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A Volume Average Regularization for the Wheeler-DeWitt Equation

Justin C. Feng1

1Theory Group, Department of Physics, The University of Texas at Austin

In this article, I present a volume average regularization for the second functional derivative
operator that appears in the metric-basis Wheeler-DeWitt equation. Naively, the second functional
derivative operator in theWheeler-DeWitt equation is infinite, since it contains terms with a factor of
a delta function or derivatives of the delta function. More precisely, the second functional derivative
contains terms that are only well-defined as a distribution—these terms only yield meaningful results
when they appear within an integral. The second functional derivative may therefore be regularized
by performing an integral average of the distributional terms over some finite volume; I argue
that such a regularization is appropriate if one regards quantum general relativity (from which the
Wheeler-DeWitt equation may be derived) to be the low-energy effective field theory of a full theory
of quantum gravity. I also show that a volume average regularization can be viewed as a natural
generalization of the same-variable second partial derivative for an ordinary multivariable function.
Using the regularized second functional derivative operator, I construct an approximate solution to
the Wheeler-DeWitt equation in the low curvature, long distance limit.

I. INTRODUCTION

In quantum geometrodynamics,1 states may be described by a wavefunctional2 Ψ = Ψ[g··], which is a functional of
a postive-definite inverse metric gij = gij(y) for a 3-manifold Σ, which I assume to be compact and without boundary.
In quantum geometrodynamics, wavefunctionals satisfy the Wheeler-DeWitt Equation [1–4], which takes the following
form: 3

ĤΨ = ~
2Gijkl δ2Ψ

δgijδgkl
+ (R− 2Λ)

√
gΨ = 0, (1.1)

where R is the Ricci curvature scalar for the 3-manifold Σ, Λ is the cosmological constant, and the quantity Gijkl

defined as:

Gijkl :=
2 κ2√
g

(

gik gjl + gil gjk − gij gkl
)

, (1.2)

where κ = 8 πG, G being Newton’s constant. The Wheeler-DeWitt equation (1.1) is supplemented by the following
constraint, called the momentum constraint:

gik ∇k

(

2 κ√
g

δΨ

δgij

)

= 0, (1.3)

where ∇k is the covariant derivative on Σ. In quantum geometrodynamics, the wavefunctional Ψ = Ψ[g··] satisfies
the Wheeler-DeWitt equation and the momentum constraint. The dynamical content of quantum geometrodynamics
is provided by the Wheeler-DeWitt equation; as originally pointed out in [6], the momentum constraint is simply the
requirement that the wavefunctional Ψ = Ψ[g··] be invariant under coordinate transformations on Σ.
One difficulty4 with the Wheeler-DeWitt equation is that naively, second functional derivatives evaluated at the

same spacetime point generally5 contain terms with a singular factor of δ3(0) [4], and/or terms containing a factor
of the derivatives of the Dirac delta function (as I will show in this article).6 For this reason, the second functional

1 In this article, quantum geometrodynamics refers specifically to the canonical formulation of quantum general relativity that uses the
3-metric (or its inverse) as configuration space variables [1].

2 Throughout this article, the symbol g·· in the arguments of functionals refers to the inverse metric; I do this to distinguish g·· from the
determinant of the metric g, and to avoid any confusion with regard to indices.

3 In some cases, one might wish to use some type of Laplace-Beltrami operator in place of the second functional derivative operator,
either of the type briefly mentioned in [2] or the type proposed in [5]. As discussed in [5], the choice depends on the invariance principle
required of the wavefunctional. Laplace-Beltrami operators are often used in minisuperspace models [1, 4]. For the sake of simplicity, I
follow [2] and simply use the second functional derivative operator in the Wheeler-DeWitt equation.

4 Another difficulty with quantum geometrodynamics concerns the precise definition of the inner product, which is formally defined as a
functional integral over 3-geometries. Further discussion of the inner product is beyond the scope of this article; I refer the reader to
[7], the general discussion found in [1, 4] and the references contained therein.

5 As pointed out in [2], this is not always the case, as one can avoid this with certain double integrals over the manifold. However, it is
generally the case if the functional contains single integrals or double integrals with more than two factors of the field in the integrand.

6 One can define a second functional derivative at a point without delta functions [8], but in that case, one trades delta functions for

differential operators for functions f(y) over Σ—in particular, the quantity ĤΨ itself becomes a linear differential operator acting on

functions f(y) over Σ. One must then find a functional Ψ such that the equation ĤΨ f(y) = 0 is satisfied for all functions f(y). The
Wheeler-DeWitt equation is no longer just a constraint for every point y, but it is now a constraint on the whole of some function
space, namely the space of functions f(y) on the manifold Σ. It presently is difficult for me to imagine how one might obtain nontrivial
solutions to the Wheeler-DeWitt equation under such a strong constraint, so I will not pursue this approach in this article.
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derivative in the full Wheeler-DeWitt equation is only defined a formal manner [5, 9]. The presence of delta functions
and their derivatives is an indication that second functional derivatives only make sense as distributions; plainly
speaking, second functional derivatives are only meaningful when they appear inside integrals. By itself, this is not
problematic. What makes this problematic is that the Ricci scalar term in (1.1) is a multiplicative operator, and
its action on the wavefunctional will yield an ordinary (non-distributional) function, so that the Wheeler-DeWitt
equation (1.1) naively states that a distributional quantity is equal to some non-distributional quantity. In this sense,
the Wheeler-DeWitt equation, as written in Eq. (1.1), is ill-defined.
The origin of the singular quantity δ3(0) in the second functional derivative operator comes from the fact that the

naive second functional derivative is formally a function of two points x and y, and contains terms with factors of
δ3(x−y). Since the second derivative operator in the Wheeler-DeWitt equation is evaluated at a single point, one may
argue that the singular quantity δ3(0) follows from short distance behavior (in particular the limit in which x → y).
It is well-known that perturbative quantum general relativity contains ultraviolet divergences,7 so one might expect
the short distance limit x→ y to yield divergences.8

The modern view,9 of course, is that quantum general relativity is the low-energy effective field theory of a full
theory of quantum gravity. Since the Wheeler-DeWitt equation can be derived10 in a formal manner from the path
integral for quantum general relativity [5, 16], one might expect some approximation to the Wheeler-DeWitt equation
to be valid [17]. If one imagines quantum general relativity to be a low energy effective field theory, then the second
functional derivative operator in the Wheeler-DeWitt equation must be regularized somehow. In particular, since
the δ(0) singularity comes from a short-distance limit, effective field theory requires a regularization for the second
functional derivative operator in (1.1).
An ad-hoc regularization for the Wheeler-DeWitt equation was originally proposed by Bryce DeWitt in [2], which

is simply to set the singular quantities δ3(0) to zero (this is done in dimensional regularization [18]); this is used to
obtain a WKB approximation for the Wheeler-DeWitt equation [4, 19]. Lattice regularizations have also been studied
in the literature, particularly those based on Regge discretizations–see [20, 21]. In this article, I describe a continuum
regularization, which can be viewed as a natural generalization of the second-order same-variable partial derivative
for an ordinary multivariable function. In particular, I perform a volume average of the second functional derivative,
using integrals performed over the distributional part of the naive second functional derivative operator. Such a
regularization is appropriate if one views the Wheeler-DeWitt equation as a description of a low energy gravitational
effective field theory, as effective field theories are formed by integrating out high-energy modes of the field. Compared
to DeWitt’s regularization, the volume average regularization I present in this article has the advantage of providing
a parameter that controls the regularization (the averaging volume), and I will briefly argue that a volume average
regularization can in some sense be regarded as a generalization of DeWitt’s regularization. I must make two things
clear: first, while the methods presented in this article are motivated by effective field theory considerations, I do
not establish a precise connection between the covariant methods of effective field theory and the volume average
regularization presented in this article, which is formulated for a spatial hypersurface. Second, I make no claim with
regard to the UV behavior of quantum geometrodynamics and the problem of nonrenormalizability for perturbative
quantum gravity; my goal in this paper is to present a possible framework in which one can nonperturbatively
investigate the low energy features of quantum gravity.
This article is organized as follows. First, I present a motivating example using ordinary second derivatives and

Kronecker delta functions, and construct by analogy an expression for the second functional derivative operators of
the type that appear in the Wheeler-DeWitt equation. The resulting expression is interpreted as an averaging of the
second functional derivative operator over some volume, and its derivation makes it clear that it is a generalization of
the same-variable second partial derivative. I then derive the Hessian for the volume functional and Einstein-Hilbert
action. The Hessians are then used to construct an approximate solution for the regularized Wheeler-DeWitt equation
in the low curvature, long distance limit. Finally, I examine a minisuperspace restriction of the approximate solution
for 3-sphere geometries.

7 Though one can absorb one-loop divergences for pure gravity into the 4D Gauss-Bonnet term via field redefinitions [10], ultraviolet
divergences appear at two loop order in perturbation theory [11].

8 Furthermore, the perturbative non-renormalizability of quantum general relativity suggests that quantum general relativity, and by
extension the Wheeler-DeWitt equation (as given in Eq. (1.1)), are incomplete; the renormalization of quantum general relativity
requires an infinite number of counterterms in the action, which will generate additional terms in the Wheeler-DeWitt equation. For
this reason, it is often argued that quantum general relativity cannot be a fundamental theory, but it has also been suggested that
perturbation theory may not be generating the correct asymptotic series for quantum GR [12], and that gravitational effects can somehow
regulate the divergences of quantum field theory [13] (though as argued in [12], there is little hope that such a feature of quantum GR,
if it exists, can be seen in perturbation theory).

9 See [14] and the references therein for an overview of quantum gravity as an effective field theory, and [15] for a more detailed review.
10 Again, I emphasize the point, argued in [5], that the precise form of the second functional derivative operator depends on the definition

for the path integral measure.
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II. THE VOLUME AVERAGE REGULARIZATION

In this section, I motivate the volume average regularization for the second functional derivative of a functional F [ϕ]
evaluated at a single point x. In particular, I intend to motivate a regularized expression for the following quantity:

δ2F

δϕA
x δϕ

B
x

, (2.1)

where ϕA
x = ϕA(x) is a function on a manifold M of volume VM and coordinate label xi. Instead of simply stating

the result, I will attempt to motivate it by showing that the volume average regularization is a natural generalization
of the same-variable second partial derivative of an ordinary multivariable function.

A. The Functional Hessian

I begin by reviewing the definition of the second functional derivative (or the functional “Hessian”). The second
functional derivative is typically defined in terms of the Taylor expansion of the functional F [ϕ]:

F [ϕ+ δϕ] :=F [ϕ] +
∑

A

∫

M

δF

δϕA
x

δϕA
x d

nx+
1

2!

∑

AB

∫

M

∫

M

δ2F

δϕA
x δϕ

B
y

δϕA
x δϕ

B
y dnx dny +O(δϕ3), (2.2)

where I define the functions δϕA
x := δϕA(x) and δϕA

y := δϕA(y); if the manifold M has boundary ∂M, I assume that

the support of δϕA
x := δϕA(x) and δϕA

y := δϕA(y) does not reach a neighborhood of any point on the boundary ∂M
(this way, I can neglect boundary terms). In this article, I do NOT employ summation convention for capital

Latin indices (A,B, ..., I, J, ...). Given the Taylor expansion (2.2), one can identify the second functional derivative,
or the “Hessian” of the functional F [ϕ]:

δ2F

δϕA
x δϕ

B
y

. (2.3)

Now consider a functional F [ϕ] given by an integral of the form:

F [ϕ] =

∫

M

f(ϕ, x)
√
g dnx. (2.4)

The Taylor expansion of F [ϕ] will in general contain second-order terms of the form:

∫

M

∑

AB

(

FAB δϕ
A δϕB

)√
g dnx. (2.5)

The above may be rewritten as:

∫

M

∫

M

∑

AB

(

{FAB}(x,y) δϕA
x δϕ

B
y

)

δ̃(x, y)
√
gx
√
gy d

nx dny, (2.6)

where the brackets { }(x,y) represent the symmetrization:

{T I}(x,y) :=
1

2

(

T I(x) + T I(y)
)

, (2.7)

and δ̃(x, y) is the covariant delta function, defined by the property:

∫

Σ

ϕ(y) δ̃(x, y)
√
gy d

ny = ϕ(x) ⇒ δ̃(x, y) =
δn(x − y)

√
gy

, (2.8)

with δn(x − y) being the n-dimensional Dirac delta function. Equation (2.6) indicates that in general, the second
functional derivative of a functional, as defined by the Taylor expansion (2.2), contains terms with delta functions.
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Now consider what happens if the functional depends on derivatives of ϕA(x). For instance, consider the functional:

S[ϕ] =

∫

M

L(ϕA,∇iϕ
A, x)

√
g dnx. (2.9)

In general, the Taylor expansion of S[ϕ] to second order will contain terms of the following form:

∫

M

∫

M

∑

AB

(

{Ci
AB}(x,y) δϕA

x (∇y
i δϕ

B
y )

)

δ̃(x, y)
√
gx
√
gy d

nx dny

∫

M

∫

M

∑

AB

(

{Dij
AB}(x,y) (∇x

i δϕ
A
x ) (∇y

j δϕ
B
y )

)

δ̃(x, y)
√
gx
√
gy d

nx dny,

(2.10)

where ∇x
i is the covariant derivative taken with respect to x and ∇y

i is the covariant derivative taken with respect to
y. It is possible add boundary terms to convert the above expressions to an integral of the form (2.5):

∫

M

∑

AB

(

CAB δϕ
A δϕB

)√
g dnx. (2.11)

However, in doing so, one will encounter terms containing both delta functions and derivatives of delta functions.
Naively setting x = y will yield a divergent result.
Of course, the reader may be well aware that delta functions and their derivatives are not really functions in the

usual sense—they are distributions, and are only meaningful if they appear once inside an integral. Recalling that
the covariant delta function δ̃(x, y) is defined by the property (2.8), I may use the divergence theorem to assign a

definition for the covariant derivative of the delta function δ̃(x, y):
∫

M

∑

AB

vi(y)∇y
i δ̃(x, y)

√
gy d

ny = −
∫

M

∫

M

∑

AB

∇y
i v

i(y) δ̃(x, y)
√
gy d

ny = −∇x
i v

i(x), (2.12)

for some vector field vi(x).

B. Ordinary Second Derivatives: A Motivating Example

To motivate the regularized expression for the same-point second functional derivative, I consider an example for
ordinary multivariable functions. I examine Hessian of a function f(x) of quantities xI :

∂2f

∂xI ∂xJ
. (2.13)

Now suppose that the Hessian takes the form:

∂2f

∂xI ∂xJ
= ΦIJ(x) δIJ +ΩIJ (x), (2.14)

where δIJ is the Kronecker delta, which is the discrete-value analog of the Dirac delta function δn(y − z).11 Again,
I must remind the reader that in this article, NO sum is implied over repeated capital Latin indices! If I
simply set I = J , I obtain the second derivative for a single value of the index I:

∂2f

∂xI ∂xI
= ΦII(x) + ΩII(x). (2.15)

Now suppose that for some reason, I want to obtain an expression for ∂2f
∂xI ∂xI without explicitly setting I = J . If I

set ΩIJ(x) = 0 I may do this by performing the following sum:

∑

J

∂2f

∂xI ∂xJ
=
∑

J

ΦIJ(x) δIJ = ΦII(x). (2.16)

11 Compare the expression
∑

J xJ δIJ = xI with its integral counterpart
∫
M

f(z) δn(y − z) dnz = f(y).
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Note that for ΩIJ(x) = 0, (2.16) and (2.15) yield the same result. However, for ΩIJ(x) 6= 0, the sum in (2.16) does
not yield (2.15). To recover (2.15) in the case where ΩIJ(x) 6= 0, I decompose the second derivative (2.14) into a part
proportional to the Kronecker delta, which I call DJ·K, and a part that does not contain any factor of the Kronecker
delta, which I call NJ·K. For (2.14), I have:

D

s
∂2f

∂xI ∂xJ

{
= ΦIJ(x) δIJ

N

s
∂2f

∂xI ∂xJ

{
= ΩIJ(x).

(2.17)

With this decomposition, I construct the following:

∂2f

∂xI ∂xI
=

(

∑

J

D

s
∂2f

∂xI ∂xJ

{)
+ N

s
∂2f

∂xI ∂xJ

{∣
∣

∣

∣

I=J

. (2.18)

It is straightforward to verify that the above construction (2.18) yields the same result as (2.15).

C. Second Functional Derivatives at a Single Point

The generalization of equation (2.18) to second functional derivatives comes from identifying the Dirac delta function
δn(y− z) as the continuous-index analog of the Kronecker delta δIJ and the integral over M as the continuous-index
analog of the sum. Suppose I have a quantity HAB = HAB(x, y) such that its transformation under coordinate
transformations on M leaves the following integral unchanged:12

∫

M

∫

M

HAB(x, y)
δ2F

δϕA
x δϕ

B
y

dnx dny. (2.19)

I split the second functional derivative into a distributional part and a non-distributional part:

δ2F

δϕA
x δϕ

B
y

= DS

s
δ2F

δϕA
x δϕ

B
y

{
+ND

s
δ2F

δϕA
x δϕ

B
y

{
, (2.20)

where the distributional part DSJ·K is the part of a quantity containing a factor of a delta function δ̃(y, z) or its
derivatives, and the non-distributional NDJ·K is the part of the second functional derivative that does not contain

delta functions δ̃(y, z) or its derivatives.

By analogy to (2.18), I construct the following regularization for the second functional derivative (with the equiva-
lence relation ∼= indicating the regularized expression):

HAB(x)
δ2F

δϕA
x δϕ

B
x

∼=
√
gx

V

∫

M

(

HAB(x, y) DS

s
δ2F

δϕA
x δϕ

B
y

{)
dny +HAB(x) ND

s
δ2F

δϕA
x δϕ

B
y

{∣
∣

∣

∣

y=x

, (2.21)

where HAB(x) := HAB(x, x) and V is a volume parameter. The inverse volume factor of 1/V in front of the first
term must be included so that equation (2.21) is dimensionally correct; DSJ·K has the same units as its argument, and
one must compensate for the volume element dny with a factor of 1/V . The factor of

√
gy in front of the first term

is put in so that the first term satisfies the same transformation properties as the second term; the second functional
derivative contains a factor of

√
gx

√
gy (also note that the covariant delta function δ̃(x, y) eliminates a factor of

√
gy

in the integral). One might recognize the integral in the first term of (2.21) as an average of the second functional
derivative over some volume V .

12 If the indices (A,B) are formed from the indices of the coordinate basis (i, j), then I require that HAB transforms as a tensor.
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D. The Regularized Wheeler-DeWitt Equation

Eq. (2.21) suggests the following regularization for the second derivative operator in the Wheeler-DeWitt equation:

G̃abmn(y)
δ2Ψ

δgaby δgmn
y

∼=
√
gy

V

∫

Σ

(

{G̃abmn}(y,z)DS

s
δ2Ψ

δgaby δgmn
z

{)
d3z + G̃abmn(y) ND

s
δ2Ψ

δgaby δgmn
z

{∣
∣

∣

∣

z=y

, (2.22)

where G̃abmn is the following tensor, constructed from Gabmn (1.2):

G̃abmn =

√
g

2 κ2
Gabmn = gab gmn − gam gbn − gan gbm. (2.23)

The regularized Wheeler-DeWitt equation is then:

2 ~2 κ2

V

∫

Σ

(

{G̃abmn}(y,z)DS

s
δ2Ψ

δgaby δgmn
z

{)
d3z + ~

2Gabmn(y) ND

s
δ2Ψ

δgaby δgmn
z

{∣
∣

∣

∣

z=y

+ (R(y)− 2Λ)
√
gy Ψ = 0.

(2.24)
In the limit V → 0, the above expression diverges, as one might expect—as discussed earlier, the second functional
derivative operator in the Wheeler-DeWitt equation is formally divergent, since it is naively the limit of a distribu-
tionally valued quantity.
For compact 3-manifolds Σ with finite volume VΣ[g

··], it is tempting (one might even say that it is “natural”) to
choose V = VΣ[g

··] in equation (2.21). For manifolds with infinite volume VΣ[g
··] → ∞, the first term in (2.21) vanishes;

this is the sense in which a volume averaging regularization can be viewed as a generalization of DeWitt’s ad-hoc
regularization [2]: δ3(0) = 0. One might imagine formulating a model for quantum gravity with the replacement (by
fiat) of the second functional derivative by the expression (2.22) where V = VΣ[g

··]; in this case, the distributional part
of (2.21) is nonvanishing for small volumes, but vanishes in the large-volume limit. Assuming certain properties13

for the wavefunctional, one recovers the Einstein-Hamilton-Jacobi equation in the large-volume limit, irrespective
of the value for ~; this behavior suggests a possible mechanism in which this V = VΣ[g

··] quantum gravity model
“classicalizes” in the large-volume limit.
On the other hand, if one imagines quantum geometrodynamics to be the result of some low-energy gravitational

effective field theory, then it may be appropriate to perform a volume averaging that corresponds to integrating out
short distance degrees of freedom. In the context of effective field theory, it is appropriate to choose V = v0, where
v0 is a fixed, finite volume determined by the length scale corresponding to the high frequency modes that have
been integrated out in the effective field theory; for quantum gravity, it is natural to choose v0 to be the Planck
volume (~κ)3/2. Since effective field theory provides a clear physical justification for the choice V = v0 (the physical
justification for V = VΣ[g

··] is less clear to me at present), I shall focus on the effective field theory viewpoint and the
choice V = v0 for the remainder of this article.

III. WAVEFUNCTIONALS AND HESSIANS OF INVARIANT INTEGRALS

A. Wavefunctionals and the Chain Rule

In this section, I will derive expressions for the second functional derivative of the volume functional and the
Einstein-Hilbert functional. This is a long section, and the calculations are tedious, so I wish to first provide some
motivation for deriving the second functional derivative of these functionals. Recall the momentum constraint (1.3),
which I rewrite here:

gik ∇k

(

2 κ√
g

δΨ

δgij

)

= 0. (3.1)

If the functional Ψ[g··] is constructed from integrals over a compact 3-manifold Σ, then the momentum constraint
(3.1) implies that the integrals must be invariant under coordinate transformations [6]. The integrals themselves
must be constructed out of curvature invariants, since they are the only scalar quantities that can be constructed

13 In particular, one assumes Ψ[g··] = exp(S[g··]), where S[g··] is a local functional of gij (by local, I mean that S[g··] can be written as an
integral over Σ with an integrand that depends only on gij and its derivatives at a single point).
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from the 3-metric [20, 21]. Under the assumption that any covariant multiple integral constructed from the 3-metric
can be expanded in terms of products of single integrals of a curvature invariant, it follows that the wavefunctional
can be written as a function of (single) integrals of curvature invariants. If the 3-manifold has finite volume, the
wavefunctional will also depend on the volume functional of the manifold:

VΣ[g
··] =

∫

Σ

√
g d3y. (3.2)

The simplest nontrivial curvature invariant is the Ricci scalar R, and its integral is the (3-dimensional) Einstein-
Hilbert action:

SEH [g··] =

∫

Σ

R
√
g d3y. (3.3)

A simple ansatz for the wavefunctional is one in which the wavefunctional is a function of the following functional:

Sλ := SEH [g··]− 2λVΣ[g
··] =

∫

Σ

(R− 2λ)
√
g d3y. (3.4)

In particular, I write:

Ψ[g··] = Ψ(Sλ[g
··]). (3.5)

I now perform the variation of the wavefunctional:

∆Ψ[g··] : = Ψ[g·· + δg··]−Ψ[g··]

= Ψ(S[gij ] + ∆S)−Ψ(S[gij])

=
∂Ψ

∂S
∆S +

1

2

∂2Ψ

∂S2
∆S2 +O(∆S3),

(3.6)

where ∆S := S[gij + δgij ]−S[gij]. Upon performing a Taylor expansion of ∆S in δgij to second order (cf. Eq. (2.2)),
Eq. (3.6) becomes:

∆Ψ[g··] =
∂Ψ

∂Sλ
δSλ +

1

2

∂Ψ

∂Sλ

∫

Σ

∫

Σ

δ2Sλ

δgaby δgmn
z

δgaby δgmn
z d3y d3z +

1

2

∂2Ψ

∂S2
λ

δS2
λ +O([δg··]3), (3.7)

where δgaby = δgab(y) and δgmn
z = δgmn(z). The variation δSλ can be written in terms of a functional derivative:

δSλ =

∫

Σ

δSλ

δgab
d3y, (3.8)

and δS2
λ may be written as:

δS2
λ =

∫

Σ

∫

Σ

δSλ

δgaby

δSλ

δgmn
z

d3y d3z. (3.9)

The variation of the functional derivative (3.7) may then be rewritten as:

∆Ψ[g··] =
∂Ψ

∂Sλ
δSλ +

1

2

∫

Σ

∫

Σ

[

∂Ψ

∂Sλ

δ2Sλ

δgaby δgmn
z

+
∂2Ψ

∂S2
λ

δSλ

δgaby

δSλ

δgmn
z

]

δgaby δgmn
z d3y d3z. (3.10)

From the above expression, I identify the second functional derivative:

δ2Ψ

δgaby δgmn
z

=
∂Ψ

∂Sλ

δ2Sλ

δgaby δgmn
z

+
∂2Ψ

∂S2

δSλ

δgaby

δSλ

δgmn
z

. (3.11)

The above expression depends on the second functional derivative (the functional “Hessian”) of the functional Sλ[g
··];

in the remainder of this section, I will derive expressions for the second functional derivative of Sλ.
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B. The Hessian of the Volume Functional

First, I compute the second functional derivative (the functional Hessian) for the volume functional VΣ[g
··]. I first

work out a few useful expressions. Since I am expanding to second order in δgij , it does not suffice to work in terms of
the first order variation δgij = −gia gjb δgab for the metric. In general, what is needed is the second order expression
for the change in the metric ∆gij :

∆gij = −gia gjb δgab + gai gjm gbn δg
ab δgmn +O([δg··]3). (3.12)

The second order expression follows from the property gij gjn = δin; in particular, Eq. (3.12) follows from demanding
that the following expression holds to second order:

(gab + δgab)(gbj +∆gbj) = δaj . (3.13)

The property gij gjn = δin may also be used to derive the following expressions for the derivatives of gij and gij :

∂gmn

∂s
= −gmi gnj

∂gij

∂s
(3.14)

gmn ∂gmn

∂s
= −gmn

∂gmn

∂s
. (3.15)

Using the Jacobi determinant formula with (3.15) I obtain the following result:

∂
√
g

∂s
=

1

2
√
g

∂g

∂s
=

1

2

√
g gij

∂gij
∂s

= −1

2

√
g gij

∂gij

∂s
. (3.16)

Another result is the following:

∂gij

∂gmn
=

1

2

(

δim δjn + δin δ
j
m

)

. (3.17)

Using (3.14), (3.16), and (3.17), I compute the change in the volume element, keeping terms to second order:

∆
√
g :=

(

∂
√
g

∂gmn

)

δgmn +
1

2

(

∂2
√
g

∂gab ∂gmn

)

δgab δgmn +O([δg··]3)

= −1

2

√
g gab δg

ab +
1

2

√
g Yabmn δg

ab δgmn +O([δg··]3)

(3.18)

where Yabmn is defined:

Yabmn :=
1

4
(gab gmn + gma gnb + gmb gna) . (3.19)

The change in the volume functional may be written:

∆VΣ = VΣ[g
·· + δg··]− VΣ[g

··] =

∫

Σ

∆
√
g d3y. (3.20)

Using the result (3.18) and inserting a delta function δ(y, z) into the integral, I obtain:

∆VΣ = −1

2

∫

Σ

gab δg
ab √g d3y + 1

2

∫

Σ

Yabmn δg
ab δgmn√g d3y +O([δg··]3)

= −1

2

∫

Σ

gab δg
ab √g d3y + 1

2

∫

Σ

{Yabmn}y,z δgaby δgmn
z δ̃(y, z)

√
gy
√
gz d

3y d3z +O([δg··]3).

(3.21)

I can read off the first and second functional derivatives from the above by comparing it with the functional Taylor
expansion (2.2):

δVΣ
δgab

= −1

2
gab

√
g, (3.22)

δ2VΣ
δgaby δg

mn
z

= {Yabmn}y,z δ̃(y, z)
√
gy

√
gz. (3.23)
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C. The Hessian of the Einstein-Hilbert Action

I now compute the second functional derivative (the functional Hessian) for the Einstein-Hilbert action SEH [g··]
itself. Expressions for the Hessian of the Einstein-Hilbert action do appear in the literature (particularly in work
which makes use of the saddle-point approximation for quantum gravity—see for instance [22, 23]). I present for
the benefit of the reader an explicit derivation of the Hessian. For the remainder of this article, I assume that the
manifold Σ is compact and without boundary.
I begin by writing down an expression for the change in the Ricci scalar. Though it may be strange to do so before

performing variations of the Christoffel symbols, the variation of the Christoffel symbols is rather complicated at
second order (later, I show that the first-order expressions for the Christoffel symbols suffice). If I obtain a variation
in the Ricci scalar first, I can identify the places where second order terms in the variation of the Christoffel symbols
are needed, if at all. In fact, I show that the second variation of the Einstein-Hilbert action does involve second order
variations in the Christoffel symbols.
The change in the Ricci curvature is worked out in the Appendix (see Eq. (A.7)):

∆Rab = ∇i∆Γi
ba −∇b∆Γi

ia +∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia, (3.24)

where ∆Γi
jk (Eq. (A.1)) is the change in the Christoffel symbols. In terms of ∆Rab and δgab, the change in the Ricci

scalar is:

∆R = δgabRab + gab∆Rab + δgab ∆Rab. (3.25)

One can combine equations (3.18), (3.24), and (3.25) to obtain the following expression for the variation of the
Einstein-Hilbert action (see Appendix for the algebra leading up to Eq. (A.20)):

∆SEH := SEH [g·· + δg··]− SEH [g··]

=

∫

Σ

(∆R
√
g +R∆

√
g +∆R∆

√
g) d3y

= δSEH +

∫

Σ

[

gab (∇i∆Γi
ba −∇b∆Γi

ia) +
1

2
(RYabmn −Rab gmn) δg

ab δgmn + gab
(

∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia

)

+

(

δgab − 1

2
gab gmn δg

mn

)

(∇i∆Γi
ba −∇b∆Γi

ia) +O([δg··]3)

]√
g d3y.

(3.26)
where δSEH is the first-order variation of the action given by:

δSEH :=

∫

Σ

(

Rab −
1

2
gab R

)

δgab
√
g d3y, (3.27)

I recognize that the term gab (∇i∆Γi
ba −∇b∆Γi

ia) in (3.26) is a total divergence–it is a boundary term. Since the the
manifold Σ is assumed to be compact and without boundary, I eliminate this boundary term. The variation of the
Einstein-Hilbert action becomes (A.35):

∆SEH = δSEH +

∫

Σ

[

gab
(

∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia

)

+

(

δgab − 1

2
gab gmn δg

mn

)

(∇i∆Γi
ba −∇b∆Γi

ia)

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn +O([δg··]3)

]√
g d3y,

(3.28)

Note that each time ∆Γi
ab appears in the above expression, it is either accompanied by a factor of δgab or another

factor of ∆Γi
ab. It follows that only the first-order part of ∆Γi

ab contributes to second order terms in (3.28). To obtain
an expression for ∆S that is second order in the variations of the inverse metric δgab, it suffices to use an expression
for ∆Γi

ab to first order in δgab. Recalling the definition of the Christoffel symbol:

Γa
ij =

1

2
gak(∂igkj + ∂jgik − ∂kgij), (3.29)

it is not difficult to show that to first order, the variation of the Christoffel symbol takes the covariant form:

δΓa
ij =

1

2
gak(∇i∆gkj +∇j∆gik −∇k∆gij) +O([δg··]2), (3.30)
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where ∆gij is defined in (3.12). To first order, one may use (3.12) to rewrite Eq. (3.30) in terms of variations of the
inverse metric:

δΓa
ij =

1

2
(gmi gnj g

ak ∇kδg
mn − gnj ∇iδg

an − gmi∇jδg
ma) +O([δg··]2). (3.31)

Given (3.31), I may then rewrite the variation of the Einstein-Hilbert action (3.28) in terms of the first-order expres-
sions δΓa

ij :

∆SEH = δSEH +

∫

Σ

[

gab δΓi
is δΓ

s
ba − gab δΓi

bs δΓ
s
ia +

(

δgab − 1

2
gab gmn δg

mn

)

(∇iδΓ
i
ba −∇bδΓ

i
ia)

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn +O([δg··]3)

]√
g d3y,

(3.32)

where δΓa
ij is given by (3.31). After an application of the divergence theorem, equation (3.32) for the variation of the

Einstein-Hilbert action takes the following form (Eq. (A.35)):

∆SEH = δSEH +

∫

Σ

[

Zij
abmn ∇iδg

ab ∇jδg
mn +

1

2
(RYabmn −Rab gmn) δg

ab δgmn +O([δg··]3)

]√
g d3y, (3.33)

where Zij
abmn is a tensor formed from terms containing products of gij , g

ij , and δij . From metric compatibility, it

follows that Zij
abmn satisfies the property:

∇kZ
ij
abmn = 0. (3.34)

Ultimately, explicit form for Zij
abmn is not important for the results in this paper; what matters is that it satisfies

the property (3.34). Nevertheless, I have derived the following explicit expression for Zij
abmn in the Appendix (Eq.

(A.36)):

Zij
abmn :=

1

4

(

4 gna δ
i
m δjb − 2 gmb δ

j
a δ

i
n − gmb gan g

ij + gij gmn gab − 2 gmn δ
i
b δ

j
a

)

. (3.35)

Equation (3.33) may be converted into the following multiple integral:

∆SEH ≈ δSEH +

∫

Σ

∫

Σ

[

{Zij
abmn}(y,z)∇

y
i δg

ab
y ∇z

j δg
mn
z +

1

2
{RYabmn −Rab gmn}(y,z) δgaby δgmn

z

]

δ̃(y, z)
√
gy
√
gz d

3y d3z,

(3.36)
where ∇y

k and ∇z
k respectively denote covariant derivatives taken with respect to yi and zi, δgaby := δgab(y), δgmn

z :=
δgmn(z) Recall (2.7) the brackets { }(y,z) denote the operation:

{T I}(y,z) =
1

2

(

T I(y) + T I(z)
)

, (3.37)

for some tensor T I = T I(y). δ̃(y, z) is the covariant 3D delta function, defined by the property:
∫

Σ

ϕ(z) δ̃(y, z)
√
gz d

3z = ϕ(z) ⇒ δ̃(y, z) =
δ3(y − z)√

gz
, (3.38)

where ϕ(z) is a scalar and δn(y − z) is the n-dimensional Dirac delta function.
Applying the divergence theorem, I obtain:

∆SEH ≈ δSEH +

∫

Σ

∫

Σ

[

{Zij
abmn}(y,z)

(

∇y
i∇z

j δ̃(y, z)
)

δgaby δgmn
z

+
1

2
{RYabmn −Rab gmn}(y,z) δgaby δgmn

z δ̃(y, z)

]

√
gy
√
gz d

3y d3z,

(3.39)

where I have used the fact that ∇kZ
ij
abmn = 0, since Zij

abmn is constructed from Kronecker deltas and the metric gmn.
By comparison with equation (2.2), I may write down the following expression for the second functional derivative
(Hessian) as:

δ2SEH

δgaby δgmn
z

= 2

[

{Zij
abmn}(y,z)

(

∇y
i∇z

j δ̃(y, z)
)

+
1

2
{RYabmn −Rab gmn}(y,z) δ̃(y, z)

]

√
gy
√
gz. (3.40)
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IV. AN APPROXIMATE SOLUTION TO THE WHEELER-DEWITT EQUATION

In this section, I obtain approximate solutions to the Wheeler-DeWitt equation, using the results obtained in the
preceding sections.

A. Second Functional Derivatives of the Wavefunctional

I now compute the regularized operator (Eq. (2.22)):

G̃abmn(y)
δ2Ψ

δgaby δgmn
y

∼=
√
gy

V

∫

Σ

(

{G̃abmn}(y,z)DS

s
δ2Ψ

δgaby δgmn
z

{)
d3z + G̃abmn(y) ND

s
δ2Ψ

δgaby δgmn
z

{∣
∣

∣

∣

z=y

. (4.1)

for wavefunctionals of the form Ψ = Ψ(Sλ). I now recall Eq. (3.11):

δ2Ψ

δgaby δgmn
z

=
∂Ψ

∂Sλ

δ2Sλ

δgaby δgmn
z

+
∂2Ψ

∂S2
λ

δSλ

δgaby

δSλ

δgmn
z

. (4.2)

From Eqs. (3.22) and (3.27), the first functional derivative of Sλ = SEH − 2λVΣ (3.4) is:

δSλ

δgab
=

(

Rab −
1

2
gab R̃

)√
g, (4.3)

where I have defined:

R̃ := R− 2λ. (4.4)

From Eq. (4.3), one can infer that the second term in (4.2) is nondistributional. Using (3.23) and (3.40), one can
construct the Hessian of Sλ = SEH − 2λVΣ:

δ2Sλ

δgaby δgmn
z

=

[

2{Zij
abmn}(y,z)

(

∇y
i∇z

j δ̃(y, z)
)

+ {(R− λ/2)Yabmn −Rab gmn}(y,z) δ̃(y, z)
]

√
gy
√
gz. (4.5)

Every term in the Hessian (4.5) contains a factor of the delta function or its derivatives. I can now identify the
distributional part of the second functional derivative:

DS

s
δ2Ψ

δgaby δgmn
z

{
=

∂Ψ

∂Sλ

δ2Sλ

δgaby δgmn
z

=
∂Ψ

∂Sλ

[

2{Zij
abmn}(y,z)

(

∇y
i∇z

j δ̃(y, z)
)

+ {(R− λ/2)Yabmn −Rab gmn}(y,z) δ̃(y, z)
]

√
gy
√
gz.

(4.6)

To work out the explicit expression for (4.6), I begin by constructing the following integral:

∫

Σ

(

{G̃abmn}(y,z)
δ2Sλ

δgaby δgmn
z

)

d3z =

∫

Σ

[

2{Zij
abmn G̃

abmn}(y,z)
(

∇y
i∇z

j δ̃(y, z)
)

]

√
gy
√
gz d

3z

+

∫

Σ

[

{G̃abmn ((R − λ/2)Yabmn −Rab gmn)}(y,z) δ̃(y, z)
]

√
gy
√
gz d

3z.

(4.7)

It is straightforward to derive the following result for the two quantities δ = δ(y, z) and Qij = Qij(y, z):

∇y
i (Q

ij ∇z
jδ)−∇z

j (δ∇y
iQ

ij) = Qij ∇y
i∇z

jδ − δ∇z
j∇y

iQ
ij . (4.8)

Using the above result, I may rewrite (4.7) as:

∫

Σ

(

{G̃abmn}(y,z)
δ2Sλ

δgaby δgmn
z

)

d3z =

∫

Σ

[

2∇y
i∇z

j{Zij
abmn G̃

abmn}(y,z)
]

δ̃(y, z)
√
gy
√
gz d

3z

+

∫

Σ

[

{G̃abmn ((R − 2/λ)Yabmn −Rab gmn)}(y,z) δ̃(y, z)
]

√
gy
√
gz d

3z,

(4.9)
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which becomes:
∫

Σ

(

{G̃abmn}(y,z)
δ2Sλ

δgaby δgmn
z

)

d3z = 2

[

∇y
i∇z

j{Zij
abmn G̃

abmn}(y,z)
]

z=y

√
g + G̃abmn ((R− 2/λ)Yabmn −Rab gmn)

√
g.

(4.10)

Note that Zij
abmn (3.35) is a quadratic expression in gij and δij , and G̃

abmn is a quadratic expression in gij . It follows

that covariant derivatives of Zij
abmn G̃

abmn vanishes by virtue of metric compatibility (∇kgij = 0 and ∇kg
ij = 0; cf.

(3.34)). From the definition of Yabmn (3.19):
∫

Σ

(

{G̃abmn}(y,z)
δ2Sλ

δgaby δgmn
z

)

d3z = G̃abmn

[

1

4
(R− λ/2)(gab gmn + 2 gam gbn)−Rab gmn

]√
g. (4.11)

Using the definition (2.23) for G̃abmn, I work out the following quantities:

G̃abmn gam gbn = −9

G̃abmn gab gmn = 3

G̃abmnRab gmn = G̃abmn gab Rmn = R

G̃abmnRmnRab = R2 − 2RmnRmn.

(4.12)

I then use Eqs. (4.11) and (4.12) to obtain the following expression:
∫

Σ

(

{G̃abmn}(y,z)DS

s
δ2Ψ

δgaby δgmn
z

{)
d3z =

∂Ψ

∂Sλ

∫

Σ

(

{G̃abmn}(y,z)
δ2SEH

δgaby δgmn
z

)

d3z

=
∂Ψ

∂Sλ
G̃abmn

(

1

4

(

R− λ

2

)

(gab gmn + 2 gam gbn)−Rab gmn

)√
g

= −1

8

∂Ψ

∂Sλ
(38R− 15λ)

√
g.

(4.13)

I now work out the non-distributional part of the second functional derivative of Ψ in Eq. (4.15). It is not too
difficult to show that:

δSλ

δgaby

δSλ

δgmn
z

=

(

Ry
ab −

1

2
gyab R̃

y

)(

Rz
mn − 1

2
gzmn R̃

z

)

√
gy

√
gz

=

(

Ry
abR

z
mn − 1

2
R̃z gzmnR

y
ab −

1

2
R̃y gyabR

z
mn +

1

4
gyab g

z
mn R̃

y R̃z

)

√
gy

√
gz,

(4.14)

again, recalling the definition R̃ := R − 2λ (Eq. (4.4)). Since equation (4.14) contains no delta functions, I write
down the non-distributional part of the second functional derivative of Ψ:

ND

s
δ2Ψ

δgaby δgmn
z

{
=
∂2Ψ

∂S2
λ

δSλ

δgaby

δSλ

δgmn
z

=
∂2Ψ

∂S2
λ

(

Ry
abR

z
mn − 1

2
R̃z gzmnR

y
ab −

1

2
R̃y gyabR

z
mn +

1

4
gyab g

z
mn R̃

y R̃z

)

√
gy

√
gz.

(4.15)

Making use of the symmetry in G̃abmn (recall that it is symmetric in the indices (a, b) and (m,n)), Eq. (4.15) yields
the result:

G̃abmn(y) ND

s
δ2Ψ

δgaby δgmn
z

{∣
∣

∣

∣

z=y

= G̃abmn ∂
2Ψ

∂S2
λ

(

RabRmn − R̃ gmnRab +
1

4
gab gmn R̃

2

)

g. (4.16)

Using (4.12), the non-distributional term (4.16) simplifies to:

G̃abmn(y) ND

s
δ2Ψ

δgaby δgmn
z

{∣
∣

∣

∣

z=y

=
1

4

∂2Ψ

∂S2
λ

(

3R2 − 8RmnRmn − 4Rλ+ 12λ2
)

g. (4.17)

Finally, plugging equations (4.13) and (4.17) into equation (4.1), I obtain the following result:

Gabmn δ2Ψ

δgaby δgmn
y

∼= κ2

2

(

− 1

2V

∂Ψ

∂Sλ
(38R− 15λ)

√
g +

∂2Ψ

∂S2
λ

(

3R2 − 8RmnRmn − 4Rλ+ 12λ2
)√

g

)

, (4.18)

where (recalling Eq. (2.23)) I have made use of the relation 2 κ2 G̃abmn =
√
g Gabmn.
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B. An Approximate Solution to the Wheeler-DeWitt Equation

The result (4.18) may be used to obtain approximate solutions to the regularized Wheeler-DeWitt equation (2.24).
First, I set V = v0, where v0 is a constant. For later convenience, I wish to work in terms of a dimensionless
parameter; since v0 has units of volume, it is helpful to write v0 in terms of the Planck volume (~κ)3/2 and a
dimensionless parameter b:

v0 = b3(~κ)3/2. (4.19)

To solve the regularized Wheeler-DeWitt equation, I take a low-curvature limit, and neglect terms to second order in
the Ricci curvature,14 so that Eq. (4.18) yields:

Gijkl δ2Ψ

δgijy δgkly
≈ κ2

2

(

− 1

2 b3(~κ)3/2
∂Ψ

∂Sλ
(38R− 15λ)− ∂2Ψ

∂S2
λ

(

4Rλ− 12λ2
)

)√
g (4.20)

With some algebra, the regularized Wheeler-DeWitt equation (2.24) becomes:

−
(

2 ~2 κ2 λ
∂2Ψ

∂S2
λ

+
19

√
~κ

2 b3
∂Ψ

∂Sλ
−Ψ

)

R
√
g +

1

2

(

15λ
√
~κ

2 b3
∂Ψ

∂Sλ
+ 12 ~2 κ2 λ2

∂2Ψ

∂S2
λ

− 4ΛΨ

)

√
g = 0 (4.21)

For simplicity, I first consider the λ = Λ = 0 case; here, the Wheeler-DeWitt equation simplifies considerably:

−
(

19
√
~κ

2 b3
∂Ψ

∂SEH
−Ψ

)

R
√
g = 0 (4.22)

Eq. (4.22) admits the following solution:

Ψ0[g
··] = C0 exp

[

2 b3

19
√
~κ

SEH [g··]

]

. (4.23)

Before proceeding to the λ 6= 0, Λ 6= 0 case, I argue for the necessity of taking the low-curvature limit, in which I
neglect terms quadratic in the Ricci curvature. Recall that the volume average regularization used to obtain Eqs.
(4.18) and (4.24) is based on the assumption that the Wheeler-DeWitt equation is a low energy description for the
effective field theory that results after one has integrated out short distance (large curvature) modes for some theory
of quantum gravity. If I re-insert (4.23) into (4.18) and multiply through by ~

3 κ, I obtain (setting λ = 0):

~
3 κGabmn δ2Ψ

δgaby δgmn
y

∼= 1

2

(

−2 ~κR
√
g +

4

192
b6 ~2 κ2

(

3R2 − 8RmnRmn

)√
g

)

Ψ[g··]. (4.24)

If b is on the order of unity (which cooresponds to choosing v0 to be on the order of the Planck volume), the limit
in which one can neglect the quadratic curvature terms corresponds to the limit ~κ |Rab| ≪ 1, or when the Ricci
curvature is much less than the inverse Planck area (~κ)−1. Curvatures on the order of the inverse Planck area
correspond to short distance behavior, and it follows that the low-curvature limit is necessary if one chooses the
averaging volume v0 to be on the order of the Planck volume (~κ)3/2.
For the λ 6= 0, Λ 6= 0 case, I can solve the Wheeler-DeWitt equation (4.21) by seeking a function Ψ(Sλ) that satisfies

the following set of ordinary differential equations:

2 ~2 κ2 λ
∂2Ψ

∂S2
λ

+
19

√
~κ

2 b3
∂Ψ

∂Sλ
−Ψ = 0 (4.25)

5λ
√
~κ

b3
∂Ψ

∂Sλ
+ 8 ~2 κ2 λ2

∂2Ψ

∂S2
λ

− 8

3
ΛΨ = 0. (4.26)

14 This is essentially a small curvature expansion for the Wheeler-DeWitt equation, which was introduced in [21].
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The first equation (4.25) admits solutions of the following form:

Ψ±(Sλ) = C± exp

[(

−19±
√
361 + 32λ b6 ~κ

8λ b3 (~κ)3/2

)

Sλ

]

(4.27)

where C+ and C− are complex constants. In the λ → 0 limit, Ψ+ becomes the λ = 0 solution Ψ0 (4.23). Inserting
Ψ± (4.27) into Eq. (4.26), I obtain the following condition on the parameter λ:

99
(

19−Q
√

361 + 32 b6 ~κλ
)

+ 32 b6 ~κ (3λ− 2Λ) = 0. (4.28)

where Q = +1 for Ψ+ and Q = −1 for Ψ−. Solving for λ, I find that for both Q = 1 and Q = −1, I obtain the
following values for λ:

λ =
128 b6 ~κΛ− 33

(

15±
√
768 b6 ~κΛ + 225

)

192 b6 ~κ
. (4.29)

Though Eqs. (4.27) and (4.29) describe a solution to the regularized Wheeler-DeWitt equation, they are unsat-
isfactory in their present form due to their dependence on the regularization parameter b. While one might expect
b ∼ 1, so that v0 is on the order of the Planck volume, the precise value for b is dependent on the details of the
short distance physics. On the other hand, the viewpoint here is that quantum general relativity (and by extension
quantum geometrodynamics) is a low energy effective field theory, which can be formulated without reference to the
details of short distance physics; tt is therefore appropriate to seek results that are independent of the value for the
regularization parameter b.
To obtain a regularization independent result, I recall that the volume averaging regularization was introduced to

avoid a delta function divergence, and note that divergences reappear in the Wheeler-DeWitt equation when taking
the limit b → 0, which corresponds to the limit in which the averaging volume goes to zero. I also recall that in
perturbative quantum field theory, the coupling constants in the (unrenormalized) action are bare constants that do
not correspond to physically meaningful quantities and that in renormalization, one absorbs the divergences into the
coupling constants by replacing the bare coupling constants with coupling constants that depend on the regularization
parameter (which is effectively what is done with the addition of counterterms in the action). With this in mind, I
imagine that κ represents a “bare” quantity, and introduce a dependence on the regularization parameter b. I then
require that for small b, κ has the following leading-order dependence on b:

κ = κ̃ b6 +O(b7) (4.30)

For the λ = Λ = 0 solution (4.23), it is straightforward to see that in the limit b → 0, Eq. (4.30) for κ yields the
result:15

lim
b→0

Ψ0[g
··] = C0 exp

[

2

19
√
~ κ̃

SEH [g··]

]

. (4.31)

For the λ 6= 0, Λ 6= 0 solution Ψ+ (4.27), the limit b→ 0 yields a similar result:16

lim
b→0

Ψ+[g
··] = C+ exp

[

2

19
√
~ κ̃

Sλ[g
··]

]

. (4.32)

Taking the same limit for the expression for λ in Eq. (4.29), I find that in the “−” case, I obtain a finite result that
is independent of κ̃:

λ =
76Λ

15
(4.33)

Thus, in the long-distance limit (b→ 0), Ψ+ has the explicit form:

Ψ[g··] = A exp

[

2

19
√
~ κ̃

(

SEH [g··]− 152

15
ΛV [g··]

)]

. (4.34)

15 Note that the limit b → 0 provides further justification for dropping the curvature squared terms in (4.24).
16 The exponent becomes infinite in the Ψ

−
case.
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Eq. (4.34) forms the main result of this article; it describes a solution of the regularized Wheeler-DeWitt equation in
the low curvature, long-distance limit.
One may note that the solution (4.34) has a form similar to the that proposed in Eq. (107) of [21] for the large-

volume limit. Unfortunately, the solution (4.34), obtained from a Regge simplicial lattice regularization, is distinct
from the large-volume solution presented in Eqs. (107), (117), and (118) of [21], so a direct comparison cannot be
made. In particular, the coefficients (Eq. (118) of [21]) in front of the volume functional and the Einstein-Hilbert
functional in their solution differ by a factor of i, and have a different dependence on the value of Λ; in the large-volume
the solution presented in [21], the coefficient for the volume functional vanishes in the limit Λ → 0, the coefficient in
front of the Einstein-Hilbert functional diverges.17

C. A 3-Sphere Universe

I conclude this article with a brief investigation of the solution described in Eq. (4.34) for a minisuperspace
restriction to the “round” geometry for a 3-sphere, given by the line element:

ds2 = r2
[

dψ2 + sin2 ψ
(

dθ2 + sin2 θ dφ2
)]

(4.35)

For the round metric (4.35) on the 3-sphere, SEH = 12 π2 r, and V = 2 π2 r3. The wavefunctional (4.34) evaluated
for the geometry (4.35) is given by:

Ψ(r) = A exp

[

24 π2

19
√
~ κ̃

(

r − 76

45
Λ r3

)]

. (4.36)

I note that for Λ > 0, limr→∞ Ψ(r) = 0, and that Ψ(r) has a maximum at r =
√

15/76Λ; in a DeSitter universe with

a closed slicing, this 3-geometry corresponds to a time t satisfying r2 = 3 cosh2(t
√

3/Λ)/Λ. In the minisuperspace
restriction, one can normalize Ψ(r), as long as κ̃ and Λ have finite values; the integral (performed with Mathematica
[24]) of the square of Ψ has the following form:

|A|2
∫ ∞

0

exp
(

µ r − ν

3
r3
)

dr =
|A|2
6 ν

(

4π ν2/3 Bi(µ/ν1/3) + 3µ2
1F 2(1; 4/3, 5/3;µ

3/9 ν)
)

(4.37)

where Bi(x) is an Airy function of the second kind, and pF q(r1, ...rp; s1, ...sq;x) is a generalized hypergeometric
function. Though the result diverges for ν → 0 (which corresponds to taking Λ → 0), the above remains finite for
finite values of the parameters µ and ν. The divergence in the limit ν → 0 corresponds to setting Λ = 0; in this
case, one can see that limr→∞ Ψ(r) = ∞. This suggests that for the 3-sphere manifold, the state Ψ[g··] (4.34) is
not normalizable for Λ = 0. One might observe that the unboundedness for Ψ(r) when Λ = 0 corresponds to the
limit in which the volume becomes infinite. In minisuperspace models, the scale factor of the FRW metric, which
controls the volume for spatial slices, often plays the role of a time parameter [1, 4, 25]. One may attempt to resolve
the unboundedness in the (non-minisuperspace) functional Ψ[g··] by treating the volume VΣ of the 3-manifold Σ as
a time parameter; however, while this might lead to a normalizable state at a fixed volume, it does so at the cost of
nonunitary time evolution [26].

V. FINAL REMARKS

In this article, I have examined a volume average regularization for the second functional derivative operator in the
Wheeler-DeWitt equation. I have argued that such a regularization is natural for studying quantum geometrodynamics
if one regards quantum general relativity to be a low energy effective field theory of quantum gravity. In the low
curvature, long distance limit, I have found a solution (Eq. (4.34)) to the regularized Wheeler-DeWitt equation.
An important question is whether the solution Ψ[g··] Eq. (4.34) describes a physically meaningful state for quantum

geometrodynamics. I have briefly studied the features of Ψ[g··] Eq. (4.34) for 3-sphere geometries, and have found
that for finite κ̃ and finite Λ > 0, the solution is normalizable on the minisuperspace restriction to metrics of the form
(4.36). It is curious that the minisuperspace state Ψ(r) (4.36) is peaked at the geometry corresponding to a particular

17 This remark is not meant to be a criticism; I am merely pointing out the differences between the solution presented in this article and
the solution presented in [21] that preclude a direct comparison.
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time in the closed slicing of DeSitter spacetime; this seems to suggest that the state described by Ψ[g··] Eq. (4.34)
contains some information about the temporal placement of the 3-geometry in spacetime which in turn suggests that
a more complete account of the dynamics requires solutions with a more complicated dependence on the 3-geometry.
One difficulty, as discussed earlier is the unboundedness of Ψ[g··] for geometries on the 3-sphere manifold when Λ = 0.
One can, however, place an upper bound on SEH [g··] with certain choices of topology on compact manifolds; in fact,
it has been shown [27] that SEH [g··] always has a negative value for the 3-torus.18

There are some general issues that have not been addressed in this article, some which have been discussed elsewhere
in the literature, and some which I leave for future work. A particularly intriguing line of investigation, which I leave for
future work, concerns the V = VΣ quantum gravity model briefly described in section IID. Another question of interest
is whether it is appropriate to replace the second functional derivative operator in the Wheeler-DeWitt equation (1.1)
with a Laplace-Beltrami operator, such as those described in [2] and [5]. Though the methods presented in this article
are motivated by effective field theory considerations and inspired by renormalization theory, the precise relationship
between the methods presented here and perturbative quantum field theory is presently unclear. In particular, the
methods presented here are formally nonperturbative and gauge/slicing dependent19, which complicate the task of
establishing the relationship between the results presented in this article and relativistic quantum field theory. One
difficulty in particular concerns the fact that the volume averaging is performed over a spatial volume, rather than a
spacetime volume; to fully establish the relationship between the regularization presented in this article to a covariant
regularization, one may be required to perform an additional temporal averaging, in which one must confront the
problem of time. Furthermore, one must take into consideration the fact that Ψα[g

··] are approximate20 solutions
to an equation that is only valid in a low-energy limit—in the effective field theory framework, the Wheeler-DeWitt
equation itself is only valid at scales in which quantum general relativity remains valid; in particular, the solution
is only expected to be valid at scales where one can ignore the effects of curvature-squared terms in the bulk (4D)
action. Since the approximate solutions Ψα[g

··] are functionals of gij , they automatically contain information at all
scales [17]. This may require the suppression of information contained in Ψα[g

··] for 3-geometries corresponding to
scales where the Wheeler-DeWitt equation is no longer expected to be valid.
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18 An interesting question is whether one can identify other 3-manifolds that have this property—in particular, one seeks 3-manifolds with
a negative or vanishing Yamabe (topological) invariant [28], which implies SEH [g··] ≤ 0.

19 of particular concern is the fact that low 3-curvature limit used to obtain the approximate solutions is gauge/slicing dependent
20 Though as argued in section IVB, such an approximation is necessary if one considers the reasoning used to justify the volume average

regularization.
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Appendix: The Variation of the Einstein-Hilbert Action

1. The Change in the Ricci Tensor

In this section, I review the variation of the Ricci tensor. In particular, I work out the change in the curvature
tensor under the following transformation of the connection coefficients:

Γ̃a
ij = Γa

ij +Qa
ij ⇒ Qa

ij = ∆Γa
ij , (A.1)

where Qa
ij are components of a tensor. The transformed Riemann curvature tensor may be written:

R̃i
jab = Ri

jab + ∂aQ
i
bj − ∂bQ

i
aj +Qi

as Γ
s
bj + Γi

as Q
s
bj −Qi

bs Γ
s
aj − Γi

bs Q
s
aj +Qi

as Q
s
bj −Qi

bs Q
s
aj . (A.2)

Comparing this with the covariant derivatives of Qa
ij :

∇aQ
i
bj = ∂aQ

i
bj + Γi

asQ
s
bj − Γs

abQ
i
sj − Γs

ajQ
i
bs

∇bQ
i
aj = ∂bQ

i
aj + Γi

bsQ
s
aj − Γs

baQ
i
sj − Γs

bjQ
i
as,

(A.3)

I find that:

R̃i
jab −Ri

jab + Ss
ab Q

i
sj = ∇aQ

i
bj −∇bQ

i
aj +Qi

as Q
s
bj −Qi

bs Q
s
aj , (A.4)

where Ss
ab := Γs

ab−Γs
ba is the torsion tensor. The torsion tensor comes from the fact that the terms Γs

abQ
i
sj and Γs

baQ
i
sj

in the covariant derivatives (A.3) do not appear in the expression (A.2), and must be added in when converting
the partial derivatives of the connection variations to covariant derivatives. I contract indices to also obtain the
transformation of the Ricci tensor:

R̃ab −Rab + Ss
ib Q

i
sa = ∇iQ

i
ba −∇bQ

i
ia +Qi

is Q
s
ba −Qi

bs Q
s
ia. (A.5)

Recalling Qa
ij = ∆Γa

ij (A.1), I may rewrite the above as:

R̃ab −Rab + Ss
ib ∆Γi

sa = ∇i∆Γi
ba −∇b∆Γi

ia +∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia. (A.6)

For a torsion-free connection, Ss
ib = 0, I may rewrite (A.6) as:

∆Rab := R̃ab −Rab = ∇i∆Γi
ba −∇b∆Γi

ia +∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia. (A.7)

2. The Variation of the Einstein-Hilbert Action to First Order

I now review the first-order variation of the Einstein-Hilbert action, which may be found in a standard text on
general relativity [29–31]. The variation of the Ricci tensor is:

δRab = ∇iδΓ
i
ba −∇bδΓ

i
ia, (A.8)

where:

δΓi
ia =

1

2
gis(∇iδgsa +∇aδgis −∇sδgia)

δΓi
ba =

1

2
gis(∇bδgsa +∇aδgbs −∇sδgba).

(A.9)

The variation of the Ricci Tensor takes the following form:

2δRab = gij (∇i∇bδgja +∇i∇aδgbj −∇i∇jδgba −∇b∇aδgij) , (A.10)

and it follows that the variation of the Ricci scalar is:

δR := gab δRab +Rab δg
ab = gij gab ∇i(∇bδgja −∇jδgab) +Rab δg

ab. (A.11)
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To first order, the variation of the metric and its inverse are related in the following manner:

δgab = −gam gbn δg
mn. (A.12)

I use the above (A.12) to rewrite equations (A.10) and (A.11) as:

2δRab = −gij (gjm gan∇i∇bδg
mn + gbm gjn∇i∇aδg

mn − gam gbn∇i∇jδg
mn − gim gjn∇b∇aδg

mn) , (A.13)

δR = −(∇i∇jδg
ij − gmn g

ij ∇i∇jδg
mn) +Rab δg

ab. (A.14)

Using (3.18), the variation of the volume element is, to first order:

δ
√
g =

1

2

√
g gnm δgmn = −1

2

√
g gmn δg

mn. (A.15)

I now present the algebra for the first variation of the Einstein-Hilbert action:

δSEH =

∫

Σ

(δR
√
g +Rδ

√
g) d3y

=

∫

Σ

(

(

−gij gab ∇i(gjm gan∇bδg
mn − gam gbn∇jδg

mn) +Rab δg
ab
) √

g − 1

2

√
g gab δg

abR

)

d3y

=

∫

Σ

(

Rab −
1

2
gab R

)

δgab
√
g d3y,

(A.16)

where a boundary term has been dropped in the second equality due to the fact that the manifold Σ is compact and
without boundary (recall the metric compatibility condition ∇kgij = 0, ∇kg

ij = 0).

3. The Variation of the Einstein-Hilbert Action to Second Order

Here, I present some algebra for the variation of the Einstein-Hilbert action leading up to Eq. (3.26). First, I
expand the variation of the Einstein-Hilbert action:

∆SEH := SEH [g·· + δg··]− SEH [g··]

=

∫

Σ

(∆R
√
g +R∆

√
g +∆R∆

√
g) d3y

=

∫

Σ

(

[

δgabRab + gab∆Rab + δgab ∆Rab

]

− 1

2
R
[

gab δg
ab − Yabmn δg

ab δgmn
]

− 1

2
gmn ∆R δg

mn

+O([δg··]3)

)√
g d3y

=

∫

Σ

(

[

δgabRab + gab∆Rab + δgab ∆Rab

]

− 1

2
Rgab δg

ab +
1

2
RYabmn δg

ab δgmn

− 1

2
gmn δg

mn{δgabRab + gab ∆Rab}+O([δg··]3)

)√
g d3y.

(A.17)

Next, I substitute the expression for ∆Rab in Eq. (A.7) into Eq. (A.17) to obtain (keeping terms to second order in
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variations):

∆SEH =

∫

Σ

(

{

δgabRab + (gab + δgab)
[

∇i∆Γi
ba −∇b∆Γi

ia +∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia

]}

− 1

2
Rgab δg

ab

+
1

2
RYabmn δg

ab δgmn − 1

2
gmn δg

mn
{

δgabRab + gab
[

∇i∆Γi
ba −∇b∆Γi

ia +∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia

]}

+O([δg··]3)

)√
g d3y

=

∫

Σ

(

{

δgabRab + gab
[

∇i∆Γi
ba −∇b∆Γi

ia +∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia

]

+ δgab
(

∇i∆Γi
ba −∇b∆Γi

ia

)}

− 1

2
Rgab δg

ab +
1

2
RYabmn δg

ab δgmn − 1

2
gmn δg

mnδgabRab −
1

2
gmn δg

mngab
(

∇i∆Γi
ba −∇b∆Γi

ia

)

+O([δg··]3)

)√
g d3y.

(A.18)
A rearrangement of terms yields the result (Eq. (3.26)):

∆SEH =

∫

Σ

[(

Rab −
1

2
Rgab

)

δgab + gab (∇i∆Γi
ba −∇b∆Γi

ia) + gab ∆Γi
is ∆Γs

ba − gab ∆Γi
bs ∆Γs

ia

+ δgab (∇i∆Γi
ba −∇b∆Γi

ia) +
1

2
RYabmn δg

ab δgmn − 1

2
Rab gmn δg

mn δgab

− 1

2
gab gmn δg

mn(∇i∆Γi
ba −∇b∆Γi

ia) +O([δg··]3)

]√
g d3y.

(A.19)

Using Eq. (A.16), I may further simplify this to obtain the result:

∆SEH = δSEH +

∫

Σ

[

gab (∇i∆Γi
ba −∇b∆Γi

ia) +
1

2
(RYabmn −Rab gmn) δg

ab δgmn + gab
(

∆Γi
is ∆Γs

ba −∆Γi
bs ∆Γs

ia

)

+

(

δgab − 1

2
gab gmn δg

mn

)

(∇i∆Γi
ba −∇b∆Γi

ia) +O([δg··]3)

]√
g d3y.

(A.20)

4. Simplifying Terms in the Second Order Variation of the Einstein-Hilbert Action

In this section, I present the algebra for obtaining Eq. (3.33) from Eq. (3.32). First, I rewrite Eq. (3.32):

∆SEH = δSEH +

∫

Σ

[

gab δΓi
is δΓ

s
ba − gab δΓi

bs δΓ
s
ia +

(

δgab − 1

2
gab gmn δg

mn

)

(∇iδΓ
i
ba −∇bδΓ

i
ia)

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.21)

I apply the divergence theorem to obtain:

∆SEH = δSEH +

∫

Σ

[

gab δΓi
is δΓ

s
ba − gab δΓi

bs δΓ
s
ia −

(

∇iδg
ab − 1

2
gab gmn ∇iδg

mn

)

δΓi
ba

+

(

∇bδg
ab − 1

2
gab gmn∇bδg

mn

)

δΓi
ia +

1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y

= δSEH +

∫

Σ

[

gab δΓi
is δΓ

s
ba − gab δΓi

bs δΓ
s
ia −∇iδg

ab δΓi
ba +

1

2
gab gmn ∇iδg

mn δΓi
ba +∇bδg

ab δΓi
ia

− 1

2
gab gmn ∇bδg

mn δΓi
ia +

1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.22)

Now the first-order variation of the Christoffel symbols (3.31) may be used to obtain the following expressions,
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which will be useful for working out expressions for (A.27):

δΓs
ia =

1

2
(gmi gna g

sk ∇kδg
mn − gna∇iδg

sn − gmi∇aδg
ms)

δΓs
ba =

1

2
(gmb gna g

sk ∇kδg
mn − gna ∇bδg

sn − gmb ∇aδg
ms)

δΓi
bs =

1

2
(gmb gns g

ik ∇kδg
mn − gns ∇bδg

in − gmb ∇sδg
mi)

δΓi
ia = −1

2
(gmi∇aδg

mi).

(A.23)

I use the last one (δΓi
ia = − 1

2 gij ∇aδg
ij) to simplify some terms in (A.22):

∆SEH = δSEH +

∫

Σ

[

−1

2
gab gij ∇sδg

ij δΓs
ba − gab δΓi

bs δΓ
s
ia −∇iδg

ab δΓi
ba +

1

2
gab gmn ∇iδg

mn δΓi
ba

− 1

2
gij ∇bδg

ab ∇aδg
ij +

1

4
gab gmn gij ∇bδg

mn∇aδg
ij +

1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.24)

Now I insert some Kronecker deltas and change index labels so that I can combine terms:

∆SEH = δSEH +

∫

Σ

[

−1

2
gab gmn ∇sδg

mn δΓs
ba − gab δΓi

bs δΓ
s
ia −∇sδg

ab δΓs
ba +

1

2
gab gmn∇sδg

mn δΓs
ba

− 1

2
gij ∇bδg

ab ∇aδg
ij +

1

4
gab gmn gij ∇bδg

mn ∇aδg
ij +

1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y

= δSEH +

∫

Σ

[(

1

2
gab gmn∇sδg

mn − 1

2
gab gmn ∇sδg

mn −∇sδg
ab

)

δΓs
ba − gab δΓi

bs δΓ
s
ia

− 1

2
gij ∇bδg

ab ∇aδg
ij +

1

4
gab gmn gij ∇bδg

mn ∇aδg
ij +

1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y

= δSEH +

∫

Σ

[

−∇sδg
ab δΓs

ba − gab δΓi
bs δΓ

s
ia −

1

2
gij ∇bδg

ab ∇aδg
ij +

1

4
gab gmn gij ∇bδg

mn∇aδg
ij

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.25)

I again change index labels and insert Kronecker deltas to simplify further:

∆SEH = δSEH +

∫

Σ

[

−∇sδg
ab δΓs

ba − gab δΓi
bs δΓ

s
ia −

1

2
gmn δ

b
i δ

a
j ∇iδg

ab∇jδg
mn +

1

4
gij gmn gab ∇jδg

mn ∇iδg
ab

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.26)
I now define the following two scalar quantities:

A1 = ∇sδg
ab δΓs

ba

A2 = gab δΓi
bs δΓ

s
ia,

(A.27)

so that the variation of the action becomes (after collecting terms in (A.26)):

∆SEH = δSEH +

∫

Σ

[

−(A1 +A2) +

(

1

4
gij gmn gab −

1

2
gmn δ

b
i δ

a
j

)

∇iδg
ab ∇jδg

mn

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.28)

I now work out explicit expressions for A1 and A2, using the expressions Eq. (A.23). A1 is relatively simple to
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work out:

A1 = ∇sδg
ab δΓs

ba

=
1

2
∇sδg

ab (gmb gna g
sk ∇kδg

mn − gna∇bδg
sn − gmb∇aδg

ms)

=
1

2
(gmb gna g

ij ∇iδg
ab ∇jδg

mn − 2 gna∇mδg
ab∇bδg

mn).

(A.29)

I perform additional index relabelings and insert Kronecker deltas to obtain:

A1 =
1

2
(gmb gna g

ij − 2 gna δ
i
m δjb)∇iδg

ab ∇jδg
mn. (A.30)

The computation of A2 is more involved (again, I use Eq. (A.23)):

A2 = gab δΓi
bs δΓ

s
ia

=
1

4
gab (gmb gns g

ik ∇kδg
mn − gns ∇bδg

in − gmb∇sδg
mi) (gpi gqa g

sk ∇kδg
pq − gqa ∇iδg

sq − gpi∇aδg
ps)

=
1

4
gab
(

gmb gns g
ir ∇rδg

mn gpi gqa g
sk ∇kδg

pq − gmb gns g
ir ∇rδg

mn gqa ∇iδg
sq − gmb gns g

ir ∇rδg
mn gpi∇aδg

ps

− gns ∇bδg
in gpi gqa g

sk ∇kδg
pq + gns ∇bδg

in gqa ∇iδg
sq + gns ∇bδg

in gpi∇aδg
ps

− gmb ∇sδg
mi gpi gqa g

sk ∇kδg
pq + gmb ∇sδg

mi gqa ∇iδg
sq + gmb ∇sδg

mi gpi ∇aδg
ps

)

.

(A.31)
After performing some contractions and index relabeling, the above becomes:

A2 =
1

4

(

gmb∇aδg
mn∇nδg

ab − gmb gns g
ir ∇rδg

mn ∇iδg
sb − gns ∇rδg

an∇aδg
rs

− gpi∇bδg
in ∇nδg

pb + gns ∇rδg
an∇aδg

sr + gbm gns g
ir ∇rδg

mn ∇iδg
bs

− gmb gpi g
sk ∇sδg

mi∇kδg
pb + gmb ∇aδg

mn∇nδg
ab + gpi ∇bδg

ni∇nδg
pb

)

.

(A.32)

The underlined terms cancel, and obtain the following expression:

A2 =
1

4
(2gmb∇aδg

mn ∇nδg
ab − gmb gpi g

sk ∇sδg
mi∇kδg

pb)

=
1

4
(2gmb δ

j
a δ

i
n ∇jδg

mn ∇iδg
ab − gmb gan g

ij ∇jδg
mn ∇iδg

ab)

=
1

4
(2gmb δ

j
a δ

i
n − gmb gan g

ij)∇iδg
ab ∇jδg

mn.

(A.33)

I now insert Eqs. (A.30) and (A.33) into Eq. (A.28) to obtain the following expression for ∆SEH , which I simplify:

∆SEH = δSEH +

∫

Σ

[(

gna δ
i
m δjb −

1

2
gmb gna g

ij − 1

2
gmb δ

j
a δ

i
n +

1

4
gmb gan g

ij

)

∇iδg
ab ∇jδg

mn

+

(

1

4
gij gmn gab −

1

2
gmn δ

i
b δ

j
a

)

∇iδg
ab ∇jδg

mn +
1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y

= δSEH +

∫

Σ

[

1

4

(

4 gna δ
i
m δjb − 2 gmb δ

j
a δ

i
n − gmb gan g

ij + gij gmn gab − 2 gmn δ
i
b δ

j
a

)

∇iδg
ab ∇jδg

mn

+
1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y.

(A.34)
Finally, I write:

∆SEH = δSEH +

∫

Σ

[

Zij
abmn∇iδg

ab ∇jδg
mn +

1

2
(RYabmn −Rab gmn) δg

ab δgmn

]√
g d3y, (A.35)

where I define following quantity:

Zij
abmn :=

1

4

(

4 gna δ
i
m δjb − 2 gmb δ

j
a δ

i
n − gmb gan g

ij + gij gmn gab − 2 gmn δ
i
b δ

j
a

)

. (A.36)
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