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propagator, but that the second effect does not. Our result agrees with the
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1 Introduction

It has long been clear that there is something peculiar about long wave-
length gravitons on cosmological backgrounds [1]. Unlike photons, which
are precluded by conformal invariance from locally perceiving the expansion
of the Universe, inflationary expansion leads to the production of gravitons
[2, 3]. This process is the source of the tensor power spectrum predicted by
primordial inflation [4].

Long wavelength gravitons also make a peculiar contribution to the re-
tarded propagator, which DeWitt and Brehme famously denoted as the “tail
term” [5]. Unlike the usual delta function on the past light-cone, the tail
contribution is nonzero inside the past light-cone [6]. This fact has great rel-
evance to computations of gravitational radiation reaction in binary mergers
[7, 8, 9]. It is also responsible for the curious infrared “running” of the New-
tonian potential induced by the one loop gravitational vacuum polarization
of conformal matter on de Sitter background [10, 11],

Ψ = −GM

ar

{
1 +

4G

15πa2r2
+

2GH2

5π
ln(aHr) +O(G2)

}
. (1)

Here H is the Hubble constant, a = eHt is the de Sitter scale factor and r
is the co-moving position. The fractional correction of 4G

15πa2r2
is just the de

Sitter descendant of the flat space effect which has long been known [12, 13].
The new term proportional toGH2 is specific to nonzero Hubble constant and
causes perturbation theory to break down, both for large r and at late times.
Even though conformal matter induces almost the same vacuum polarization,
in de Sitter conformal coordinates, as in flat space, the gravitational response
to that source is very different on account of the strong de Sitter tail term.

Analytic continuation carries the tail term of the retarded propagator
into the tail part of the Feynman propagator which can mediate quantum
graviton effects to other particles [14, 15]. An important example is the one
graviton contribution to the electromagnetic vacuum polarization [16]. This
induces an infrared running of the Coulomb potential similar to (1) [17],

Φ =
Q

4πr

{
1 +

2G

3πa2r2
+

2GH2

π
ln(aHr) +O(G2)

}
. (2)

As with the Newtonian potential (1), the fractional correction 2G
3πa2r2

is just
the de Sitter analogue of what happens in flat space [18], while the new term
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proportional to GH2 causes perturbation theory to break down at large r
and at late times. The gravitational vacuum polarization on de Sitter also
causes a secular enhancement of the electric field of a plane wave photon [19],

F 1 loop
0i −→ 2GH2

π
ln(a)× F tree

0i . (3)

Like (2), this result signals a late time breakdown of perturbation theory.
A common feature in all three results (1), (2) and (3) is the breakdown of

perturbation theory when ln(a) ∼ 1
GH2 . Uncovering what happens after this

time requires going beyond perturbation theory. For the very similar infrared
logarithms of scalar potential models Starobinsky has developed a stochastic
formalism [20] which exactly reproduces the leading infrared logarithms at
each loop order [21, 22], and can be summed to elucidate the nonperturbative
regime [23]. The same technique can be applied to a Yukawa-coupled scalar
[24], and to scalar quantum electrodynamics [25]. However, it has not yet
been generalized to quantum gravity.

The obstacle to applying Starobinsky’s formalism has been the derivative
interactions of quantum gravity. These frustrate the proof [21, 22] that works
for scalar potential models. Derivative interactions also mean that the lowest
order renormalization counterterms contribute at leading logarithm order,
which means that dimensional regularization must be retained until a fully
renormalized result is obtained [26]. The problem remains, despite notable
progress understanding the simpler derivative interactions of nonlinear sigma
models [27, 28].

A notable advance was the discovery [26] that only the tail part of the
graviton propagator is responsible for the secular enhancement of massless
fermions on de Sitter background [29, 30]. The purpose of this paper is to
see if the tail term alone also explains the secular enhancement of dynamical
photons (3) and the logarithmic running of the Coulomb potential (2). In
section 2 we review the relevant Feynman rules and identify precisely those
parts of the vacuum polarization which are responsible for the two effects.
Section 3 computes the tail contribution to the vacuum polarization. Our
results are discussed in section 4.

2 Notation

The purpose of this section is to review notation. We begin with the Feynman
rules which were used to compute the vacuum polarization [16]. This is where
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we define the “tail” part of the graviton propagator which plays a central
work in this study. We also describe how the tensor structure of the vacuum
polarization is represented using two structure functions, and we give the
order GH2 contributions to these structure functions which are responsible
for the enhancement of dynamical photons (3) and the logarithmic running
of the Coulomb potential (2).

2.1 Feynman Rules

The Lagrangian relevant to our study is,

L =
[R−(D−2)(D−1)H2]

√−g

16πG
− 1

4
FµνFρσg

µρgνσ
√−g +∆L+ LGF . (4)

Here D is the spacetime dimension, H is the de Sitter Hubble constant and
G is Newton’s constant. The two counterterms we require are,

∆L = CH2FµνFρσg
µρgνσ

√−g +∆CH2FijFkℓg
ikgjℓ

√−g . (5)

The noninvariant term (Roman indices are purely spatial) proportional to
∆C is required because of de Sitter breaking in the graviton sector [16, 31].
Our electromagnetic and gravitational gauge fixing terms are [14, 15],

LGF = −1

2
aD−4

[
ηµνAµ,ν−(D−4)HaA0

]2 − 1

2
aD−2ηµνFµFν , (6)

where a ≡ − 1
Hη

is the de Sitter scale factor (at conformal time η) and the
gravitational term is,

Fµ ≡ ηρσ
[
hµρ,σ−

1

2
hρσ,µ+(D−2)Hahµρδ

0
σ

]
. (7)

Here and henceforth hµν is the conformally transformed graviton field whose
indices are raised and lowered with the (spacelike) Minkowski metric,

gµν ≡ a2g̃µν ≡ a2
[
ηµν + κhµν

]
, κ2 ≡ 16πG . (8)

Our gauge breaks de Sitter invariance but it does provide the simplest
possible expressions for the photon and graviton propagators. They each
take the form of a sum of constant tensor factors times scalar propagators,

i
[
µ∆ρ

]
(x; x′) = ηµρ×aa′i∆B(x; x

′)− δ0µδ
0
ρ×aa′i∆C(x; x

′) , (9)

i
[
µν∆ρσ

]
(x; x′) =

∑

I=A,B,C

[
µνT

I
ρσ

]
×i∆I(x; x

′) , (10)
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where ηµν ≡ ηµν + δ0µδ
0
ν is the spatial part of the Minkowski metric. The

gravitational tensor factors are,

[
µνT

A
ρσ

]
= 2ηµ(ρησ)ν −

2

D−3
ηµνηρσ , (11)

[
µνT

B
ρσ

]
= −4δ0(µην)(ρδ

0
σ) , (12)

[
µνT

C
ρσ

]
=

2

(D−2)(D−3)

[
(D−3)δ0µδ

0
ν+ηµν

][
(D−3)δ0ρδ

0
σ+ηρσ

]
. (13)

Here and henceforth parenthesized indices are symmetrized.
It is useful to expand the three scalar propagators in progressively less

and less singular terms,

i∆I(x; x
′) =

i∆(x; x′)

(aa′)
D

2
−1

+ iδ∆I(x; x
′) + i∆ΣI(x; x

′) , I = A,B,C . (14)

Here the massless scalar propagator in flat space is

i∆(x; x′) =
Γ(D

2
−1)

4π
D

2 ∆xD−2
, ∆x2(x; x′) ≡

∥∥∥~x−~x′
∥∥∥
2 −

(
|η−η′|−iǫ

)2
. (15)

Note that i∆(x; x′) has the leading, 1/∆xD−2 singularity. The three 1/∆xD−4

terms are,

(aa′)
D

2
−2iδ∆A(x; x

′) =
H2

4π
D

2

{
Γ(D

2
+1)

2(D−4)

1

∆xD−4

−π cot(πD
2
)Γ(D−1)

4Γ(D
2
)

(aa′H2

4

)D

2
−2

+
Γ(D−1)

Γ(D
2
)

(aa′H2

4

)D

2
−2

ln(aa′)

}
, (16)

(aa′)
D

2
−2iδ∆B(x; x

′) =
H2

4π
D

2

{
Γ(D

2
)

∆xD−4
− Γ(D−2)

Γ(D
2
)

(aa′H2

4

)D

2
−2

}
, (17)

(aa′)
D

2
−2iδ∆C(x; x

′) =
H2

4π
D

2

{
(D
2
−3)Γ(D

2
−1)

∆xD−4
+

Γ(D−3)

Γ(D
2
)

(aa′H2

4

)D

2
−2

}
.(18)

The iδ∆I(x; x
′) determine the coincidence limits in dimensional regulariza-

tion, but only iδ∆A(x; x
′) produces a nonzero tail term when D = 4. The

three i∆ΣI(x; x
′) terms are each infinite series of less singular powers, which

vanish for D = 4. They play no role in our analysis, but their expansions are
given in Appendix A for completeness.
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We can now identify the “tail” part of the graviton propagator,

i
[
µν∆

tail
ρσ

]
(x; x′) ≡

[
µνT

A
ρσ

]
× iδ∆A(x; x

′) . (19)

The purpose of this paper is to check whether or not replacing the full gravi-
ton propagator by (19) gives those parts of the vacuum polarization which
are responsible for the secular enhancement of dynamical photons (3) and
the logarithmic running of the Coulomb potential (2).

2.2 Representing Vacuum Polarization

The one graviton loop contribution to the vacuum polarization can be ex-
pressed in terms of expectation values of variations of the action,

i
[
µΠν

]
(x; x′) =

〈
Ω

∣∣∣∣∣

[
iδS

δAµ(x)

]

hA

×
[

iδS

δAν(x′)

]

hA

∣∣∣∣∣Ω
〉

+

〈
Ω

∣∣∣∣∣

[
iδ2S

δAµ(x)δAν(x′)

]

hh

∣∣∣∣∣Ω
〉
. (20)

The subscripts hA and hh indicate that the operator in square brackets is to
be expanded to that order in the weak fields hµν and Aµ. Expression (20) is
ideal for our study because each of these two expectation values is separately
transverse, and for any graviton field.

The tensor structure of the de Sitter background vacuum polarization can
be represented using two structure functions [32, 33, 34],

i
[
µΠν

]
(x; x′) =

(
ηµνηρσ−ηµσηνρ

)
∂ρ∂

′
σF (x; x′)+

(
ηµνηρσ−ηµσηνρ

)
∂ρ∂

′
σG(x; x′).

(21)
Each of the two terms on the right hand side of (21) is transverse so we
can work out contributions to F (x; x′) and G(x; x′) separately, from each
of the two expectation values in (20), and from any part of the graviton
propagator such as (19). Given a transverse contribution to i[µΠν ](x; x′), the
corresponding contributions to the structure functions can be inferred from
selected components [34],

i
[
0Π0

]
(x; x′) = −~∇· ~∇′F (x; x′) , (22)

ηµν×i
[
µΠν

]
(x; x′) = (D−1)∂ ·∂′F (x; x′) + (D−2)~∇· ~∇′G(x; x′) . (23)
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The same considerations imply that the two relevant counterterms (5) make
the following contributions [16],

∆F (x; x′) = 4CH2aD−4iδD(x−x′) , ∆G(x; x′) = 4∆CH2aD−4iδD(x−x′) .
(24)

The full one loop vacuum polarization [16] contains some parts which
are de Sitter-ized versions of the flat space result [18]. However, the secular
enhancement of dynamical photons (3) and the logarithmic running of the
Coulomb potential (2) originate in the intrisically de Sitter portions of the
structure functions,

FdS(x; x
′) =

κ2H2

(2π)4

{
2π2 ln(a)iδ4(x−x′) +

1

4
∂2

[
ln(1

4
H2∆x2)

∆x2

]

+∂2
0

[
ln(1

4
H2∆x2)+2

∆x2

]}
, (25)

GdS(x; x
′) =

κ2H2

(2π)4

{
−8

3
π2 ln(a)iδ4(x−x′)− 1

3
∂2

[
ln(1

4
H2∆x2)

∆x2

]}
. (26)

The enhancement of dynamical photons actually derives entirely from just
the ln(a) part of FdS(x; x

′) [19]. In contrast, all terms on the first lines of
(25-26) contribute to the logarithmic running of the Coulomb potential [17].
The terms on the second line of expression (25) do not contribute to either
the enhancement of photons or the running of the Coulomb potential.

3 Vacuum Polarization from the Tail

This section presents the key computation of the tail contribution to the two
structure functions of the vacuum polarization. Because each of the terms
in the operator expression (20) is separately transverse, as is the contribu-
tion from the counter-action, we derive separate results for each of the three
diagrams in Figure 1. Because the counterterms contribute at leading loga-
rithm order it is necessary to retain dimensional regularization until the end.
(The same thing was found in deriving the tail contribution to the fermion
wave function [26].) However, extensive simplifications result from antici-
pating terms which must vanish in the renormalized, unregulated limit. We
begin with the simple 4-point contribution, then proceed to the more compli-
cated contribution from two 3-point vertices, and finally add the appropriate
counterterms.
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x x
′

+

x

+

x

Figure 1: Feynman diagrams relevant to the one loop vacuum polarization
from gravitons. Wavy lines are photons, curly lines are gravitons and the
cross represents counterterms.

3.1 The 4-point contribution

The primitive 4-point contribution is the middle diagram of Fig. 1 and has
the operator representation,

i
[
µΠν

4pt

]
(x; x′) = ∂ρ∂

′
σ

〈
Ω
∣∣∣aD−4

√
−g̃

(
g̃µσg̃νρ−g̃µν g̃ρσ

)
iδD(x−x′)

∣∣∣Ω
〉

hh
. (27)

This expression is exact. Because the tail contribution comes from the purely
spatial components of the graviton field we can use relation (22) to write a
simple relation for the tail part of the structure function F (x; x′),

−~∇· ~∇′F4t(x; x
′) = ∂i∂

′
j

〈
Ω
∣∣∣aD−4

√
−g̃ g̃ijiδD(x−x′)

∣∣∣Ω
〉

tail
. (28)

Isotropy implies,

F4t(x; x
′) = − 1

D−1

〈
Ω
∣∣∣aD−4

√
−g̃ g̃kkiδD(x−x′)

∣∣∣Ω
〉

tail
, (29)

=
1

4
D(D−5)κ2aD−4iδ∆A(x; x)iδ

D(x−x′) . (30)

Expression (30) agrees with the result (66) reported in [16].
Relation (23) determines the structure function G(x; x′),

(D−1)∂ ·∂′F4t+(D−2)~∇· ~∇′G4t = ∂0∂
′
0

〈
Ω
∣∣∣aD−4

√
−g̃ g̃kkiδD(x−x′)

∣∣∣Ω
〉

tail

+∂i∂
′
j

〈
Ω
∣∣∣aD−4

√
−g̃

(
g̃ikg̃jk+g̃ij(1−g̃kk)

)
iδD(x−x′)

∣∣∣Ω
〉

tail
. (31)

Using relation (29) and exploiting isotropy implies,

G4t =
〈
Ω
∣∣∣

aD−4
√−g̃

(D−1)(D−2)

(
g̃kℓg̃kℓ+g̃kk[(D−2)−g̃ℓℓ]

)
iδD(x−x′)

∣∣∣Ω
〉

tail
, (32)

= −
[
D −

(D−1

D−3

)]
κ2aD−4iδ∆A(x; x)iδ

D(x−x′) . (33)

Expression (33) agrees with the result (67) reported in [16].
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3.2 The 3-point contribution

The primitive 3-point contribution is the left hand diagram of Fig. 1. From
the first term of the operator expression (20) we can infer a simpler operator
expression for it,

i
[
µΠν

3pt

]
(x; x′) = −∂ρ∂

′
σ

{〈
Ω
∣∣∣
[√

−g̃ g̃ρ[αg̃β]µ
]

h(x)
×
[√

−g̃ g̃σ[γ g̃δ]ν
]

h(x′)

∣∣∣Ω
〉

×4(aa′)D−4∂α∂
′
γi
[
β∆δ

]
(x; x′)

}
, (34)

where square bracketed indices are anti-symmetrized. If we specialize to just
the tail contribution then the expectation value on the first line of (34) goes
like 1/∆xD−4. Hence the entire curly-bracketed term is at most logarithmi-
cally divergent, and that only when both of the derivatives on the second line
of (34) act on the most singular part of the photon propagator (9). Because
the less singular parts vanish for D = 4 we can make the simplification,

4(aa′)D−4∂α∂
′
γi
[
β∆δ

]
(x; x′) −→ 4(aa′)

D

2
−2ηβδ∂α∂

′
γi∆(x; x′) . (35)

Substituting (35) in (34), and exploiting relation (22), gives an operator
expression for the tail contribution to the F (x; x′) structure function,

−~∇· ~∇′F3t(x; x
′) = −∂i∂

′
j

{〈
Ω
∣∣∣
[√

−g̃ g̃ik
]

h(x)
×
[√

−g̃ g̃iℓ
]

h(x′)

∣∣∣Ω
〉

tail

×(aa′)
D

2
−2

[
δkℓ∂0∂

′
0−∂k∂

′
ℓ

]
i∆(x; x′)

}
, (36)

= −κ2∂i∂
′
j

{〈
Ω
∣∣∣
1

4
h2δikδjℓ−1

2
hikhδjℓ−1

2
hδikhjℓ+hikhjℓ

∣∣∣Ω
〉

tail

×(aa′)
D

2
−2

[
δkℓ∂0∂

′
0−∂k∂

′
ℓ

]
i∆(x; x′)

}
. (37)

Substituting the tail part of the propagator (19) and performing the simple
contractions implies,

F3t(x; x
′) = κ2iδ∆A(x; x

′)(aa′)
D

2
−2

[
(D−1)∂0∂

′
0−~∇· ~∇′

]
i∆(x; x′) . (38)

The final step is extracting the derivatives from inside the square brackets of
(38), which is done generically in Appendix B. From relation (58) we infer,

F3t(x; x
′) = −κ2H2∂ ·∂′

64π4

[
ln(1

4
H2∆x2)−4

∆x2

]
− κ2H2∂0∂

′
0

16π4

[
ln(1

4
H2∆x2)+2

∆x2

]
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−κ2HD−2(D−1)Γ(D
2
+1) iδD(x−x′)

(4π)
D

2 (D−3)(D−4)
. (39)

Both the divergence and the ln(1
4
H2∆x2) terms agree with the results re-

ported in equations (129) and (130) of [16].
Relations (22-23) provide an operator expression for the G(x; x′) structure

function,

(D−1)∂·∂′F (x; x′)+(D−2)~∇·~∇′G(x; x′) = ~∇·~∇′F (x; x′)+i
[
kΠk

]
(x; x′) . (40)

Specializing (40) to the 3-point tail contribution gives,

(D−2)~∇· ~∇′G3t(x; x
′) = −(D−2)~∇· ~∇′F3t(x; x

′) + (D−1)∂0∂
′
0F3t(x; x

′)

−∂ρ∂
′
σ

{〈
Ω
∣∣∣
[√

−g̃
(
g̃ραg̃βµ−g̃ρβg̃αµ

)]

h(x)
×
[√

−g̃
(
g̃σγ g̃δν−g̃σδg̃γν

)]

h(x′)

∣∣∣Ω
〉

tail

×(aa′)D−4ηβδ∂α∂
′
γi∆(x; x′)

}
. (41)

The ρ = σ = 0 component of the contraction in (41) cancels the factor of
(D − 1)∂0∂

′
0F3t(x; x

′). Expanding out the remaining terms gives,

(D−2)~∇· ~∇′G3t(x; x
′) = −(D−2)~∇· ~∇′F3t(x; x

′)

+∂0∂
′
i

{〈
Ω
∣∣∣
√
−g̃ g̃kℓ×

√
−g̃

(
g̃ijg̃kℓ−g̃iℓg̃jk

)∣∣∣Ω
〉

tail
(aa′)

D

2
−2∂0∂

′
ji∆(x; x′)

}

+∂i∂
′
0

{〈
Ω
∣∣∣
√
−g̃

(
g̃ij g̃kℓ−g̃iℓg̃jk

)
×
√
−g̃ g̃kℓ

∣∣∣Ω
〉

tail
(aa′)

D

2
−2∂j∂

′
0i∆(x; x′)

}

−∂i∂
′
j

{〈
Ω
∣∣∣
√
−g̃

(
g̃img̃kℓ−g̃iℓg̃mk

)
×
√
−g̃

(
g̃jng̃kℓ−g̃jℓg̃kn

)∣∣∣Ω
〉

tail

×(aa′)
D

2
−2∂m∂

′
ni∆(x; x′)

}
, (42)

= −κ2 ~∇· ~∇′

{
(aa′)

D

2
−2iδ∆A(x; x

′)

[
2
(D2−5D+5

D−3

)
~∇· ~∇′+(D−2)(D−1)∂0∂

′
0

]

×i∆(x; x′)

}
+ (D−2)2κ2∂0∂

′
i

{
(aa′)

D

2
−2iδ∆A(x; x

′)∂0∂
′
ii∆(x; x′)

}

+(D−2)2κ2∂i∂
′
0

{
(aa′)

D

2
−2iδ∆A(x; x

′)∂i∂
′
0i∆(x; x′)

}

−(D−4)(D−1)κ2∂i∂
′
j

{
(aa′)

D

2
−2iδ∆A(x; x

′)∂i∂
′
ji∆(x; x′)

}
, (43)
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where some of the terms from the first line of (43) derive from the operator
expressions on the last line of (42) and spatial translation invariance has been
exploited. It remains to extract the inner derivatives using relation (58) and
solve for G3t(x; x

′),

G3t(x; x
′) =

κ2H2∂ ·∂′

32π4

[
ln(1

4
H2∆x2)+2

∆x2

]
. (44)

This result agrees with the ln(1
4
H2∆x2) term reported in equation (132) of

[16]. However, it has neither the ultraviolet divergence reported in equa-
tion (131) of that paper, nor the associated factor of ln(µ2∆x2) reported in
equation (132). These terms come from the non-tail part of the graviton
propagator.

3.3 Tail Renormalization

The right hand diagram of Fig. 1 stands for renormalization counterterms.
Their contributions to the two structure functions was given in equation (24).
We must bear in mind the fact that the coefficients C and ∆C are not those
appropriate to the full vacuum polarization [16] but rather just the parts
needed to cancel the divergences in our tail results (30) and (39) for F (x; x′)
and (33) and (44) for G(x; x).

Based on expressions (30) and (39) the best choice for the C counterterm
is,

C =
κ2HD−4

(4π)
D

2

{
D(D−5)Γ(D−1)π cot(πD

2
)

16Γ(D
2
)

+
(D−1)Γ(D

2
+1)

4(D−3)(D−4)
+ 1

}
. (45)

After combining with the primitive results (30) and (39) and taking the
unregulated limit we obtain,

Ftail(x; x
′) =

κ2H2

(2π)4

{
2π2 ln(a)iδ4(x−x′) +

1

4
∂2

[
ln(1

4
H2∆x2)

∆x2

]

+∂2
0

[
ln(1

4
H2∆x2)+2

∆x2

]}
. (46)

Expression (46) agrees exactly with the intrinsically de Sitter part of the full
F (x; x′) structure function (25), including even the parts on the second line
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which play no role in either the secular enhancement of dynamical photons
[19] or the logarithmic running of the Coulomb potential [17].

Based on expressions (33) and (44) the best choice for the nocovariant
∆C counterterm is,

∆C =
κ2HD−4

(4π)
D

2

{
−(D2−4D+1)Γ(D−1)π cot(πD

2
)

4(D−3)Γ(D
2
)

+ 1

}
. (47)

The unregulated limit of the renormalized tail contribution to G(x; x′) is,

Gtail(x; x
′) =

κ2H2

(2π)4

{
−4π2 ln(a)iδ4(x−x′)− 1

2
∂2

[
ln(1

4
H2∆x2)

∆x2

]}
. (48)

Expression (48) does not agree with (26) because the primitive 3-point tail
contribution (44) lacks both the divergence and the associated µ-dependent
logarithm of the full 3-point result [16].

4 Discussion

Our aim has been to see how much of the intrinsically de Sitter part (25-26)
of the vacuum polarization arises from replacing the full graviton propagator
(10) with just its tail part (19). Our result is that the tail reproduces all of
(25) but not all of (26). This means that the graviton tail is responsible for
the the secular enhancement of dynamical photons (3), but not for all of the
logarithmic running of the Coulomb potential (2). The remaining parts of
(26) come from using the most singular part of the graviton propagator in
the 3-point contribution. Although these terms have no factor of H2, they
do contain 1

aa′
= H2ηη′. When the inner derivatives are passed through this

term they can act on the ηη′ and leave the required factor of H2.
Our result means that the tail term is not responsible for all the interesting

secular effects mediated by the one loop vacuum polarization. This may not
be the setback it would seem for the crucial task of extending Satrobinsky’s
stochastic technique [20, 23] to quantum gravity. The large logarithms of
interest derive from three sources:

1. Explicit factors of ln(aa′) and ln(H2∆x2) in the tail part of the graviton
propagator (19);
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2. Factors of (aa′)
D

2
−2/(D−4) and (∆x)D−4/(D−4) which arise either in

primitive ultraviolet divergences or in the counterterms which remove
them; and

3. The integration of interaction vertices which one must do in higher loop
diagrams.

The one loop tail contributions (46) and (48) that we have computed come
from the first two sources. The reason (48) does not give all the interesting
parts (26) of the G(x; x′) structure function is that we have missed some
ultraviolet divergences from the most singular part of the propagator. These
sorts of terms are easy to recover using renormalization group techniques.

The “hard” contributions — the ones for which one loop divergences do not
predict higher loop results — are those from the other two sources. So per-
haps the key to dealing with the large logarithms is to combine Starobinsky’s
technique with the renormalization group.
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5 Appendix A: i∆ΣI(x; x
′) Expansions

The infinite series expansions for the scalar propagators (14) are:

i∆ΣA(x; x
′) =

HD−2

(4π)
D

2

∞∑

n=1

(aa′H2∆x2

4

)n

×
{
Γ(n+D−1)

nΓ(n+D
2
)

− Γ(n+D
2
+1)

(n−D
2
+2)(n+1)!

( 4

aa′H2∆x2

)D

2
−2

}
, (49)

i∆ΣB(x; x
′) =

HD−2

(4π)
D

2

∞∑

n=1

(aa′H2∆x2

4

)n
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×
{
Γ(n+D−2)

Γ(n+D
2
)

− Γ(n+D
2
)

(n+1)!

( 4

aa′H2∆x2

)D

2
−2

}
, (50)

i∆ΣC(x; x
′) =

HD−2

(4π)
D

2

∞∑

n=1

(aa′H2∆x2

4

)n

×
{
(n+1)Γ(n+D−3)

Γ(n+D
2
)

− (n−D
2
+3)Γ(n+D

2
−1)

(n+1)!

( 4

aa′H2∆x2

)D

2
−2

}
. (51)

6 Appendix B: Extracting Derivatives

Evaluating the 3-point contributions requires that we wish pass derivatives
of the photon propagator to the left of (aa′)

D

2
−2iδ∆A(x; x

′) in expressions of
the form,

(aa′)
D

2
−2iδ∆A(x; x

′)∂µ∂
′
νi∆(x; x′) . (52)

The propagator i∆(x; x′) goes like 1/∆xD−2. From equation (16) we see that

(aa′)
D

2
−2iδ∆A(x; x

′) contains three distinct sorts of coordinate dependence.
The result passing derivatives through each of these terms is,

1

∆xD−4
∂µ∂

′
ν

1

∆xD−2
=

[D∂µ∂
′
ν−ηµν∂ ·∂′]

4(D−3)

1

∆x2D−6
, (53)

(aa′)
D

2
−2 ∂µ∂

′
ν

1

∆xD−2
=

[
∂µ−

(D
2
−2

)
Haδ0µ

]

×
[
∂′
ν−

(D
2
−2

)
Ha′δ0ν

][(aa′)
D

2
−2

∆xD−2

]
, (54)

ln(aa′) ∂µ∂
′
ν

1

∆xD−2
= ∂µ∂

′
ν

[ ln(aa′)
∆xD−2

]
− ∂µ

[Ha′δ0ν
∆xD−2

]
− ∂′

ν

[ Haδ0µ
∆xD−2

]
. (55)

The first terms on the right hand side of relations (53-55) give the deriva-

tives acting on the product (aa′)
D

2
−2iδ∆A(x; x

′)i∆(x; x′). That product is
integrable for D = 4 so we can take its unregulated limit. The secondary
terms of relations (54-55) cancel in D = 4 dimensions, so it only remains to
consider the second term on the right of relation (53),

∂ ·∂′ 1

∆x2D−6
= ∂ ·∂′

[
1

∆x2D−6
− µD−4

∆xD−2

]
− 4π

D

2 µD−4iδD(x−x′)

Γ(D
2
−1)

, (56)

= −
(D−4

2

)
∂ ·∂′

[
ln(µ2∆x2)

∆x2

]
+O

(
(D−4)2

)
− 4π

D

2 µD−4iδD(x−x′)

Γ(D
2
−1)

. (57)
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Setting µ = 1
2
H and putting everything together gives,

(aa′)
D

2
−2iδ∆A(x; x

′)∂µ∂
′
νi∆(x; x′) = −H2∂µ∂

′
ν

32π4

[
ln(1

4
H2∆x2)+2

∆x2

]

+
H2ηµν∂ ·∂′

128π4

[
ln(1

4
H2∆x2)

∆x2

]
+
HD−2ηµν

(4π)
D

2

Γ(D
2
+1) iδD(x−x′)

2(D−3)(D−4)
+O(D−4). (58)
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