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We perform fully nonlinear numerical simulations to study aspherical deformations of the critical
self-similar solution in the gravitational collapse of ultra-relativistic fluids. Adopting a perturbative
calculation, Gundlach predicted that these perturbations behave like damped or growing oscillations,
with the frequency and damping (or growth) rates depending on the equation of state. We consider
a number of different equations of state and degrees of asphericity and find very good agreement
with the findings of Gundlach for polar ` = 2 modes. For sufficiently soft equations of state, the
modes are damped, meaning that, in the limit of perfect fine-tuning, the spherically symmetric
critical solution is recovered. We find that the degree of asphericity has at most a small effect on
the frequency and damping parameter, or on the critical exponents in the power-law scalings. Our
findings also confirm, for the first time, Gundlach’s prediction that the ` = 2 modes become unstable
for sufficiently stiff equations of state. In this regime the spherically symmetric self-similar solution
can no longer be recovered by fine-tuning to the black-hole threshold, and one can no longer expect
power-law scaling to hold to arbitrarily small scales.

PACS numbers: 04.20.Jb, 04.70.Bw, 98.80.Jk, 04.25.dg

I. INTRODUCTION

Critical phenomena in gravitational collapse were first
reported in the seminal work of Choptuik [1]. Consider
initial data that are parametrized by some parameter p,
and assume that the data will either collapse to form a
black hole – for sufficiently large values of p, say – or
will disperse and leave behind flat space – for sufficiently
small values of p. Then there must exist a critical value
of the parameter, p∗, which marks the onset of black-
hole formation and separates supercritical from subcriti-
cal data.

Critical phenomena refer to properties of the solution
in the vicinity of p∗. Specifically, Choptuik found that,
for p close to p∗, the evolution will pass through a phase
of self-similar contraction. Ultimately the evolution will
leave this self-similar phase to either form a black hole,
or to disperse to infinity. The closer p is chosen to p∗,
the longer the evolution will follow the self-similar con-
traction, and hence the smaller the length scale at which
it will diverge from the self-similar solution. This length
scale sets the length scale for any dimensional quantity
characterizing the solution. For supercritical data, in
particular, this results in the famous power-law scaling
laws for the black hole mass

MBH ' (p− p∗)γM , (1)

where γ is the critical exponent. The value of the critical
exponent can be found from the growth rate of pertur-
bations of the self-similar critical solution (see, e.g., [2]).

In his original work, Choptuik [1] adopted a mass-less
scalar field as the matter model, for which the critical so-
lution displays a discrete self-similarity. Choptuik’s dis-
covery triggered numerous follow-up studies, creating a
large body of literature on an entire new field of research

(see, e.g., [3, 4] for reviews). Particularly important for
our purposes is the discovery of critical phenomena in the
collapse of a radiation fluid by Evans and Coleman [5].
A radiation fluid is a special case of an ultra-relativistic
fluid, i.e. a fluid whose equation of state is

P = κρ, (2)

where P is the pressure, ρ the energy density, and κ is a
dimensionless constant which, for a radiation fluid, takes
the value κ = 1/3. For ultra-relativistic fluids the critical
solution is continuously self-similar – as opposed to the
discrete self-similarity found for the massless scalar wave
– which makes it easier in some ways to analyze this col-
lapse. The critical exponent γ for a radiation fluid was
determined analytically by [6] as well as [2], who consid-
ered a number of different values of κ. In particular, these
studies showed that the critical exponent is not universal,
but depends on the matter model. Neilsen and Choptuik
[7] generalized the studies of [5] by performing numerical
simulations of critical collapse of ultra-relativistic fluids
with different values of κ, finding very good agreement
in the critical exponents with [2].

Until recently, most numerical studies of critical col-
lapse assumed spherical symmetry (but see [8–11] for
some notable exceptions). This is not surprising, since
spherical symmetry makes it easiest to resolve the small
structures and tiny black holes that form in critical col-
lapse close to criticality. At the same time, some inter-
esting questions in the context of critical collapse cannot
even be addressed in spherical symmetry – relating, for
example, to the effects of angular momentum [12, 13] or
aspherical deformations [14, 15] on the critical solution.

After numerical simulations of binary black holes in
three spatial dimensions became possible (see [16–18]),
most code development efforts in the numerical relativity
community focused on the simulation of binaries. These



2

codes have only rarely been used to study critical col-
lapse (but see [19–22]). A separate, more recent code
development effort has resulted in methods for numeri-
cal relativity in curvilinear coordinates [23–26] (see also
[27, 28] for more recent implementations of these tech-
niques). Spherical coordinates, in particular, are well
suited for simulations of critical collapse, and in fact, the
code of [24–26] has already been used to study critical
phenomena in the gravitational collapse of both aspheri-
cal radiation fluids [29] and rotating ultra-relativistic flu-
ids [30–32].

In this paper we expand the calculations of [29], and
perform numerical simulations of the critical collapse of
ultrarelativistic fluids in the absence of spherical sym-
metry. Gundlach [15] predicted from perturbative cal-
culations that deviations from sphericity should behave
as either damped or growing oscillations (see Eq. (6) be-
low), where the oscillation frequency ω and the damping
(or growth) rate λ depend on the value of κ in the equa-
tion of state (2). In [29] this behavior was confirmed
for a radiation fluid with κ = 1/3, albeit only with a
modest accuracy and only for two different values of the
asphericity. Here we expand these calculations in several
ways.

We first redo the calculations for [29] with better grid
resolution (see Section III below), which allows us to
track the self-similar solution for longer and measure
both the frequency ω and the damping (or growth) rate
λ of the deformation more accurately. We also consider
more and larger values of the deviation from spherical
symmetry, so that we can examine its effect on the above
parameters more systematically. Perhaps most impor-
tantly we also consider more general ultra-relativistic flu-
ids, i.e. different values of κ in the equation of state (2),
and find good agreement with the dependence of ω and
λ on κ as predicted perturbatively by [15] (see Fig. 8 be-
low). In particular we confirm Gundlach’s result that for
κ & 0.5 the modes become unstable and grow.

Our paper is organized as follows. In Section II we
review some properties of the continuous self-similar so-
lution encountered in the critical collapse of an ultra-
relativistic fluid. In Section III we present some basic
equations and our choice of initial data, we describe our
numerical code, and discuss the diagnostics used to ana-
lyze our results. In Section IV we present these results,
both for radiation fluids with κ = 1/3 and for more gen-
eral ultra-relativistic fluids. We summarize and discuss
our findings in Section V. Throughout this paper we
adopt geometrized units with c = G = 1.

II. THE CRITICAL SOLUTION

In Section III B below we will introduce a two-
parameter family of initial data for ultra-relativistic flu-
ids, with one parameter, η, describing the overall density
and a second parameter, ε, governing the deviation from
spherical symmetry. We assume that for some part of

this parameter space the evolution will pass through a
self-similar phase. As discussed in more detail in [32]
(where the second parameter was the spin rate Ω rather
than ε), the evolution can then be described as passing
through three distinct phases (see also Fig. 3 below for
an example).

In Phase 1, the evolution evolves from the initial data
to the self-similar solution. During Phase 2, the evolution
can be described as the critical, self-similar solution, plus
a perturbation. The critical solution is unstable to at
least one growing perturbative mode, which is spherically
symmetric. Such a growing mode will cause the evolution
to ultimately deviate from the critical solution, marking
the transition to Phase 3. During Phase 3, the solution
either disperses to infinity or collapses to a black hole.

For ultra-relativistic fluids with the equation of state
(2) the (spherically symmetric) critical solution displays
a continuous self-similarity [5], describing a continuous
contraction of the solution to an accumulation event (see,
e.g., Fig. 1 in [7] for an illustration). We denote the
proper time of the accumulation event, as measured by
an observer at the center, as τ∗. The length scale of the
critical solution at a proper time τ is then given by τ∗−τ .
A dimensionless quantity describing the critical solution
can then depend on the ratio

ξ ≡ Rarea

τ∗ − τ
(3)

only, where Rarea is the areal radius (see Fig. 1 below
for a demonstration). A dimensional quantity with units
Ln, on the other hand, where L carries units of length,
has to scale with (τ∗− τ)n. For the energy density at the
center, for example, we expect

ρ ∝ (τ∗ − τ)−2. (4)

The length scale of global properties of the solution,
e.g. the black hole mass in supercritical evolutions or the
maximum density ρmax in subcritical evolutions, is deter-
mined by the length scale τ∗ − τ of the critical solution
at the transition from Phase 2 to Phase 3.

Spherically symmetric perturbations of the critical so-
lution were considered by [2]. There exists exactly one
unstable, spherically symmetric mode, and the growth
rate of this unstable mode, λ0, determines the critical
exponent γM = 1/λ0 in the mass scaling law (1) (see also
[4, 32] for a review of these arguments). In fact, as first
realized by [33], the same arguments result in a power-
law scaling for other quantities as well. For example, in
subcritical evolutions the maximum energy density en-
countered during the evolution, ρmax, satisfies

ρ−1/2
max ' (p∗ − p)γρ , (5)

where, on dimensional grounds, γρ = γM .
Aspherical perturbations were considered by Gundlach

[15]. In particular, Gundlach, considered modes of order
`, and showed that these modes u display an oscillatory
behavior described by

u ∝ eλT cos(ωT + φ), (6)
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where the time T is given by1

T = − log(τ∗ − τ), (7)

and where the damping coefficient λ and the angular
frequency ω depend on the constant κ in the ultra-
relativistic equation of state (2) as well as the mode `
of the perturbation. In this paper we will focus on polar
` = 2 modes. Gundlach found that, for these modes, λ
is negative for κ . 0.49, resulting in a damping of these
modes, but that λ becomes positive for κ & 0.49, in which
case the mode grows.

III. BASIC EQUATIONS AND NUMERICAL
METHOD

A. Formalism

We solve Einstein’s equations, expressed in a reference-
metric formulation [34–37] of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formalism [38–40], in spher-
ical coordinates (r, θ, ϕ). In particular, this formalism
adopts a “3+1” decomposition of the spacetime in which
the line element is written as

ds2 = gabdx
adxb = −αdt2 + γij(dx

i + βidt)(dxj + βjdt),
(8)

where gab is the spacetime metric, α the lapse function,
βi the shift vector, and γij the spatial metric (see, e.g.,
[37, 41, 42] for textbook introductions.) We also adopt a
conformal decomposition of the spatial metric,

γij = ψ4γ̄ij , (9)

where ψ is the conformal factor and γ̄ij the conformally
related metric. In a reference-metric approach we also
introduce the flat metric in whatever coordinate system
is used; for our applications the reference metric γ̂ij is the
flat metric expressed in spherical coordinates. Details of
this formalism, and its implementation in our code, can
be found in [24, 26].

We assume that the matter is described by a perfect
fluid with stress-energy tensor

Tab = (ρ+ P )uaub + Pgab, (10)

and that the equation of state is that of an ultra-
relativistic fluid, i.e. Eq. (2).

B. Initial data

We adopt the same initial data as in [29]. Specifically,
we choose a moment of time symmetry and assume that

1 Strictly speaking, this should be T = −R0 log((τ∗ − τ)/R0),
where we have yet to determine an overall length scale R0.

the metric is conformally flat initially, γ̄ij = γ̂ij . We then
choose the initial density distribution as

ρ(r, θ) =
η

4π3/2R2
0

(
1.0 + ε

r2P2(θ)

R2
0 + r2

)
(f+ + f−), (11)

where we have abbreviated

f±(r) = exp

(
−
(
ψ2r ±Rc

R0

)2
)
, (12)

and where P2(θ) = (3 cos2 θ−1)/2 is the second Legendre
polynomial.

The initial data (11) form a two-parameter family,
parametrized by η, which governs the overall density
amplitude, and ε, which determines the deviation from
spherical symmetry. Note that in the above expressions
r is the (isotropic) coordinate radius. In the functions
f±(r) the product ψ2r then becomes the areal radius R
in spherical symmetry. In this limit, the density distri-
bution is centered on an areal radius of Rc, and drops
off on a length scale of R0. We set R0 to unity in our
code, R0 = 1, and hence report all dimensional quanti-
ties in units of R0. We introduced the functions f±(r) in
order to ensure that the density and its derivatives are
well-behaved at the origin.

The conformal factor ψ in (11) satisfies the Hamilto-
nian constraint

∇̂2ψ = −2πψ5ρ, (13)

where ∇̂2 is the flat Laplace operator associated with the
flat metric γ̂ij . We construct solutions to (11) and (13)
using an iterative process.

In the limit of spherical symmetry (ε = 0) and for
Rc = 0 the density distribution (11) reduces to that
adopted by [5]. In this case the total gravitational
mass M can be found analytically, M = ηR0/2, so that
η = 2M/R0 becomes a non-dimensional measure of the
initial strength of the gravitational fields.

We complete the specification of the initial data by
choosing α = ψ2 and βi = 0.

C. Numerical code

We evolve the gravitational field and fluid variables
using the code described in [24, 26]. The code imple-
ments the BSSN equations [38–40] in spherical coordi-
nates, adopting a reference-metric formalism [34–37] to-
gether with a rescaling of all tensorial quantities in or-
der to handle all coordinate singularities analytically and
thereby allow for a stable evolution. We similarly adopt
a reference-metric approach in solving the equations of
relativistic hydrodynamics [25, 26].

The code does not make any symmetry assumptions,
but since we evolve axisymmetric initial data we set to
zero all derivatives in the ϕ direction and use only one
grid point in the azimuthal direction. For spherically
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symmetric evolutions (i.e. ε = 0) we adopt the minimum
number of grid points in the θ direction, Nθ = 2. In the
absence of spherical symmetry (ε > 0) we adopt equa-
torial symmetry, and, unless noted otherwise, resolve
the remaining hemisphere with a very modest number
of Nθ = 12 grid points (see Fig. 5 below and the related
text for a discussion). We use Nr = 312 radial grid points
in our simulations. As in [29], these grid-points are allo-
cated logarithmically (see Appendix A in [29]), with the
ratio in size between neighboring grid cells chosen to be
c = 1.02. For 312 grid points, this means that the ratio
between the size of the innermost and the outermost grid
cells is c−312 ' 0.0021.

Unlike in [29], however, we also use re-gridding to im-
prove the resolution during the evolution. This allows us
to track the critical solution for longer, and to follow the
oscillations (6) of aspherical modes for multiple periods.
Specifically, we estimate the typical length scale of the
solution at the origin from l ∼ (ρ/∂rρ)1/2, and compare
l with the size ∆r of the innermost grid cell. Whenever
∆r/l exceeds a certain cut-off, chosen to be 0.05 in our
simulations here, we shrink the entire grid by moving
the outer boundary to a smaller value, and interpolat-
ing all data to the new grid. Unless noted otherwise we
start with the outer boundary at rout = 32 (in units of
R0) and allow the grid to shrink down to rout = 3.2 in 10
steps. In some cases (see Section IV B) we also performed
higher-resolution runs and allowed the outer boundary
to contract to rout = 0.32 in 20 steps. In either case we
ended all simulations before the center comes into causal
contact with the outer boundary, and becomes affected
by numerical error originating there.

As in [29] we carry out our simulations with “moving
puncture” coordinate conditions. Specifically, we adopt
the 1+log slicing condition

(∂t − βi∂i)α = −2αK (14)

(see [43]) for the lapse α, where K is the mean curvature,
and a Gamma-driver condition for the shift vector βi (see
[44]) as presented in [45].

D. Diagnostics

We monitor several different quantities in order to an-
alyze our numerical results.

For supercritical data we locate outer-most trapped
surfaces. Once the newly formed black holes have settled
down into an equilibrium state, the location of these sur-
faces coincides with that of an event horizon. We then
determine the black hole mass from the proper area of
the horizon. In the vicinity of the black hole threshold
we can then make fits to (1) in order to determine the
critical parameter as well as the critical exponent γM .

We also track the central energy density ρ as a function
of the proper time τ measured by an observer at the
center. We fit ρ(τ) to the expected behavior (4), both
as an indirect verification of the self-similar contraction

0.0 0.5 1.0 1.5 2.0 2.5
ξ

0.0

0.1

0.2

0.3

0.4

Ω

τ∗ − τ = 0.4449

τ∗ − τ = 0.1749

τ∗ − τ = 0.0799

τ∗ − τ = 0.0281

FIG. 1: Profiles of the dimensionless density variable Ω at
four different instances of time, for a spherically symmetric
(ε = 0) radiation fluid (κ = 1/3) close to criticality. We plot
Ω, defined in (15), as a function of ξ = Rarea/(τ∗ − τ), see
Eq. (3), with τ∗ = 6.449. The fact that all four lines agree
very well demonstrates that Ω displays self-similarity during
Phase 2 in our simulations.

during Phase 2, and to find the proper times during which
the solution passes through this phase.

For subcritical evolutions we also record ρmax, and fit
these data to (5) to determine the critical exponent γρ.

Measuring deviations from sphericity is more subtle
(see also [9] for a discussion). For simplicity we adopt the
following approach to measure the degree of asphericity
of our spatial slices. We start by computing, for every
grid point (r, θ, ϕ), the proper distance R from the origin
along the coordinate line of constant θ and ϕ. In general,
this definition of R will depend on the choice of spatial
coordinates. The polar (θ = 0) and equatorial (θ = π/2)
directions, however, take on an invariant meaning in our
axially and equatorially symmetric simulations, so that
R measured in these directions is independent of spatial
coordinates. We next define the dimensionless density
variable

Ω = 4πR2ρ. (15)

We chose to use the proper distance R in this definition,
rather than the areal radius Rarea as in [5], since it is
easier to define the former in the absence of spherical
symmetry.2 Even though our definition (15) is slicing-
dependent, Ω displays self-similar behavior during Phase

2 We also considered the approach of [29], who defined Ω̄ = 4πR̄2ρ
with R̄ ≡ ψ2(γ̄θθ)1/2. The radial variable R̄ is gauge-dependent,
but does reduce to Rarea in the limit of spherical symmetry. As
expected, Ω̄ differs from Ω in our simulations, but results for the
coefficients λ and ω as computed from Ω or Ω̄ agree to within
our estimated errors.
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FIG. 2: Critical scaling in both supercritical and subcritical
evolutions for a radiation fluid (κ = 1/3) with deformation
parameter ε = 1. The solid lines are fits based on the scaling
laws (1) and (5) with γM = 0.356 and γρ = 0.357.

2 in our simulations with the 1+log slicing condition (14),
as demonstrated in Fig. 1.

At each instance of time we measure the maximum val-
ues of Ω in the axial direction, Ωmax,ax, and the maximum
value in the equatorial plane, Ωmax,eq (see Fig. 4 below
for an illustration), and then compute the difference

∆Ω ≡ Ωmax,ax − Ωmax,eq (16)

as a measure of the departure from spherical symmetry.
Given our assumption of equatorial symmetry, ∆Ω is

affected by all even modes with ` ≥ 2. To linear or-
der in the deformation parameter ε our initial density
distribution (11) will produce an ` = 2 mode with an
amplitude proportional to ε. Higher-order modes enter
through non-linear coupling, and therefore become im-
portant only for large values of ε. However, we expect
these higher-order modes to decay more rapidly than the
` = 2 modes (see Figs. 12 and 13 in [15]), so that, at suf-
ficiently late times, ∆Ω becomes a measure of the ` = 2
modes.

IV. RESULTS

A. Radiation Fluids

We first consider a radiation fluid with κ = 1/3. We
choose different values of the deformation parameter ε in
the initial data (11), and then vary the amplitude param-
eter η in order to bracket its critical value η∗ (see Table
I). We find that the difference between η∗ and its value
in spherical symmetry, η∗0, is approximately quadratic
in ε,

η∗ − η∗0 ' Kε2, (17)

with K ' 0.0014. As discussed in Section III D we mea-
sure the black hole mass for supercritical data, and the
maximum value of the central density ρ for subcritical
data. We then fit these two quantities to the scaling re-
lations (1) and (5) in order to obtain the critical param-
eter η∗ as well as the critical exponents γM and γρ. In
addition to numerical error, these quantities also depend
on which data points are included in the fits (see also
Appendix A in [22] for a discussion). Data too far away
from the critical parameter no longer satisfy the scaling
relations (1) and (5), while data points too close to the
critical parameter are more strongly affected by numer-
ical error, because the increasingly small structures can
no longer be resolved. In Fig. 2 we show an example for
ε = 1, where we do find excellent agreement of our data
with the fits over multiple orders of magnitude. We also
list the results of our fits, for all considered values of ε, in
Table I. The critical exponents γM and γρ do not appear
to depend on ε, and agree very well with the perturbative
value of 0.3558 (see [2]).

We next fit the central density ρc to the scaling (4) in
order to obtain a value for τ∗, the proper time of the ac-
cumulation event (see Sect. II). Results for τ∗ are again
listed in Table I. An example for ε = 1 is shown in
Fig. 3, where we plot ρc as a function of τ∗ − τ for pairs
of subcritical and supercritical evolutions that bracket
the critical value of η∗ with different accuracy. Note that
time advances from right to left in this figure. We can
clearly distinguish the three phases of the evolution that
we described in Section II. Phase 1 starts with the ini-
tial data on the bottom right of the figure. During Phase
2, the evolution follows the self-similar critical solution;
during this part of the evolution the central density is
well approximated by the fit (4). In Fig. 3, Phase 2
starts around τ∗ − τ ' 1, when the central density ap-
proaches the fit marked by the solid line. Initial data
that are better fine-tuned to the critical solution will fol-

κ = 1/3

ε η∗ τ∗ γM γρ λ ω

perturbative 0.3558 -0.3846 3.6158

0 0.12409 6.449 0.357 0.357 – –

0.01 0.12409 6.449 0.355 0.356 -0.36 3.64

0.1 0.12410 6.450 0.357 0.356 -0.36 3.64

0.25 0.12417 6.451 0.356 0.357 -0.36 3.64

0.5 0.12444 6.460 0.356 0.357 -0.36 3.64

1.0 0.12554 6.496 0.356 0.357 -0.37 3.65

TABLE I: Fitted values for the critical parameters γM , γρ, λ
and ω for a radiation fluid (κ = 1/3) with different deforma-
tions ε. The first row lists perturbative values; those for γM
and γρ, which, on dimensional grounds, are identical, can be
found in [2], while those for λ and ω have been computed in
[15]. Numerical values for the latter were kindly provided by
Carsten Gundlach. The parameters η∗ and τ∗ depend on the
initial data and are not characteristic of the critical solution;
therefore no perturbative values can be provided.
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FIG. 3: Central density ρc as a function of τ∗ − τ for a radia-
tion fluid (κ = 1/3) with ε = 1. We include pairs of subcritical
and supercritical evolutions that bracket the critical solution
for different accuracies ∆η = ηsuper − ηsub, as well as a fit
based on the scaling (4).

low the critical solution longer and to higher density;
this is clearly visible in the figure. Ultimately, the evo-
lution starts to deviate from the critical solution, with
the central density either increasing more rapidly for su-
percritical evolutions, or dropping to smaller values for
subcritical evolutions. The departure from the critical
solution marks the transition from Phase 2 to Phase 3.
Graphs like the one shown in Fig. 3 allow us to determine
the time brackets during which our evolution follows the
self-similar critical solution; this will be important in our
analysis of aspherical deformations.

An example of the evolution of aspherical deformations
is shown in Fig. 4 (see also [46] for an animation). Specifi-
cally, we show plots of the dimensionless density function
Ω, defined in (15), at six different instances of time during
Phase 2. The wire-frame shows a subcritical, spherically
symmetric evolution close to the critical solution (with
η∗−η . 10−9) as a function of x = r sin θ and z = r cos θ.
We adjust the scale of the x and z-axes in Fig. 4 so that
this function does not appear to change its shape at all,
reflecting the self-similar contraction. Even though self-
similarity is defined in terms of the gauge-invariant areal
radius Rarea (see Eq. (3)), the coordinate radius r used
here apparently serves as an excellent proxy.

The colored surface in Fig. 4 represents an subcritical
evolution with ε = 1, with η again within about 10−9 of
the critical value η∗ (values of η∗ for different values of ε
are listed in Table I). During Phase 2, this aspherical so-
lution appears to perform damped oscillations around the
spherically symmetric critical solution. We show snap-
shots of Ω at six different subsequent times at which the
deviation from the spherical solution are approximately
largest; these snapshots show that the fluid appears to
“slosh” back and forth between the poles and equator.

At any instance of time we measure the maximum
values of Ω in both the axial and equatorial directions,
Ωmax,ax and Ωmax,eq. These values are marked by the
green dots in Fig. 4. Computing ∆Ω = Ωmax,ax−Ωmax,eq

then yields a measure of the aspherical deformation, as
discussed in Section III D. In Fig. 5 we plot ∆Ω as a
function of (central) proper time τ for ε = 1, for four
different angular resolutions Nθ. The results for Nθ = 10
and Nθ = 12 can hardly be distinguished in this graph,
except for very late times (see below). This demonstrates
that for Nθ = 12 the numerical errors resulting from our
low angular resolution are small, and highlights the ad-
vantages of spherical coordinates for these simulations.

We note that for different Nθ, the critical parameter
η∗ takes slightly different numerical values. While we
bracketed η∗ to 10−10 for each resolution, the evolutions
shown in Fig. 5 represent slightly different values of η −
η∗ for each Nθ, meaning that they will depart from the
critical solution at slightly different times. This explains
the apparent non-convergent behavior at very late times.

Fig. 5 shows that ∆Ω performs a damped oscillation
with decreasing period. The latter is not surprising, be-
cause the period of the oscillation should be related to the
length scale of the unperturbed critical solution, which
decreases with τ∗ − τ (see Section II). It is therefore
more natural to display ∆Ω as a function of the time
T = − log(τ∗ − τ), see Eq. (7), where τ∗ can be deter-
mined from the fit to ρc (see Fig. 3). This graph, shown
in Fig. 6, visually appears like the exponentially damped
oscillation (6) predicted by [15]. We can now make fits3

to (6) in order to find estimates for the damping coeffi-
cient λ and the angular frequency ω.

Since (6) describes deformations of the self-similar crit-
ical solution, fits to this behavior should be performed
only during Phase 2, as identified, for example, in Fig. 3.
In Section IV B below we will also see that, for stiffer
equations of state, ∆Ω is still dominated by transients
at early times during Phase 2, and that the behavior (6)
dominates only at later times. It is therefore not surpris-
ing that the resulting fitted parameters λ and ω depend
on the time window over which the fits were carried out.
In Fig. 6, for example, the fit depends on whether the
first peak, around T ' 0, is included in the fit or not,
which leads to changes in the damping parameter λ of
several percent, and slightly smaller changes in the an-
gular frequency ω.

In practice we perform these fits in two different ways.
One fit assumes that τ∗ (in T ) is given from the fit to the
central density ρc (which, of course, also depends on the
time window used in that fit), while the other fit simul-
taneously varies τ∗ in the fit to (6). As a self-consistence
test we than vary the time window until both fits result
in parameters that are close to each other (typically less

3 Strictly speaking, we include an offset B in these fits, i.e. we fit
∆Ω to A exp(λT ) cos(ωT+φ)+B, but always find B to be small.
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FIG. 4: Plots of the density function Ω, defined in (15), for a radiation fluid (κ = 1/3) close to the critical solution (η∗ − η .
10−9). The (black-and-white) wire-frame shows the spherically symmetric solution, while the colored surface shows an evolution
with ε = 1. The latter displays a damped oscillation around the former. We show plots at six subsequent times during Phase 2
at which the deviation from the spherically symmetric critical solution is approximately largest. The green dots mark Ωmax,ax

(along the z-axis) and Ωmax,eq (along the x-axis). We adjusted the scale of the spatial coordinates in each panel to account for
the contraction of the critical solution. See also [46] for an animation of these simulations.

than 1% difference for a radiation fluid). The values re- ported in Table I are average values between the two fits,
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4.5 5.0 5.5 6.0 6.5
τ

−0.1

0.0

0.1

∆
Ω

Nθ = 12

Nθ = 10

Nθ = 8

Nθ = 6

6.475 6.500

−0.025

0.000

0.025

FIG. 5: The measure of deformation ∆Ω = Ωmax,ax−Ωmax,eq

as a function of (central) proper time τ for the same aspherical
evolution as shown in Fig. 4, i.e. for a radiation fluid (κ = 1/3)
with ε = 1 and close to criticality. The different lines repre-
sent results obtained with different angular resolution. The
higher-resolution results can hardly be distinguished at all,
indicating that the numerical error resulting from our rather
crude angular resolution is small, and highlighting the advan-
tages of spherical polar coordinates for these simulations.

0 2 4 6
T

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

∆
Ω

numerical

fit

FIG. 6: Same as Fig. 5, but with ∆Ω shown as a function
of T = − log(τ∗ − τ) rather than τ , where τ∗ = 6.4958. The
solid (blue) line is the numerical result (for Nθ = 12), while
the dashed (red) line is a fit based on (6).

and carry an error of at least several percent, larger than
those for the critical exponents γM and γρ.

Our numerical values for ω agree very well with the
perturbative values of [15]. Our values for λ are well
within about 10% of those reported by [15], and suggest
a slightly slower damping than the perturbative values.
Our values for λ and ω depend at most very weakly on
ε.

−0.05
0.00
0.05

∆
Ω κ = 0.2

ε = 0.5

−0.1
0.0
0.1

∆
Ω κ = 1/3

−0.1
0.0
0.1

∆
Ω κ = 0.4

−0.1
0.0
0.1

∆
Ω κ = 0.5

0 2 4 6 8
T

−0.25
0.00
0.25

∆
Ω κ = 0.6

FIG. 7: Fits as in Fig. 6 but for different values of κ, and
all for ε = 0.5. The simulations for κ = 0.5 and 0.6 were
performed with up to 20 instead of 10 regrids in order to
allow for better fine-tuning to the critical solution, and hence
to follow the critical solution for longer (see Sect. III).

B. Other ultra-relativistic fluids

We next analyze the dependence of our results on the
stiffness of the equation of state, i.e. on the constant κ
in Eq. (2). Specifically, we consider κ = 0.2, 0.4, 0.5
and 0.6 in addition to κ = 1/3 for the radiation fluid
of Sect. IV A. For each value of κ we choose different
values of the deformation ε, and then bracket the critical
parameter η∗. We again perform fits to (1) and (5) to
find the critical exponents γM and γρ, and to (6) to find
λ and ω. Numerical values for our fits are provided in
Tables II through V.

As for the radiation fluid, we find that the critical expo-
nents γM and γρ agree well with the perturbative values
of [2], and show very little dependence on ε, certainly
within what we estimate to be our numerical and fitting
errors. Also as for the radiation fluid, it is again signif-
icantly more challenging to determine the coefficients λ
and ω for the deviation from the critical solution, but our
values nevertheless agree quite well with the perturbative
values provided by [15].

κ = 0.2

ε η∗ τ∗ γM γρ λ ω

perturbative 0.2614 -1.296 5.1884

0 0.10772 9.85 0.256 0.263 – –

0.01 0.10772 9.85 0.261 0.263 -1.2 5.2

0.1 0.10773 9.86 0.257 0.263 -1.2 5.2

0.5 0.10806 9.89 0.262 0.265 -1.2 5.3

TABLE II: Same as Table I, but for an ultrarelativistic fluid
with κ = 0.2.
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perturbative

0.2 0.3 0.4 0.5 0.6
κ

2

4

ω

FIG. 8: Comparison of our numerical values for λ and ω, as
determined from simulations with ε = 0.5 (crosses), and the
perturbative values of [15] for polar ` = 2 modes (circles).

In Fig. 7 we show an example of these fits for all five dif-
ferent values of κ, all for ε = 0.5. Several general trends
are clearly visible in this Figure. We first notice that, for
larger κ, the deformations are damped more slowly, i.e. λ
increases, and the angular frequency ω of the deforma-
tions decreases. Moreoever, we find that λ changes sign
around κ ' 0.5, so that the modes become unstable and
grow for κ & 0.5. All of these observations are consistent
with the perturbative results of [15], as demonstrated by
the direct comparison our numerical values for λ and ω
with those of [15] in Fig. 8.

The graphs in Fig. 7 also show that, for larger κ, the
behavior (6) emerges only for later times T , while earlier
times appear to be dominated by transients (and pos-
sibly modes of higher order ` which, for larger κ, also
decay more slowly; see Figs. 12 and 13 in [15]). Since
the period of the oscillations (6) also increases with in-
creasing κ, and an accurate determination of λ and ω
requires tracking the oscillation for multiple oscillation
periods, these simulations become increasingly challeng-
ing for larger κ. For κ & 0.5 our usual grid setup with 10
regrids, shrinking the outer boundary to rout = 3.2 (see

κ = 0.4

ε η∗ τ∗ γM γρ λ ω

perturbative 0.4035 -0.1715 3.07312

0 0.12795 5.59 0.405 0.403 – –

0.01 0.12795 5.58 0.403 0.403 -0.16 3.10

0.1 0.12796 5.58 0.406 0.403 -0.17 3.12

0.5 0.12832 5.59 0.404 0.403 -0.17 3.11

1.0 0.12946 5.62 0.406 0.403 -0.18 3.15

TABLE III: Same as Table I, but for an ultrarelativistic fluid
with κ = 0.4.

Section III), did not provide sufficiently accurate results.
We therefore allowed up to 20 regrids down to an outer
boundary of rout = 0.32 in these cases, but performed
these simulations for ε = 0.5 only. Stopping the simula-
tions before the center comes into causal contact with the
outer boundary also meant that the simulations did not
allow for enough time for the horizons to settle down –
we therefore did not compute γM from these simulations.
We note, however, that lower-resolution simulations with
only 10 regrids showed very good agreement of γM with
the perturbative values.

As shown in Fig. 7 the amplitude of the oscillations
changes very little for κ = 0.5 (but appears to grow
very slowly), while for κ = 0.6 the oscillations grow very
clearly. This behavior is consistent with the perturbative
findings of [15], who found that λ changes sign at about
κ ' 0.49. As we will discuss in the following section, this
sign change has profound consequences for the behavior
of solutions close to the black hole threshold.

V. SUMMARY AND DISCUSSION

We perform numerical simulations of the gravitational
collapse of ultra-relativistic fluids to study critical phe-
nomena in the absence of spherical symmetry. Specifi-
cally, we consider initial data that, to lowest order, de-
scribe polar ` = 2 deformations of otherwise spherically
symmetric fluid distributions. We evolve these fluids dy-
namically – using a numerical code that adopts spherical
coordinates – and measure the deviations from spherical
symmetry as a function of time. We vary the stiffness
of the equation of state, parametrized by κ in (2), and
consider different degrees of asphericity, parametrized by
ε in (11). We find that the deviations are well described

κ = 0.5

ε η∗ τ∗ γM γρ λ ω

perturbative 0.4774 0.0135 2.44

0 0.13087 4.726 0.479 0.476 – –

0.5 0.13127 4.733 – 0.475 0.003 2.48

TABLE IV: Same as Table I, but for an ultrarelativistic fluid
with κ = 0.5. In contrast to our simulations for smaller κ, we
performed the aspherical simulations with 20 regrids instead
of 10. We therefore focused on ε = 0.5 only and did not
determine γM (see text for discussion).

κ = 0.6

ε η∗ τ∗ γM γρ λ ω

perturbative 0.5556 0.112 1.968

0 0.13157 4.171 0.560 0.555 – –

0.5 0.13201 4.176 – 0.554 0.102 2.03

TABLE V: Same as Table IV, but for an ultrarelativistic fluid
with κ = 0.6.
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by oscillations that are exponentially damped or growing,
see (6), in very good agreement with the perturbative re-
sults of [15]. In particular, we confirm that for stiffer
equations of state, i.e. for larger κ, the growth rate λ
in (6) increases, and that the oscillation frequency ω de-
creases (see Fig. 8). We also find that λ and ω depend
at most very weakly on the degree of deformation ε.

For sufficiently soft equations of state, with κ < κcrit,
λ is negative, so that the oscillations are damped. We
find κcrit ' 0.5 (see Fig. 8); the value reported in [15] is
κcrit ' 0.49. In the limit of perfect fine-tuning, damped
oscillations have an infinite amount of time to decay (as
measured by the logarithmic time T defined in (7)), so
that the spherically symmetric critical solution is recov-
ered, and the evolution is dominated by the unstable
spherically symmetric ` = 0 mode (see Section II). For
κ < κcrit we therefore expect the characteristic power-law
scaling to hold to arbitrarily small scales.

To the best of our knowledge, our simulations are also
the first numerical confirmation that, for κ & κcrit, the
coefficient λ in (6) is positive, so that deformations grow
rather than decay. This has profound implications for the
nature of the black hole threshold, since, in the limit of
perfect fine-tuning, the spherically symmetric critical so-
lution can then be recovered only when ε = 0 exactly. For
all non-zero ε, aspherical deformations will grow, and, for
sufficient fine-tuning to the black hole threshold, will ul-
timately dominate the evolution. Therefore, power-law
scaling can no longer be expected to hold to arbitrar-
ily small scales. However, the aspherical ` = 2 mode
grows only slowly in comparison with the spherical ` = 0
mode, so that, for a given value of ε, the effects of the as-
pherical mode on the power-law scalings can be observed
for exquisite fine-tuning only. For κ = 0.6 and ε = 0.5
we observe some small deviations from power-laws for

η∗ − η . 5 × 10−10, but we are not confident that these
are caused by true departures from power-laws rather
than by numerical error.

A related effect was reported by [9], who studied crit-
ical collapse of massless scalar fields in axisymmetry.
They found that, for data with large aspherical deforma-
tions, and close to the black hole threshold, there exists a
growing, aspherical mode. This growing mode ultimately
leads to a bifurcation, so that two distinct regions on the
symmetry axis collapse individually.

We also note that for κ < 1/9, an ` = 1 mode de-
scribing rotation becomes unstable (see [15]; see also [32]
for numerical results). Combining these results for those
for ` = 2, we see that for ultra-relativistic fluids, all as-
pherical modes are stable for 1/9 < κ ' 0.49 only (see
also the discussion in [15]), meaning that we can expect
scaling laws for generic initial data to hold to arbitrar-
ily small scales in this regime only. From a physics or
astrophysics perspective, the most relevant example of
an ultra-relativistic fluid is that of a radiation fluid with
κ = 1/3, which is almost exactly in the center of the
above regime.
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