRopt =

[
D∑
i=1

〈hi|hi〉

]1/2

. (25)

SNRopt has the straightforward interpretation of being
the ratio of the mean of the LLR under H1 to its stan-
dard deviation under H0 in the case of binary hypotheses,
where the waveform hi(t) is completely known under H1.
Although it does not numerically match the correspond-
ing ratio for the GLRT, SNRopt is still a convenient way
to normalize signals because the performance of GLRT
depends monotonically on it and it admits a closed form
expression.

For the data realizations under H1, we use the source
locations L4 (α = 32.09◦, δ = −53.86◦) and L5 (α =
150.11◦, δ = −60.16◦) from WM that correspond to the
worst and best condition numbers of the antenna pattern
matrix. The signal waveforms used correspond to bina-
ries with equal mass components, with the component
mass labeled by M1 (14.5 M�) and M2 (1.506 M�). The
signal lengths corresponding to M1 and M2 are 20.8 sec
and 23 min respectively.

Data realizations containing the M1La, a = 4, 5, signal,
called M1 data, have a length of 64 sec, while those with
the M2La signal, called M2 data, are 30 mins long. The
sampling frequency of the data in all cases is 2048 Hz.
The signal start times were fixed at 10 secs and 5 mins
for M1 and M2 data respectively.

The search space for PSO is fixed as follows. The range
for α and δ covers the entire sky. For M1 data realiza-
tions, τ0 ∈ [0, 50] sec and τ1.5 ∈ [0, 5] sec. For M2 data
realizations, τ0 ∈ [500, 1000] sec and τ1.5 ∈ [5, 10] sec.

The results from the simulations are organized as
follows. First, we compute the PSO tuning metric
M(Nruns, Niter) defined in Eq. 24 for a discrete set of
SNRopt values and obtain the optimum settings for Nruns

and Niter for each SNRopt. Next, the detection perfor-
mance is quantified with these settings for each SNRopt.
From this, we obtain the minimum SNRopt at which
there is almost complete separation of the distributions
of ρ′coh(Nruns, Niter) under H0 and H1. The estimation
performance of the PSO-based search is then quantified
at this value of SNRopt and the associated optimum set-
tings for Nruns and Niter.

A. PSO tuning

The metric M(Nruns, Niter) is estimated using simu-
lated data realizations. The computational burden of
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this estimation can be reduced substantially, following
the strategy described below, by taking into account the
fact that the information needed for a given Nruns is al-
ready nested within that for a larger Nruns.

For a given Niter and SNRopt, simulate Ntrials data
realizations containing the same signal in each.

• For each data realization, do Nruns,max independent
PSO runs and obtain the corresponding values of
ρ′coh(1, Niter).

• For any Nruns < Nruns,max, and for each data real-
ization, draw Nbtstrp bootstrap [30] samples of size
Nruns from the set of Nruns,max values.

• For each bootstrap sample, obtain the best fitness
value among Nruns runs, yielding Nbtstrp values of
ρ′coh(Nruns, Niter).

• Estimate M(Nruns, Niter) for each realization as
the fraction of bootstrap samples for which

ρ′coh(Nruns, Niter) ≤ ρ(0)
coh.

Finally, from the Ntrials value of M(Nruns, Niter) thus
obtained, estimate suitable statistical summaries. By re-
peating the above process for different values of Niter and
Nruns < Nruns,max, one can pick the best combination
based on some preset thresholds on the statistical sum-
maries and available computational resources for carrying
out the PSO-based search.

In this paper, we tune the PSO-based search for a
given SNRopt using Ntrials = 120, Nruns,max = 12, and
Nbtstrp = 1000. Table I shows statistical summaries –
the 1st, 50th (median), and 99th percentiles – of the dis-
tribution of M(Nruns, Niter) for a discrete set of SNRopt

values.
For each SNRopt, we pick the first pair of Nruns and

Niter at which all the three percentiles become zero,
implying that the estimated M(Nruns, Niter) = 0 for
all Ntrials realizations. Where the choice is between
Nruns = 3 and Nruns = 4, we pick the latter as it is
the more conservative option. As noted earlier, picking
a slightly larger Nruns does not necessarily increase the
execution time of the search since the independent PSO
runs can be conducted in parallel (given the resources).
Thus, the combinations (Nruns, Niter) used are (4, 1500)
and (4, 1000) for SNRopt = 9 and SNRopt ∈ {10, 11} re-
spectively.

The metric M(Nruns, Niter) used in the tuning is esti-
mated from a finite number of data realizations. As such,
there is a non-zero probability of M 6= 0 even if it is es-
timated to be zero in the tuning. To validate the tuning
process, therefore, we test the performance of the tuned
PSO over a much larger number of data realizations.

Figures 1 to 3 show the validation of tuning for
SNRopt = 9, 10, and 11 respectively. For each SNRopt,
there are 1000 realizations of M1 data for each of the two
sky locations (L4 and L5). The figures show the scatter-
plot of the best coherent fitness value, ρ′coh(Nruns, Niter),
found by PSO and the coherent fitness at the true signal

FIG. 1. Scatterplot of the best coherent fitness value,
ρ′coh(4, 1500), found by PSO and the coherent fitness at the

true signal parameters, ρ
(0)
coh, for SNRopt = 9 and M1 data.

Out of a total of 2000 points, 44 (or 2.2%) fall below the di-
agonal. The blue lines show the detection threshold of 9.109.

FIG. 2. Scatterplot of the best coherent fitness value,
ρ′coh(4, 1000), found by PSO and the coherent fitness at the

true signal parameters, ρ
(0)
coh, for SNRopt = 10 and M1 data.

Out of a total of 2000 points, 28 (or 1.4%) fall below the di-
agonal. The blue lines show the detection threshold of 9.168.

parameters, ρ
(0)
coh, where Nruns and Niter are set to their

tuned values.

As expected, the condition ρ′coh ≥ ρ
(0)
coh fails in a non-

zero fraction of the data realizations. However, the ob-
served performance is a substantial improvement over
gbest PSO in WM, where this condition failed in 6.6% of
the realizations at SNRopt = 12.7 and Nruns = 12. Here,
the same condition fails in 2.2%, 1.4%, and 0.3% of tri-
als for SNRopt = 9, 10, and 11 respectively. Interestingly,
the total number of fitness evaluations (Np×Niter×Nruns)
per data realization, which was found to be 2.4× 105 for
gbest PSO in WM, remains the same for lbest PSO de-
spite the lower SNRopt of 9. The number of fitness eval-
uations shrinks, compared to gbest PSO, to 1.6× 105 at
the higher SNRopt values.

Interestingly, out of the 44, 28, and 6 points that fall
below the diagonal in Fig. 1 to Fig. 3 respectively, 42,
28, and all 6 arise from data realizations associated with
the L5 location. We do not understand the origin of this
effect at present. The L5 location also seems to be asso-
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TABLE I. The PSO tuning metric M(Nruns, Niter) for a discrete set of SNRopt values. For each Nruns and Niter combination,
there are three rows corresponding (from top to bottom) to SNRopt = 9, 10, and 11 respectively. In each row, the numbers
from left to right are the 1st percentile, Median, and 99th percentile of the distribution of M(Nruns, Niter).

Niter Nruns = 1 Nruns = 2 Nruns = 3 Nruns = 4

500
0.050 0.100 0.150
0.025 0.058 0.108
0.008 0.033 0.083

0 0.025 0.067
0 0.008 0.033
0 0 0.017

0 0.008 0.033
0 0 0.017
0 0 0.008

0 0 0.017
0 0 0.008
0 0 0.008

1000
0.008 0.042 0.075
0 0.017 0.058
0 0.008 0.033

0 0.008 0.025
0 0 0.008
0 0 0.008

0 0 0.008
0 0 0
0 0 0

0 0 0.008
0 0 0
0 0 0

1500
0 0.025 0.067
0 0.017 0.042
0 0 0.017

0 0 0.017
0 0 0.008
0 0 0.008

0 0 0.008
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2000
0 0.025 0.067
0 0.008 0.025
0 0 0.025

0 0 0.017
0 0 0.008
0 0 0

0 0 0.008
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

FIG. 3. Scatterplot of the best coherent fitness value,
ρ′coh(4, 1000), found by PSO and the coherent fitness at the

true signal parameters, ρ
(0)
coh, for SNRopt = 11 and M1 data.

Out of a total of 2000 points, 6 (or 0.3%) fall below the diag-
onal. The blue lines show the detection threshold of 9.168.

ciated with a prominent secondary maximum, discussed
in Sec. IV C, of the coherent fitness function. It is likely
that these effects are linked.

The tuning process described above pertains to the
specific length of M1 data. However, the optimum set-
tings for a given data length can serve as useful start-
ing points for other cases. We illustrate this with the
challenging case of M2 where the data length is ≈ 30
times longer than that for M1. Since the current com-
putation time for the M2 data is extremely long (≈ 18
hours), carrying out a statistically reliable tuning with a
sufficiently large number of data realizations is not fea-
sible. Instead, we simply start with the optimum set-
tings found for a given SNRopt in Table I and explore
variations around those settings. Considering the case
of SNRopt = 11 and starting with the tuned settings
(Nruns = 4 and Niter = 1000) for M1 data, we found that
the performance of PSO was not acceptable. However,
by increasing Niter to 1500 and Nruns to 8 a reasonably
effective performance level was achieved.

Fig. 4 shows the scatterplot of ρ′coh and ρ
(0)
coh for data

FIG. 4. Scatterplot of the best coherent fitness value,
ρ′coh(8, 1500), found by PSO and the coherent fitness at the

true signal parameters, ρ
(0)
coh, for SNRopt = 11 and M2 data.

Out of a total of 50 points, 4 (or 8%) fall below the diagonal.

realizations containing the M2 signal with SNRopt = 11.
There are 25 realizations of M2 data for each of the two
sky locations (L4 and L5). The fraction of trials in which

the condition ρ′coh ≥ ρ
(0)
coh fails is now at 8%. As ob-

served in the case of M1 data, these dropouts again arise
from the data realizations associated with the L5 loca-
tion. The fraction of failures should go down with an
increase in SNRopt and further improvements in perfor-
mance should be possible with some more exploration of
Nruns and Niter.

B. Detection performance

Having obtained the best settings for PSO following
the tuning strategy described in Sec. IV A, we can char-
acterize the detection and estimation performance that
can be expected from the PSO-based search. This is done
almost exclusively for the M1 signal in this paper because
our current computing resource limitations do not allow
a reasonably large number of data realizations, especially
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FIG. 5. Histograms of the coherent search statistic found by
PSO, ρ′coh(4, 1500), for H0 and H1 data realizations. The
latter contain the M1 signal with SNRopt = 9 at two differ-
ent sky locations (L4 and L5). The p-value of a two-sample
Kolmogorov-Smirnov test between the samples corresponding
to L4 and L5 is 0.13.

FIG. 6. Histograms of the coherent search statistic found by
PSO, ρ′coh(4, 1000), for H0 and H1 data realizations. The
latter contain the M1 signal with SNRopt = 10 at two differ-
ent sky locations (L4 and L5). The p-value of a two-sample
Kolmogorov-Smirnov test between the samples corresponding
to L4 and L5 is 0.46.

under H0, to be used for the M2 signal. For M1, we use
the same data realizations that were used in the valida-
tion (c.f., Fig. 1 to Fig. 3) of tuned settings. The number
of noise-only data realizations under H0 is 1000 for each
of the two Nruns and Niter combinations obtained from
the tuning process.

Figures 5, 6, and 7 show the distributions of the co-
herent search statistic found by PSO for the different
data sets described above. A two-sample Kolmogorov-
Smirnoff (KS) test is performed on the samples associated
with the two sky locations. In all cases, the test supports
the null hypothesis that the two samples are drawn from
the same distribution. This shows that, as happens in
the case of a grid-based search, the distribution of the
coherent search statistic found by PSO depends only on
SNRopt and not the details of the individual detector re-
sponses that vary with the source location.

We fit a lognormal probability density function (pdf)
to the distribution of the coherent search statistic un-
der H0 and obtain the detection threshold from this

FIG. 7. Histograms of the coherent search statistic found by
PSO, ρ′coh(4, 1000), for H0 and H1 data realizations. The
latter contain the M1 signal with SNRopt = 11 at two differ-
ent sky locations (L4 and L5). The p-value of a two-sample
Kolmogorov-Smirnov test between the samples corresponding
to L4 and L5 is 0.75.

TABLE II. Detection probabilities for the M1 signal at a FAR
of 1 false event per year (FAP = 2.03 × 10−6). Also listed is
the loss in detection probability, LDP, defined in Eq. 26.

SNRopt L4 L5 LDP

9 0.72 0.692 0.39%
10 0.934 0.903 0.48%
11 0.995 0.985 0.05%

fit for a given false alarm probability (FAP). For a
FAP = 2.03 × 10−6, which corresponds to a false alarm
rate (FAR) of 1 event/year, the detection thresholds for
the two different PSO settings, (Nruns = 4, Niter = 1500)
and (Nruns = 4, Niter = 1000), differ only marginally at
9.109 and 9.168 respectively. Table II lists the detection
probabilities at these thresholds for different SNRopt val-
ues. We see that the sensitivity of a PSO-based fully-
coherent all-sky search reaches an interesting level at
around SNRopt ≈ 9.

As discussed in Sec. IV A, PSO has a finite probability
of not converging to the global maximum of the coher-
ent fitness function. This is shown by the points that
fall below the diagonal in Fig. 1 to Fig. 4. However,
failure to converge to the global maximum does not nec-
essarily mean failure to detect a signal since the coherent
search statistic, ρ′coh, obtained from PSO may still exceed
the detection threshold. Detection probability is only re-
duced when ρ′coh falls both below the diagonal and below
the detection threshold.

We define the loss in detection probability as

LDP = P (ρ′coh ≤ η|ρ
(0)
coh ≥ η) , (26)

where P (A|B) denotes the conditional probability of
event A given event B, and η is the detection threshold.
As seen from Table II, the estimated LDP is negligible in
all cases for the M1 signal at a FAR of 1 false event per
year.

As mentioned earlier, we do not have a sufficiently large
number of trials under H0 for M2 data to reliably esti-
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mate the detection threshold for a realistically small FAP.
Instead, we simply pick an ad hoc range of 9.0 ≤ η ≤ 11.0
for the detection threshold in this case and find that LDP

varies between 2% and 6%.

C. Estimation performance

Most analyses [31, 32] of parameter estimation for the
fully-coherent all-sky CBC search report Bayesian credi-
ble regions. A credible region CRα is the smallest volume
in signal parameter space that encloses a fraction α of the
total posterior probability. As such, CRα is derived from
a single data realization. It should be emphasized that
CRα is in general not equivalent to a Frequentist confi-
dence region in that it is not guaranteed to cover the true
parameter values with a probability of α over multiple
data realizations. The reduced computational cost of the
PSO-based search makes it feasible to obtain Frequentist
errors for point parameter estimates using multiple data
realizations.

In this paper, we do a limited examination of parame-
ter estimation errors by focusing on only the M1 signal at
SNRopt = 11 for which its detection probability is nearly
unity. A more thorough examination of this topic will be
the subject of future work.

Fig. 8 shows the estimated locations on the sky for both
L4 and L5. As was observed in WM for the case of initial
LIGO PSD, the error in sky location generally follows its
dependence on the condition number of the antenna pat-
tern matrix: the estimated locations are distributed over
a much more extended region when the source location
has a higher condition number.

FIG. 8. Estimated sky locations for a SNRopt = 11 M1 signal
at the L4 (red) and L5 (green and magenta) sky locations.
The true sky locations for L4 and L5 are denoted by the filled
black circle and square respectively. All 6 of the data real-

izations for which the condition ρ′coh ≥ ρ
(0)
coh failed, indicating

failure in finding the global maximum of the coherent fitness
function, are associated with the L5 location and are marked
by magenta triangles. The secondary maximum associated
with L5 lies along the great circle (solid curve) joining L5
with its antipodal point (empty black square).

A caveat to the empirical rule of thumb above is that

the L5 location, while exhibiting a more compact dis-
tribution of the estimates, also shows a widely separated

secondary maximum. Going by the condition ρ′coh ≥ ρ
(0)
coh

as an indicator of convergence to the global maximum,
we find that the global maximum shifted to the secondary
in 4.3% of the trials where this condition was met. At
the same time, all but one of the trials where this condi-
tion failed also appear at the secondary maximum. Thus,
PSO does not go to an arbitrary location but latches on to
the secondary when it fails to locate the global maximum.
These observations indicate that the secondary maximum
is a genuine feature of the coherent fitness function when
a source is located at L5 and not an artifact of using
PSO.

Fig. 9 shows the estimation error distribution for chirp
times τ0 and τ1.5. The main observation here is that these
errors are essentially uncorrelated with the errors in sky
localization. This is expected from a Fisher information
analysis but, as was pointed out in WM, this need not
be true for some sky locations.

FIG. 9. Shown are the estimated chirp times for 1000 real-

izations of a ρ
(0)
coh = 11 signal at the M1L4 and M1L5 sky

locations using ρ′coh(4, 1000). The true chirp time is marked
by a black circle for L4 and L5, respectively.

V. COMPUTATION TIME ANALYSIS

As demonstrated by the rich science payoffs from the
joint GW and EM observations of GW170817, the de-
tection of EM counterparts of CBC events is of critical
importance. A key factor here is the time elapsed in the
dissemination of a follow up alert to EM astronomers.

While the time needed to generate an alert depends on
a number of factors, including manual vetting of detector
state and data quality, the execution time of the GW
search algorithm is the primary determinant. With this
in mind, it is important to analyze the computation time
of a PSO-based fully coherent search.

The results in this paper are obtained using a code that
is implemented in the C programming language. There
are two nested layers of parallelization in the code. In
the outer layer, parallelization is performed over the in-
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FIG. 10. Shown is the computation time, Tcomp, versus data
length, Tdata, for Niter = 1000. A linear fit gives 37.2 min of
computation time per minute of data. The scatter in the com-
putation time across the different PSO runs is in the range of
seconds for all the data lengths above and negligible compared
to the average.

dependent PSO runs, while the inner layer parallelizes
over the PSO particles.

The outer parallelization does not involve any com-
munication between the parallel processes. It is imple-
mented using a framework for high throughput comput-
ing called launcher [33] that allows running large col-
lections of independent applications on batch-scheduled
clusters. The inner parallelization is implemented as a
multi-threaded application based on OpenMP [34, 35],
which assigns the fitness calculation for each particle to
a unique thread that acts as an effectively independent
processing unit.

On the cluster used for obtaining the results in this pa-
per (TACC Lonestar 5 [36]), each independent PSO run
is assigned to a separate node, with each node providing
up to 48 independent threads (24 processing cores with
2 hardware threads per core). On a given node we assign
one thread to each particle, which allows for a parallel
calculation of the Np = 40 particle fitness values com-
puted in each iteration of PSO.

Our current parallelization strategy results in the time
taken by the whole code running across all the nodes
and threads of the cluster being essentially equivalent to
the wall-clock computation time, Tcomp, for one thread.
Fig. 10 shows Tcomp as a function of the duration, Tdata,
of the data segment analyzed.

We obtain the Tcomp values shown by averaging over
4 PSO runs with Niter = 1000 in each run. A linear
fit to the data shows that Tcomp increases at the rate of
37.2 min per min of data.

In the current implementation, all operations involved
in a single fitness evaluation are serialized. However, the
principal steps in a single fitness evaluation are them-
selves highly parallelizable. Each fitness evaluation in-
volves (i) generating the h+,× waveforms, and (ii) com-
puting the inner product in Eq. 11.

Generating the h+,× waveforms involves independent
calculations of the stationary phase approximant of the

2PN waveform [24] at each of the Fourier frequencies in
the data. In addition, the inner product in Eq. 11 in-
volves computing the integrand at each Fourier frequency
independently.

Thus, an alternative parallelization scheme in a sin-
gle PSO run is to invert the current scheme by evalu-
ating the fitness values of the Np particles serially and
parallelizing over the array operations involved in each
fitness evaluation. If the computation time for a single
fitness evaluation is Tff , the current Tcomp is approxi-
mately NiterTff . With the alternative scheme Tcomp ≈
NpNiter(Tff/Nthreads), where Nthreads is the number of
threads used in parallelizing the fitness function evalua-
tion. Thus, Nthreads must be substantially greater than
Np in order to make the switch to the alternative scheme
beneficial.

With high performance computing moving increasingly
towards massive hardware-level parallelism, such as the
Intel Xeon Phi Knights Landing (KNL) processor
with 272 threads or Graphics Processing Units (GPUs)
such as the Nvidia V100 with 5120 threads, we are al-
ready in the regime where Nthreads � Np. Thus, the
alternative scheme described above could lead to a sub-
stantially faster implementation of the fully-coherent all-
sky search.

At present, the only objective metric for comparison
of computational costs between the PSO-based search
and the fully-coherent all-sky search pipeline, LALIn-
ference [32], used for the analysis of LIGO-Virgo data
is the total number of fitness (i.e., likelihood) evalua-
tions. The number of fitness evaluations reported in [32]
range between 106 and 108 for the Markov Chain Monte
Carlo (MCMC) algorithm using a network of first gen-
eration detectors and a data segment length of 32 sec.
The PSO-based search for second generation detectors
continues to maintain the same number of fitness eval-
uations as found in WM for a first generation network,
ranging from a maximum of 2.4 × 105 to 4.8 × 105 for
the 64 sec and 30 min long data segments respectively.
The number of fitness evaluations per independent run
of PSO is a factor of 4 and 8 smaller for the respective
data lengths.

While the PSO-based search incurs a drastically
smaller number of fitness evaluations to compute the
coherent search statistic and point estimate of the sig-
nal parameters, it should be emphasized that MCMC
also provides information about the shape of the poste-
rior probability density function. It may be possible to
use the PSO-based search results as a seed to focus the
MCMC sampling to a smaller region of parameter space
and reduce the computational cost of the latter.

It is also worth noting here that, compared to an
MCMC search, the PSO-based search involves very few
tunable parameters, namely, only Nruns and Niter.
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VI. CONCLUSION

A fully-coherent all-sky search for CBC signals is im-
plemented that uses PSO as the global optimizer of the
joint likelihood function of data from a network of second
generation detectors. The results presented here show
that PSO allows a significant reduction in the computa-
tional cost of this search with negligible loss in sensitivity.

At a FAR of 1 event/year, the PSO-based search
achieves a detection probability of ≈ 0.7 at SNRopt = 9.0
for a 20.8 sec long signal, corresponding to an equal mass
binary with 14.5 M� components. For the same signal,
the detection probability is ≈ 0.99 at SNRopt = 11.
These results demonstrate that the reduced computa-
tional cost is achieved without any significant loss of
sensitivity in an astrophysically relevant range of signal
strength and binary masses.

Low mass binaries (O(1.4) M� components) pose an
extreme challenge to fully-coherent all-sky searches with
second generation detectors because the signal length
becomes O(30) min. We tested the PSO-based search
on a 23 min signal, corresponding to an equal mass bi-
nary with 1.506 M�, embedded in 30 min long data seg-
ments. We find that the PSO-based search continues to
perform well with ≤ 6% loss in detection probability at
SNRopt = 11 for a realistic detection threshold of ≈ 10
on the coherent search statistic.

Going beyond Fisher information analyses and
Bayesian credible regions obtained with single data re-
alizations, the reduced computational cost afforded by
PSO allows Frequentist parameter estimation errors us-
ing multiple data realizations to be obtained. A limited

study in this paper shows several interesting issues such
as (i) variations in localization errors caused by the condi-
tion number of the network antenna pattern matrix, (ii)
non-Gaussianity in the sky localization estimation error,
and (iii) degenerate locations on the sky. A more exten-
sive and realistic parameter estimation study using the
PSO-based search will be carried out in the future.

The prospects for further reductions in the computa-
tion time of the PSO-based search are very promising. As
discussed in the paper, existing and upcoming hardware-
level support for massive parallelism could make an alter-
native parallelization scheme significantly faster than the
current one. Incorporating faster waveform generation
schemes, such as the one proposed in [37], could reduce
the computation time even further. It may even be pos-
sible to squeeze out a factor of few from the current code
with more efficient implementations of the mathematical
formalism. We are currently exploring these possibilities
and hope to further push the fully-coherent all-sky search
towards real time processing of data.
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