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The study of the Cosmic Microwave Background (CMB) lensing potential has established itself
by now as a robust way of probing the physics of large-scale structure growth. The most common
estimators of the lensing potential are derived under the assumption of Gaussianity of the matter
distribution and in the Born approximation of the photon diffusion. In this paper we study the
performance of quadratic estimators when applied to realistic sky maps extracted from multiple-lens
ray tracing techniques in cosmological N-body simulations. These are expected to model accurately
the effects due to the non-Gaussianity of the matter distribution induced by its non-linearity and
the deviation from the Born approximation. We show that both these effects on their own lead
to reconstruction biases, but these tend to partially cancel each other when both these effects are
considered together. We forecast the impact of these biases on the estimation of cosmological
parameters for future high-sensitivity CMB experiments like CMB-S4. We find that the cold dark
matter density, {2cam, the optical depth to reionization 7, the amplitude of primordial inflationary
perturbations, As and the sum of neutrino masses, M,, could be biased at the 1-2¢ level, if no
external data set is used. We also observe a reduction of the bias if external data like BAO is

included.
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I. INTRODUCTION

The Cosmic Microwave Background (CMB) photons
detected today have interacted with the matter distri-
bution in the universe throughout their journey from
the last scattering surface towards us. Such interactions
result in the generation of the so-called secondary
anisotropies, i.e. fluctuations generated after the epoch
of matter-radiation decoupling (see e.g [I] for a review).
These can be either due to scattering between CMB
photons and free electrons, such as inverse Compton or
velocity-induced scatterings (the thermal and kinetic
Sunyaev-Zel'dovich effect and the Ostriker-Vishniac
effect) or to interactions of the photons with gravita-
tional potential wells (e.g. the integrated Sachs-Wolfe
[2] and Rees-Sciama [3] effects). Within this last class
of secondary anisotropies the weak gravitational lensing
of CMB anisotropies in temperature and polarization
is one of the key signals exploited by current and
future experiments to obtain constraints on cosmological
models.

CMB lensing is sourced by the growth of all matter
located between z = 0 and the last-scattering surface
(z &~ 1100). It contains thus valuable information on
the parameters affecting the formation of the large-scale
structures (LSS) of the universe such as the sum of
neutrino masses (M,) and the properties of the dark
energy (see [] for a review).

The effect of lensing on the CMB manifests itself in a
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scale-dependent smoothing of the acoustic oscillations in
the angular power spectrum of temperature and E-mode
polarization as well as in an increase of power in the
damping tails. The first evidence of this effect was
reported by the ACBAR experiment [5] and measured
with high significance by SPT [6]. In addition, lensing
induces correlations in the harmonic coefficients of
CMB anisotropies that can be used to reconstruct the
distribution of the line-of-sight integrated gravitational
potential that lensed the CMB, i.e. the so-called lensing
potential. The first attempts to measure the latter
in CMB data from WMAP using cross-correlation
techniques with external LSS tracers were performed
by [7] and [§] and the first significant direct detections
were reported by the ACT and SPT collaborations
[0, 10]. Currently, the most precise measurement of
the CMB lensing potential has been achieved by the
Planck Collaboration, who measured this signal with
a significance higher than 400 on nearly the full sky
[I1]. The effect of gravitational lensing on the CMB
polarization anisotropies has been recently isolated
by the current generation of ground-based CMB po-
larization experiments POLARBEAR [I2], SPTpol
[13] and ACTpol [I4] using CMB data alone and in
cross-correlation with LSS tracers [14HI6]. Additionally,
limits on the CMB B-mode power on sub-degree scales
have been obtained [I7THI9]. The B-mode signal of CMB
polarization on these scales is largely sourced by the
lensing distortion of the primordial E-mode polarization.
Hence, achieving high-sensitivity measurements of the
lensed CMB polarization is a crucial step to increase the
precision of the CMB lensing potential reconstruction.
With decreasing noise levels, higher angular resolutions
and larger areas observed by future experiments (e.g.
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CMB-S4 [20]), the accuracy of reconstruction techniques
and theoretical modeling of the measurements has to
improve alike.

To date, CMB lensing potential reconstruction anal-
yses commonly rely on the assumption of Gaussianity
of the unlensed CMB temperature field and of the
lensing potential itself. The lensing potential, however,
becomes non-Gaussian due to non-linear structure
formation mainly at late times. Although the level of
non-Gaussianity is expected to be small due to the large
number of potential wells that deflect CMB photons,
the impact of this effect has to be quantified in light of
future high-precision measurements [21H23].

Moreover, the Born approximation (i.e. the evaluation
of the deflections of the photons with respect to the
original unperturbed line of sight), usually employed
for modeling CMB lensing, does not account accurately
for all features of the actual deflection process (e.g.
the correlation between subsequent lensing events)
neglecting therefore some of the sources of non-Gaussian
statistics in the lensing potential. Earlier attempts to
model CMB lensing including the effects of non-linear
structure formation were presented in [2I1 241 [25].
Recent works investigated the effect of the relaxation of
the Born approximation on lensed CMB power spectra
and CMB lensing power spectra, both from an analytical
and numerical point of view [23] m—lﬁﬂﬂ Similar
analytical studies were previously performed also in
the context of the weak lensing shear power spectrum
[29H32]. While the most recent studies showed that the
main post-Born effects are observed on the higher-order
statistics of the CMB lensing potential rather than on
its power spectrum, the impact of such effects on lensing
reconstruction has not been evaluated yet. Recent
theoretical works further suggested that the presence
of non-Gaussianities in the CMB lensing potential
could lead to percent level biases in the reconstructed
CMB lensing potential power spectrum if they are left
unaccounted for [33]. This could in turn lead to a biased
estimation of cosmological parameters.
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L We warn the reader that the findings of [26] disagrees with later
studies of [23] 28], probably due to numerical error in the evalu-
ation of their analytical expressions. We refer the reader to the
discussion in [23] for more details.

2 The derivatives in the small angle limit should be computed using
a coordinate system orthogonal to the current light ray’s direc-

2 (X Dalx—x')
c Jo Da(x)Da(x’)

In this paper we evaluate the impact of the non-
Gaussian statistics of the CMB lensing potential on the
commonly employed quadratic estimator techniques for
the CMB lensing reconstruction. As these effects are of-
ten too complex to model analytically, we use the simula-
tions of [28] that include both the non-linear evolution of
LSS and post-Born effects to model and investigate this
problem numerically. The paper is organized in the fol-
lowing way. In Sec. [[T] we review the theoretical aspects
of weak-lensing in the Born and post-Born regime and in
Sec. [[IT] we review the properties of the statistical esti-
mators to extract this effect in the CMB. In Sec. [[V] we
review the details of the modeling implemented in the
simulations used in this work. In Sec. [V] we show the
results of our numerical experiments as their impact on
the lensing potential power spectrum and in Sec. [VI] we
describe the impact of our findings on the estimation of
several cosmological parameters with a particular focus
on the total mass of neutrinos, M,,, which is one of the
main science target of future CMB experiments. Finally,
conclusions are made in Sec. [VIIl

II. GRAVITATIONAL LENSING FORMALISM

In the weak lensing formalism the effect of deflections
of light rays coming from a source plane is described by
the lens equation. This maps the final position (3, x) of
a ray to the angular position of its source 0, i.e.
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where y is the conformal time, ¥(3, x) is a gravitational
potential located on the photon path, ¥(3,x),s, their
angular derivativeeﬂ and D4(x) is the comoving angular
diameter distance. The linearized mapping between an
image at the source plane and the lensed image at a given
lens plane is described by the lensing magnification ma-
trix (or lensing Jacobian). This can be computed as the
simple derivative of the equation above )|
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(

tion of travel. Numerical tests have shown that using angular
derivatives causes a negligible error (see e.g. [34] and references
therein).

3 We note that the following formula can be extended to the full-
sky case by promoting the partial derivatives to covariant deriva-
tives.



In the weak lensing regime the magnification matrix is
usually decomposed into

(l—k—m —ptw
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where k is the lensing convergence, ;2 are the com-
ponents of the lensing shear and w the lensing rotation
angle [35]. The components of the magnification matrix
are not independent and are connected through a series
of consistency relations [36] B7].

In the leading-order computations of the lensing effect,
the photon path is approximated by the unperturbed
photon geodesic x(x) ~ Oy, such that the line integral of
the Newtonian potential W simplifies to
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At linear order in W, the overall deflection of a photon
is then given by
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where Y. is the distance to the source plane. In the case
of CMB lensing, for instance, it is the distance to the last
scattering surface. The lens equation is usually rewritten
in terms of the lensing potential ¢, which is connected to
the total photon deflection, as

p(0,Xx") =0 — a(6) =6 — V(). (6)

We note that the lensing potential and the lensing con-
vergence can be connected in the weak lensing regime
through the relations [

1 2
K= —iv o} (7)

If we want to evaluate the lens equation at higher-order,
i.e. beyond the Born approximation (post-Born), we have
to account for the fact that photons do not travel along
the unperturbed background geodesics. Higher order cor-
rections are typically introduced perturbatively in Eq.
by Taylor expanding the potential ¥ around the unper-
turbed geodesic position.

The distinct additional couplings that arise reflect the
change in the shape of a light ray bundle by one lensing
event affecting the amount of lensing generated by a later

4 Despite besing derived in the Born approximation, these rela-
tions hold in the post-Born regime at sub-percent accuracy as

discussed in [28].

lensing event (lens-lens coupling) as well as by changing
gravitational potentials in the direction in which the ray
path is bent. We refer the reader to [23] 29 [3T], 3] for
further details. Post-Born corrections affect the angular
power spectrum of CMB lensing observables in a minor
way. In particular, the amplitude of C}" is suppressed on
scales L < 1000 by roughly 0.2% due to lens-lens coupling
and enhanced above the cosmic variance uncertainties at
L Z 1000, mimicking thus an additional non-linear large-
scale structure growth [23]. Higher-order correlation of
the k field, such as the bispectrum, are however more
affected and we will discuss these effects in the coming
sections.

A characteristic signature of post-Born corrections is the
appearance of curl-like modes in the overall lensing de-
flection angle [23], B9], such that

B(6) = 0~ V6(0) — V x (6). (9)

Here we define (V x Q); = €;;0;8),where ¢;; is the Levi-
Civita symbol in two dimensions and 2 is a pseudo-scalar
field. In analogy to the case of k and 1, () is related to
the lensing rotation w as

w= —%VQQ, (10)
2
wa _ [L(LZ_ 1)] C?Q (11)

III. CMB LENSING RECONSTRUCTION
WITH QUADRATIC ESTIMATORS

A. Formalism

Weak lensing by the large-scale structure of the Uni-
verse remaps the primary CMB anisotropies according to
Eq. such that its observed lensed Stokes parameter
X along the @ direction is given by

X(0)=X(0-Ve) Xe(TQU) (12)
where X is the primordial unlensed CMB and ¢ the lens-
ing potential. In the harmonic domain the remapping
operation acts as a convolution that mixes power in dif-
ferent multipoles and therefore correlates modes across
a band determined by the power in the lensing poten-
tial [40]. The lensing potential itself can be extracted
statistically using the observed CMB, assuming that the
underlying, unlensed CMB is on average homogeneous
and isotropic. This operation commonly involves the use
of the so-called quadratic estimator [4I], 42], which relies
on the lensing information in the two-point correlation of
the CMB fields. Although higher-order correlations will
become more important in reconstructing the CMB lens-
ing potential to exploit the full power of future datasets
to a more optimal precision [43H45], the quadratic esti-
mator is proven to be a very robust tool thanks to its
well understood biases and capability of quick forward-
modeling of instrumental and systematic effects. In the



following, we will use an implementation of this estima-
tOIEL but we note that, to date, none of the proposed
alternative estimators can dispense easily with the as-
sumption of Gaussianity of the CMB lensing potential.
In the quadratic estimator context we assume the primor-
dial unlensed CMB to be a Gaussian field such that the
harmonic coefficients for its temperature, E-mode and B-
mode anisotropies, ag(m, X € T,FE, B, have a variance
given by the four non-zero power-spectra CKT T, CZTE ,
CFE and C’BB. Likewise, for the harmonic coefficients
after lensmg, ae , X € T,E, B, we can write the vari-
ance of the harmomc coefﬁments, computed taking the
ensemble-average over primordial CMB and matter re-

afde}fm,> = 544,6mm/éj<y. For a given
realization of the lensing potential, this variance acquires
non-diagonal terms due to the characteristic introduction
of correlations in the harmonic coefficients due to grav-
itational lensing. This can be used to construct an esti-
mator for the lensing potential [41l [42]. On the full-sky,
this estimator takes the form

XY _
LM — E K:LMélmlézmzaélmlaégmg? (13)
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where the convolution kernel is given by
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This kernel has cosmology and experiment-dependent
weights, which read

fXY* fXY*
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if X =Y or X #Y, respectively. These weights are cho-
sen such that the variance of ¢, is minimal [|and adopt
the measured power spectra including the instrumental
noise power spectrum NZXY, ie. CéXY" = CéXY + N(ZXY.
The response functions f 5232 used in this work are those
of [42], with the distinction of using the lensed CMB

~ 2
power spectra Cy; to mitigate the biases of O (C’f¢ )

that arise in the lensing potential power spectrum calcu-
lation using this estimator [46]. We note that this choice
of weights might still be suboptimal and lead to biased
results from very small-scale CMB temperature signal
[47]. This bias could be mitigated replacing the temper-
ature auto-power spectrum with the lensed temperature-

gradient power spectrum CTVT, appearing in the non-
perturbative response function calculation [48]. Because

5 http://github.com/doicbek/lensquest

6 Correlation between T and E is neglected in the estimator
weights, causing the TE estimator to be slightly suboptimal in
favor of computational time

in the following we will compare lensed CMB realiza-
tions between each other and do not compare to a spe-
cific model, this has a negligible effect on our results.
The normalization vector AXY in Eq. is given by

—1
AXY = L(L+1)(2L+1) (nge)@ Llllg> , (16)
V2R 2

and ensures that the quadratic estimator is unbiased.
The three CMB anisotropy fields allow for six separate
estimators of ¢. In cosmological scenarios where gravita-
tional wave perturbations are negligible compared with
scalar perturbations, the BB channel has a vanishing
signal-to-noise, effectively reducing the estimators to 5.
We will thus ignore it in the following without introduc-
ing an appreciable loss in the overall sensitivity. The
power spectrum of the quadratic estimate of the lensing
potential is then a contraction of the CMB four-point
function, which includes three terms up to first order in

¢

2L+1Z¢

Néo)’ ABCD

LM ~ N(o) ABCD+O¢¢+N(1) ABCD.

(17)
The biases and Nél)’ ABED 4 rise from dis-
connected Gaussian two-point contractions of the CMB
fields and - in the case of the latter - of the lensing poten-
tial up to first order in C(M’ [49]. An analytic expression

for the zero-order bias, N (O) ABED “can be found in [42].
In practice, the computatlon of the realization—dependent
zero-order bias [50, [5I] with the help of Monte-Carlo sim-
ulations is preferred to the evaluation of the analytic for-
mula, since it accounts for small mismatches in the two-
point statistic between simulation and data. Analytic
expressions for N g) can be found in [49, [52] and an ana-
log method to compute it using Monte-Carlo simulations
in [13].

The different estimators for ¢ can be combined into an
optimal minimum-variance estimator as

AanJ‘\/J = ZWAB LM> (18)
with weights
o _1\ABCD
=Ny > (NGY (19)
CcD

and minimum variance lensing noise

NP = < 3 (N;l)ABCD> : (20)

ABCD

B. Effect of non-Gaussianities on quadratic
estimators

The formalism derived in the previous section assumes
that all the non-Gaussianity in the CMB are entirely
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due to the lensing effect and that the lensing potential
is a Gaussian field. However, this is just an approxi-
mation and if the lensing potential (or equivalently the
lensing convergence) has non-zero higher order correla-
tions, there are additional terms involving 4-pt functions
of lensed CMB fields that create distinct biases. This
problem was first studied in [33] in the context of assess-
ing the impact of the non-linear evolution of the matter
distribution in the lensing reconstruction. In this work
the authors derived expressions for the bias induced by
a non-zero bispectrum in the lensing potential caused
by the non-linear gravitational collapse that is of order

3/2
@ <<C’f¢) ) and is referred to as Nf’/z). The TT re-

construction channel was found to be the most sensitive
on angular scales £ < 1000 considered in their work and
could reach the level of 2.5 % for low noise and large
sky coverage experiments. This level of bias is significant
in light of the expected future experimental sensitivity.
Understanding the amplitude and nature of higher-order
biases and their effect on our ability of constraining the
cosmology is therefore crucial. Modeling these effects an-
alytically becomes cumbersome very quickly. Therefore,
we decide to adopt a numerical approach and asses the
impact of these biases through accurate and realistic nu-
merical simulations. In order to tackle the problem in
its full complexity we decide to use simulations that in-
clude not only the non-linear evolution of matter studied
in [33], but also non-Gaussianity induced by post-Born
effects. Analytical predictions of the shape and ampli-
tude of these non-Gaussian correlations have been re-

cently computed in [23] 27, [63].

IV. MODELING CMB LENSING AT
HIGHER-ORDER

To test the bias in the lensing reconstruction in-
duced by non-Gaussian evolution of the matter and post-
Born effect we need to simulate the lensing of CMB
anisotropies including both these effects. For this pur-
pose we use the simulation method and results of [2§]
(hereafter FCC18). This work produced a collection of
lensing observables k,w, ¢, 2, derived from a ACDM N-
body simulation of the DEMNUni suite [54, 53] in the
Born approximation and using multiple-lens ray trac-
ing techniques. The N-body simulation employed in
FCC18 used 20483 dark matter particles and a box size
of 2 Gpe/h from z = 99 to z = 0. This redshift
range cover allows to reproduce the CMB lensing ker-
nel Du(x* — x)/Da(x)Da(x*) with sub-percent preci-
sion. The mass resolution of the simulation at z = 0 is
Mcpy = 8.27 x 10'°Mg /h and the gravitational soft-
ening length is set to ¢; = 20 kpc/h corresponding to
0.04 times the mean linear inter-particle separation. Be-
low, we briefly summarize the specificities of the light-
cone construction and ray tracing algorithm adopted in
these simulations as well as further tests complementary

to the one presented in FCC18 and specifically performed
for this work. We refer the reader to FCC18 for a more
detailed discussion.

A. Ray tracing algorithm for CMB lensing

Starting from a series of snapshots in time of an N-
body simulation, the algorithm adopted in FCC18 re-
constructs the full-sky past lightcone of the observer from
redshift z = 0 to the maximum redshift covered by the
simulation zpmax (In our case zmax = 99). Because the
universe volume simulated in the N-body is finite, we
replicate the box volume in space to fill the whole ob-
servable volume between 0 < z < z,... To avoid re-
peating the same structures along the line of sight and
to recover (at least partially) structures on scales com-
parable to the box size, the algorithm employs a specific
randomization procedure for the particle positions as in
[24, 56]. The lightcone is then sliced into spherical shells
of thickness Ay = 150 Mpc/h. The particles inside each
of these volumes are then projected onto spherical planes
of surface mass density, as described in [57]. The algo-
rithm then converts the surface mass density planes into
convergence fields. With this discrete version of the light-
cone at hand, it is convenient to discretize the geodesic

and lens equation of Eq. and [ESHE0]

N—
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k=0

a®(E®). (1)

Here k is the shell index and we define the gradient of
the 2D projected gravitational potential as

2 Xk +AX T (3k)
aP (k) = ?/ dxw. (22)
€ Jxn—Ax Da (Xk)
a®) is easily computed starting from the convergence
field of each shell (k) using a spin-1 spherical harmonic
transform [34} [61] in the E and B decomposition
0.8 _ _ 2Ky (k),B

o = —— (0% = =0. 23

The latest operation requires the computation of the
spherical harmonic coefficients héwz using a fast spherical
harmonic transform up to a given cut-off in power fy,,x.
The choice of £y, for each different shell is optimized to
ensure the total deflection is computed with sub-percent
precision for scales ¢ < 8000.The magnification matrix

follows straightforwardly from Eq. as

b
AN(0,xn) =065 Z BN g (g8,
k=0

Xk) AL (8, x4),

(24)
where N is the number of planes necessary to reach
the source at comoving distance yxx and U;; is the ma-



trix of the second derivatives of the gravitational poten-
tial, 00 /065,08;. U;; can be computed easily as deriva-
tives of the component of the spin-1 field a*) (see Ap-
pendix A of FCC18). In Eq. we use the notation
Dy n = Da(xn — xx) and Dy, = Da(xy) for simplicity.
Implementing Eq. in numerical simulations becomes
quickly prohibitive for a large number of lens planes and
large sky fraction. FCC18 adopted the multiple lens ap-
proach of [62], who showed that the equation can be
rewritten in a more efficient form that requires to store
in a memory for a given k-th iteration just the position
of the light rays at the two previous positions B*~2) and

g(k—l)

Dy 1 Di_o1
(k): 1— k—1 k—2k ) (k—2) 25
p ( Dy Dy_op—1 p (25)
Dy—1 Di—2k g1 _ Dkfl,ka(k_n(ﬁ(k—n)'

_l’_
Dy Dy_o 1 Dy,

By differentiating with respect to 6 as in Eq. , we ob-
tain the recurrence relation for the magnification matrix

; Dy1 Dip oy (k—2)

AR (- ZhEt TRk ) 4G )
* Dy Dy_op—1) ¥ (26)
Dy 1 Dror (k-1 Dr-1k,(k-1) (k1)

L S el ik SLA 0) A
Dy Dy_op—1 ¥ Dy P P

This algorithm was originally developed in the context
of galaxy lensing, but adapted to spherical geometry in
[61] and developed first in [28, 56] for CMB lensing. This
approach is also convenient to derive the magnification
matrix and lensing observables in the Born approxima-
tion that we will use later to isolate the contribution com-
ing from post-Born effects. Assuming the background
distortion, the first-order magnification matrix is

N-1
N, 1st Dy N (k
AN, ) = K Y 7NU.<.>(9,X,§). (27)
k=0
We note that the U;; matrix is symmetric because mixed

derivatives commute and thus the rotation, w, is identi-
cally zero.

B. Impact of the LSS bispectrum

FCC18 carried out an accurate characterization of the
post-Born corrections on x, w and lensed CMB power

J
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spectra and compared extensively with their analytical
predictions derived in [23] 27, [38] (3| [63]. However, the
analysis did not investigate in detail the impact of the
non-linear evolution of large-scale structures and how
simulation properties match with analytical predictions
of the higher-order statistics of the x field. Below we
present additional validation tests performed to assess
the reliability of these simulations in modeling higher-
order statistics of post-Born corrections and non-linear
LSS evolution. We limit our analysis to the statistics of
the k field and its cross-correlation with w. Higher-order
statistics of the curl mode of the deflection field beyond
the mixed xkw bispectrum [23], that appear at higher-
order in the pertubative expansion, are lacking theoret-
ical predictions. The measurement of the kKrw and Kww
bispectrum in the simulations used in this work through
its effect on lensed B-modes power spectrum was pre-
sented in FCC18, together with the measurement of the
post-Born induced curl-mode on lensed CMB power spec-
tra. We refer the reader to that work for a more in-depth
discussion and comparison with theoretical predictions.

1. Higher-order statistics of the CMB convergence

To verify the accuracy of the simulations in reproduc-
ing the expected level of non-Gaussianity in k, we com-
pare its skewness as measured in the simulations with the
values obtained by contracting the predicted theoretical
bispectrum including LSS non-linearity and post-Born
corrections.

The definition of skewness given a pixelized map of a
scalar field, X, is

1 Npix
No2 X (@)
pix p

Ss[X] = (XXX) =

where p is the pixel index and Nk the total number of
pixels in the map. Following [64, [65], we compute the
skewness in terms of the reduced bispectrum by, 1,1, as

LiLoLs

fos (2Ly +1)(2Lo + 1)(2Ls + 1) (Ly Ly Ls\>
(am)? bryLsLs

0 0 O



with corresponding variance dominated by the disconnected 6-point function

05, = 2
LiLsLs (47T)

In particular, the skewness of the Born-approximated
convergence, k', obtained from the first-order magnifica-
tion matrix, provides a measurement of the LSS-induced
bispectrum. The bispectrum of the convergence com-
puted using the multiple lens ray tracing algorithm, s,
receives contribution from the LSS-induced bispectrum
as well as from the post-Born corrections induced bis-
pectrum. The difference of the skewness of % and &
gives thus a direct measurement of the collapsed post-
Born-induced bispectrum.

We use the formulae presented in [66] and [23] to com-
pute the bispectrum of k£ due to LSS non-linearity (at
tree-level in density perturbations or adopting the non-
linear fitting formula from [67]) and post-Born effects, re-
spectively. In Fig. (1) we show a comparison between the
skewness measured in the low-pass-filtered simulations
and their expected theoretical value as a function of the
maximum multipole cut-off used in the calculations. We

------- Theory LSS (tree)
—— Theory LSS (SC)
® Simulation LSS L]

—— Theory PB (KKK)
Theory PB (kkw)
Simulation PB
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10! 102 103
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FIG. 1. Comparison of the skewness for different cut-off val-
ues of the convergence multipoles. The theory curves are com-
puted using the tree-level expression of the LSS convergence
bispectrum including the SC fit of [67], as well as post-Born
corrections of the ™" and b™*) bispectra of [23]. Only
the absolute values are shown, negative values are marked by
a dashed line or triangular marker.

find a good agreement between simulation and theoreti-
cal expectations for the post-Born bispectrum part, con-
firming the findings of FCC18 on the level of the lensed
CMB B-mode power spectrum. For this observable, the
post-Born kkk bispectrum is the dominant correction
while the contribution of the curl mode in terms of the

Lmax [ [ 2
2 2L1 +1)(2Ls +1)(2L3 + 1 L
2 0 Z (2L1 +1)(2L2 +1)(2Ls )( 152 3) Cr,Cr,C,. (30)

0 0 O

(

kkw bispectrum is negligibly small (see also [27]). The
LSS skewness agrees well with theoretical expectation on
scales 75 < Lpax < 2000 and starts deviating outside
this range, yet still with reasonable agreement. On the
largest scales, the discrepancy might be due to the adop-
tion of Limber approximation or by spurious numerical
correlations induced by the box size replication during
the lightcone construction or simply sample variance of
the matter bispectrum. In fact, [68] measured the mat-
ter 3D bispectrum from the same N-body simulation used
for this work and found an excess of power at low val-
ues of k£ < 0.1 Mpc ™!k for both squeezed and equilateral
configurations. These scales contribute significantly to
the signal on angular scales ¢ < 100 (see e.g. H]) and
could be responsible of the excess of skewness observed
when only such scales are included. Although in FCC18
the replication procedure was shown to produce accurate
results on the large scales of C7* and no significant spuri-
ous excess of power was observed, we tested the stability
of our results on lensing reconstruction with respect to
the minimum multipole employed in the analysis. We
found negligible differences when excluding CMB angu-
lar scales ¢ < 100.

At angular scales Lyax 2 2000 we expect to see discrep-
ancies due to the limitation of the fitting formulae used
to compute the theoretical expectation as well as the-
oretical uncertainties in the modeling of the non-linear
matter power spectrum used to compute the theoretical
expectation of the skewness. In particular, at L = 2000,
the CMB convergence receives a non-negligible contri-
bution from structures at scales & > 1 Mpc™'h [4 28]
and on these angular scales uncertainties on the matter
power spectrum are already of the order of 15% [69]. The
use of non-linear fitting formulae improves the agreement
with simulation results with respect to the tree-level bis-
pectrum. We note that we don’t investigate possible im-
provement using alternative non-linear bispectrum fitting
formulae, as, for example, the one introduced in [70]. The
validity of these equations at high-redshifts was not vali-
dated and the differences with respect to the SC formulae
[67] were shown to be marginal and only relevant for a
subset of the bispectrum configurations (see discussion in

[23]).

2. LSS bispectrum effect on lensed CMB

Non-Gaussianity in the lensing potential can affect the
shape of the lensed CMB power spectra. [27] (hereafter
LP16) computed the effect on the CMB power spec-
trum induced by the bispectrum of the CMB convergence



due to the non-linear evolution of matter (hereafter LSS
term) and the one due to post-Born corrections (hereafter
PB term). FCC18 showed that the corrections computed
by LP16 for the PB term match very well the results ex-
tracted from ray tracing simulations. As a validation
test for this work, we focused on measuring the correc-
tions to lensed CMB power spectra generated by the LSS
term alone, as well as those due to the combination of
LSS and PB terms. We then compared the results of the
simulations with the theoretical prediction of LP16. To
isolate the LSS term, we lens 100 Gaussian realizations
of unlensed CMB maps with a deflection field extracted
from the s map as performed in FCC18. From the av-
erage of the power spectra of these maps we subtract
the average power spectrum of the 100 CMB realizations
that were lensed with a deflection field computed from a
Gaussian realization of the lensing convergence k& with
power spectrum CfF”F. Similarly, to measure the total
correction, we repeat the same procedure with x* and
C’ER“R, to produce the Gaussian realizations of the de-
flection field. In Fig. ] and [3] we show the results of
this analysis together with a comparison with the pre-
diction of LP16. The theoretical predictions for both
the total and LSS bispectrum (which is the dominant
term) agree quite well with the simulation results on the
relevant angular scales, especially the ones implement-
ing the non-perturbative formalism for the TT and EE
power spectrum as discussed in PL16 and FCC18. This
approach accounts for the fact that even in the Gaussian
approximation lensing is a O(1) effect at small scales and
therefore treating the corrections due to non-Gaussianity
as perturbations around an unlensed field leads to inac-
curate results.

Despite the overall good agreement, however, some differ-
ences can be observed. This is expected because, unlike
the analytical approximations, simulations include the ef-
fects of non-Gaussianity non-perturbatively and the ex-
act shape of the correction depends on the detailed shape
of the bispectrum. In particular, simulation results show
an excess of power on the B-mode power spectrum com-
pared to analytical predictions. This is consistent since
B-modes are more sensitive to small scale lenses and
thus non-Gaussianities due to strongly non-linear den-
sity fields are expected to give larger corrections where
the perturbative expansion becomes less accurate. The
discrepancies at scales £ < 100 could conversely arise due
to the excess of skewness discussed in the previous sec-
tion, although we stress that a larger skewness does not
seem to affect significantly the temperature and E-mode
power spectrum, where the corrections are dominated by
structures at ¢ < 300. Nevertheless, we decide to per-
form dedicated robustness tests in the following section
to assess the impact of this discrepancy as a potential
systematic effect.

V. RESULTS

A. Numerical setup

To measure the N ég/ 2) bias, we produce several sets
of lensed CMB maps using the Lenspix (:odeﬂ These
are later combined in different ways to isolate different
contributions to this bias and to perform consistency and
robustness tests. A subset of these simulations are briefly
described in sec. [VB] here we review the procedure in
more detail. First, we simulate 100 Gaussian realiza-
tions of the primordial CMB. Each of these simulations
are then lensed using seven different simulated deflec-
tion fields a®/f = Vo + V x Q and adopting the effective
remapping for the CMB photons as in Eq. @D The ¢ and
Q potentials are obtained from the x and w field of FCC18
using the consistency relations in Eq. @ and Eq. in
the harmonic domain. For this operation as well as in
the synthesis of the unlensed CMB, we adopted a ban-
dlimit parameter £, = 6200. According to the findings
of [40], this setup allows us to recover lensed CMB with
a precision of O(107?) on scales £ < 4000 and O(1072)
at ¢ =~ 5000. The full set of deflection fields used to lens
the CMB are therefore:

e ¥ a Gaussian realization of convergence with

F F
K K
power spectrum C} .

e +x%. These simulations measure the bias including
only the effects of the non-linear LSS evolution.

e +x% alone. These simulations measure the bias due
to LSS non-linearity and PB effects in the conver-
gence field.

e +x% and +w’ (k7 hereafter). They include the
full set of non-linearity of LSS and PB corrections,
including the so-called mixed bispectrum correla-
tions kkw and Kww (we refer the reader to [23] 28]
for further discussion).

We denote the resulting lensed CMB simulations with
a given deflection field by a superscript G, +F, £R or
+ Rw, respectively. For the results described in this pa-
per we use maps having an angular resolution of 52 arcsec
in HEALPIX pixelization, corresponding to Ngqe = 4096.
On each of these sets we run the lensing reconstruction
using a quadratic estimator and compare them to ex-
tract different sources of biases. Each simulation set is
designed to contain a lensing potential with the same

7 We found consistent results when analyzing maps simulated with
the LenS2HAT code [40] which implements a different interpo-
lation scheme to resample the unlensed CMB realization at the
displaced ray position.
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FIG. 2. Impact of CMB convergence bispectrum on lensed temperature (left) and E-mode (right) power spectra. The top
panel shows the total correction accounting for the LSS and post-Born induced bispectrum, while the bottom panel shows the
correction only due to non-linear LSS evolution. The theoretical predictions of [27] are shown in black and simulation results
in red. The green curves show the value of the non-perturbative corrections computed in [27] for the temperature and E-mode
power spectra. Binned theoretical predictions are shown with empty markers. The error bars include only the uncertainty on
the average over the Gaussian MC realizations and do not include the sample variance of the convergence bispectrum.
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FIG. 3. Same as Fig. 2] for the BB power spectrum.

mean power-spectrum Ciw Remaining relative devia-

tions from the fiducial Czw due to post-Born corrections
are below 0.2 % on the relevant scales considered in this
paper. Hence, in the following, we assume N JSO) and N é”
to be equal for all simulations. Under this assumption
we can write

1 o A
2L 12 S
M

P+ N 4+ N+ NP (k] + 0 (0,02,

CP2lk) (31)

%

where only the N ég/ % bias depends on the specific statis-
tic of the k field used to lens a specific simulation. We
will test the validity of this assumption in Sec. [V}

In order to evaluate the bias in a specific experimen-
tal configuration we add Gaussian noise realizations with
corresponding power spectrum Ny UZB%, with white
noise level, o,, and a circular Gaussian beam with

8 Cf¢ extracted from N-body simulation has a potential bias at
small angular scales due to the presence of shot-noise due to the
finite number of particles in the N-body simulation. According
to the estimates of FCC18, the shot noise accounts for roughly
15% of the amplitude of the power spectrum on the maximum
multipole relevant for this analysis. Because in the following we
compare simulated quantities, all including the shot-noise term,
the impact of the shot noise term on the results is expected to
be highly reduced.
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B. Measurements of NS’/Q) bias

To measure the N £3/ 2) biases from the simulations and

distinguish the contributions to the biases originating
from all the different contributions of the x bispectrum
and correlations involving curl-modes (kkw + kww, PBw
hereafter) we combine the reconstructed CMB lensing
potential power spectrum on each set of lensed CMB re-
alizations as follows:

LSS: N£3/2) = <C’f¢[/€F] - éf¢[/€c]>Lensed CMB

. n(B/2) _ [ Avdr R _ Av[F
PB: NL - <CL [H ] CL [K/ }>Lensed CMB

. nB/2) _ / Abdr Rur Ao R
PBw: NL - <CL [K ] CL [H; ]>Lensed CMB

. n(3/2) _ [ AdPr, Rw AT, .G
Total: N;™'* = <CL "] —CY% [k ]>Lensed o
where we denote in squared brackets the corresponding
set of CMB realizations used in the lensing reconstruc-
tion. The total bias is equal to the sum of the former
three, well within the uncertainties shown later in the
text. We report the measurement of the N f’/ %) as the
average over the 100 lensed CMB simulations at our dis-
posal for each deflection field configuration. The error
bars shown in the following figures are computed from
the dispersion of the lensed CMB simulations and repre-
sent the uncertainty on the mean of the simulations. Due
to the fact that the realizations of primordial CMB are
the same for all sets of simulations, we avoid realization-
dependent biases (up to bispectrum terms) and cosmic
variance noise. In the following we discuss the impact of
N £3/ %) bias in terms of the ratio between the bias and the
lensing potential power spectrum measured in the FCC18
simulations. The reported signal-to-noise ratio (SNR) is

computed as the ratio between N 23/ ?) and the error bar
expected for a specific experimental configuration

2 1

e (N + N{Y) 33
2L+1fskyAL(L L) (33)
where we assume the observed sky-fraction to be
foey = 40%, to match the expected sky coverage of
CMB-54, and the bin size AL =~ 140. For all configura-
tions the minimal CMB multipole used is £y, = 2.

In Fig. [5| we show the total N£3/2) bias for the
minimum-variance quadratic estimator due to non-
Gaussianity in the lensing deflection field, along with
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the breakdown of the contribution of each source of non-
Gaussianity (LSS, PB and PBw). These results are de-
rived performing lensing reconstruction using a sharp
cut-off in harmonic space that removed all the CMB har-
monic coefficients having ¢ > £, = 4000 and assuming
an experiment with 1.4 pK-arcmin white noise in polar-
ization (1 pK-arcmin in temperature) and a 1 arcmin
beam size to match CMB-S4 configuration. We find that
post-Born effects produce a positive bias in the lensing re-
construction, while LSS effects suppress power in the re-
constructed potential. This leads to an important cancel-

lation of the two effects and, in fact, the total N f’/ 2 bias

becomes a sub-percent effect. The amplitude of N £3/ 2),
however, changes quite significantly depending on which
combination of the quadratic estimator is used for the
lensing reconstruction. At low multipoles the individual
relative contributions to the biases induced by LSS and
PB can reach up to 7% in the TTTT estimator. Gener-
ally, the bias amplitude grows with the number of con-
tributing temperature fields used in the estimator. For
polarization-based estimators the overall bias can reach
2% for both LSS and PB terms when considered sepa-
rately. In our experimental setup, the polarization-based
estimators provide the most important contribution to
the minimum variance combination below L =~ 1500,
while for larger multipoles the temperature reconstruc-
tion, which is more sensitive to small-scale lenses, starts
to dominate in the minimum-variance combination.

The cancellation effect observed between LSS and PB
term can be understood noting that post-Born effects
tend to reduce significantly the bispectrum amplitude on
a large fraction of bispectrum configurations. The post-
Born bispectrum has, in fact, mainly negative contribu-
tions while the LSS bispectrum due to non-linearities has
strictly positive contributions. This effect and its ana-
lytical modeling was discussed first in [23] and FCC18
observed it as a general reduction of the amplitude of
higher order moments on numerical simulations (see also
the results in Fig. .

Fig. [f] shows the ratio between the CMB convergence
bispectrum including post-Born and LSS non-linear evo-
lution effects and the one including only the latter. The
LSS bispectrum is strictly positive, since density pertur-
bations grow faster if they are denser and, hence, large-
scale overdensities correlate with small-scale lenses. One
can observe a suppression of the bispectrum in the flat-
tened configurations, when Ly ~ Ly + L3, while for equi-
lateral configurations, i.e. L1 =~ Lo ~ L3, the bispectrum
gets enhanced. Simple arguments can be made to under-
stand why there is a sign difference in the bispectrum
when all the convergence modes are aligned, i.e. in the
flattened limit [23]. In this case lens-lens deflection, i.e.
the deflection of a light ray bundle off two consecutive
lenses, dominates. In this case, the first lens induces a
contraction of the light bundle area. This in turn causes
the second lens to have a smaller effect than it would have
without the first lens. This results in an anti-correlation
between large and small scale convergence modes, leading
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FIG. 4. The relative suppression or enhancement of the con-
vergence bispectrum from large-scale structure non-linearity
(derived using the fitting formula of [67]) due to post-Born
effects, for L1 = 200 and L; = 2000.

to a negative sign of the bispectrum in the flattened limit.
The positive contributions conversely represent a change
in the deflection field along the direction in which the
ray is deflected. A ray passing the edge of an overdensity
could be deflected towards the center, where the potential
gradients are larger. This generates more lensing than
if the two contributions had been added independently
and a positive correlation between angular scales. The
fact that the post-Born and LSS contributions roughly
match in amplitude is coincidental and not anymore the
case when the source plane is at low redshifts [23].

We note, however, that due to the complex convolution
of the bispectrum configurations in the quadratic esti-
mator, the details of the cancellations happening on the
N f/ %) ias are non-trivial and their analytical modeling
for the different combination of quadratic estimators is
challenging. A more detailed discussion can be found
in [33, [72]. The important cancellation effects between
the LSS and PB term observed for CMB lensing might
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not be as effective in the case of lensing of other diffuse
background emissions that have a redshift kernel peak-
ing at lower redshift, such as the CIB or line intensity
mapping data [73]. With shorter line of sight integra-
tion, the relative importance of post-Born effect is in

fact decreased and the LSS term for the N f’/ %) bias will
become the leading one, thus increasing the impact of

N f’/ ) on the reconstructed power spectrum. The shape

of the Nés/ %) biases depends not only on the type of re-
construction channel used, but also on the range of mul-
tipoles included in the reconstruction. We perform the
lensing reconstruction using different cut-off values fy,.x
for the harmonic coefficient used in the lensing recon-

struction and show the value of N £3/ ?) for the minimum-
variance estimator for a cosmic-variance limited experi-
ment in Fig.[6] Because of the differences with analytical
predictions discussed in Sec. [VB] we test the stability
of our results with respect to the choice of £,;, and ver-
ified that increasing the cut-off to £, = 200 did not
affect our results. As expected, we can observe that the
non-Gaussian effects become more prominent when we
include progressively smaller angular scales in the lens-
ing reconstruction. For ¢, = 2000 the bias is not de-
tectable and its signal-to-noise ratio is smaller than one.
In the case of /.« = 3000, at small scales the LSS bias
becomes positive, such that the total bias includes posi-
tive contributions from LSS and the post-Born gradient
and curl fields, which causes the previously detected can-
cellation to fail. The total bias can therefore reach levels
up to 4%, although at multipoles with poor SNR. In-
cluding progressively smaller scales causes the LSS terms
to increase in amplitude faster than the PB term and
as a result, the cancellation become less effective, caus-
ing the N jgg/ ? bias to grow. In this scenario the bias
becomes very significant and its SNR could be larger
than 10. We warn the reader that such an extreme case
serves an illustrative purpose and should be taken with
a grain of salt. In fact, the matter distribution on scales
k > 2 Mpc™'h affects significantly the CMB lensing sig-
nal at £ ~ 5000 and the simulations employed for this
work have significant uncertainties on these scales due to
the limited resolution of the N-body simulations used to
model the deflection field and the absence of baryonic ef-
fects. These might become more important when analyz-
ing non-Gaussian effects (see e.g. [T4,[75]). Furthermore,
one can observe that the cross-bispectrum contribution
from the curl potential dominates at scales ¢ < 2000 and
gets subsequently down-weighted in the reconstruction
including larger multipoles.

The changes in the weighting of the CMB harmonic
coefficients used in the lensing reconstruction in presence
of experimental noise — even with CMB-S4 sensitivity
— reduces the sharp features observed in the results of
Fig. |§| and the total IV f’/ 2 gets suppressed compared to
the cosmic-variance limit case. Reducing the cut-off in
power for the reconstruction to £;,.x = 3000 has a net ef-
fect of making the bias practically disappearing, despite
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FIG. 5. Relative biases in the estimated lensing potential power spectrum induced by non-Gaussian statistics of the underlying
lensing potential (black curves) as measured in the FCC18 simulations. This case included lensed CMB modes up t0 ¢max = 4000
and CMB-S4-like experimental configuration. We differentiate the effects caused by non-linearities of large-scale structures (LSS,
purple curve), post-Born lensing effects (PB, orange curve) as well as post-Born mixed bispectrum terms (PBw, yellow curve)
accounting for higher-order correlation between the lensing gradient and curl potential. The shaded areas show the uncertainty
on the bias computed from the dispersion of 100 lensed CMB simulations.

the individual LSS and PB effects can be of order of the
error bar. In Fig. [7| we show a comparison of the SNR
obtained using these two cut-offs in CMB multipoles. As
it can be seen in this figure, we observe a rapid increase
in the bias amplitudes between the two cases, in partic-
ular in the temperature reconstruction channels. Using
polarization-only lensing reconstruction and comparing
the results with temperature-only reconstruction can be
an appropriate tool to identify and potentially mitigate
the NV f’/ %) iases. Since the TTTT reconstruction is the
most sensitive for the CMB-5S4 experimental configura-
tions for L 2> 1500, dropping this reconstruction channel
has an important effect in terms of the sensitivity of the
reconstruction and thus, using a different cut-off in power
for the temperature-based and polarization-based recon-
struction might be an effective strategy to minimize the
effect of NV I(Jg/ %) biases while mitigating the loss of sen-
sitivity. The contamination by unresolved extragalactic
foreground residual might in any case prevent the use
of multipoles £ > 3000 of temperature anisotropies. The
significance to measure the bias in the lensing power spec-

trum, when combining all bins, is summarized in Fig. [§]in
terms of the cumulative signal-to-noise ratio for different
CMB multipole cut-offs.

Finally, we measure the effect of the N ](;3/ % in the cross-
correlation power spectrum between the reconstructed
lensing potential and an external large-scale structure
tracer. The bias of the cross-spectrum, induced by a
non-zero CMB lensing potential bispectrum, is mainly
caused by the correlation of the external large-scale struc-
tures tracer with the second-order response of the recon-
structed lensing potential to the true lensing potential.
For the sake of simplicity we limit our analysis to the case
of the cross-correlation with a perfect tracer of the CMB
lensing potential, i.e. the lensing potential directly ex-
tracted from the FCC18 simulations. Since in the cross-
correlation case the tracer is almost uncorrelated with
the CMB, there are less contractions of the matter field
which contribute to the N f’/ %) bias and thus we should

see a reduction in the amplitude of N £3/ %) by a factor of
roughly 2 with respect to the bias on the auto-spectrum,
in particular for the TTTT estimator [33]. We verify that
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TOWS.

this prediction holds, as we show in Fig.[9] A similar level
of suppression is observed also for other estimators and,
in particular, for EBEB we saw a reduction of more than
a factor 4 for L 2 2000. This analysis might suggest
that cosmological constraints based on cross-correlations
of CMB lensing with an external tracer sufficiently cor-

related with the CMB lensing potential might be less bi-
(

ased if we cannot account for the NV LS/ ?) bias in the auto-
spectrum analysis. However, we stress that due to the
distinctive impact of the post-Born term with respect to
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polarization, 1 arcmin beam and different CMB multipole cut-
offs fmax, comparing temperature (T), polarization (P) and
minimum-variance (T+P) estimators.

the LSS one in the case of CMB lensing, the overall vari-
ation in amplitude of the bias in cross-correlation might
change significantly if a tracer of structures at lower red-
shift is considered. Nevertheless, these techniques might
be affected by other type of biases, such as those due
to the galaxy intrinsic alignements in the case of galaxy
weak lensing [f6H78]. In addition, the tracers at lower
redshift are in fact more sensitive to the non-Gaussianity
due to matter non-linearity and less sensitive to post-
Born effects. Therefore we expect to observe an increase
in the N3/2 bias as the cancellation between LSS and
post-Born becomes less effective in this case. We leave
the investigation of this topic to future work.

C. Consistency Checks

To ensure that the reported biases were not caused by a
mismatch in the CMB and lensing potential power spec-
tra and therefore aren’t residual IV ]go) and Ng) biases, we
check the consistency of our measurements with an alter-

native method to extract the NV ég/ 2

we compare the spectra

bias. In particular

ACL¢¢71[I€X] = <C’f¢[fiX] - CAYI(Zj(z)['%G]>1()0 sims 34

ACE Y] = L{O1%] - O3] (35)

100 sims ’
where X € {F,R}. The averaging in Eq. is per-
formed over the 100 realizations of lensed CMB derived
with the set of simulations including a Gaussian conver-
gence and the averaging in Eq. is computed over
the 100 realizations of lensed CMB lensed with the non-
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FIG. 9. Top: NS’/Q) bias for the reconstructed CMB lensing
potential auto-spectrum (dashed) and cross-correlation with
the input CMB lensing potential of FCC18 simulations (solid)
for a CMB-5S4 experiment and a cut-off in power #max = 4000
for the lensing reconstruction with the temperature estima-
tor. Bottom: The ratio of the N£3/2> biases for the cross-

correlation and auto power spectrum compared with the lead-
ing order predictions of [33] (dashed black).

Gaussian convergence £%. We have that
A 0
(CE21RX1) LD [CFMP] + O+
+N{) [eeME o] +

3/2
+sgn(f~€X)N£/ ) [CEMB7Cf¢,b(£ﬁ2L3} ,
(36)

where we denote in squared brackets the functional de-
pendencies of the biases for clarity. Hence both tech-
niques in Eq. and Eq. isolate in principle the
Nég/z) bias. However, a mismatch of Néo) and NS) be-
tween simulations lensed with %, k® and x¢ or corre-
lations at order higher than the bispectrum should man-
ifest themselves in a discrepancy between the two spec-
tra. We constructed null-spectra and computed Welch’s
t-test statistics for both the " and k% set of simulations
to test separately LSS effects alone and LSS and PB to-
gether. In both cases we use the spectra from the three
most relevant reconstruction channels (TTTT, EBEB
and MVMV) binned in 21 bins within L € [30,3000].
With this approach we test the hypothesis that the two
curves are realizations of a common underlying distribu-
tion and quantify the validity of the assumptions used
to isolate the biases above. The variances used in the
tests are obtained from simulations. We show a subset
of the null spectra ACLM’2 — AC’Z"z”1 in Fig. The
deviations from zero in the high signal-to-noise regions
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TABLE I. Global p-values of null spectra of noiseless config-
uration and £,e.: = 3000.
p-value [%] | LSS total

MVMV |13.8 47.2
TTTT |38.9 52.7
TTTE |16.0 17.8
TTEE |87.8 96.0
TTTB |76.3 87.5
TTEB |67.6 99.6
TETE [43.6 47.6
TEEE 5.3 9.2
TETB |97.8 86.0
TEEB [83.6 98.9
EEEE |30.5 27.9
EETB |21.7 20.7
EEEB |46.1 49.0
TBTB [45.2 20.4
TBEB [60.1 73.4
EBEB 17.3 51.5

are sub-dominant, while small deviations at mostly large
multipoles are well within the 1o error bar. We further-
more obtained global p-values by averaging over the bins
for each estimator and find no PTE lower than 5%, as
summarized in table [Il

O 0.000 leecccecsceeccecegesecect®®e

= _0.025 {MVMV

- 0.1 1
S, (.0leeeeccececsceecseosoegsgletle
k<') —-0.1

0.11 T
NI O_O--o-o-o-o-o-.-.-...-_..._-_!_*_*#_ L
< -0.1{EEEE
= 0.0251 .
< 0.000teeecececececererssesessereeti__o
~—-0.025 {EBEB . | ! |

0 500 1000 1500 2000 2500 3000

L

FIG. 10. The null spectra obtained taking the difference be-
tween ACY?" and AC}#? as defined in Eq. and
for the minimum-variance, TTTT, EEEE and EBEB lensing
reconstruction in the limit of no instrumental noise. The re-
constructions on &% -lensed CMB fields are shown in purple
(LSS only contribution), the same with k™ are shown in or-
ange (LSS and PB (total) contributions). The error bars show
the uncertainties as measured from the scatter in the simu-
lations while the shaded area show the expected statistical
uncertainty in the respective bin.

These results made us conclude that the simulation and
reconstruction pipeline up to the lensing power spectrum
step are internally consistent, increasing our confidence
in the results shown in Sect. [V Bl



VI. NY? IMPACT ON COSMOLOGICAL
PARAMETER ESTIMATION

Future sensitive measurements of the CMB lensing po-
tential will provide important constraints on cosmologi-
cal parameters. Therefore a biased reconstruction of the
lensing potential power spectrum could affect their es-
timation. For example, we find that at the high sensi-
tivities envisioned for CMB-S4 measurements the total
N LS ) bias could produce deviations of more than 3o
from the fiducial value of 1 when fitting the lensing ampli-
tude parameter Ajeps. In table [l we show the fitted Ajens
parameter for different CMB multipole cut-offs obtained
by maximizing the simple one-parameter likelihood de-
fined by

c D
—2InL = Z (2L+1) fury (ln (DZ) + C—j - 1) . (37)

where Cr, = Ajens X C’Ed' + Néw’wt‘, D = ng' +
NPt 4 NB/2) and NPt = NO 4 N,
total bias| lpae =3000  lyaz = 4000  Lrae = 5000
T 0.997 £ 0.006 0.988 +0.003 0.973 + 0.002
P 1.005 £ 0.002 1.009 +0.001 1.005 £ 0.001
T+P 1.004 £ 0.002 1.004 +0.001 0.992 £+ 0.001

TABLE II. Fitted Ajens parameter of the biased reconstructed
lensing power spectrum with a fiducial value of Ajens = 1
for temperature-only (T), polarization-only (P) and minimum
variance (T+P) lensing estimators and no noise in the CMB.
Cases with significant bias are marked in bold.

Because of the non-trivial scale-dependence of the
N2/? bias, we expand our cosmological parameter esti-

L , p g p
mation study to the exploration of a broader parameter
space using Markov chain Monte Carlo (MCMC) tech-
niques. The goal is to quantify the significance of pos-
sible biases in parameters like the total neutrino mass,
M, or the amplitude of primordial inflationary pertur-
bations, A, if Ni/ % is unaccounted for in the power-
spectra modeling and cosmological parameters sampling.
For this purpose we use the publicly available package
MontePythonﬂ [791 80] based on the Metropolis-Hastings
sampling algorithm. In this analysis we consider the
CMB and lensing likelihood for a set of parameters 6
given the measured power-spectra of CMB temperature,
E-modes and lensing potential as Gaussian in the respec-
tive fields. Under this assumptions the likelihood func-
tion is given by (e.g. [81])

—2log L(0|C) =

¢
(38)

9 http://baudren.github.io/montepython.html

C o
> (20+1) fary (m |Cj: +CMC, - 3) ,
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where the covariance matrix for the fiducial model Cg
and the theoretical signal C; are constructed as

cIT+NfT  CTE c?
C, = Ccre CPP+ NP 0 ,
c? 0 CP? 4 NpOor

where NeT T and NéEE are the white noise power spec-
tra for the temperature and the E-modes and Nfd”mt' =

N éo) + N él). All these quantities are computed assum-
ing the fiducial cosmology with CMB-S4 sensitivities and
considered to be independent of the cosmological param-
eters in order to simplify and speed-up the sampling. In
the evaluation of the fiducial Ce we use the biased lens-
ing potential power spectrum, CL , which includes the

f’/ % bias measured in the simulations and depends on
the cosmological parameters of the fiducial model as

Czﬁaﬁ [eﬁd.] N(3/2)

Npp . ~Pdrafid.
CL = CL [9 ] C¢¢ sims ~ ' L
L

+ N+ N 4 .(39)

This definition allows to mitigate the impact of the
shot-noise term and the difference in the modeling of the
non-linear evolution between the simulation results and
the Boltzmann solvers which typically employ the Halofit
fitting formulae [69]. This enables us to have a consis-
tent modeling of non-linearity between the fiducial and
the fitted model reducing the chance to obtain spurious
results in the fitting that are driven by the differences
in the CMB lensing potential power spectrum modeling,.
We note, however, that the uncertainties in the model-
ing of non-linearity on the CMB lensing power spectrum
reach the 10 - 15% level on the scales considered in this
work [23] [69] and might become non-negligible. In the
construction of the covariance we neglect the ¢ E correla-
tion because it is confined at very large angular scales and
carries little information on the parameters of interest in
our analysis. For sake of simplicity we do not include
the B-mode power spectrum in C;, and C, to avoid the
need to model the non-Gaussian covariance between C’f B

and C’f¢ [82]. We note that more optimal formalisms to
deal with the non-Gaussian correlations between CMB
and lensing power-spectra have been discussed in the lit-
erature [47, [83] [84]. As the present analysis is intended
to quantify biases on cosmological parameters estimation
due to mismodeling of the lensing potential bias rather
than to provide accurate forecast of future CMB exper-
iment constraints, the approximations adopted here are
not expected to affect our conclusions at the level of ac-
curacy considered in this work.

In the likelihood construction we assume a fiducial
ACDM cosmology taken from Planck 2015 results [85], [86]
devoid of massive neutrinos, while we allow for a single
neutrino to be massive in the parameter fit. We include
angular scales 30 < ¢ < 3000 and assume an observed sky
fraction fex, = 40% to mimic a CMB-S4-like survey with
1.4 pK-arcmin white noise in polarization and a 1 arcmin
beam size in the likelihood. We summarize the values of


http://baudren.github.io/montepython.html

Quh? 0.02225 4+ 0.00016
Qch? 0.1198 4+ 0.0015
T 0.058 £ 0.012
In10'°A, 3.094 + 0.034
N 0.9645 + 0.0049
1000, 1.04077 £ 0.00032
M, [meV] [0, 300]

TABLE III. The cosmological parameters from Planck 2015
[85] [86] together with their 1o proposal scale or parameter
bounds used in the cosmological parameter inference.

our fiducial cosmology as well as the details of the priors
adopted for the cosmological parameters sampled in our
analysis in table [[TI]

We neglect the effects of the LSS non-Gaussianity and
post-Born corrections on the lensed CMB TT and EE
power-spectra since the cumulative signal to noise for
these corrections is below the detection thresholds even
for CMB-54 sensitivity. In Fig. [11| we show the 2D pos-
teriors obtained for the parameter combinations of Q.h?,
In (10'°4,) and M, for the minimum-variance lensing
estimator and CMB-54 sensitivity. The figure shows an
example of the main biases in the parameter estimation
induced by different sources (LSS, PB, total) of unac-

counted NV f’/ ? bias. Similar to what was observed in
Sec[VB] the compensating effect between the LSS and
PB biases observed at the level of the lensing power
spectrum is also visible in the cosmological parameter
estimation, where we find a cancellation of the param-
eter biases when both these terms are included. Each
source of N f/ ?) bias might considerably affect the esti-
mation of the cosmological parameters when considered
alone at the level of CMB-S4 sensitivity. Assuming we
can model these biases analytically we need to include
both the terms in the modeling as the inclusion of only
one of the LSS or PB term would lead to an overcorrec-
tion of the effect. This is clearly visible in the case the

LSS-induced N f’/ ? for A, and M,,, where the large neg-
ative bias over a large range of scales in the power spec-
trum causes a significant false detection of a 16975) meV
neutrino mass. The cancellation due to post-Born correc-
tions mitigates this bias, reducing it to 83130 and hence
still compatible with zero neutrino mass only at the 20

level. The same analysis carried out adding only the
N f/ 2 biases of polarization-based estimators indicates
that using these reconstruction channels leads to more ro-
bust constraints on cosmological parameters, even when
including the smaller angular scales in the lensing recon-
struction. In table [V] and Fig. [[2] we show the best-
fit values and marginalized posteriors obtained including
the total N f’/ ?) computed varying CMB multipole cut-
off used in the reconstruction for the two different cases
including and excluding temperature data when forming
the minimum-variance estimator. Including multipoles
up to ¢ = 5000 in the reconstruction leads to a neutrino
mass bias larger than 1o, even after excluding temper-
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ature data. Nevertheless, on the level of the parameter
estimation we can observe that the polarization lensing
estimator is more robust to these kind of biases, which
can be attributed in part to the slightly worse recon-
struction lensing noise when excluding small-scale tem-
perature data and partly to the smaller amplitude of the

N f’/ 2 bias for polarization estimators. We note, how-
ever, that the error on the total neutrino mass does not
decrease significantly with decreasing noise in the CMB
lensing potential power spectrum. This is due to the de-
generacy of the total neutrino mass with the A; param-
eter and the sensitivity of the constraint on the latter
(or, more precisely, on the combination Ase’%). Since
we are assuming future data from ground-based CMB-S4
instruments, which are limited to multipoles ¢ > 30, we
are not able to push the uncertainty on 7 to the cosmic-
variance limit. However, accessing the reionization bump
at £ < 20 down to cosmic-variance precision could be
achieved by proposed all-sky polarized CMB surveys like
CLASS [87], CORE [&1], LiteBIRD [8§] or PIXIE [g9].
This would provide a tighter constraint on 7 [00], and
would lead to the expected decrease in statistical uncer-
tainty with increasing multipole cut-off in the lensing re-
construction. Furthermore, a N/?)-bias in the lensing
potential estimation would bias A; and 7 high. We ob-
serve that being able to include the constraining power
of the reionization bump at large-scales would reduce the
bias on 7, and consequently significantly reduce the bias
on the total neutrino mass. This would occur at the ex-
pense of a < 1 — ¢ total bias on cold-dark matter density
Q,, and a negligibly larger x? goodness of fit.

VII. CONCLUSIONS

In this work we investigate the properties of higher-
order correlations of the CMB lensing deflection field
arising from non-linear evolution of the matter as well
as post-Born corrections, modeled through numerical
simulations, and their impact on the CMB lensing
potential reconstruction using quadratic estimators

(N f’/ ?) bias). We validate the numerical simulations
used to model these effects comparing the expected
corrections on the lensed CMB power spectrum due
to both LSS non-linearity and post-Born corrections
modeled analytically, finding a good agreement. We find
that both the matter non-linearity and post-Born non-
Gaussianity cause significant biases of the reconstructed
CMB lensing potential power spectrum. However, when
these effects are analyzed jointly, the amplitude of the
total N f’/ %) bias is greatly reduced both on the CMB
lensing auto-spectrum and in the cross-correlation.
This is directly related to the different shape and
sign properties of the post-Born bispectrum and the
matter bispectrum. The cancellation is more effective
in presence of experimental noise. Despite this fact, we
find that the estimation of the Aj,s parameter from the
CMB lensing potential could be biased by more than 3o
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lmax = 3000 Cmax = 4000 lmax = 5000 lmax = 5000+ DESI
Bias 1o (stat.) Bias 1o (stat.) Bias 1o (stat.) Bias 1o (stat.)
Qch? - 10° 25 85 14 88 —45 85 —66 55
r4p 10° 5 9 9 8 14 9 9 10
In (10'°A,) - 10° 11 15 18 18 27 16 16 14
M, [meV] 0 79 90 60 110 50 0 55
Qch? - 10° 16 84 26 82 25 80 —37 56
p T-10° 6 9 7 10 7 9 8 9
In (10" A4,) - 10° 12 16 13 16 14 15 15 16
M, [meV] 0 75 0 84 65 60 0 44

TABLE IV. This table shows the deviation of the best-fit from the fiducial values (bias) and 68% confidence level (1o)
uncertainties for the cold dark matter density, Q.h?, the optical depth to reionization, 7, the amplitude of primordial inflationary
perturbations, A5 and the neutrino mass M,. A configuration with 1.4 pK-arcmin white noise and 1 arcmin beam with different
CMB multipole cut-off and estimator combinations was used. We show biases using minimum-variance lensing reconstruction
including CMB temperature (T+P) and using polarization only (P). Upper limits are given in terms of 95% confidence level.

I LSS
m PB
I total
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=
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S
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=
3.075
3 180 \
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0.118 0.122 3.075 3.125 3.175 60 180
Q.h? In(101%A;) M, [meV]

FIG. 11. The 2D posteriors for the cold dark matter density,
Q.h?, the amplitude of primordial inflationary perturbations,
As and the neutrino mass M, includ}ng biases from LSS non-
linearities and post-Born effect in Cf¢, reconstructed using
the minimum variance estimator, CMB modes up to #maz =
4000 and CMB-S4 experimental specifications.

for future high-sensitivity experiments like CMB-S4.

We further perform a MCMC analysis to evaluate the im-
pact of the residual N £3/ %) bias on the estimation of other
cosmological parameters at the CMB-S4 sensitivity. We
find that the best-fit value of cosmological parameters
like M, and A, could be biased due to the N£3/2) bias
by up to 20, but the significance of these biases greatly

depends on the type of quadratic estimator and the
maximum multipole used for the lensing reconstruction.
Using multipoles ¢ < 3000 for the lensing reconstruction
and parameter fitting would not produce any significant
bias on cosmological parameters. However the inclusion
of smaller angular scales in the lensing reconstruction
in order to improve the sensitivity, will also bring the
lensing reconstruction in a regime where the details of
the cancellation of the post-Born and LSS term becomes
trickier and less effective. As a consequence, the total
bias due to LSS non-linearity and post-Born effects, if
unaccounted for, becomes more important. In general
we find that the CMB temperature-based reconstruction
channels are more prone to these biases due to their
higher sensitivity to small scale lenses. In this regime,
however, foreground contaminations might be the major
limiting effects [92H94]. Using only polarization-based
estimators for the lensing reconstruction usually leads
to cosmological constraints which are more robust to
both the foreground and N f/ ?) offects. The latter, in
particular, is caused by a consistently more effective
cancellation of LSS and post-Born effects. As an
illustrative case, we perform the cosmological parameter
analysis including multipoles up to ¢ = 5000. In this
case we find a shift of the likelihood peak causing a
detection of a non-zero neutrino mass at the 2o-level
when including all the lensing reconstruction channels.
The inclusion of external data sets like DESI BAO
seems to help removing the biases, though lo-tensions
might still remain. Nevertheless, based on the results
above, we could expect inconsistencies between the
inferred neutrino mass estimates from different datasets,
if the N f’/ %) bias is not accounted for in the parameter
estimation for future, high-sensitivity/high-resolution

CMB experiments. Finally, we find that the N 153/ 2
bias in the cross-correlation with a perfect tracer of the
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FIG. 12. The 1D posteriors for the total neutrino mass M, for different CMB multipole cut-offs used in the lensing recon-
struction. fmax = 3000 case is shown as solid line, while £yax = 4000 and £pax = 5000 are shown as dashed and dotted lines
respectively. The left figure shows the results obtained including all reconstruction estimators including temperature (T+P),
while the right figure uses only polarization-based estimators (P). Each figure also includes the posterior after including a prior
using DESI BAO data [91] in the sampling in green, for the most extreme case of £max = 5000.

CMB lensing potential is reduced by a factor of roughly
2 with respect to the bias on the auto-spectrum, in
agreement with the prediction of [33]. The bias observed
in cross-correlation with lower-redshift tracers might
however be different due to the different weight that the
post-Born term has for lower redshift probes, but we
leave the investigation of this aspect to future work.

During the final stage of this work we compared
our results on the N f’/ %) with those of [72], who also

estimated the NV f'/ ?) from numerical simulations using
a CMB lensing field extracted from different N-body
simulations. Despite their N-body simulations differ
in resolution and box-size, and the simulated sky area
used for the lensing reconstruction is smaller than the
full-sky results of our work, we find similar conclusions.
This suggests that despite some quantitative conclusion
of this work might still be simulation dependent and
more complex physical effects are excluded from our
modeling, the higher-order effects in CMB lensing should
be treated carefully in future analysis in order to exploit
the full scientific capacity of a CMB-S4-like observation.
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