Photo-disintegration of ^4He on the cosmic microwave background is less severe than earlier thought

Jorge F. Soriano, Luis A. Anchordoqui, and Diego F. Torres

Phys. Rev. D 98, 043001 — Published 1 August 2018

DOI: 10.1103/PhysRevD.98.043001
The photo-disintegration of 4He on the cosmic microwave background is less severe than earlier thought

Jorge F. Soriano,1,2 Luis A. Anchordoqui,1,2,3 and Diego F. Torres4,5,6

1Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA
2Department of Physics, Graduate Center, City University of New York, NY 10016, USA
3Department of Astrophysics, American Museum of Natural History, NY 10024, USA
4Institute of Space Sciences (IEEC-CSIC), Campus UAB, Carrer de Magrans s/n, 08193 Barcelona, Spain
5Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
6Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain

We thoroughly study the photo-disintegration of 4He on the cosmic microwave background using the most recent cross-section data both from the inclusive measurement observing the analog of the giant dipole resonance in 4He through the charge-exchange spin-flip 4He (7Li,7Be) reaction and from measurements of exclusive two-body and three-body processes: 4He (γ,p)3H, 4He (γ,n)3He, and 4He (γ,pn)2H. We show that the present-day (redshift $z = 0$) mean free path of ultra-relativistic (Lorentz factor $\sim 10^{10}$) helium nuclei increases by more than 15% with respect to previous estimates adopted as benchmarks for Monte Carlo simulation codes of ultrahigh-energy cosmic ray propagation. This implies that the physical survival probability of 4He nuclei would be larger than predicted by existing event generators. For example, for $E \sim 10^{10.8}$ GeV and a propagation distance of 3.5 Mpc, the 4He intensity would be 35% larger than the output of CRPropa 3 program and 42% larger than the output of SimProp v2r4 program. We provide new parametrizations for the two-body and three-body photo-disintegration cross-sections of 4He, 3He, tritium, and deuterium.

I. INTRODUCTION

The Greisen-Zatsepin-Kuzmin (GZK) horizon of helium [1, 2] is a key parameter in ascertaining the contribution of ultrahigh-energy ($E \gtrsim 10^{10}$ GeV) cosmic rays (UHECRs) with directional pointing to nearby sources. Numerical [3, 4] and analytical [5] estimates of this parameter, as well as Monte Carlo simulation codes of UHECR propagation [6–11] are customarily based on fits [12–15] to cross-section measurements from the sixties [16–21], which do not allow a precise description of the giant dipole resonance (GDR) near threshold.

The first simultaneous measurement of the two-body and three-body photo-disintegration cross-sections of 4He in the GDR region was carried out in 2005 at the National Institute of Advanced Industrial Science and Technology (AIST) [22]. Data from the three-body process yield a 4He (γ,pn) 2H cross section of 0.04 ± 0.01 mb at 29.8 MeV, in agreement with previous measurements [16–18, 23, 24]. However, the dominant 4He (γ,p)3H and 4He (γ,n)3He cross sections are found to increase monotonically with energy up to 29.8 MeV, in strong disagreement with previous observations [25–28]. Subsequently, a detailed studied of the GDR in 4He was carried out at the Research Center for Nuclear Physics (RCNP), using a 455 MeV 7Li$^{3+}$ beam bombarding a 4He gas target cooled to about 10 K [29, 30]. An indirect measurement of the GDR in 4He was obtained by observing its analog via the 4He (7Li,7Be) reaction at forward scattering angles. The inclusive cross-section measurement from the 4He (7Li,7Be) reaction also shows a radical departure from the results of the AIST group. Deepening the mystery, the 4He photo-disintegration cross section was measured again by the same group at AIST, confirming their earlier findings [31]. To clarify the situation, the total (i.e. angle-integrated) cross-section of the exclusive two-body channels was measured at the High Intensity Gamma-ray Source (HI4S) [32, 33]. The HI4S experiment confirmed that the peak of the GDR is near 27 MeV and emphasized the differences with the AIST measurements. If we would assume that a systematic effect affected the AIST measurement of 4He (γ,p)3H and 4He (γ,n)3He and leave these aside, we may conclude that there is now a good agreement in the experimental front (see the data plotted in Fig. 1, top panel).

In this article we provide a new parametrization of the photo-disintegration cross-section of helium through a fit to the most recent data from the RCNP and HI4S experiments. Armed with this parametrization we re-examine the opacity of the cosmic microwave background (CMB) to ultra-relativistic (Lorentz factor $\sim 10^{10}$) helium nuclei.

II. NEW PARAMETRIZATION OF THE GDR IN 4He

The photo-absorption cross-section of a nucleus of charge Z_e and baryon number A roughly obeys the Thomas-Reiche-Kuhn (TRK) dipole sum rule [34–36]

$$
\Sigma = \int_0^\infty \sigma_A(\varepsilon) \, d\varepsilon = 59.8 \frac{Z \, (A - Z)}{A} \text{ MeV mb}.
$$

(1)

Symmetric resonant cross-sections are commonly fitted by the normal distribution, with probability density function given by

$$
f_N(\mu, \Gamma; \varepsilon) \equiv \frac{1}{\sqrt{2\pi\Gamma^2}} \exp \left[-\frac{(\varepsilon - \mu)^2}{2\Gamma^2} \right],
$$

(2)
where μ is the mean and Γ measures the dispersion around the mean.

The features of the cross-section data of the nuclei analyzed herein make evident that the GDR does not follow a symmetric curve around its central value. A simple way to account for the antisymmetry when the fall on the right side of the central value is much slower than the rise on the left side is to consider logarithmic distributions. These can be obtained as $g(x) \, dx = f(\ln x) \, d\ln x$, if f is a symmetric distribution, which gives $g(x) = f(\ln x)/x$ for $x > 0$. To accommodate threshold effects we can simply shift the independent variable so that the threshold is at some value x_{th} rather than 0.

To model the shape of the photo-disintegration cross-section in the energy range of the GDR we adopt the shifted log-normal distribution. Substituting ϵ for $\ln(x - \epsilon_{th})$ in (2) and introducing the $1/(\epsilon - \epsilon_{th})$ factor, we arrive at the cross-section density function

$$\sigma_A(\sigma_0, \epsilon_0, \epsilon_{th}, \Gamma; \epsilon) = \sigma_0 \exp \left[-\frac{\ln^2 \left(\frac{\epsilon - \epsilon_{th}}{\epsilon_0 - \epsilon_{th}} \right)}{2\Gamma^2} \right], \quad (3)$$

where ϵ_0 is the central value of the GDR energy band (with threshold ϵ_{th}), σ_0 is the cross section at $\epsilon = \epsilon_0$, and Γ is a measurement of the dispersion around ϵ_0. For analytical order of magnitude estimates, it is convenient to obtain a form of the cross-section in the single pole of the narrow-width approximation (NWA). Introducing the change of variables

$$z(\epsilon) \equiv \ln \left(\frac{\epsilon - \epsilon_{th}}{\epsilon_0 - \epsilon_{th}} \right) \quad (4)$$

we have

$$\sigma_A(\sigma_0, \epsilon_0, \epsilon_{th}, \Gamma; \epsilon) \propto f_N(0, \Gamma; z(\epsilon)). \quad (5)$$

For the normal distribution,

$$\lim_{\epsilon_0 \to 0} f_N(0, \Gamma; z(\epsilon)) = \frac{\delta(z(\epsilon))}{|z'(\epsilon_0)|} = \frac{\delta(\epsilon - \epsilon_0)}{(\epsilon_0 - \epsilon_{th}) \delta(\epsilon - \epsilon_0)}, \quad (6)$$

and so we can approximate (3) as

$$\sigma_A(\sigma_0, \epsilon_0, \epsilon_{th}, \Gamma; \epsilon) \approx \mathcal{A} \, \delta(\epsilon - \epsilon_0), \quad (7)$$

where \mathcal{A} is the normalization constant satisfying

$$\int_{\epsilon_{th}}^{\epsilon_0} \mathcal{A} \, \delta(\epsilon - \epsilon_0) \, d\epsilon = \int_{\epsilon_{th}}^{\epsilon_0} \sigma_A(\sigma_0, \epsilon_0, \epsilon_{th}, \Gamma; \epsilon) \, d\epsilon, \quad (8)$$

and therefore

$$\mathcal{A} = \sqrt{2\pi} \, \sigma_0 \, \Gamma \, (\epsilon_0 - \epsilon_{th}) \, e^{\Gamma^2/2}. \quad (9)$$

Fitting (3) to the 4He data we find the four parameters and corresponding 68% C.L. band. The cross section parameters are given in Table I and shown in Fig. 1. For completeness, we also studied the photo-disintegration of secondary 3He and 2H. The cross section parameters are also given in Table I and shown in Fig. 1. A comparison of our results with previous approximations (which are briefly summarized in Appendix A) is also exhibited in Fig. 1. The 3He and 2H (tritium) have similar photo-disintegration properties. Any possible distinction because of the differences in binding energy due to the Coulomb field disparity would fall within theoretical and experimental uncertainties [39].

To complete our analysis of the photo-disintegration of

![Graph showing photo-disintegration cross-sections](image_url)
light nuclei, we provide the relevant branching ratios via fits to the cross-sections for the exclusive three-body processes $^3\text{He} (\gamma, pn)$ and $^4\text{He} (\gamma, pn) ^2\text{H}$. The former can be modeled with a shifted log-normal distribution, the best fit parameters are: $\epsilon_0 = (16.5 \pm 0.2) \text{ MeV}$, $\Gamma = 0.97 \pm 0.07$, $\epsilon_{fb} = (8.1 \pm 0.3) \text{ MeV}$, and $\sigma_0 = (1.03 \pm 0.01) \text{ mb}$. The latter is best represented by a Bethe-Peierls (BP) form [40],

$$\sigma(\beta, B; \epsilon) = \beta \times \sigma_{BP}(B; \epsilon) = \beta \times \frac{\sigma_{TP}}{\alpha_{EM}} \frac{m_p c^2}{B} \frac{(x - 1)^{3/2}}{x^3},$$

with best fit parameters $\beta = 2.1 \pm 0.5$ and $B = 27.6 \pm 0.7 \text{ MeV}$. Here, $x = \epsilon/B$, α_{EM} is the fine structure constant, and σ_{TP} the Thomson cross section for the proton

$$\sigma_{TP} = \frac{8\pi}{3} \left(\frac{\alpha_{EM} \hbar c}{m_p c^2} \right)^2.$$

In Fig. 2 we show a comparison of the best fit and 68% C.L. bands for the cross sections of three-body processes and previous estimates. To a good approximation, the ratio of the photo-proton $^4\text{He} (\gamma, p)$ ^3H to the photo-neutron $^4\text{He} (\gamma, n) ^3\text{He}$ cross sections can be set equal to one [27, 32, 33].

In an aside, it is interesting to note that the Rachen’s parameterization is the closest from all other earlier descriptions to the new experimental data. For instance, Rachen’s description (developed ~ 20 years ago) would produce a higher cross section for ^4He, what at the end is critical for producing the effect on enlarging the propagation distance that we uncover below, but the general shape is quite acceptable. Something similar happens for ^3He and ^2H.

III. PHOTO-DISINTEGRATION OF ^4He ON THE CMB

We now turn to estimate the GZK energy loss of ultra-relativistic ^4He nuclei scattering off the CMB. The relevant mechanisms for the GZK energy loss of UHECR ^4He nuclei are: (i) e^+e^- pair production in the field of the nucleus, (ii) photo-disintegration, and (iii) photo-pion production. In the nucleus rest-frame, pair production has a threshold at $\sim 1 \text{ MeV}$. The inelasticity of pair production is very low ($\sim m_e/m_p$, for protons), so that the characteristic time-scale of energy loss for this process at energies $E \gtrsim 10^{10} \text{ GeV}$ is $E/(dE/dt) \approx 10^{9.7} \text{ yr}$ [43]. For a nucleus, the energy loss rate is Z^2/A times higher than for a proton of the same Lorentz factor [44]. Therefore, for propagation distances $\lesssim 100 \text{ Mpc}$, pair production from ^4He can be safely neglected. For $E \lesssim 10^{11} \text{ GeV}$, photo-pion production is also negligible because it has a threshold energy $\sim 145 \text{ MeV}$ in the nucleus rest frame. In this decade of energy photo-disintegration is the dominant process for energy loss of ^4He nuclei: the peak of the GDR corresponds to photon energies of 27 MeV. With this dominance, we now exploit a complete analytic treatment of the GZK energy loss using the simple form of our parameterization.

The interaction time τ_{int} for a highly relativistic nucleus propagating through an isotropic photon back-
ground with energy ε and spectrum $dn(\varepsilon)/d\varepsilon$, is [45]

\[
\frac{1}{\tau_{\text{int}}} = \frac{\gamma}{2} \int_{\varepsilon_{\text{th}}/2\gamma}^{\infty} \frac{1}{\gamma^2} \frac{dn(\varepsilon)}{d\varepsilon} \int_{\varepsilon_{\text{th}}}^{2\gamma\varepsilon} e' \sigma_A(e') d\varepsilon',
\]

where $\gamma = E/(Am_p)$ is the Lorentz factor and $\sigma_A(e')$ is the cross-section for photo-disintegration by a photon of energy e' in the rest frame of the nucleus. Inserting (7) into (12) we obtain

\[
\frac{1}{\tau_{\text{int}}} \approx \frac{c A}{2\gamma^2} \int_{\varepsilon_{\text{th}}/2\gamma}^{\infty} \frac{d\varepsilon}{\gamma^2} \frac{dn(\varepsilon)}{d\varepsilon} \Theta(2\gamma\varepsilon - \varepsilon_{\text{th}})
\]

\[
\approx \frac{\sqrt{\pi} c A \sigma_0 (\varepsilon_{\text{th}} - \varepsilon_{\text{th}}) \Gamma e^{2\gamma^2/2}}{\sqrt{2} \gamma^2} \int_{\varepsilon_{\text{th}}/2\gamma}^{\infty} \frac{d\varepsilon}{\gamma^2} \frac{dn(\varepsilon)}{d\varepsilon}.
\]

For the CMB,

\[
\frac{dn(\varepsilon)}{d\varepsilon} = \frac{1}{(\hbar c)^3} \left(\frac{x}{\pi} \right)^2 \left[e^{x/T} - 1 \right]^{-1},
\]

and so (13) becomes

\[
\frac{1}{\tau_{\text{int}}} = \frac{c A_0}{2} \frac{\varepsilon_{\text{th}}}{\gamma^2} \frac{\sigma_0}{\gamma^2} (\varepsilon_{\text{th}} - \varepsilon_{\text{th}}) \Gamma e^{2\gamma^2/2} \sqrt{\frac{T}{2\pi^2}} \left[\ln \left(1 - e^{-\varepsilon_{\text{th}}/2\gamma T} \right) \right],
\]

with $T = 2.7255(6)$ K [46].

Despite the computational convenience of the narrow width approximation, a full calculation of the interaction time can be achieved. The second integral in (12) can be calculated exactly for the cross section (3) to give

\[
J(\varepsilon) = \int_{\varepsilon_{\text{th}}}^{\varepsilon} e' \sigma_A(e') d\varepsilon'
\]

\[
= \frac{A}{2} \left(\varepsilon_{\text{th}} \text{erfc} \left(\frac{T \varepsilon - 2z(\varepsilon)}{\sqrt{2T}} \right) + e^{2T^2}(\varepsilon_{\text{th}} - \varepsilon_{\text{th}}) \right) \times \text{erfc} \left(\frac{2T^2 - z(\varepsilon)}{\sqrt{2T}} \right).
\]

For the CMB spectrum, (12) can be rewritten as

\[
\frac{1}{\tau_{\text{int}}} = \frac{c}{4\pi^2 (\hbar c)^3} \int_{\varepsilon_{\text{th}}/2\gamma}^{\infty} \frac{J(\varepsilon)}{e^{x/T} - 1} d\varepsilon.
\]

The integral in (17) is solved numerically, allowing us to obtain the present-day (redshift $z = 0$) mean free path for $A = 4$ nuclei travelling through the CMB with a Lorentz factor γ as

\[
\lambda(\gamma) = 4\pi^2 (\hbar c)^3 \left(\int_{\varepsilon_{\text{th}}/2\gamma}^{\infty} \frac{J(\varepsilon)}{e^{x/T} - 1} d\varepsilon \right)^{-1}.
\]
Monte Carlo code [11] whereas the R-model is used by the CRPropa program [9]. In Fig. 3 we show the mean free path for 4He photo-disintegration on the CMB for the four considered models, and the ratios $\lambda_k(\gamma)/\lambda(\gamma)$ for the three models. In Fig. 4 we display the relative error $(\lambda - \lambda_{\text{NWA}})/\lambda$ of the NWA as a function of energy.

In order to study the consequences that the different cross sections have on particle propagation through the CMB, we study its transmittance to 4He nuclei going through a given distance at a given energy. We define $T(\gamma, L) \equiv e^{-L/\lambda(\gamma)}$ for the mean free path (18), and $T_k(\gamma, L) \equiv e^{-L/\lambda_k(\gamma)}$ for the other three models. Since the model introduced in this paper provides the smallest cross section, it will give the largest transmittance. To study this, we define the relative transmittances $R_k(\gamma, L) \equiv T_k(\gamma, L)/T(\gamma, L)$. The three ratios are shown in Fig. 5. For a propagation distance of 3.5 Mpc, the transmission of the CMB for our cross-section model at $10^{10.8}$ GeV is $T \approx 0.11$. Our calculations also demonstrate that if e.g., there was a source a 3.5 Mpc and deflections on the extragalactic magnetic field are small, the Earthly 4He flux would be 35% larger than the output of CRPropa 3 [9] and 42% larger than the output of SimProp v2r4 [11]. For a propagation distance of 4 Mpc, the discrepancy increases as the Earthly fluxes would be 41% and 49% larger than those predicted by CRPropa 3 and SimProp v2r4, respectively. Thus, even for CRPropa 3, which uses the best among the older parameterizations, the differences introduced by a more careful accounting of the 4He photo-disintegration cross section are significant.

For $\gamma \lesssim 10^{9.7}$ the dominant target photons are those of the extragalactic background light. At present, the ambiguity in the determination of infrared (IR) photon background [47–49] largely dominates the uncertainties in the 4He mean-free-path. This is illustrated in Fig. 6 where we show a comparison using the IR estimates from [47] and [49].

IV. CONCLUSION

We have provided new parametrizations for the photo-disintegration cross-section of nuclei with baryon number $A \leq 4$. In our fits we included the most recent cross-section data both from the inclusive measurement observing the analog of the giant dipole resonance in 4He through the charge-exchange spin-flip 4He (7Li,7Be) reaction and from measurements of exclusive two-body and three-body processes: 4He (γ,p)3H, 4He (γ,n)3He, and 4He (γ,pn)2H. A comparison with previous estimates is displayed in Figs. 1 and 2.

We have shown that existing Monte Carlo simulation codes for UHECR propagation underestimate the predicted flux of 4He nuclei emitted by sources in our cosmic backyard. For example, we demonstrated that the mean free path of 4He with $\gamma \sim 10^{10}$ increases by more than 15% with respect to previous estimates adopted as bench-
marks for Monte Carlo simulation codes of UHECR propagation. A comparison of the different mean-free-paths of \(^4\)He on the CMB for relevant Lorentz factors is provided in Fig. 3. Interestingly, the larger mean free path obtained in our study implies that the physical survival probability of \(^4\)He nuclei would be larger than predicted by existing event generators. For example, for \(E \sim 10^{10.8} \text{ GeV}\) and a propagation distance of 3.5 Mpc, the \(^4\)He intensity would be 35\% larger than the output of CRPropa 3 program and 42\% larger than the output of SimProp v2r4 program. A comparison of the increment in the survival probability of \(^4\)He as a function of energy is exhibited in Fig. 5.

As it is obvious, our finding have a direct impact on the possibility that nearby starbursts could relate to the origin of cosmic-rays, what we shall explore elsewhere. It also provides a refreshing humble perspective: basic nuclear physics can still significantly affect our most common assumptions when imagining cosmic ray production sources.

Acknowledgments

This work has been supported by the U.S. National Science Foundation (NSF Grant PHY-1620661), the National Aeronautics and Space Administration (NASA Grant 80NSSC18K0464), as well as by grants AYA2015-71042-P; iLink 2017-1238, and SGR 2017-1383.

Appendix A: Previous parametrizations of the giant dipole resonance

In this Appendix we provide a brief description of the various cross-section models. Karakula and Tkaczyk (KT) use a Breit-Wigner form to model the peak of the GDR and fit the cross-section to a constant above 30 MeV,

\[
\sigma_{KT}^A(\epsilon) = \begin{cases}
\frac{A \Gamma}{2 \epsilon^2 - \epsilon_0^2 + (\epsilon \Gamma)^2}, & \epsilon \leq \epsilon^* \\
A/8 \text{ mb}, & \epsilon > \epsilon^*
\end{cases}
\]

with \(\Gamma = 8 \text{ MeV}, \epsilon_0 = 0.925 A^{2.433} \text{ MeV}, \epsilon^* = 30 \text{ MeV}, \text{ and } \sigma_{KT}^0 = 1.45 \text{ mb} \) [13].

Puget, Stecker, and Bredekamp (PSB) also use a piecewise function containing a Gaussian form (2) around the peak of the GDR and a constant above 30 MeV, with normalization given by the TRK dipole sum rule [12, 15]. PSB

\[^a\] The source often gives two energy thresholds corresponding to proton and neutron emission [15]. In our calculations we have taken the average value.

\[^b\] The source does not provide this energy threshold [15]. Following [42], we assume the energy threshold is similar to that of single nucleon emission.
model the total cross section as the sum of (at most) two contributions: single and multiple nucleon emission ($i = 1, 2$ respectively), where

$$
\sigma^\text{PSB}_{A,i}(\varepsilon) = \begin{cases}
\xi \Sigma W_i^{-1} \exp\left(-\frac{2(\varepsilon - \varepsilon_{0,i})^2}{\Delta^2_i}\right), & \varepsilon_{\text{th},i} \leq \varepsilon \leq \varepsilon^* \\
\varepsilon \Sigma/(\varepsilon_{\text{max}} - \varepsilon^*), & \varepsilon^* < \varepsilon \leq \varepsilon_{\text{max}} \\
0, & \varepsilon > \varepsilon_{\text{max}}
\end{cases}
$$

(A2)

and where $\varepsilon^* = 30 \text{ MeV}$, $\varepsilon_{\text{max}} = 150 \text{ MeV}$, with

$$
W_i = \Delta_i \sqrt{\frac{\pi}{8}} \left[\text{erf}\left(\frac{\varepsilon^* - \varepsilon_{0,i}}{\Delta_i/\sqrt{2}}\right) + \text{erf}\left(\frac{\varepsilon_{0,i} - \varepsilon_{\text{th},i}}{\Delta_i/\sqrt{2}}\right) \right].
$$

(A3)

The values of ξ_i, $\varepsilon_{0,i}$ and Δ_i are taken from Table 1 of [12], and the threshold energies $\varepsilon_{\text{th},i}$ are taken from Table 1 of [15]. These values are gathered here and shown in Table II for each A and i.

Rachen (R) uses two functional forms to parametrize the GDR cross-sections of the different nuclei and processes including single ($i = 1$) or multiple ($i = 2$) nucleon emission [14]: (i) the BP form, and (ii) the function

$$
\Pi(\varepsilon, \varepsilon_{\text{th}}, \varepsilon_{\text{max}}, \alpha) = \left(\frac{\varepsilon - \varepsilon_{\text{th}}}{\varepsilon_{\text{max}} - \varepsilon_{\text{th}}}\right)^{\alpha(\varepsilon_{\text{max}}/\varepsilon_{\text{th}} - 1)} \left(\frac{\varepsilon_{\text{max}}}{\varepsilon}\right)^{\alpha(\varepsilon_{\text{max}}/\varepsilon_{\text{th}} - 1)}, \quad \varepsilon > \varepsilon_{\text{th}},
$$

(A4)

which has a maximum at ε_{max} and a power law behavior both near threshold and in the asymptotic limit; note that $\Pi(\varepsilon_{\text{th}}, \varepsilon_{\text{th}}, \varepsilon_{\text{max}}, \alpha) = 0$ and $\lim_{\varepsilon \rightarrow \infty} \Pi(\varepsilon, \varepsilon_{\text{th}}, \varepsilon_{\text{max}}, \alpha) \propto \varepsilon^{-\alpha}$.

The cross section for the two-body $^4\text{He}(\gamma, p)^3\text{H}$ and $^4\text{He}(\gamma, n)^3\text{He}$ reactions is described by

$$
\sigma^R_{4,1} = 3.8 \text{ mb} \Pi(\varepsilon, \varepsilon_{\text{th}}, \varepsilon_{\text{max}}, \alpha),
$$

(A5)

with $\varepsilon_{\text{th}} = 19.8 \text{ MeV}$, $\varepsilon_{\text{max}} = 27 \text{ MeV}$ and $\alpha = 5$. The rest of the processes are modelled using the BP form

$$
\sigma^R_{A,i} = \beta_{A,i} \alpha \sigma^\text{PSB}(\varepsilon, B_{A,i}),
$$

(A6)

where the nonzero coefficients are given in Table III.

TABLE III: Parameters for the Rachen cross sections.

<table>
<thead>
<tr>
<th>A</th>
<th>i</th>
<th>$\beta_{A,i}$</th>
<th>$B_{A,i}$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1.4</td>
<td>26.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.4</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.7</td>
<td>7.3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.2</td>
<td>1.71</td>
</tr>
</tbody>
</table>
