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There has been a striking realization that physics resolving the black hole informa-

tion paradox could imply post-merger gravitational wave echoes. We here report on evi-

dence for echoes from the LIGO compact binary merger events, GW151226, GW170104,

GW170608, GW170814, as well as the neutron star merger GW170817. There is a signal

for each event with a p-value of order 1% or sometimes significantly less. Our study be-

gins with the comparison of echoes from a variety of horizonless exotic compact objects.

Next we investigate the effects of spin. The identification of the more generic features

of echoes then leads to the development of relatively simple windowing methods, in

both time and frequency space, to extract a signal from noise. The time delay between

echoes is inversely related to the spacing between the spectral resonances, and it is ad-

vantageous to look directly for this resonance structure. We find time delays for the first

four events that are consistent with a simple model that accounts for mass and spin of

the final object, while for the neutron star merger the final mass and spin is constrained.

I. INTRODUCTION

With the discovery of gravitational waves from compact binary mergers [1] came a more

careful study of exotic compact objects (ECOs) as alternatives of black holes. Theoretically,

the existence of horizonless ECOs may be fundamental to resolving the black hole information

paradox. Empirically it is hard to verify the nature of spacetime very close to the horizon due

to the large gravitational redshift, and observational evidence from astrophysical objects only

shows that ECOs must resemble black holes considerably further from the horizon [2, 3]. Short

wavelength modes, which can be approximated by point particles in comparison to the size

of the object, have a tiny escape cone and are efficiently trapped in the high redshift region.

Very compact ECOs will then appear dark in the electromagnetic window. Gravitational waves

with wavelengths comparable to the size of the object may not suffer from the trapping (for a

different view involving fuzzballs see [4]).

As recently highlighted in [5, 6], the LIGO observations of the black hole merger and ring-

down does not exclude horizonless ECOs that have the same angular momentum barrier out-
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side of the horizon as do black holes. It remains possible that signals may occur due to re-

flection from ECO surfaces or interiors situated well within the light ring. A wave which falls

inside the barrier will reflect off the ECO and return to the barrier after some time delay td ,

where some of the wave will transmit outwards and the remainder will fall back in towards the

interior. This process repeats, and generates a distinct set of echoes as seen by an outside ob-

server. Interestingly, td only has a logarithmic dependence on the distance from the would-be

horizon to where deviations occur. A deviation at a proper Planck distance gives td ® 103M ,

which is of order 0.1s for astrophysical ECOs with M of order 10M�. This is an accessible time

scale to probe in LIGO data.

A preliminary search for echoes in the LIGO data [7] was based on the traditional matched

filtering method with a toy model for the template. Although the significance of the evidence

is still under debate [8], this helped to inspire further work on echoes [9–16]. Some of this

effort has been put towards providing approximate templates for echoes [11, 12, 15].

To move forward, one serious challenge is to deal with the issue of model-dependence. For

a binary merger remnant, the wave perturbations can be well described by wave equations

on a stationary background, where the crucial information about the background spacetime

is encoded in an effective potential. For the black hole spacetime and in terms of the tortoise

coordinate x , the potential approaches 0 at spatial infinity (x → ∞) and a spin-dependent

constant at the horizon (x → −∞), with the angular momentum barrier peaking at xpeak.

With the addition of an inner boundary at some x0 < xpeak, an ECO then behaves as a cavity

bounded by this boundary and the potential barrier, with the trapped waves gradually leaking

out of the cavity through the barrier. The time delay between echoes approximately measures

the size of the cavity (becoming larger for more compact ECOs), with td ≈ 2(xpeak − x0). The

current observation of a clear black hole ringdown phase only requires that td ¦ 20M [3].
The variety of ECOs in alternative theories imply differences in the potential close to the inner

boundary and differences in the boundary condition. These variations, in addition to the spin

of the ECO, can significantly influence the echo waveform in the time domain and make it

difficult to construct a specific template.

In contrast, echoes in the frequency domain exhibit a striking resonance pattern. The nearly

trapped modes of the cavity correspond to complex poles of the Green’s function of the pertur-

bation equation, with the poles being very close to the real axis. Thus by taking the absolute

value of the Fourier transform of the echo waveform, one finds a series of sharp resonances

with a nearly even spacing of 2π/td . A large td implies a large number of such resonances.

The phase information is dropped in this description, and this helps to greatly reduce the

model dependence. In this paper we shall develop strategies to extract the time delay based

on the resonance pattern, while being less sensitive to the more model-dependent information

contained in the precise echo waveform.

In Sec. II we take the Green’s function approach towards solving the perturbation equation
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for a spinless ECO with a more general potential and boundary condition. This generality

allows us to determine the universal and distinguishing features of the resonance pattern for

different ECOs. Next we extend these results to the case of nonzero spin in Sec. III. A spin

changes the shape of the resonance pattern and it increases the number of narrow resonances.

For spins typical of the merger remnants of LIGO events, this turns out to be quite relevant for

search strategies. In Sec. IV we develop quasi-periodic window functions designed to isolate

signals from noisy data. Here we focus on windows in frequency space while two other meth-

ods are described in Appendix C. Finally in Sec. V we apply our methods onto the LIGO data;

we describe our signals and estimate p-values for each event. In Sec. VI we study consistency

of the signals and other characteristics, including secondary peaks, that strengthen the echo

interpretation. We end that section with some implications for the neutron star merger. We

conclude in Sec. VII.

II. ECHOES FROM SPINLESS ECOS

A useful way to understand echoes is through their frequency content. On a static and spher-

ically symmetric background as described by the metric ds2 = −B(r)d t2 + A(r)dr2 + r2dθ 2 +
r2 sin2 θdφ2, the field equations for wave perturbations are greatly simplified by separating

out angular variables and focussing on the radial equation. Considering a single frequency

mode e−iωtψω(x), the radial equation reduces to(
∂ 2

x +ω
2 − V (x)

)
ψω(x) = S(x ,ω) , (1)

where x is the tortoise coordinate implicitly defined by d x/dr =
√

A(r)/B(r), and S(x ,ω)
denotes the matter source that generates the perturbation. The background spacetime deter-

mines the effective potential V (x) = V (r(x)),

V (r) = B(r)
l(l + 1)

r2 +
1− s2

2r
B(r)
A(r)

(
B′(r)
B(r)

− A′(r)
A(r)

)
, (2)

for the field perturbation with spin s and angular momentum l.1 For Schwarzschild black

holes, the angular momentum barrier reaches a peak at xpeak, which is close to the light ring

radius r = 3M .

Fig. 1 presents the potential for different ECOs. A simple model is provided by a black

hole potential with the low end of the x range simply truncated at x0, and where the model

dependence is encoded in the boundary condition at x0. Some more physical models of ECOs

are basically ultracompact stars. The prime example is the gravastar [17, 18] characterized by

an exotic matter surface just outside the would-be horizon. There is no firm prediction for the

1 s = 0, 1 are for the test scalar field and electromagnetic radiation cases. s = 2 gives the Regge-Wheeler equation

that governs perturbations in general relativity.
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FIG. 1. The effective potential for a test scalar field (s = 0, l = 1) on the background of a truncated

black hole (black), a gravastar (blue) and a 2-2-hole (red).

location of this surface. The standard centrifugal barrier of this regular spacetime corresponds

to a diverging potential and the behaviorψω(x) ∼ (x− x0)l+1 ∼ r l+1 near the origin. Recently

two of us found another type of ECO, the 2-2-hole [19], a generic solution of quadratic gravity

with a roughly Planck-scale distance of deviation. In this case there is no centrifugal repulsion.

Instead the potential approaches a finite constant and ψω(x) ∼ x − x0 ∼ r for any l near the

origin. This implies a Dirichlet boundary condition for ψω(x) at x = x0.

Previous studies [11, 12] have carried out analyses of echoes in the frequency domain.

However those methods cannot be applied to ECOs with potentials significantly different from

that of a black hole, such as the gravastar and 2-2-hole. So in the rest of this section we will

first discuss a more general method, and then we find both the universal features of echoes

and the non-universal features that can distinguish different spinless ECOs.

The solution of (1) can be found with the help of the Green’s function, which satisfies

∂ 2Gω(x , x ′)
∂ x2 + (ω2 − V (x))Gω(x , x ′) = δ(x − x ′). (3)

The Green’s function can be constructed from the two homogeneous solutions that satisfy

boundary conditions on the left (x = x0) and the right (x =∞) respectively,

Gω(x , x ′) =
ψleft(min(x , x ′))ψright(max(x , x ′))

W (ψleft,ψright)
. (4)

The Wronskian W (ψleft,ψright) = ψleftψ
′
right −ψ′leftψright ≡ W (ω), which is independent of x ,

contains the essential information of the ECO. ψright is determined by the outgoing boundary

conditionψright → eiωx when x →∞. The response to a given source, at spatial infinity x →∞
and at frequency ω, is then

ψω = eiωx · K(ω) ·
∫ ∞
−∞

d x ′ψleft(x ′)S(x ′,ω). (5)
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We refer to K(ω) = 1/W (ω) as a transfer function and it encodes the ECO’s resonance struc-

ture.

The solution ψleft is determined by the inner boundary condition of the ECO. We consider

a one-parameter family of boundary conditions parametrized by the reflectivity R,

ψleft →
{

e−iωV x0Atrans(ω)
(
e−iωV (x−x0) + R eiωV (x−x0)

)
, x → x0

Aout(ω)eiωx + Ain(ω)e−iωx , x →∞
(6)

where ωV =
√
ω2 − V (x0) and V (x) is slowly varying at x0. A numerical solution for ψleft

given the boundary condition at x0 then determines the Wronskian, W (ω) = 2iωAin(ω). We

define KR(ω) ≡ 1/W (ω)|R. R = 1 (R = −1) corresponds to a Neumann (Dirichlet) boundary

condition while R = 0 describes a purely ingoing wave at x = x0, appropriate for a horizon.

The normalization factor Atrans(ω) for ψleft has no influence on the observable ψω in (5) since

ψleft also appears in the source integral. Here we choose Atrans(ω) = 1
2i (ωVω)−1/2 such that

we can write K0(ω) =
√
ωV/ωAtrans(ω)/Ain(ω)|R=0, in which case |K0(ω)| =

√
|Ftrans/Fin|

where F is an energy flux. For a truncated black hole with a x0 such that V (x0) is negligible,

K0(ω) = TBH(ω) is the standard black hole transmission amplitude, where |TBH|monotonically

increases from 0 to 1 as the real frequency ω ranges from 0 to∞. Similarly there is the black

hole reflection amplitude RBH that tends to zero at large ω.
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FIG. 2. For a truncated black hole with R = −1, td/M ≈ 160 and the initial Gaussian pulse within the

light ring: (a) the frequency content of individual echoes; (b) the reconstructed transfer function with

different echo numbers.

Before continuing our discussion of the transfer function it is instructive to consider the

homogeneous wave equation corresponding to (1) and solve it numerically in the time domain.

Here an initial condition must be chosen. An initial Gaussian pulse starting inside or outside

the light ring and moving towards the light ring may be used to model the initial perturbation of

the light ring. The resulting first pulse moving outwards is identified with the ringdown signal

of the merger event and the subsequent pulses are identified as the echoes. For an outgoing

(ingoing) initial Gaussian pulse, the first pulse picks up a factor of TBH (RBH), and it is the
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first pulse (the first echo) that contains the high frequency components. Fig. 2(a) presents

the frequency content of individual echoes as generated by an outgoing initial Gaussian pulse.

For the pulse like perturbation bouncing back and forth between the inner boundary and the

angular momentum barrier, the later echoes involve more reflections RBH. The result is a

frequency content slowly shifting downwards. In the time domain this corresponds to damping

echoes with gradually growing widths, which can eventually overlap at late enough times.

The transfer functionK(ω) can be reconstructed by the Fourier transform of the echo wave-

form for a finite time range, divided by the frequency content of the outgoing initial Gaussian

pulse. With no reflection at x0, the transfer function is simply the transmission amplitude

K0(ω) = TBH(ω). With reflection at x0, Fig. 2(b) shows the reconstructed |K−1(ω)| with an

increasing number of echoes. The larger time range and thus the increasing frequency resolu-

tion helps to gradually recover the narrower resonances at lower frequency.

Our definition of the transfer function as K(ω) = 1/W (ω) can be applied to other ECOs

with arbitrary potentials and boundary conditions. Fig. 3 shows how a variety of ECOs influ-

ences the transfer function. Fig. 3(a) shows the truncated black hole for the s = l = 2 axial

metric perturbation and with various boundary conditions. Fig. 3(b) shows the generalized

transfer functions for a 2-2-hole and two types of gravastars. In general the position and width

of the resonances, as determined by the real and imaginary part of the complex poles of the

transfer function, depend on the boundary condition and shape of the potential. The main

observation from these figures is that for all cases the transfer function is universally charac-

terized by nearly evenly spaced resonances with gradually increasing widths. The upper end

of the resonance pattern is roughly determined by the ringdown frequency of the correspond-

ing black hole. For different ECOs the pattern differs mostly by an overall shift, except at the

lowest frequencies where nontrivial distortions occur.

In Fig. 3(a) we have chosen to plot |KR(ω) − K0(ω)|, where the subtraction removes the

high frequency component corresponding to the first pulse. The smooth decrease seen at

high frequency confirms that no pure transmission term remains. For the 2-2-hole we must

implement the Dirichlet boundary condition as in (6) with R = −1.2 The metric perturbations

are described by the more complicated equations from quadratic gravity, but for illustrative

purposes we have carried over the small r deformation of the V (r) for s = 0 to the V (r) for

s = 2. We see that the effect of such a deformation away from the truncated black hole is

quite mild except at low frequencies. The gravastar hasψleft ∼ a(x− x0)l+1 near the boundary

and the coefficient a is chosen such that |K(ω)| → 1 at high frequencies. In Fig. 3(b) the two

choices of the gravastar parameters give a large relative shift in the resonance pattern.

The absolute value of the Fourier transform of the observed echo waveform is also affected

by the source contribution as in (5), and this will lead to a modulation of the resonance pattern

2 For the 2-2-hole td/M ≈ 700-860 ∼ 8 log M as discussed in Sec. VI. Here we use td/M ≈ 160 for illustrative

purposes.
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FIG. 3. Upper: log(|KR(ω) − K0(ω)|) for the truncated black hole: R = −1 (red), R = 1 (blue),

R = 1/2 (green). Lower: log |K(ω)| for 2-2-hole (red), gravastar with Mv/M = 0.8 (green), gravastar

with Mv/M = 1 (blue). All assume td/M ≈ 160. ωRD denotes the black hole ringdown frequency. The

frequency resolution, the inverse of the step-size, is 105.

from the transfer function. Since the source is largely uncertain, we set the generic search

target as the nearly evenly spaced resonance pattern within a frequency range. This frequency

bandpass can reduce the dependence on the source modulation and on the potential shape

close to the inner boundary, while also accounting for the difficulty of resolving the lower

frequency spikes. In the next section we explore the effect of spin on the resonance pattern

and develop a better idea of how to choose the frequency bandpass.

As a final comment, it is standard to assume a minimal picture for echoes, where echoes

are echoing the initial disturbance of the light ring. But it is also possible that some other

disturbance originates in the core of the newly forming ECO, giving a gravitational wave that

arrives at the light ring at some time after the initial disturbance. Our focus shall be on the
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minimal picture.

III. THE EFFECT OF SPIN

For the LIGO merger events, the final objects have spins and the observations already require

them to resemble the exterior Kerr black holes at least down to the light ring radius. In this

section we study the effects of spin on the resonance pattern of the transfer function, with

inspiration from the studies in [11, 21].3 We find that spin does add interesting structure to

the shape of the resonance pattern that will impact the relative effectiveness of different search

strategies. Fig. 4(b) and Fig. 5(b) in particular will provide some guidance on the choice of

bandpass for a given resolution. In our case these results provide a consistency check, since

they were determined after our data analysis was complete.

The wave perturbation on a Kerr background spacetime is described by the Teukolsky

equation [23]. But its radial equation does not have a short-ranged potential and so the

resulting asymptotic behaviors at the horizon or spatial infinity are such as to complicate a

numerical study. This deficiency is cured by a transformed version of the radial Teukolsky

equation, the Sasaki-Nakamura (SN) equation, as developed for s = −2 [24]. The relation

between the solutions of these two equations is discussed in Appendix A. The asymptotic

solutions of the SN equation take pure sinusoidal forms, e±iωx for x → ∞ and e±ikH x for

x → −∞, where kH = ω − mΩH and ΩH = χ/(2r+). χ = J/M2 is the dimensionless spin,

the horizon is at r+ where r± = M(1 ±
√

1− χ2), and the tortoise coordinate is defined by

d x/dr = (r2 + M2χ2)/(r2 + M2χ2 − 2M r). The SN equation naturally reduces to (1) in the

spinless limit.

In this section we focus on a truncated Kerr black hole, the simplest model for a rotating

ECO. To find the analog of Fig. 3 for nonzero spin, we can again impose a family of boundary

conditions at x = x0 parametrized by the reflectivity, as we did in (6), but now for the SN

equation. When x0 is large and negative this corresponds to a boundary at r0 very close to r+,

and where the time delay is well approximated by [3]

td/M = −2(1+ 1/
√

1− χ2) ln(δ), (7)

with δ = (r0− r+)/M . To solve the SN equation an eigenvalue λ as determined by the angular

Teukolsky equation is needed, and for this we use code developed in [25]. We also use code

that provides a series expansion of the large x solution to the SN equation in [26].
The boundary condition at x = x0 is obtained from (6) with the replacement ωV → kH

and R → R(ω). A new feature of the truncated Kerr spacetime, as noticed in [11, 21], is

that a nontrivial R(ω) is now needed to have a perfectly reflecting boundary condition, where

3 The position and width of the lowest resonance of a rotating gravastar was studied in [22].
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the latter is taken to mean that the energy fluxes of the incoming and outgoing waves at the

boundary x = x0 are equal and opposite. We use |Rwall(ω)|2 to denote this ratio of fluxes.

We can again consider two boundary conditions for a perfectly reflecting wall, Rwall = −1

(Dirichlet-like) and Rwall = 1 (Neumann-like). (Rwall = 0 corresponds to the horizon boundary

condition.) The corresponding R(ω) is real, and in fact it is a smooth nonvanishing function as

shown in Fig. 17 of Appendix B. The relation between Rwall(ω) and R(ω) is given by (B3). The

expressions of the energy fluxes with the SN equation amplitudes are given in Appendix A.

Our interest here is to extract a transfer function from the Green’s function so as to ex-

hibit the resonance structure. We first transform the SN equation to Sturm-Liouville form

Lψ = (pψ′)′+qψ = pS̃. p = p(x ,ω) = e
∫
Fd x where F is the coefficient of the first derivative

term in the SN equation. The Green’s function defined by LG(x , x ′) = δ(x − x ′) then has the

x-independent factor (pW )−1 that can be identified as a transfer function. The choice of an

integration constant in the definition of p corresponds to a choice of x̄ such that p( x̄ ,ω) = 1,

and this leads to p(x ,ω) = W ( x̄ ,ω)/W (x ,ω). Then (pW )−1 = 1/W ( x̄ ,ω). The x̄ depen-

dence of this transfer function cancels when a physical response is calculated because p also

appears in the source integral. |p(x ,ω)| is a smooth and slowly varying function of x and ω.

As for the spinless case, we wish the Rwall = 0 transfer function to reduce to the transmission

amplitude TBH(ω) for the ordinary Kerr black hole. This can be accomplished by using the same

boundary condition as in (6) with our previous choice of Atrans but with ωV → kH , and using

x̄ = ∞ to define p. This is discussed in Appendix B. The result is that the transfer function

is defined as KχR (ω) = 1/W (∞,ω)|Rwall . We also find |KχR (ω)| =
√
|Ftrans/Fin| where Ftrans and

Fin are the ingoing fluxes to the left and right of the potential barrier, as shown in (B8). The

transfer function can also be written as

KχR (ω) =
TBH(ω)

1− RBH(ω)Rwall e−2ikH x0
. (8)

The derivation of this formula and the definition of RBH(ω) is given in Appendix B.

Features of the spectrum

We can now numerically obtain the transfer function and thus the resonance spectrum. In

Fig. 4(a) we display |KχR (ω)| for spin χ = 2/3 and Rwall = −1, 1, 0 and for the dominant

l = m = 2 mode.4 The black line in this figure is |TBH(ω)|. Although there is structure at the

frequency mΩH M = .382, we see that the spikes are at evenly spaced increments relative to

mΩH up to small corrections.5 The varying heights of the peaks for ω < mΩH is an indication

that the resolution is not sufficient to resolve the true heights of the peaks. In Fig. 4(b) we

4 The SN equation is invariant under m → −m, ω → −ω along with complex conjugation. So we may restrict

ourselves to positive frequencies.
5 When R(ω) has a phase then the spikes can shift relative to mΩH but their spacing remains regular. We do not

find irregular spacing of the type displayed in Fig. 5(top) of [21].
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FIG. 4. (a) Examples of |KχR (ω)| for a truncated Kerr black hole with spin χ = 2/3 and R ≡ Rwall =

−1, 0, 1 with ln(δ) = −34. (b) Examples with m = ±2 and ln(δ) = −155, which corresponds to a time

delay more typical of our data analysis. The vertical lines show the respective ringdown frequencies

ωRD. The frequency resolutions used in (a) and (b) are 16000 and 32000 respectively, and so in (b)

there are about 280 steps between spikes.

display |KχR (ω)| for values m = ±2 with Rwall = −1 and for a smaller δ that emerges from our

analysis of LIGO data.

We see that a substantial spin causes the m = ±2 transfer functions to be very different.

The frequency content of m = −2 echoes is significantly lower than for m = 2. Even though

the m = −2 mode may be excited to a lesser amount than the m = 2 mode, it could still give

a non-negligible contribution to the strength of the lower frequency spikes. For m = 2 we

see that resonances of comparable height exist over a wider range frequencies as compared

to the spinless case. The resonances are also very narrow throughout the region ω < mΩH ,

gradually becoming less narrow above this region. So a wide range of frequencies needs to be

probed at a high frequency resolution to properly resolve the signal. At the lowest frequencies

a relative shift in the resonance positions for m = ±2 can be seen; the two lowest resonant

frequencies ω1 and ω2 are related by ω1 ≈ (1∓ 1/8)(ω2 −ω1).6 For m = 2, we find that the

6 Evidence for the situation with ω2 = 2ω1 is presented in [29]. A phase introduced in the boundary condition
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spacingsωi−ωi−1 can vary by about 2%, being largest for frequencies somewhat below mΩH ,

and smallest for frequencies close to ωRD. This has some bearing on search strategies.

The resonance spikes correspond to modes nearly trapped in a cavity and they are associated

with complex poles of the transfer function. From (8), the pole at ω = ωR + iωI can be

determined by 1 − RBHRwalle−2ikH x0 = 0. It is useful to define Reff ≡ RBHRwall. When ignoring

the ω dependence of Reff compared to that of the exponential, a pole close to the real axis

has [12]

td(ωn,R −mΩH) ≈ 2πn+φ0, tdωn,I ≈ ln |Reff(ωn,R)| , (9)

where td ≈ −2x0 and φ0 = − arg Reff. Expanding KχR around the simple pole ω = ωn under

the same approximation, we find

KχR (ω) ≈
TBH(ωn,R)
−i td

1
ω−ωn

+ ..., for ω ∼ ωn . (10)

A resonance peak on the real axis occurs in |KχR (ω)| at ω = ωn,R with half-width |ωn,I | and

height

hn ≈
∣∣∣∣ TBH(ωn,R)
ln |Reff(ωn,R)|

∣∣∣∣ . (11)

Thus we see that the half-width scales with 1/td while the height does not scale with td . The

envelope of peak heights ≈ hn+ |TBH| (the second term corrects for the case when the complex

poles are not close to the reals axis) is displayed in Fig. 5(a) for different spins. To resolve a

resonance spike at ωn,R, the required number of frequency steps between resonance spikes is

roughly 2π/| ln |Reff(ωn,R)||, which can grow very large. The narrow resonances imply long-

lived modes. For resonances atωM ∼ 0.1, 0.2, 0.3, the lifetime τ ≈ 1/|ωI | ∼ 105, 103, 2×102

sec for M = 30M� with the time delay in Fig. 4(b).

Signal strength

In this subsection we shall be concerned with how the resonance spikes will appear in the

data, keeping in mind that the transfer function is modulated by an unknown source function.

We have already made clear that there are resonance spikes of the continuum transfer function

that are not properly resolved with the frequency resolution 2π/T where T = NE td is the time

range of the echo signal. Of more physical interest is the reconstructed transfer function, as

in Fig. 2(b), corresponding to the discrete Fourier transform of the finite time echo signal.

Instead, and equivalently, we can take the geometric series expansion of the transfer function

in (8) to the NEth order, where the NE terms build up the first NE echoes. This is then evaluated

would need to be tuned to arrive at this situation.
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FIG. 5. (a) The envelope of heights of the resonance peaks of the continuum transfer function, for the

truncated Kerr black holes for different spins. (b) The reconstructed transfer function, and envelopes

of peak heights, relative to noise, for different numbers of echoes. A perfectly reflecting boundary

condition is used. The overall scale of the vertical axis has no meaning.

with the 2π/T frequency resolution. The resulting reconstructed transfer function is similar

to the continuum one evaluated at a finite resolution, as in Fig. 4(b), but with less fluctuation

in the peak heights.

When Gaussian noise is added to the time domain signal, the amplitude of the noise in

frequency space will grow with
√

NE. Thus by dividing the NEth reconstructed transfer function

by
√

NE, we can compare the relative effectiveness of different choices of NE. Fig. 5(b) displays

the resonance pattern for NE = 280 echoes, where NE is also the number of frequency steps

between spikes. The envelope of peak heights for this case is given by the red curve, which

bounds the fluctuating peak heights. The blue and green curves show the envelope of peak

heights relative to noise for NE = 28 and 2800 respectively. As NE increases, the dominant part

of the spectrum shifts to lower frequencies. The envelope curves indicate that the growth of the

peak height can compensate for the increase in noise as longer ranges of data containing more

echoes are used. The envelope is ≈ (hn + |TBH|)/
√

NE at the high end and is well described by

hn|1− exp(NE ln |RBH|)|/
√

NE for the narrow resonances (ω ® 0.9ωRD). The latter expression
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reduces to
√

NE|TBH| at the low end or for ω close to mΩH , that is when |RBH| → 1.

The peculiar enhancement of the envelope curve for NE = 2800 at mid-frequencies is a

sign of another phenomenon, the ergoregion instability. It implies that the series expansion

of the transfer function is actually not converging, and the resulting enhancement only be-

comes apparent at high enough NE (the order of the expansion). We first discuss the related

phenomenon of superradiance. Superradiance can be seen in a steady state situation by fo-

cussing on the monochromatic ψleft solution. The amplification factor for fluxes as obtained

in Appendix B is

Z(ω) ≡ Fout(ω)
Fin(ω)

− 1 = sign
(

kH

ω

)∣∣KχR (ω)∣∣2 (|Rwall(ω)|2 − 1
)

. (12)

Rwall = 0 gives back the Kerr black hole result. For 0 ≤ Rwall < 1 we find Z(ω) > 0 in

the superradiance region 0 < ω < mΩH . The nontrivial structure of Z(ω) is fully captured

by the transfer function. Thus for ω within (outside) the superradiance region, the energy

amplification (reduction) is most significant close to the resonance frequencies (this effect is

also seen in [21]). Note that for a steady state with a perfect reflecting wall (|Rwall| = 1) the

ingoing and outgoing fluxes are equal (the common value can still differ greatly inside and

outside the potential barrier) and thus Z(ω) = 0. Otherwise the amplification depends on the

sign of kH/ω, since this is the sign of the energy being absorbed by the wall.

The ergoregion instability becomes manifest away from a steady state situation [28], and

it is related to poles on the complex plane moving to the other side of the real axis. Then

ωn,I > 0 and the mode grows exponentially in time; this happens when |RBHRwall| > 1 from

(9). For echoes built up by the geometric series expansion of the transfer function in (8), an

amplification |RBHRwall| > 1 can cause the resulting echoes to steadily grow. For a perfectly

reflecting wall, with |RBH|2−1 = −sign(kH/ω)|TBH|2 (from (B11)), |RBH| is slightly larger than

1 in the superradiance region and gives rise to the instability. Evidence of this effect appears

as the bump at mid-range frequencies for the NE = 2800 curve of Fig. 5(b).

Astrophysical observations of spinning black holes [30], or lack of a large stochastic gravita-

tional wave background [31], provide strong constraints on the ergoregion instability of ECOs.

Some amount of gravitational wave energy absorption is expected from matter residing inside

ECOs and this can weaken the ergoregion instability via an effective Rwall < 1. The instability

can be fully under control when the absorption overcomes the black hole superradiance am-

plification |RBHRwall| < 1. For spin χ = 2/3, the amplification factor Z(ω) ® 0.001 is still very

small [11, 25] and so a correspondingly small absorption of the wall is enough to make ECOs

stable as for the Kerr black hole, as was also observed in a numerical study [32]. For some

such absorption there will be an NE above which the signal strength will fall significantly for

increasing NE, thus differing from Fig. 5(b). This effect can be ignored as long as the NE ’s we

utilize in our study are below this critical NE. From Fig. 5(b) we can see that superradiance

amplification does not noticeably affect the χ = 2/3, NE = 280 reconstructed transfer function



14

(unlike the NE = 2800 case), and so the ergoregion instability could be quenched via a small

absorption with little effect on this transfer function. We shall assume some such picture in

the remainder of the paper.

IV. SEARCH STRATEGIES

During the early stages of this work, we developed three methods for extracting echo signals

from noisy data. Window functions are used to help extract the quasi-periodic structures in the

time and/or the frequency domains. The expected correlation of a signal in multiple detectors

is also employed. The methods are tested by a toy model, the spinless truncated black hole

model. A sample signal is combined with two different sets of Gaussian noise to model real

data from two detectors. The toy model helps to determine reasonable values of the window

parameters, and this is for a restricted range of time delays that are thought to be of most

interest for the real data search in Sections V and VI.

The methods are named methods I, II, III according to the order in which they were devel-

oped. By using frequency windows Method II turns out to be the most successful and is our

focus here, while the two other methods use time windows and are described in Appendix C.

The time and frequency windows are complementary, with small and large numbers of echoes

contributing respectively to a signal.

Windows in the frequency domain (Method II)

From the previous section it can be seen that a promising strategy is to directly Fourier

transform the time series data of some duration T and then search for the nearly equally spaced

resonance peaks in the absolute value of the transform. We thus comb the data in frequency

space by imposing a varying periodic window. This method does not rely on having clearly

separated echoes in the time series waveform. Including overlapping echoes at late time with

a larger T increases the frequency space resolution, and can help to resolve narrow resonance

spikes over a wider range of frequencies. This method also does not require a precise lining

up of the time series of the two detectors. The frequency window function is characterized

by the window spacing ∆ f , the offset f0, the widths { fwi}, and the bandpass fmin < f < fmax

( f = ω/2π).

The simplest window is of a square shape with unit height and constant width. But we find

it advantageous to move to a window of trapezoidal shape, being purely triangular for low

frequencies and gradually becoming a wider shape at higher frequencies as shown in Fig. 6.

We choose to adopt this as a universal window construction for this method, where the window

widths are defined once and for all, for all analyses. We more precisely describe this window

function below.
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FIG. 6. A frequency window function of trapezoidal shape with a spacing T∆ f = 200.

We take the absolute value of the Fourier transform of data of duration T from detector i.
Let Si be the segment of the resulting series within the bandpass ( fmin, fmax). We represent the

window function W (n, s) as a set of numbers of the same length as Si. The integer n = T∆ f
is the window spacing in units of 1/T and s = {1, 2, ..n} is the offset. We then construct an

amplitude that is the result of acting the W (n, s) comb on the data,

Ai(n, s) = Mean(Si ∗W (n, s)). (13)

Here the Mean is taken on the nonzero products of the components of the two vectors. As a

function of s and for the right n, Ai(n, s) can be expected to be larger only for a small range

of s, say some integer ∆s, where there is some overlap between the narrow windows and the

narrow peaks in signal plus noise. To isolate this type of s dependence for a given n, we take

the Pearson correlation of the set of Ai(n, s) for the n values of s, with another set of length n
having the idealized shape of interest. For this we take V (r) as the rth cyclic permutation of

a set composed of ∆s adjacent 1’s and (n −∆s) adjacent 0’s. The new amplitude effectively

has the shift expressed in terms of r rather than s,

Āi(n, r) = Corr(Ai, V (r)). (14)

Now we can construct the following correlation between the two data sets,

P(n, r) = Ā1(n, r)Ā2(n, r). (15)

P(n, r) will be large at some (n, r) if a repeating resonance structure in frequency space is

lining up in the two detectors. In our data analysis, we choose to first maximize P(n, r) with

respect to r. Then the location of a peak that emerges as n is varied defines a particular nd that

gives an estimate of the actual time delay td as nd = T/td = NE. The range of n translates to

a range of time delays that are being tested. Although not part of this study, the optimal value

of the offset (r or s or f0) could then be used to distinguish ECOs with different potentials,

boundary conditions and spins as illustrated in Figs. 3 and 4.

Our particular choice for the fixed window parameters is as follows. The base width of the

individual windows range from 11/T to 19/T on going from the low to the high end of the
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bandpass. The thinnest window for example is an average of square windows with widths (1,

3, 5, 7, 9, 11)/T. Also, we choose ∆s = 22. These choices were influenced both by the toy

model analysis and by the initial investigation of the GW150914, GW151226 and GW170104

data. Some consistency was found between the toy model and this data in support of these

choices. These choices were not finely tuned, and other choices could give similar results.

The finding, as mentioned in the previous section, that the spacing between resonance spikes

can actually vary by up to 2% helps to explain why nonminimal values of width and ∆s are

preferred.

From the toy model studies we found that the best signal to noise ratio (SNR) for this

method occurs for echo numbers NE ≈ 100-300. The persistence of a signal peak for a range

of NE helps to differentiate it from a noise peak, which typically shows less persistence. We

thus find that it is effective to average the final correlation plots for a range of NE to enhance

the SNR.

To get some idea of an appropriate bandpass, one can inspect the NE = 280 reconstructed

transfer function of Fig. 5(b). A bandpass represented as ( fmin, fmin)td ∼ (n1, n2) corresponds

to the range from the n1th to the n2th peak. We see that a bandpass ranging roughly from the

15th peak to the 60th peak might be appropriate. This figure was not known when the data

analysis was performed, and the bandpasses at that time were chosen to strengthen signals.

These chosen bandpasses turn out to be quite consistent with this figure.

V. EXPLORATION OF THE LIGO BLACK HOLE MERGERS

We now apply the search strategies described in Sec. IV to the LIGO data. We use the strain

data of the two LIGO detectors for the five confirmed events of binary black hole coalescence[1,

34–37] provided by the LIGO Open Science Center [33]. For the signal search we apply the

three window methods to the whitened data after merger. We find evidence for echoes as

follows. Method II finds signals for GW170104, GW170608, GW151226 and GW170814 in

decreasing order of strength. Method I finds a signal for GW151226, where the best-fit td

matches that of method II very closely. Method III finds a signal for GW170814, and the

agreement with method II on td is also good. Since methods I and III explore data of much

shorter duration than method II, the agreement of the signals for these two events serves as a

nontrivial consistency check.

We searched for signals over a wide range of time delays that includes what one might

expect for a deviation occurring at a proper Planck length from the would-be horizon. Our

signal plots and our background analysis plots for the four events are collected in the four

figures Figs. 7-10. On each signal plot the red curve denotes the final correlations between

two detectors as a function of the time delay. For comparison the blue curve in each plot shows

the result of applying the same procedures to data of the same duration occurring just before
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FIG. 7. Event GW151226, methods I and II. The final correlation of two of the LIGO detectors as a

function of the time delay, for the signal search (red) and one background search (blue). On the right,

p-values from the number of background trials given.

merger. Each plot shows the range of time delays covering ±30% from the central peak, and

each curve is adjusted to have zero mean.

To assess the significance of each signal peak we find the p-value. We follow our same

procedure for the same time delay range on some number of trials, based on various time-

translated parts of the LIGO data. The black curve shows the probability of finding a highest

peak of equal or greater height compared to the midpoint bin value. The red dot denotes

the signal peak, and the resulting p-value estimate may be limited by the number of trials.

Methods I and III only require a short range of data and so with the full one hour of LIGO data

we can generate a sufficient number of independent background trials. Method II uses larger

echo numbers and needs a longer range of data. To generate a sufficient number background

trials in this case we employ random time shifts between pairs of segments from the two

detectors. (For GW170608 we use only 512 seconds of data, which is all the noise-subtracted

data available.)

A signal peak tends to persist over various changes of the window parameters more so than

a noise peak. Fig. 11 shows an example of the persistence of the signal peak as a function of NE
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FIG. 8. Event GW170104, method II.
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FIG. 9. Event GW170608, method II.

for GW170104, which makes clear that an averaging of the correlations over NE will improve

the signal.

The window parameters used are summarized in Table I along with the best-fit value of

td , the p-value and the frequency bandpass for each analysis. The bandpass turns out to be

around the most sensitive region for the detectors. For smaller (larger) mass events, the upper

(lower) end starts to sample higher noise levels, but it is still away from where the noise gets

significantly larger. As we have mentioned earlier, it is convenient to express the bandpass as a

dimensionless range, ( fmin, fmax)td . In method II the optimal bandpass stays quite stable over

the four events as it varies between (12, 58) to (16, 62), while for the other two methods it

shifts higher. Table I also shows several instances where leaving out some number of the early

echoes can positively contribute to the strength of the signal.

Values of td are determined from two different methods for GW151226 and GW170814, and

the agreement is within 0.5% and 1.3% respectively. Such differences could be expected due

to differences in modelling∆t in our different methods. In particular there is some ambiguity
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FIG. 10. Event GW170814, methods II and III.

in the time domain due to the changing shape and width of the echoes and when a smaller

number of echoes is used.

Methods I and III are able to determine the optimal t0 (the time of the first echo) at the best-

fit time delay td . We find t0 − tpeakamp = 1.012td and t0 − tpeakamp = 1.006td for GW151226

and GW170814 respectively,7 where we expect modelling uncertainties at the percent level.

An analogous value of 1.0054td was reported in [7].
Our values of td are a little smaller than those considered in [7]. Our p-values are essentially

proportional to the time delay range tested, in our case ±30% around the central peak. Given

that the time delay has a logarithmic dependence on the distance from the would-be horizon,

our range corresponds to exploring length scales O(10±11) times a central value. Our time

delay range is significantly wider than in [7], which should be kept in mind when comparing

p-values. For GW151226, the only event where we both observe signals, their range does not

include our value for td while our range does include their’s. We have not found signals for the

two earlier events, GW150914 and LVT151012, which play a significant role in their results.

We also check the influence of the whitening process on our signals. The amplitude spectral

density that is used in the whitening is obtained by averaging over some number of time

7 The peak amplitude times tpeakamp we use are at X .646 s and X .530 s respectively.
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FIG. 11. Correlation vs. time delay for different NE for GW170104 with method II.

segments, whose length determines the resolution for the whitening. Shorter segments tend

to leave more detector artifact spikes in the whitened data. But longer segments modify the

raw data on finer frequency scales, and so there is risk of modifying the sharp spikes of the

signal. This seems to be the case for method II where the signal is diminished for longer

time segments. For method II we use 1s segments, and we find that the results change little

whether or not we manually remove the resulting obvious noise spikes. For method I (III), 1s

(4s) segments are used.

Finally we discuss the look-elsewhere effects in our p-value estimates. For method II we

have mentioned that the window parameters were fixed from the toy model and from initial

study of GW150914, GW151226 and GW170104 events, of which two show signals. Biases are

thus avoided for the GW170608 and GW170814 events, and GW170817 in the next section, all

of which show signals. We learn from the toy model that there is a rough prior NE ∼ 100-300

that peaks somewhere in the middle of this range. For GW170104 and GW170608 a sizable

portion of the 100-300 range is used. For GW151226 and GW170814 only a small part is

used, thus implying a larger look-elsewhere effect. The frequency bandpass is fixed by the

signal search for each event, but we have seen that these are quite consistent with each other.

Methods I and III only find one signal each and thus there are more sources of look-elsewhere

effects. Note though that our p-value estimates don’t account for the agreements between

different methods.

Further studies can help refine the prior on the window parameters, for example by injecting

realistic model signals into real data. The signal detection efficiency should also be studied

further. The noise inherent in the LIGO detectors has non-Gaussian characteristics, and in

particular the instrumental spectral lines need to be considered. But not only would it be
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TABLE I. The best-fit td , p-value, bandpass and window parameters for the six signals.

Event (method) Best-fit p-value Bandpass Window parameters for average

td (sec) (%) ( fmin, fmax)td (others defined in Sec. IV)

GW151226 (I) 0.0786 < 0.13 a (34, 62) b NE = (1-29), (5-29), (9-29) c

GW151226 (II) 0.0791 0.76 (12, 58) NE = (260, 270)

GW170104 (II) 0.201 < 0.18 (16, 62) NE = (100, 125, 150, 175, 200)

GW170608 (II) 0.0756 < 0.4 (14, 60) NE = (140, 200, 260)

GW170814 (II) 0.231 4.1 (12, 58) NE = (170, 190) d

GW170814 (III) 0.228 0.77 (30, 80) NE = 10-17, tw = 40, 80 e

a upper bounds are just limited by the number of trials
b the bandpass ranges in units of Hz are: (433, 789), (152, 733), (80, 308), (185, 794), (52, 251), (132, 351)
c (i- j) means echoes i through j were used
d the whole time range used was shifted 10 seconds later
e the explicit sets used: (NE , tw/M) = (15, 40), (10, 80), (15, 80), (3-15, 40), (5-17, 40), (3-15, 80)

difficult for instrumental effects to yield our p-values, no combs of spectral lines as reported

by the collaboration thus far [38] are similar to our signals for any of the events.

VI. FURTHER ANALYSIS AND THE NEUTRON STAR MERGER

We have reported that methods I and III have yet to find signals in events where method II

produces relatively strong signals. As we have mentioned, the development of the three meth-

ods and the data analysis was completed before the effects of spin, as displayed in Figs. 4(b)

and 5(b) were known. These figures show that the m = 2 resonance spikes of comparable

height remain very narrow over a wide range of frequencies. This means that properly resolv-

ing these spikes will benefit from a high frequency resolution. Method II has high resolution

by utilizing high numbers of echoes, which suggests why this method is the most successful.

Furthermore, the final spin for different events are all close to χ = 2/3, and the choice of

bandpass for this method as determined by the data shows consistency with the range of dom-
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inant spikes of Fig. 5(b).8 (( fmin, fmin)td ∼ (n1, n2) corresponds to the range from the n1th to

the n2th peak in that figure, but it should also be remembered this figure does not include the

modulation from an unknown source function.) This suggests that echoes are already showing

the effects of spin.

It is interesting to consider the ratios of the time delays and the final masses for the four

events td/M/(1+z), where the redshift factor is due to td (M) being measured in the detector

(source) frame. These ratios from the four events are consistent with each other and with

the predicted range 700 ® td/M ® 860 for a spinless 2-2-hole [19]. In that reference it was

found that the main contribution to td/M is from the exterior, as with the truncated black hole

model, and it takes the form −4 ln(δ) ∼ 4η ln(M) where δ = (r0 − r+)/M ∼ 1/Mη. η = 2

(η = 1) corresponds to r0 − r+ being a proper (coordinate) Planck length. In [19] it could

only be determined that η ≈ 2 for astrophysical sized objects. The resulting range of td/M
motivated the range over which we first searched.

To consider both the mass and spin dependence, we can use the truncated Kerr black hole

model as we discussed before, where the effect of spin is known. This model relates td/M to χ

and ln(δ) as in (7). Given that the χ dependence of ln(δ) is insignificant, it is convenient to de-

fine η from ln(δ) = −η ln(M). Then the deviation of η from 2 is a measure of the deviation of

r0−r+ from a proper Planck length. We can express η in terms of td , M , χ and z, and so we can

view our results for the four black hole merger events as four measurements of η. Incorporat-

ing the experimental errors for M , χ and z in these events we combine the four measurements

to arrive at η = 1.7± 0.1. The fit is shown in Fig. 12 where (chi-squared)/(d.o.f.) = 0.38.
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FIG. 12. Consistency of the four measurements of td/M after accounting for the mass and spin with a

simple model and using ln(δ) = −η ln(M) where δ = (r0 − r+)/M .

8 Other than numerous spectral lines and artifacts, the LIGO noise curve that is within our bandpasses is not

dramatically varying, and thus is not that dissimilar to the flat Gaussian noise that we used to produce Fig. 5(b).
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FIG. 13. Signal plots showing secondary peaks. The plots are obtained by rescaling and averaging

over the echo numbers indicated in Table I.

We now discuss a further reinforcement of the echo interpretation of a signal peak that

shows up at a certain time delay td . This is due to the existence of secondary peaks that may

be expected at exactly td/2, 2td , 2/3td , 3/2td .... In these cases the window function would

be either under-sampling or over-sampling the actual periodic spikes in the data. We will see

that a signal peak faked by random noise is less likely to have the corresponding secondary

peaks. In method II it is more appropriate to display the correlation in terms of the spacing

between spikes in frequency space, and so we use the variable n = T∆ f = T/∆t introduced

above with nd = T/td .9

In Fig. 13 we show secondary peaks that occur in the four signal plots from method II. The

positions of the vertical lines are precisely in the ratios indicated. We see that each event has

at least a secondary peak at 2nd . (This suggests a set of prominent resonance spikes with 2nd

spacing.) The significance of this secondary peak can be appreciated more from Fig. 14, where

the product of correlations at frequency spike spacings n and 2n is shown. The product of the

primary peak height at nd with the secondary peak at 2nd shows up as the strong central peak.

These results indicate that there should be a significant improvement for p-values that account

9 The previous signal plots for method II are just linear inversions of frequency space plots about the central

peak at td .
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FIG. 14. Product of correlations at n and 2n.

for the secondary peaks, but we leave this for future studies.

Let us look more closely at GW170104, the event with the strongest signal from method

II. It turns out that the suggestion of echoes in this event can be seen with a very simple

transformation of the time domain data. Let fNE(t) label a range of time series data starting

near the merger and extending to include NE = T/td echoes. Now consider a new time series

given by F(t) = |IFT(bandpass(|FT( fNE(t))|))|.10 FT (IFT) is the discrete (inverse) Fourier

transform and the bandpass is a version of the (16, 62) bandpass that more smoothly cuts off

high and low frequencies. The smoothing reduces noise at small t after the transformation but

it is not essential. Note the presence of absolute values and so once again phase information

is not kept. We then consider the product of F ’s for the two detectors.

The result is shown in Fig. 15(a), only for times up to≈ 2td . The vertical lines are multiples

of the value of td determined by method II. Peaks show up at td and 2td , and also at td/2 and

3td/2. To obtain a p-value we use the product of the four peak heights divided by a product of

averages. In this case we choose to obtain a p-value that reflects the agreement between the

two methods, and so we use a prior on the value of td that is equal to the previously obtained

value from method II. The resulting p-value is clearly smaller than if we used our standard

10 The cepstrum includes a logarithm in the transformation and this makes the first peak relatively more promi-

nant. We thank Martin Green for suggesting the cepstrum.
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FIG. 15. An almost direct observation of echoes in GW170104, and the associated p-value, using the

simple method described in the text.

wide prior on td . At 3000 trials and for NE = 280, there is still only an upper limit on this

p-value.11 Other signals at the same td , as strong or nearly so, also occur for other values of

NE. But this simple method does not yield signals for the other events.

The strong secondary peaks at 2nd as evident in Figs. 13, 14 and the time domain peaks

at td/2 and 3td/2 in Figs. 15(a) leads to a possible connection with the comment at the end

of Sec. II. A disturbance of the newly formed ECO could originate at its core, and take time

≈ td/2 to reach the light ring radius. This would set up a train of echoes interspersed between

the original set of echoes, thus giving the appearance of Fig. 15(a) and producing the strong

secondary peak at 2nd .

GW170817

Finally we report on a search for echoes in event GW170817 [39], the binary neutron star

merger. Compared to the LIGO events studied above, GW170817 has several differences. No

post-merger gravitational signal has been seen [40] because the mass of the system is much

smaller, and so the noise curve around the ringdown frequency of the final object (∼6kHz) is

considerably higher. A prompt production of a black hole upon merger is not expected; rather

the favored scenario is an unstable hypermassive neutron star existing as an intermediate state.

Thus the formation time of the final black hole or ECO is quite uncertain. Method II is best

suited for this event because the frequency range it targets can extend lower and it is less

sensitive to the echo starting time.12

Using data with a 16384 Hz sampling rate and a whitening process with 1/4 second seg-

ments, we find a signal at a time delay of td = 0.00719 sec. Repeating the p-value analysis as

11 Each trial correlates randomly chosen time segments away from the signal region from the two detectors, but

there is a question of independence given the limited amount of data used.
12 We thank Niayesh Afshordi for encouraging us to look at this event. After our analysis of this event appeared

in version 2 of this paper, the analysis in [29] appeared where a much lower frequency range was considered.
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before (the same ±30% around the central peak) with 300 trials gives a p-value ∼ 0.01. The

chosen bandpass is ( fmin, fmax) = (1200, 6875) Hz ≈ (9, 50)/td , which extends nearly to the

upper end of the available spectral density range of the data.13 The bandpass is on the rising

part of this noise curve, but there is some compensation for higher noise from a stronger signal

due to the event being closer.
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FIG. 16. The correlation for event GW170817, method II, displayed in frequency space and also

showing the secondary peaks. We have averaged over echo numbers NE = (200, 220, 240, 260) by

rescaling and combining results. On the right, the signal (red) and 300 background trials showing the

maximum peak height vs. the maximum product of heights with positions in the ratio 1
2 : 2

3 : 1. The

highest peak need not be one of the three peaks.

We show the signal plot containing secondary peaks in Fig. 16(a). When we compare this

figure to Fig. 13, we see that GW170817 does not seem out of place. For this event we have

used the background trials to show how unlikely it is for a strong noise peak to be accompanied

by some of the secondary peaks as seen in the signal plot. Fig. 16(b) compares the noise and

signal values of the highest peak height and the highest product of three peak heights with

locations in the ratio 1
2 : 2

3 : 1. This result and the existence of the additional secondary peak

at 3
2 nd indicates that the true p-value is significantly smaller than we have quoted.

Our result for GW170817 may have interesting implications for the mass and spin of the

final ECO in this event, which are currently only loosely bounded. We again use the truncated

black hole model. By requiring that η from GW170817 be consistent with the value η =
1.7± 0.1 obtained for the four black hole merger events, our value for td then constrains the

mass and spin. We find that M < 2.56M�, and as M ranges from this value down to M = 2M�
for example, the spin χ ranges from 0 to 0.77. This range of M is to be compared with a

total mass of the binary system of at least 2.73 M�. A final mass below 2.56M� is perhaps

on the low side of expectations based on estimates for mass loss due to ejected matter and

13 The detector response is believed to be well understood even though the calibration accuracy may not be known

at such high frequencies ¦ 5kHz [41].
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gravitational radiation starting from a total mass of 2.73 M�. In this regard we note that the

mass loss from gravitational radiation cannot be too low if, indeed, echoes are being seen. In

any case either χ and/or M is smaller than expectations, according to our echo results and the

truncated black hole model.

An echo detection for this event could also shed light on the formation time of the ECO. We

can shift our time domain later, further from the event time, and see if there is any increase in

signal strength. We see no evidence that the ECO is formed more than a few tens of millisec-

onds after the peak amplitude time (which itself has an uncertainty of order milliseconds),

since this is when the signal strength starts to decrease. Correspondingly the lifetime of the

hypermassive neutron star would be short.

VII. CONCLUSION

If compact binary mergers are forming horizonless exotic compact objects (ECOs) with

reflecting interiors or boundaries, then a series of pulses subsequent to the ringdown phase

may radiate from the merger remnant. The existence of these pulses, or "echoes", would clearly

force a change for the black hole paradigm.

By calculating the Green’s function for ECOs with more general potentials and boundary

conditions, we find that echoes feature a characteristic resonance pattern in the frequency

space as shown in Figs. 3 and 4 (without and with the effect of spin respectively). These

patterns reveal some universal features, such as the nearly evenly spaced narrow resonances,

that we make use of here to search for echoes. These patterns also display some non-universal

features, such as a model dependent overall shift of the resonance peaks, that can be used

in future studies to distinguish different ECO candidates. The spin of the ECO is important

to determine the shape of the resonance pattern and thus the optimal frequency range of the

search. Fig. 5(b) shows the most relevant version of our transfer function, and it indicates that

something like forty or fifty highest resonance spikes provide a promising search target.

Our search for echoes is based on the construction of quasi-periodic window functions in

both time and frequency. By combing data sets of variable time duration with window func-

tions of variable spacing and offset, and correlating the results between different detectors, a

signal peak at some window spacing determines the time delay. In the end we find that the

frequency window of method II is the most successful where, by taking data of longer duration,

a large number of narrow resonances becomes more accessible. The frequency bandpass as

optimized to the data turns out to be quite consistent with the range of dominant resonances

as determined by the spin of the ECO.

Signal peaks at the best-fit time delays are displayed in Figs. 7-10 for the four black hole

merger events. An initial estimation of the p-values for the individual signals gives values

sometimes significantly less than 1%. These p-values account for possible noise peaks in a
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much wider range of time delays than other searches. These p-values do not factor in the

existence of secondary peaks, seen in Fig. 13, and also seen in Fig. 16 for the neutron star

merger event. Fig. 14 shows how the existence of secondary peaks quite dramatically increases

signal relative to noise. We have also not attempted to quantify the global significance of

finding signals in four of five black hole mergers and in the neutron star merger, and with

three of the events showing consistent signals with two different methods (see Fig. 15 for

GW170104). Our values for the time delays are intriguingly consistent with a simple model

that accounts for the measured final masses and spins. We leave the meaning of these results

for the reader to ponder, along with the dictum extraordinary claims require extraordinary
evidence.

Appendix A: Asymptotic solutions and energy fluxes for gravitational perturbations

The spin weight s = −2 perturbations on a Kerr background spacetime can be described

by either the Teukolsky equation or the SN equation. For the Teukolsky radial equation, the

asymptotic solutions at the horizon and the spatial infinity are described by amplitudes Bi,

Rlmω →
{

Btrans∆2e−ikH x + BrefeikH x , x → −∞
Bin

1
r e−iωx + Boutr3eiωx , x →∞,

(A1)

where x is the tortoise coordinate with d x/dr = (r2 + a2)/∆, ∆ = r2 + a2 − 2M r, a =
J/M (= χM), kH = ω−mΩH , ΩH = a/(2M r+). For simplicity we suppress theω dependence

for various variables in these appendixes. For the SN equation the asymptotic solutions are

described by amplitudes Ai,

X lmω →
{

Atranse−ikH x + ArefeikH x , x → −∞
Aine−iωx + Aouteiωx , x →∞.

(A2)

The transformation between the solutions to the two equations is [27]

X lmω = (r2 + a2)1/2r2J−J−

(
1
r2 Rlmω

)
, (A3)

where J− = (d/dr) − i(K/∆) and K = (r2 + a2)ω − ma. With this we find the following

relations between the Teukolsky and SN amplitudes

Bin = −
1

4ω2 Ain, Bout = −
4ω2

c0
Aout, Btrans =

1
d

Atrans, Bref =
1
g

Aref. (A4)

The first three are as given in [27]. We obtain the fourth as needed for the discussion of a

reflecting wall close to the horizon. The various coefficients are,

c0 = λ(λ+ 2)− 12aω(aω−m)− i12ωM ,

d = −4(2M r+)5/2
[
(k2

H − 8ε2) + i6kHε
]

,
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g =
−b0

4kH(2M r+)3/2(kH + i2ε)
, (A5)

where λ is the spheroidal harmonic eigenvalue of the Teukolsky angular equation, ε = (r+ −
M)/(4M r+) and b0 = λ2 + 2λ− 96k2

H M2 + 72kH M r+ω− 12r2
+ω

2− i[16kH M
(
λ+ 3− 3 M

r+

)
−

12Mω−8λr+ω]. To use (A3) we need to include higher order terms beyond the leading order

asymptotic expansions listed above. In particular we need a series expansion of the Teukolsky

radial equation to the next-to-next-leading order at both boundaries before matching to (A2).

From the energy fluxes F = dE/d t at the horizon and at spatial infinity in terms of Teukol-

sky amplitudes [11, 25], we thus obtain

Fout =
1

2ω2 |Bout|2 =
8ω2

|c0|2
|Aout|2, (A6)

Fin =
128ω6

|C |2 |Bin|2 =
8ω2

|C |2 |Ain|2, (A7)

Ftrans =
128ω (2M r+)5 kH

(
kH + 4ε2

) (
kH + 16ε2

)
|C |2 |Btrans|2 =

8ωkH

|C |2 |Atrans|2, (A8)

Fref =
ω

2kH (2M r+)3
(
k2

H + 4ε2
) |Bref|2 =

8ωkH

|b0|2
|Aref|2 . (A9)

Here we see that the energy fluxes in terms of the amplitudes Ai nicely resemble the expres-

sions for the scalar perturbations on the Kerr background or that of perturbations on the

Schwarzschild background. The Ai ’s are also dimensionless while the Bi ’s are not. The ad-

ditional factors |c0|2, |C |2, |b0|2 are as follows,

|c0|2 = λ4 + 4λ3 + λ2
(
−24a2ω2 + 24amω+ 4

)
− 48aλω(aω−m)

+144ω2
(
a4ω2 − 2a3mω+ a2m2 + M2

)
,

|C |2 = λ4 + 4λ3 + λ2
(
−40a2ω2 + 40amω+ 4

)
+ 48aλω(aω+m)

+144ω2
(
a4ω2 − 2a3mω+ a2m2 + M2

)
,

|b0|2 = λ4 + 4λ3 + λ2
(
64M2k2

H − 112M r+ωkH + 40r2
+ω

2 + 4
)

−48λ
[
8M2k2

H

(
4M
r+
− 3
)
+ 2MkH r+ω

(
5− 4M

r+

)
+ r2

+ω
2

(
1− 4M

r+

)]
+144

[
64M4k4

H − 96M3k3
H r+ω+ 4M2k2

H

(
4M2

r2
+
− 8M

r+
+ 13r2

+ω
2 + 4

)
+4MkH r+ω

(
2M2

r2
+
− 2M

r+
− 3r2

+ω
2

)
+ r2

+ω
2

(
M2

r2
+
+ r2

+ω
2

)]
. (A10)

These three factors are smooth nonvanishing functions of ω and they become equal to each

other when a = 0. Finally, the fluxes are related by energy conservation Fout−Fin = Fref−Ftrans.
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Appendix B: The transfer function for a truncated Kerr black hole

Here we use the SN equation, noting that it naturally reduces to the Regge-Wheeler equation

(1) in the spinless limit. For a truncated Kerr black hole with a reflecting wall close to the

horizon there are two solutions of interest,

ψleft(x)→
{

Atranse−ikH x + ArefeikH x , x → x0

Aine−iωx + Aouteiωx , x →∞
, (B1)

ψright(x)→
{

Dtranse−ikH x + DrefeikH x , x → x0

eiωx , x →∞
. (B2)

For ψleft, we impose the relation Aref/Atrans = R(ω)e−2ikH x0 as in (6). We assume that the wall

is positioned at a large and negative x0 so that V (x0) is negligible. Rwall is defined in such a

way that |Rwall|2 is the ratio of energy fluxes Fref/Ftrans, and so

Rwall =
|C |
|b0|

Aref

Atrans
e2ikH x0 =

|C |
|b0|

R(ω). (B3)

Thus Rwall and R(ω) have the same phase. From our choice of perfect reflection, and with only

a sign change as a possible phase change, Rwall = ±1, we have R(ω) = ±|b0|/|C |. We display

this in Fig. 17. We find that |C | = |b0| when kH = 0, i.e. R(mΩH) = Rwall.
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FIG. 17. R(ω) used to generate Fig. 4.

For the SN equation, pW is independent of x and can be used to define the transfer function:

KχR ≡ 1/ pW (ψleft,ψright)|Rwall
. The amplitudes of two solutions at x → ∞ and x → −∞ can

then be related by computing this quantity at both ends

pW = 2iωAinp(∞) = 2ikH(DrefAtrans − DtransAref)p(−∞) . (B4)

Here p(±∞) ≡ p(±∞,ω) and we have yet to choose x̄ .
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The transfer function is determined up to the overall normalization of ψleft, as expressed

by the value of Atrans. We wish to choose Atrans such that Kχ0 = TBH, the transmission amplitude

for a Kerr black hole, and so in this paragraph we focus on Rwall = Aref = 0. From the energy

fluxes of the previous section we define the transmission amplitude

TBH =

√
kH

ω

Atrans

Ain
, |TBH| =

√∣∣∣∣ Ftrans

Fin

∣∣∣∣. (B5)

Since Kχ0 = 1/(2iωAinp(∞)) we must have

Atrans =
1

2i
√
ωkH p(∞)

. (B6)

The 1/p(∞) factor now in ψleft multiplies the p(x) in the source integral, and p(x)/p(∞) is

simply p(x) defined by x̄ = ∞. This is the choice of x̄ that we mentioned in the main text.

The Wronskian relation in (B4) implies ωAinp(∞) = kH DrefAtransp(−∞). From (B5) we can

then find TBH in terms of the ψright amplitudes,

TBH =
√
ω

kH

1
Dref

p(∞)
p(−∞) , |TBH| =

√∣∣∣∣ Fout

Fref

∣∣∣∣. (B7)

For these two expressions to be consistent we must have |p(∞)/p(−∞)| = |b0/c0| as can be

checked numerically.

Returning to a general Rwall, and with the normalization ofψleft given by (B6), we can write

KχR =
1

2iωp(∞)Ain
=

√
kH

ω

Atrans

Ain
,
∣∣KχR ∣∣ =

√∣∣∣∣ Ftrans

Fin

∣∣∣∣. (B8)

Thus the transfer function itself is the flux ratio, now for general Rwall. We can then rewrite

KχR in a useful form with the help of the Wronskian relation (B4) and (B7),

KχR =
√

kH

ω

Atrans

Ain
=
√
ω

kH

1
Dref

p(∞)
p(−∞)

(
1− Dtrans

Dref

Aref

Atrans

)−1

=
TBH

(1− RBHRwalle−2ikH x0)
, (B9)

where

RBH ≡
|b0|
|C |

Dtrans

Dref
, |RBH| =

√∣∣∣∣ Ftrans

Fref

∣∣∣∣. (B10)

With the energy conservation Fout = Fref − Ftrans for ψright, we find

|RBH|2 − 1 = −sign(kH/ω)|TBH|2. (B11)
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We can then find the amplification factor for ψleft with a generic Rwall. Using energy con-

servation Fout − Fin = Fref − Ftrans we have

Z ≡ Fout

Fin
− 1 =

Ftrans

Fin

(
Fref

Ftrans
− 1
)

= sign
(

kH

ω

)∣∣KχR ∣∣2 (|Rwall|2 − 1
)

(B12)

Note that Ftrans, Fref and kH/ω all have the same sign.

Appendix C: Other windowing methods

Windows in the time domain (Method I)

Time delays of interest in our study imply that there may be about 50 distinct echoes after

ringdown. Thus a way to reduce noise is to impose a time window function that zeros the

data between echoes. A window function is described by the time delay∆t between centers of

windows, the time at the center of the first window t0, the window width twi for the ith window,

and the total time duration T of the data to be windowed. As a reference time we choose the

time of maximum amplitude tpeakamp, a time that is accurately determined from the main event.

Then we allow the time of the first window to shift within the range tpeakamp + 0.9∆t < t0 <

tpeakamp + 1.1∆t at each ∆t in the search. Since the typical ∆t ’s of interest are much larger

than the duration of the merger, this range should be more than enough to account for any

effect the merger dynamics can have on t0.

The simplest choice is a square window of unit height and constant width tw, but the toy

model displays echoes with growing widths. To improve on square windows for this method

we first smooth the edges by using Hann windows. These are given by 1
2 (1+ cos(2πx)) for

−1
2 ≤ x ≤ 1

2 and 0 elsewhere. To account for the steadily increasing widths of echoes we use

windows with twi/M ∼ 232 + 12i.14 Fig. 18 presents an example of the improved window

function. The effectiveness of the noise reduction decreases as the width of the windows

increases. From the toy model it was found that NE ∼ 15-40 was optimal.

14 This fit is based on the spinless toy model. With nonzero spin, due to existence of the superradiance region,

the shapes of echoes are less universal and more sensitive to initial conditions.
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FIG. 18. Fourteen Hann windows with increasing widths and ∆t/M = 780.

In Fig. 19(a), we show the result of applying the window function onto the data, where, for

illustration, we have chosen the correct value for∆t such that the windows align properly with

the signal. We then take the absolute value of the Fourier transform to search for the resonance

structure in frequency space. The impact of the time window is illustrated in Fig. 19(b). The

signal resonance pattern emerges after windowing (red curve), in comparison to the noisy

distribution before windowing (gray curve) and the windowed version of the pure noise (blue

curve). The latter shows that the window also generates artifacts that can mimic a signal, i.e.

equally spaced spikes due to the periodicity of the window itself. However the artifacts are

more spread out in location and random in size compared to the signal peaks. It then helps to

apply a bandpass fmin < f < fmax, and the toy model suggests that a reasonable bandpass is

( fmin, fmax) ∼ (0.7, 1) fRD, where fRD is the fundamental black hole ringdown frequency.

The signal resonances in Fig. 19(b) can be further isolated by forming the autocorrelation

function of the Fourier transformed data within the selected bandpass. As shown in Fig. 19(c),

where the autocorrelation is plotted as a function of shift, a series of peaks will occur for shifts

coinciding with the resonance spacing (vertical grey lines). The noise due to the windowing

artifacts enters almost solely in the first peaks (the two blue spikes), and so by including only

peaks 3-8, almost all of the artifacts are removed. Generally the windowing artifacts are larger

the narrower the window width is compared to the time delay. For the range of time delays

we consider in the LIGO search we use peaks 5-9.

The sum of autocorrelation peaks generates, for a data set i and a time delay ∆t, an am-

plitude Ai(s) as a function of the offset, the integer s in t0 = tpeakamp + 0.9∆t + sδt. In the

presence of a common signal in two data sets then A1(s) and A2(s) can become large at the

same s. We thus maximize over the products

Max({A1(s)A2(s), s = 0, ..., 0.2∆t/δt}) . (C1)

The signal now appears as a peak in this correlation when considered as a function of∆t. This

gives our estimate for the actual time delay td , and the optimal offset t0 is also determined.
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FIG. 19. Reducing noise by applying a time-domain window function. The black shows the signal, the

grey and red show the data before and after windowing and the blue shows the windowed Gaussian

noise. (a) Echoes combined with Gaussian noise in the time domain. (b) The absolute value of the

Fourier transform of the data. (c) The autocorrelation function of the data in (b) in the frequency

range 0.26 to 0.37.

Combining time and frequency windows (Method III)

The two methods with windows in time or frequency space are complementary to each

other. The separation between the echoes in the time domain and the separation between the

resonances in the frequency domain are inversely related. So for long (short) time delay the

time (frequency) windows are more effective at removing noise. In this method we explore

the possibility that applying both time and frequency windows could remove even more noise.

Here we choose to use simplified square windows with constant width in both the time and

frequency domains. These windows are characterized by the parameters ∆t (∆ f = 1/∆t),
tw, T , f0, fw, fmin and fmax. We choose to restrict the time window offset t0 to be around the

expected value, t0 ≈ tpeakamp +∆t. Since echoes grow wider at later times, there is a trade-

off in choosing tw to capture the dominant content of echoes with the minimum amount of

noise. In particular a too small tw will spread out the signal resonance pattern and make it
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less distinctive from noise.

For a given set {tw, T, fw} we take the mean of the absolute value of the doubly windowed

data Ai(s) defined analogously to (13). Then we find the frequency window offset s that maxi-

mizes the correlation between two data sets, Max({Ai(s)A j(s), s = 1..n}). Finally the bandpass

fmin < f < fmax is optimized to find a peak in these maximum correlations as a function of

∆t. In this hybrid method different window parameters are more correlated, making it more

difficult to identify their optimal values. It could be expected that the time window artifacts

make the frequency window less effective. But having the frequency window brings in the use

of the correlation with respect to the offset s.

From the toy model study, we find that this method starts to work with relatively small echo

numbers, i.e. NE = 10-20. The optimal time window width, which is around tw/M = 40-80,

is narrower than the real echo widths. For these relatively small choices for T , the frequency

space resolution is low, and we need the small values fwT = 1-3 to best capture the signal. With

different choices of {tw, T, fw}, signal peaks are found to persist more than noise peaks. Thus

we average over them all to increase the SNR, after we shift and normalize each correlation

plot to have zero mean and a common variance. Higher values of NE could also be expected

to work, but they are not considered in this work.
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