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Gravitational wave detectors in the LIGO/Virgo frequency band are able to measure the indi-
vidual masses and the composite tidal deformabilities of neutron-star binary systems. This paper
demonstrates that high accuracy measurements of these quantities from an ensemble of binary sys-
tems can in principle be used to determine the high density neutron-star equation of state exactly.
This analysis assumes that all neutron stars have the same thermodynamically stable equation of
state, but does not use simplifying approximations for the composite tidal deformability or make
additional assumptions about the high density equation of state.

PACS numbers: 04.40.Dg, 97.60.Jd, 26.60.Kp, 26.60.Dd

I. INTRODUCTION

The masses, M , and the tidal deformabilities, Λ, of
neutron stars can (in principle) be measured by observa-
tions of the gravitational waves emitted during the last
stages of the inspiral of neutron-star binary systems [1].
Since all neutron stars are expected to have the same
equation of state, accurate measurements of M and Λ for
an ensemble of neutron stars could be used to determine
the high density portion of the neutron star equation of
state exactly by solving the inverse stellar structure prob-
lem [2–4].
Unfortunately, the individual tidal deformabilities of

the stars in a neutron-star binary system are not accu-
rately observable by gravitational wave detectors operat-
ing in the LIGO/Virgo frequency band.1 Instead a com-

posite tidal deformability Λ̃, representing the deforma-
bility of the binary system as a whole, is observable with
such detectors. This composite tidal deformability is re-
lated to the properties of the individual stars by

Λ̃ =
16

13

M4
1 (M1 + 12M2)Λ1 +M4

2 (M2 + 12M1)Λ2

(M1 +M2)5
, (1)

where Λ1 and Λ2 are the tidal deformabilities, and M1 ≥

M2 are the masses of the individual stars [1, 5, 6]. The
observation of gravitational waves from a neutron-star bi-
nary, GW170817, provides the first (and at present only)

observation of M1, M2 and Λ̃ for a binary system [7, 8].
The purpose of this paper is to explore the extent to

which measurements of the masses, M1 and M2, and the
composite tidal deformabilities, Λ̃, of neutron-star bina-
ries can in principle be used to determine the high density

1 Tidal distortion effects first appear in the post-Newtonian ex-
pansion of the gravitational waveform at order (v/c)10 as a term
proportional to a composite deformability parameter. It is only
at even higher order that additional terms appear that would al-
low the deformabilities of the individual stars to be determined.
Gravitational wave detectors operating in the LIGO/Virgo fre-
quency band are never likely to be able to measure those high
order terms in neutron-star binary systems.

portion of the neutron-star equation of state. Could such
measurements determine the equation of state exactly
(assuming the measurement errors could be made arbi-
trarily small) through the solution of some appropriate
inverse structure problem? Or, are such measurements
only able to constrain the equation of state in some way?

An inverse structure problem determines the equation
of state of the matter in an astrophysical system using
measurements of the macroscopic properties of that sys-
tem. Mathematically well posed inverse structure prob-
lems do exist for individual neutron stars [2–4, 9, 10]. In
particular, given a complete knowledge of the curve of
observables, M(pc) and Λ(pc) (parameterized for exam-
ple by the central pressures pc of the stars), this curve
exactly determines the equation of state, ǫ = ǫ(p), a
curve in the energy density ǫ, pressure p space. It is
not surprising that the stellar structure equations deter-
mine this unique relationship (and inverse relationship)
between these curves. It is less obvious that an analo-
gous inverse structure problem exists for binary systems.
Does a complete knowledge of the two-dimensional sur-
face of observables for binary systems, M1(p1c), M2(p2c)

and Λ̃(p1c, p2c) (parameterized for example by the cen-
tral pressures, p1c and p2c, of each star) determine the
equation of state exactly as well?

The inverse structure problem for neutron-star bina-
ries does have an almost trivial formal solution. Given
a complete knowledge of the surface of observables,
{

M1(p1c),M2(p2c), Λ̃(p1c, p2c)
}

, the equation of state

can be determined exactly by restricting attention to
equal-mass binaries: M1(p1c) = M2(p2c), so that p1c =

p2c and Λ1(p1c) = Λ2(p1c) = Λ̃(p1c, p1c). The inverse
structure problem for binaries in this special case reduces
to the single neutron-star inverse structure problem, and
that problem can be solved exactly in various ways [2–4].
Unfortunately, observations of precisely equal mass bi-
nary systems will never be available. So, the interesting
question is not whether the inverse structure problem for
binaries has a formal solution, but rather how (and how
well) it can be solved using measurements from a random
ensemble of unequal mass binary systems.

The method proposed here for solving the inverse
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structure problem for binaries is a fairly straightforward
generalization of the method developed previously for in-
dividual neutron stars [2–4]. Consider a random ensem-

ble of data points,
{

M1i,M2i, Λ̃i

}

for i = 1, ..., NB, taken

from the exact surface of observables. The goal is to
find an equation of state whose model observables match
these data. This is done by introducing a parametric rep-
resentation of the equation of state, ǫ = ǫ(p, γk), where
the γk are parameters whose values can be adjusted to
approximate any equation of state to any desired accu-
racy [11–13]. Given this equation of state model, and
choices for the central pressures of each of the stars in
the binary, pi

1c and pi
2c, it is straightforward to integrate

the stellar structure equations to determine the masses
M1(p

i
1c, γk) and M2(p

i
2c, γk), and the tidal deformabil-

ities Λ1(p
i
1c, γk) and Λ2(p

i
2c, γk). The resulting model

observables M1(p
i
1c, γk), M2(p

i
2c, γk) and Λ̃(pi

1c, p
i
2c, γk)

from Eq. (1), are then compared to the exact data using
the quantity χ2 that measures the modeling error:

χ2(pi1c, p
i
2c, γk) =

1

NB

NB
∑

i=1

{

[

log

(

M1(p
i
1c, γk)

M1i

)]2

+

[

log

(

M2(p
i
2c, γk)

M2i

)]2

+

[

log

(

Λ̃(pi1c, p
i
2c, γk)

Λ̃i

)]2






. (2)

The error measure, χ2, is then minimized over the 2NB+
Nγ dimensional space of parameters

{

pi
1c, p

i
2c, γk

}

. The
location of this minimum determines an equation of state
model, ǫ = ǫ(p, γk), whose stellar models best fit the
observations.
The equation of state, ǫ = ǫ(p, γk), obtained by min-

imizing χ2 in Eq. (2) provides an approximation to the
physical neutron-star equation of state. If this method
of solving the inverse structure problem for binaries is
successful, these approximate equations of state should
become more accurate as Nγ the number of parameters
in the equation of state model, and as NB the number of
binary data points are increased.
The remainder of this paper describes a series of

numerical tests that illustrate how well this inversion
method actually works in practice. Section II describes

the construction of mock data,
{

M1i,M2i, Λ̃i

}

for i =

1, ..., NB, from a known equation of state. Section III
describes the parametric representations of the equation
of state used in these tests. These representations, based
on spectral expansions of the adiabatic index, are shown
to converge exponentially to the “exact” equation of state
used for the mock data in Sec. II. Section IV solves the
inverse structure problem with these mock binary data
using the method described above to determine approxi-
mate parametric model equations of state. The accuracy
of these model equations of state are then evaluated by

comparing them to the original “exact” equation of state
used to construct the mock data. These results are de-
scribed at length in Secs. IV and V. In summary: the
errors in the equation of state models decrease exponen-
tially in these tests as the number of parameters Nγ is
increased. This method for solving the inverse structure
problem for binaries therefore works very well.

II. MOCK BINARY DATA

Gravitational wave observations of neutron-star bina-
ries can measure the masses, M1 and M2, and the com-
posite tidal deformabilities Λ̃ of those systems. Mock

data,
{

M1i,M2i, Λ̃i

}

for i = 1, ..., NB, are constructed

in this section, to be used in Sec. IV to test the solution
to the inverse structure problem for binaries outlined in
Sec. I. These mock data are constructed from the simple
pseudo-polytrope,

p = p0

(

ǫ

ǫ0

)2

, (3)

chosen as the exemplar “exact” equation of state in
part because its adiabatic index is similar to more re-
alistic models of neutron-star matter. For these tests
the constants p0 and ǫ0 are chosen to have the values
p0 = 8×1033 and ǫ0 = 2×1014 in cgs units. The resulting
equation of state produces a maximum mass neutron-star
model of about 2.339M⊙.
The goal of the numerical tests performed in Sec. IV is

to determine how well and how accurately the method for
solving the inverse structure problem described in Sec. I
actually works. To do this effectively, extremely accu-
rate mock data are needed. The stellar structure equa-
tions can be solved numerically more accurately using an
enthalpy based rather than the standard pressure based
form of those equations [9].2 Consequently it is useful to
re-write the equation of state in terms of the enthalpy h.
The simple equation of state used for these tests, Eq. (3),
has the following enthalpy based form,

ǫ(h) =
ǫ20c

2

p0

(

eh/2 − 1
)

, (4)

p(h) =
ǫ20c

4

p0

(

eh/2 − 1
)2

. (5)

The masses M1 and M2 in these mock data are
computed by solving the standard Oppenheimer-Volkoff
equations [14] transformed into enthalpy based forms [9].

2 The enthalpy of the star approaches zero linearly at the surface
of the star, while the pressure approaches zero as a relatively
high power of the distance from the surface. Consequently it is
much more difficult to determine the location of the surface (and
the other macroscopic observables of the star) accurately using
the standard pressure based forms of the equations.
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And, the tidal deformabilities are computed using the
equations derived by Hinderer [5, 6], but transformed into
enthalpy based forms [2, 3]. The central enthalpies, hi

1c

and hi
2c, for the stars in each mock binary system are

chosen with a random number generator from the range
needed to produce stars with masses between 1.2M⊙ and
the maximum mass 2.339M⊙.

3 Figure 1 illustrates the
resulting mock binary systems that are used in the nu-
merical tests in Sec. IV. The number labels of the mass-
pair points indicate the (randomly chosen) order in which
the models are used in the inversion tests. For example,
a test involving NB binaries would use the data points
labeled 1, ..., NB.
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FIG. 1: Points indicate the randomly chosen mass pairs M1 ≥

M2 included in the mock data set.

III. PARAMETRIC REPRESENTATIONS OF

THE EQUATION OF STATE

This section describes the parametric representations
of the equation of state used in the numerical tests of the

3 The stellar models used for the mock data were constructed in
a two step process. First a large collection of Nstars models
were constructed whose central enthalpies are given by hn

c =
hmin + (hmax − hmin)(n/Nstars)2 for n = 1, ...,Nstars, with
hmin and hmax being the central enthalpies of the models with
M = 1.2M⊙ and M = 2.339M⊙ respectively. This choice of
the hn

c produces a collection of stellar models {Mn,Λn} having
(roughly) equally spaced masses. The second step uses a random
number generator, ran2 from Ref. [15], to generate a uniformly
distributed random sequence of integers 1 ≤ ℓ ≤ Nstars = 1000.
This random sequence of integers is then used to select the par-
ticular stellar models used as the mock data for these tests,
{Mi,Λi}, from the much larger collection of models {Mn,Λn}.

inverse structure problem in Sec. IV. Since these tests
use enthalpy based representations of the stellar structure
equations, enthalpy based parametric representations of
the equation of state are needed. The most efficient rep-
resentations of this type presently available are based on
spectral representations of the adiabatic index Γ(h) [12].
The best studied example uses the expansion,

log Γ(h, γk) =

Nγ
∑

k=1

γk

[

log

(

h

h0

)]k−1

, (6)

where the γk are adjustable parameters, and h0 deter-
mines the low density limit of the domain where the spec-
tral representation is to be used. For these tests the con-
stant h0 is chosen to correspond to a density at the outer
boundary of the neutron-star core ǫ0 = ǫ(h0) = 2× 1014

g/cm3. Below this density the equation of state is as-
sumed to be known, and is taken in our tests to be the
exact equation of state given in Eqs. (4) and (5). Given
this expression for Γ(h, γk), the parametric equation of
state itself is determined by the expressions [12]

p(h, γk) = p0 exp

[

∫ h

h0

eh
′

dh′

µ(h′, γk)

]

, (7)

ǫ(h, γk) = p(h, γk)
eh − µ(h, γk)

µ(h, γk)
, (8)

where µ(h, γk) is defined as,

µ(h, γk) =
p0 e

h0

ǫ0 + p0
+

∫ h

h0

Γ(h′, γk)− 1

Γ(h′, γk)
eh

′

dh′. (9)

These parametric equations of states have been used
successfully to represent a variety of realistic nuclear-
theory model equations of state, with errors that con-
verge toward zero as the number of parameters Nγ is in-
creased [12, 13]. These representations are used in Sec. IV
as approximations to the “exact” equation of state as
determined by the mock binary data from Sec. II. It
is useful to understand, therefore, how well these para-
metric representations are able to represent this ”exact”
equation of state. The adiabatic index for the “exact”
equation of state of Eq. (3) is given by

Γ(h) =
ǫ c2 + p

p c2
dp

dǫ
= 2

ǫ c2 + p

ǫ c2
= 2 + 2

(

1− eh/2
)2

.

(10)
While this Γ(h) is quite simple, its representation as the
spectral expansion given in Eq. (6) requires an infinite
number of terms. The optimal values of the parameters
γk can be estimated by minimizing the equation of state
error measure ∆(γk), defined as

∆2(γk) =
1

N

N
∑

i=1

[

log

(

ǫ(hi, γk)

ǫi

)]2

(11)

with respect to the Nγ spectral parameters γk. The sum
in this expression is taken over N ≈ 85 points taken
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from an exact equation of state table, equally spaced in
log ǫ in the density range 2 × 1014 ≤ ǫi ≤ 1.8895× 1015

g/cm3 that covers the high density cores of all neutron
stars with this equation of state. This sum measures
the differences between the parametric equation of state
densities ǫ(hi, γk) with N exact densities ǫi = ǫ(hi). Fig-
ure 2 shows the minimum values of ∆ as a function of
the number of spectral parametersNγ . These parametric
representations therefore converge exponentially toward
Eq. (3), and Fig. 2 provides a best-case estimate of the
accuracy that the approximate solutions to the inverse
problem in Sec. IV might achieve.
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FIG. 2: Points illustrate the average errors ∆ of the enthalpy-
based spectral representations of the “exact” equation of state
as a function of the order of the spectral representation, Nγ .

Based on our understanding of other spectral repre-
sentations, like Fourier series, the spectral parametric
representations used here are expected to converge ex-
ponentially for all smooth equations of state. The rate of
exponential convergence will depend, however, on the de-
tailed structure of the particular equation of state. Equa-
tions of state having more “structure” than the simple
pseudo-polytrope studied here will converge more slowly.
Spectral parametric representations of equations of state
having phase transitions (i.e. discontinuities in the equa-
tion of state or its derivatives) are also expected to con-
verge, however the rate of convergence in those cases are
expected to be polynomial rather than exponential.

IV. NUMERICAL INVERSION TESTS

The goal of the inverse structure problem for bina-
ries is to determine the equation of state from a knowl-

edge of the observables
{

M1(h1c),M2(h2c), Λ̃(h1c, h2c)
}

(parameterized here by the central enthalpies h1c and

h2c of each star). Let
{

M1i,M2i, Λ̃i

}

for i = 1, ..., NB

denote a random ensemble of points from the exact
surface of observables, and let ǫ = ǫ(h, γk) and p =
p(h, γk) denote a family of parametric equations of
state. The proposal is to construct approximate so-
lutions to this inverse structure problem by minimiz-
ing the difference between models of the observables
{

M1(h1c, γk),M2(h2c, γk), Λ̃(h1c, h2c, γk)
}

based on the

parametric equation of state, and the observational data

points
{

M1i,M2i, Λ̃i

}

. This difference is measured using

the modeling error measure χ2(hi
1c, h

i
2c, γk), defined by

χ2(hi
1c, h

i
2c, γk) =

1

NB

NB
∑

i=1

{

[

log

(

M1(h
i
1c, γk)

M1i

)]2

+

[

log

(

M2(h
i
2c, γk)

M2i

)]2

+

[

log

(

Λ̃(hi
1c, h

i
2c, γk)

Λ̃i

)]2






. (12)

The best-fit model is identified by minimizing the mod-
eling error χ2(hi

1c, h
i
2c, γk) with respect to the 2NB +Nγ

parameters
{

hi
1c, h

i
2c, γk

}

. The parametric equation of
state ǫ = ǫ(h, γk) and p = p(h, γk) with γk evaluated at
this minimum is an approximate solution to the inverse
structure problem.
The most difficult step in this approach is finding

the minimum of χ2(hi
1c, h

i
2c, γk) numerically. The mini-

mization method used for these tests is the Levenberg-
Marquardt algorithm [15]. This is a steepest descent type
algorithm that requires as input the value of the function,
χ2(hi

1c, h
i
2c, γk), and its partial derivatives with respect to

each of the parameters. The needed partial derivatives
can be constructed from ∂M/∂hc, ∂Λ/∂hc, ∂M/∂γk and
∂Λ/∂γk (computed for these tests using the methods de-
scribed in Refs. [2, 3]) plus the derivatives

∂Λ̃

∂M1

= −
16M3

1M2(7M1 − 48M2)Λ1

13(M1 +M2)6

−
16M4

2
(48M1 − 7M2)Λ2

13(M1 +M2)6
, (13)

∂Λ̃

∂M2

=
16M4

1
(7M1 − 48M2)Λ1

13(M1 +M2)6

+
16M1M

3
2 (48M1 − 7M2)Λ2

13(M1 +M2)6
, (14)

∂Λ̃

∂Λ1

=
16M4

1
(M1 + 12M2)

13(M1 +M2)5
, (15)

∂Λ̃

∂Λ2

=
16M4

2 (M2 + 12M1)

13(M1 +M2)5
. (16)

The Levenberg-Marquardt minimization method is
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very fast and very accurate at locating the local mini-
mum close to any given initial parameter point. It often
fails to find the smallest minimum, however, if the func-
tion has many local minima. To avoid unwanted local
minima, and to speed up the calculation, the numerical
minimizations performed for these tests were initialized
using the exact values of the parameters hi

1c and hi
2c from

Sec. II, and the best-fit values of the parameters γk de-
scribed in Sec. III. The minimization procedure is iter-
ated as many times as needed (typically less than ten)
until χ is unchanged from one step to the next.4

Figure 3 illustrates the minimum values of χ obtained
in this way for different values of Nγ and NB. The equa-
tions used to locate the minimum of χ are degenerate
whenever the number of parameters, 2NB + Nγ , is less
than the number of data points, 3NB. Consequently
these minima were only computed for Nγ ≤ NB. This
figure shows that the numerically determined values of
the minima of χ decrease exponentially as the number
of equation of state parameters Nγ is increased. These
minima are relatively insensitive to the values of NB for
fixed values of Nγ .
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FIG. 3: Curves indicate the minimum values of χ(hi
1c, h

i
2c, γk)

achieved for different numbers Nγ of spectral parameters, and
different numbers NB of mock binary data points.

Figure 4 shows the accuracy of the parametric equa-
tions of state whose spectral parameters γk are set by
the minima of χ shown in Fig. 3. These equation of

4 In the analysis of real neutron-star observations, it will not be
possible to know a priori what the optimal parameters hi

1c, h
i
2c

and γk are likely to be. In this case it will almost certainly be
necessary to adopt more powerful computational methods for lo-
cating the absolute minimum of the complicated non-linear func-
tion χ2(hi

1c, h
i
2c, γk).

state errors are measured with the quantity ∆ defined in
Eq. (11). Like the observational data modeling errors χ,
the equation of state errors ∆ decrease exponentially as
Nγ is increased, but are relatively insensitive to NB for
fixed Nγ .

5
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FIG. 4: Curves indicate the values of ∆(γk) for the γk that
minimize χ(hi

1c, h
i
2c, γk) for different numbers Nγ of spectral

parameters, and different numbers NB of mock binary data
points.

Figures 3 and 4 show that the modeling errors χ(Nγ)
are comparable to the equation of state modeling errors
∆(Nγ) for the simple mock data used in these tests. This
rough comparability of these errors is expected to apply
even for more complicated, more realistic equations of
state. Since representations of more realistic equations
of state are expected to converge more slowly, the mod-
eling errors χ are also expected to converge more slowly in
those cases. For smooth equations of state, these conver-
gence rates are expected to be exponential in the number
of parameters Nγ . Equations of state having phase tran-
sitions are expected to converge as a power of Nγ , with a
power that depends on the order of the phase transition.

V. DISCUSSION

The results of the numerical tests in Sec. IV confirm
that the method of solving the inverse structure prob-

5 The results for Nγ = 10 are not shown in Figs. 3 and 4, because
the rates of convergence decreased abruptly at this point. This is
probably caused by numerical inaccuracies at the 10−10 ∼ 10−11

level in some part of the code. Since the source of those errors
was not identified, and since the results for Nγ = 10 appeared to
be unreliable, they were not displayed with the Nγ < 10 results.



6

lem for neutron-star binaries outlined in Sec. I is mathe-
matically convergent using data from a randomly chosen
ensemble of binaries. The equation of state accuracies
shown in Fig. 4 are comparable to the best-fit errors for
this equation of state in Fig. 2. So this method of deter-
mining the equation of state is also very efficient.

Important features of the analysis presented here are
its generality and lack of simplifying assumptions. No
assumptions are made about the equation of state in the
cores of neutron stars other than thermodynamic stabil-
ity. Thermodynamic stability requires the equation of
state function ǫ(p) to be monotonically increasing. It
is imposed implicitly by the spectral expansion for the
adiabatic index Γ(h) in Eq. (6) that ensures Γ(h) ≥ 0.
The analysis here also makes no simplifying assumptions
about the composite deformabilities Λ̃ of the binaries. In
contrast, the recent analysis of GW170817 in Ref. [16] as-
sumes the tidal deformabilities of the two neutron stars
are related by Λ1M

6
1

= Λ2M
6
2
, while the analysis in

Ref. [17] assumes Λ2 − Λ1 is a prescribed function of
Λ1 + Λ2 and the mass ratio M2/M1. The analysis here

simply evaluates Λ̃ exactly using Eq. (1) in terms of the
parametric equation of state and the central enthalpies
of each star. No additional assumption about the form
of Λ̃ is needed.

The method proposed here for solving the inverse
structure problem for binaries is well posed and admits
an exact solution when the number of data points NB

is greater than or equal to the number of equation of
state parameters Nγ . In contrast, the recent analyses in
Refs. [16–18] attempt to determine four equation of state
parameters using Bayesian statistical methods from the
observation of the single neutron-star binary GW170817.
From the perspective of the exact problem, it is not pos-
sible to determine more than one equation of state pa-
rameter from the observation of a single binary. Ana-
lyzing a single binary using a four parameter equation of
state model in the exact case could only restrict the four-
dimensional parameter space to some three-dimensional
subspace. To make the problem well posed, prior con-
straints on the equation of state parameters would be
needed to fix a particular point on that three-dimensional
parameter subspace. In the method proposed here for
solving the inverse structure problem, the appropriate di-
mensional space of parameters is chosen from the begin-
ning by requiring Nγ ≤ NB. No additional assumptions
or prior constraints on the equation of state parameters
are needed.

The “exact” equation of state used to create the mock
data in these tests is very simple and very smooth. Con-
sequently the rate of convergence of the errors in these
tests is probaby faster than it would be for more real-
istic equations of state. The inverse structure problem
for single neutron stars [2, 3] has been studied using
a number of more realistic nuclear-theory model equa-
tions of state. The convergence rates for the equation of
state errors found here are only a bit faster than those
found previously for the smoothest and simplest realis-

tic nuclear-theory based equation of state models (e.g.
PAL6). Consequently, the expectation is that the equa-
tion of state errors for the binary problem will be sim-
ilar to those for the single neutron-star inverse problem
studied previously. A fairly small number of high accu-
racy measurements from binary systems should therefore
be sufficient to determine the high density neutron-star
equation of state at the fraction of a percent level, if such
high accuracy measurements ever became available.
The mock data used in the analysis in Sec. IV were

constructed with high precision to allow the mathemati-
cal convergence tests of the method to be confirmed with
high confidence. Those convergence tests were the pri-
mary purpose of this paper. Observations from real bi-
nary systems will contain significant measurement errors,
and those measurement errors will also contribute to the
errors in the equations of state determined in this way.
More realistic estimates of the equation of state errors
achievable by these methods can only be found therefore
using more realistic mock data for these tests. The plan
for a future study is to introduce random errors into the
mock data with a sequence of different sizes, e.g. 1%,
2%, 5%, 10%, 20%, 50% errors, and then to determine
how these data errors affect the inferred equation of state
errors.
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