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The quasi normal modes (QNMs) associated with gravitational-wave signals from binary black
hole (BBH) mergers can provide deep insight into the remnant’s properties. Once design sensitivity is
achieved, present ground-based gravitational wave interferometers could detect potentially hundreds
of BBH signals in the coming years. But for most, the ringdown phase will have a very weak
signal-to-noise ratio (SNR) and therefore poor, if any, scientific information could be extracted from
them. We review how a summation method can help detect these weak (2,2) QNMs and potentially
allow to use their information. The method is based on two main steps: signal’s rescaling and
synchronization. In this first study, we tested the method under limited BBH parameters and
review its principal limitations. In particular, the synchronization which fails for the weakest signals,
requires selecting ringdowns with SNR above 2.6. Using this threshold, we show that for two different
BBH populations, 40 to 70% of all the potential detections could still be used for the summation
while ensuring a summed SNR of ~80% of the maximal achievable SNR (i.e. for ideally synchronized

signals).

I. INTRODUCTION

A binary black hole (BBH) is expected to form a per-
turbed Kerr black hole (BH) [1]. Its perturbations are
damped oscillations [2], which are the superposition of
quasi normal modes (QNMs) [3, 4]. According to the
no-hair theorem [5], a Kerr black hole can be described
by two parameters, its mass, Mpy, and its dimensionless
spin, a, see Section II. If these two BH parameters could
be measured, then they can be used to carry out tests of
general relativity [6, 7].

Presently, the rate of stellar mass BBH mergers is esti-
mated to be 12-213 Gpc=3yr~! [8]; implying the possible
detection of hundreds of BBHs in the coming years by
GW interferometers [9]. Most of these BBH signals are
expected to have a weak ringdown where no information
can be extracted. Indeed, considering the four LIGO
observed BBH merger events: GW150914, GW151226,
GW170104 and GW170814 [8, 10-12], only GW150914
has a ringdown with a high enough signal-to-noise ratio
(SNR ~ 7) to extract information [7, 13-15].

For this reason, methods being developed to detect
QNMs from BHs [16-20] are targeting the more sensitive
future generations of ground and space-based detectors.
High SNR ringdown signals will be most likely rare, al-
lowing informative general relativity consistency tests in
only a few cases. However, signal summation techniques
[18, 21] applied to most weak ringdown signals can help
to extract information otherwise lost.

We tested a method, see Section III, to constructively
sum up the dominant (2,2) QNM from several BBH
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signals. To be summed constructively the signals are
rescaled and synchronized. The resultant signal is a “nor-
malized” (2,2) mode which could be used to infer the
properties for the population of remnant BHs, i.e. “nor-
malized” mass, My, and spin, a’. This, in turn, can
provide a weak test on the Kerr nature of the BH pop-
ulation. The subdominant modes im=(3,3), (2,1) and
(4,4) could provide tighter constraints on the BH popu-
lation’s Kerr nature, but presently there is no solution to
synchronize the subdominant modes at the same time as
the (2,2) modes.

In this paper we do not explore the Kerr tests, but if
the QNM signals could be extracted with a substantial
SNR that allows the normalized parameters to be mea-
sured. In Section IV, we report the results of tests done
with two populations of simulated ringdowns. Finally in
Section V, we summarize the results and the present lim-
itations under which the method was tested, and discuss
potential improvements to the method.

II. QUASI NORMAL MODES GRAVITATIONAL
WAVES

The QNM gravitational waves are given by:

h = Z —2Yim (¢, @) i (1)

nlm

where _5Y},, are the spin-weighted spherical harmonics.
The index n is the overtone and in what follows we will
consider only n = 0 to be the strongest modes. I,m > 0
are the spheroidal harmonic indices. The angles are given
in the source frame: ¢ is the angle between the system
spin and the line of sight, and ¢ is the azimuth angle.
The GW amplitudes of the QNMs are defined by:
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where A;,, and ®;,, are the amplitude and phase of each
mode respectively. They depend on physical phenomena
happening inside the BH and will be provided by sim-
ulations. Mppy is the remnant BH’s mass, and r is the
distance to the source. Frequencies, fi,,,, and quality fac-
tors, Qm, are related to the remnant black hole mass,
Mgy, and the dimensionless spin, a, [19, 22]:
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flm_%GMBH [f1+f2( —a) ] (3)
Qim =@ +q2(1 —a)®. (4)

where a = [0, 1]; @ = 0 implies non-spinning while ¢ = 1
corresponds to the maximum spin, where the innermost
stable circular orbit is close to the BH radius.

III. METHOD DESCRIPTION AND TEST
LIMITATIONS

In order to constructively sum all the (2,2) modes, the
ringdown signals are rescaled so that they have the same
fa2 frequency, and then they are synchronized to a com-
mon time reference. Prior information for these two steps
is needed: (2,2) frequencies, peak times, and mass ra-
tios. They could be estimated by LA Linference using
the inspiral-merger part of the signal [23]. In this first
study we do not consider error propagation from other
methods.

We tested these two steps with and without noise. The
subdominant modes change the GW signals, so we take
them into account to understand their effect on the sig-
nal’s synchronization and on the measurements of the
normalized parameters. For these reasons, we used nu-
merical relativity waveforms from SXS [24-29] that allow
us to have all the mode information without noise, see
Fig. 1. Then we inject these waveforms into Gaussian
noise. In Section III, we do not take into account the
detector PSD for simplification. It would introduce er-
rors that are not related to the method used here, and
when we will band-pass filter the signal around the (2,2)
mode frequency, the noise could as good approximation
be considered as Gaussian. Instead, in section IV, for the
general BBH population study, it is taken into account.
But in both Sections we will give our results in terms of
SRN to remain independent of detector PSD’s. After the
summation the SNR and the normalized parameters of
the resulting signal are measured.

We define two SNRs: the SNR of the QNMs,
SNRgna, which is defined from the ringdown’s syn-
chronization points, and the ringdown SNR, SNRgp,
which is defined from the peak amplitude, see Fig. 1, plot
“q = 1.57. SNRgp will be used to select the ringdown
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Figure 1. BBH SXS waveforms chosen for our tests: ¢ < 3,
non-spinning initial BHs with face-on orientation. The QNMs
are: red=(2,2), green=(3,3), blue=(4,4), pink=(2,1) with
black representing the QNM sum. We set ¢ = 0 at the sig-
nal maximum amplitude. Short dashed lines mark the maxi-
mum of their corresponding mode. The red-shaded zone mark
the estimated region of QNMs. The vertical solid black lines
indicate the point from which we synchronize the ringdown
signals.

signals as it includes a visible part of the signal, while
SNRgnr is the SNR of the signals being accumulated.

The method efficiency is measured using the ”sum-
mation efficiency” (SUM.ss) defined as the ra-
tio between the measured SNRgyp and the max-
imum expected SNRonay of the summed signals:
SUMeff:SNRQNM measured/SNRQNM expected- The
maximum cumulated SNRgn s is achieved when all sig-
nals are perfectly synchronized, which is given by:

N 1/2
SFH%QNM expected — (Z SNRQQNMl) ) (5)

i=1

where SNRon s is the SNR of each signal and N is the
total number of signals.



The normalized spin and mass of the resulting signal
are extracted by fitting it with Eq. 2 applied to the (2,2)
mode:

h22 = A226_7r'f22/Q22t COS(27Tf22t + (1)22) . (6)
All constants are included in the amplitude Aso. For the
(2,2) mode, Egs. 3 and 4 are given by:

oo [1.525 — 1.157(1 — a)*'*°] | (7)

- 27TMBH
Q22 = 0.700 + 1.419(1 — a) ™49 (8)

The speed of light in the vacuum and the gravitational
constant are set, c = G = 1, to match the SXS waveform
units.

The expected value of the normalized mass My, and
spin, a’. could be estimated by summing the N hypo-
thetical signals we have in our data:

N
/22 = Z A22i€7Wf22i/Q22it COS(27Tf22 it + (I)QQZ‘) . (9)
i=1

These estimations, as we recall, comes from the inspiral-
merger part. After the rescaling all the frequencies are
the same fos; = f}y. The synchronization aligns all
phases, then we can set to ®95; = 0. Therefore, Eq. 9
rewrites:

N
h’22 = COS(27Tf£2t) Z A22i677rfé2/Q22it ; (10)

i=1

thus the new damping factor Q%, could be determined
by:

N
A/22e—ﬂ'f2/2/Ql22t — ZA22ie_7rf2;2/Q22qzt . (11)

=1

We adopted another approach, as data analysts,
we sum the numerical waveforms without noise and
fit the resultant signal to extract mass My, and spin a'.

QNMs are dependent on many parameters which have
different impact on the method that should be studied.
But our first objective is to understand how well we can
extract the (2,2) modes from the noise and we focus on
the synchronisation. Therefore we choose to primarily
test the present method with a reduced set of parame-
ters. First, we consider only the strongest modes n = 0
as already mentioned and (I,m) = (2, 2), (3,3), (4,4) and
(2,1). The present detections have a mass ratio, ¢, be-
tween 1 and 2 therefore we constrain ¢ <3 and we will
consider the exact mass ratio without error propagation
from the other methods. We also limit our study to ini-
tially spinless BBHs and used an average orientation over
the sky. Given these constrains, between the SXS wave-
forms we choose the following ones shown Fig. 1 and de-
tailed in Appendix 2.

A. Rescaling

The rescaling is achieved by resampling the signals ac-
cording to the fyo ratio:

sample(q) = fa2(q)/ f22(q = 1) sample(q = 1).  (12)

For the current study, we derived a fitting function for
spinless BHs, by using the SXS metadata, this gives the
f22 ratio:

_fal)) 0.0032¢> — 0.0583¢ + 1.0604 . (13)

Ja2(qg=1)

As shown in Tab. I, the periods of the four ringdowns are
consistent with one another, showing that the rescaling
procedure does not introduce large errors by itself.

Table I. Average waveforms periods < T > after rescaling in
the QNM linear regime.

Mass ratio Average period

q (T) Mo]

1 11.51 (1)), =11.55
1.5 11.37 o ((T)),=0.20
2 11.53

3 11.84

B. Synchronization

As indicated in [30], after the peak GW luminosity,
effects of the merging phase are still present in the ring-
down. The authors identified the beginning of the QNMs
with the stabilization in time of the remnant BH frequen-
cies. We proceed with similar tests to estimate the QNM
starting time. We fit the ringdown waveforms (without
noise) at different times using the (2,2) function, Eq. 6,
and we define the QNM starting time when the spin a
becomes constant. The starting times are shown in Fig. 1
and are compatible with those in [30].

As shown in Fig. 1, the QNMs start approximatively
one period after the maximum amplitude. Though any
time after one period can be chosen for synchronization,
“later” times are disadvantageous due to the quick damp-
ening of QNMs; it is difficult to identify a synchroniza-
tion point after only one oscillation, while the lower SNR
requires more events to extract information.

Therefor as a compromise between the low SNR and
the influence by the non-linear merger effects, we choose
the second zero after the peak amplitude as the synchro-
nization point, see Fig. 1. The error due to the merger
effect are compared at 3 different times and shown in
Tab. II.

In the QNM regime, we observe systematic errors:
~ 10% higher for the spin a and ~ 5% for the mass,
Mpy, with respect to the SXS metadata. Part of the



Table II. Relative error on the mass, Mgy, and spin, a, with
respect to SXS metadata at 3 different times: the maximum
amplitude (t=0), the synchronization point and the estimated
beginning of the QNM. The signal is fitted with the (2,2)
mode function, Eq. 6.

Relative errors [%]
Mass| t=0 |Synchronisation|QNM regime
ratio point
q a MBH a MBH a MBH
1 42 42 |30 9 15 6
1.5 |44 40 |14 7 12 5
2 47 36 |13 6 15 5
3 30 12 |6 1 10 3

errors in Tab. II are also due to the difference between
the (2,2) mode, which serves as a fitting function, and
the actual GW signal, which is the sum of all the modes,
see Fig. 1, ¢ = 3. These errors are expected to be
reduced by the summation.

The synchronization point (2nd zero of waveform after
the maximum) is determined by fitting a sine-exponential
function, covering a half period, around its expected
time, which, in turn, is estimated by using our knowledge
on the maximum amplitude time and expected frequency
of the signal. The fit is improved by setting its initial
parameters, the frequency and damping coefficients, to
the values estimated for the rescaling process. The sig-
nal is further improved by band-passing it with a narrow
window around the mode frequencies. The error shift be-
tween the (2,2) mode zero and the fitted zero are shown
in Fig. 2. When the SNRirp < 1, the synchronization
errors are constrained by the implemented limits of the
fit.
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Figure 2. Average time shift errors between the (2,2) mode
zero and the fitted waveform zero: For each mass ratio and
SNR level, the average is computed with 50 injections of the
waveforms including the four modes (2,2), (3,3), (4,4) and
(2,1). Error bars represent standard deviations.

C. Subdominant mode perturbations

The subdominant modes are rescaled simultaneously
with the (2,2) mode due to the constant ratios between
mode frequencies fao/ fi,,. However, they are not syn-
chronized when synchronizing the (2,2) modes as the
phase differences between the (2,2) modes and the sub-
dominant modes are different for each ¢. In these con-
ditions, the divergence introduced by the summed sub-
dominant modes to the (2,2) mode fit cannot be modeled.
The subdominant modes are therefore considered as per-
turbative noise.

The BBH inclination changes the relative amplitude
between the modes as shown by Eqgs 20-23 in [30]. The
highest mode contribution, for the self-imposed upper
limit ¢ = 3, comes from the subdominant mode (2,1)
of an edge-on system which reach up to ~0.6 times the
(2,2) mode amplitude. The contribution of (2,1) mode
is still low as compared to the (2,2) mode for the mass
ratios considered. But as the subdominant modes are
not summed constructively, the amplitude ratios of the
summed signals are lower than for a single signal. In
Fig. 3, we show a comparison of the amplitude ratios
Ass/Agg, Ag1/Agg and Aygy/Agg of single signals with the
amplitude ratios of summed signals. In both cases we
used an averaged orientation. The highest contribution
is As3/A22 = 0.23 [30] and drops to As3/Azz < 0.1. This
allows us, for now, to neglect their effect in the summa-
tion.
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Figure 3. Amplitude ratios between the (2,2) mode and sub-
dominant orders Asz/Azq, A21/A22 and Ass/Ass for different
mass ratio ¢. Continuous lines represent amplitude ratio func-
tions previously derived (t=10 M after the (2,2) peak) [30]
for single signals. The markers represent the maximum mode
ratios when summing all signals from ¢ = 1 till the indicated
q. For instance at ¢ = 3, ¢=1,1.5, 2 and 3 are summed.

In the case of single signals, the subdominant mode
affect the synchronization point, changing its time.
Their effect is proportional to the subdominant modes’
amplitudes, thus increasing with ¢ as shown in Fig. 1.
The largest synchronization shift, ¢, is achieved when
they are in phase with each other but not with the
(2,2) mode maximum. In this scenario, the synchro-
nization points shift between the (2,2) mode zero
and the ringdown zero by ts = {0.4,0.8,0.9,1.5} Mg



for ¢ = {1, 1.5, 2, 3}. The error introduced is compa-
rable to the time shift due to noise at SNR = 4, see Fig. 2.

D. Cumulated SNR and parameter extraction

Once we rescaled and synchronized the signals, we
tested how the SNRg s improved with the summation,
and which resolution can be achieved on the normalized
parameters. We proceed to inject our four SXS signals
into white noise with 10 different SNRgn s and then for
each SNRon s, we sum up, incrementally, 20 randomly
sampled signals. It does means we re-used the same wave-
forms (same q) multiple times in different noise. We keep
the average orientation which imply the average ratio be-
tween mode amplitudes.

The cumulated SNR, according to Eq. 5, should in-
crease by a factor v/N. In Fig. 4 is shown the SNRownm
of the resulting signal from the summation. For low
SNRgp, the synchronization errors are higher, see Fig. 2,
therefore the signals are not summed constructively, and
the ratios shown in the low SNRgn s columns are lower

than v/N.
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Figure 4. Cumulated SNRgn s from N event signals with the
same original SNRgnar: For each entry of the table, the test
is repeated 50 times with waveforms chosen randomly between
the 4 mass ratios. The color scale indicates the average cumu-
lated SNRowna and the written numbers correspond to the
ratio between injected and the averaged cumulated SNRons.
The SNRrp scale is shown for indication about the SNR be-
ing used for synchronization. SNRgna indicates that the
QNM are not visible but the first oscillation from the maxi-
mum amplitude is visible.

The expected spin and mass values of the result-
ing signal from the four randomly sampled waveforms

with the same SNRgnys are inferred by fitting the sig-
nal sum without noise. The fit results are ' = 0.66
and Mpy=1.0 [Mpy/Mppn] (The SXS remnant mass
is given proportionally to the BBH initial total mass).
These values are affected by the aforementioned errors
in the previous section (e.g. propagation of non-linear
mergers effects in the ringdown and, discrepancy between
the (2,2) mode and the actual GW signal) which explains
why Mpy £ 1. The average and standard deviations of
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Figure 5. Average and standard deviations of the fitted spin
and mass values from NN event signals with the same original
SNRonar:: The color scale indicates the standard deviation
in % while the written numbers correspond to the average
(each test is repeated 50 times). The waveforms are chosen
randomly between the 4 mass ratios and the resultant signal
is fitted with the (2,2) mode functions Egs. 7-8.

the fitted spin and mass values from N event (normalized
values) as a function of the SNRgnas and the number of
summed signals are shown in Fig. 5. With a collection
of low SNRqgn s signals, the standard deviation is up to
60% on the spin and is 30% on the mass. This, however,
improves for the higher SNRgwna, e.g. for 10 signals
with SNRona = 3, precisions on the spin and mass are



respectively 35% and 15%. Except for small variations,
the precision follows this cumulated SNRgn s trend. For
values of signals with SNR>10, the precision is compat-
ible with the ones predicted in [31].

IV. APPLICATION TO A POPULATION OF
SIMULATED RINGDOWNS

The main interest of the summation method is to re-
trieve physical information from signals of weak SNR
ringdown, SNRgp, that would not have been used oth-
erwise. In order to understand how many events could
be employed in our analysis, we simulate, using SEOBNR
[32], the SNRyp distributions from merger signals of two
BBH populations of different mass distributions: uniform
distribution in component masses and flat in log(m1) and
log(m2), see Fig. 6. The SNRs are given for the designed
sensitivity of the advanced interferometers LIGO and
VIRGO [33]. Only events with total SNR> 8 (complete
signal) are selected. Each population has 1000 events.
The BBHs are uniformly distributed in volume and with
a total mass between 10-100 M. Then, for each popula-
tion the 4 waveforms are randomly sampled and injected
into noise with a random value SNRrp from the distri-
butions and the summation is applied.
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Figure 6. The histograms represent the number of events
with the respective SNRrp for each BBH mass distribution
(black for flat and red for uniform). The receiver operating
characteristic (ROC) for the two mass distributions is repre-
sented by the solid lines (number of events against SNRrp)
while the SNRrp threshold is highlighted with the dashed
line.

As we have seen in Section III B, the synchronization
errors, which prevent the signals from being summed con-
structively, are worse for lower SNRgp. It is therefore
beneficial to introduce a SNRgrp threshold, which will
allow us to select those events with usable SNRgrp. In
Fig. 7, the SUM.s; as a function of different SNRrp
thresholds is shown (remember, for the synchroniza-
tion we use SNRip but the efficiency is computed with
SNRon ). The results for 3 SNRgp distributions (the
two mass distribution and a limit case with SNRzp equal
to the threshold) are compared with 80% efficiency; this
value was chosen as the curves stabilize above it. The

% of events

fixed SNRs

SNRs from flat distribution

H SNRs from uniform distribution

| [ ! | I
1 2 3 4 5
SNR

RD

Figure 7. Summation efficiency, SUM.ys, as a function of
different SNR thresholds for 3 SNRgrp distributions. The
blue line corresponds to simulations with SNRs equal to the
threshold, i.e. fixed. The red and black lines are the SNRs of
the uniform and flat populations respectively. For each entry,
20 event signals are summed and the test is repeated 20 times;
the color bands represent the standard deviations.

flat mass distribution has the highest SNRgp from its
detected signals and its curve passed 80% efficiency at a
lower threshold, SNRrp = 2.2, than the other distribu-
tions; their curves reach 80% efficiency at SNRrp = 3.
These efficiency values lie between a non-constructive
summation of 20 signals, 47% (N—'/%), and fully con-
structive, 100%. At very low SNRgp (~ 0.2) the ef-
ficiency should be lower than the shown ~50%. This is
due to a method artefact; the fit covers a region where the
signal’s zero is expected, thus all synchronization times
are close to the real ones.
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Figure 8. Average values of mass, spin and SUM.y for differ-
ent numbers of event signals summed. The expected values
are: My = 1, @ = 0.66, and SUM.ss = 80%. The av-
erage is computed with 20 repetitions, and the color bands
represent the standard deviations.

Taking into account standard deviations of the 3 curves



around 80% efficiency, we choose a threshold SNRzp >
2.6. Depending on the expected BBH mass distribution,
40% to 70% of the signals will be selected, see Fig. 6.
In Fig. 7, the SUMcss is computed for 20 summed sig-
nals. In Fig. 8, the SUM.;, the mass and the spin are
shown for several numbers of summed signals after ap-
plying the chosen threshold, SNRrp = 2.6. The aver-
age of the SUM.ss stabilizes around 80% as expected.
The standard deviation for a few events is large because
it depends directly on the SNRgp distributions; while
for more events, this effect is averaged. In addition, the
standard deviations of the flat mass distribution are still
larger due to its bulkier distribution at low SNRrp. The
precision of the mass and spin in both cases follow the
SNR trend.

V. CONCLUSION

We tested the signal summation method that we
developed for the (2,2) mode. For simplification we
reduced the parameter space of the used BBH. These
results showed that the synchronization is a critical
point for a constructive summation. Other parameters
like for example the mass ratio error propagation from
the inspiral-merger will also affect the summation
but in a different way. In this case it changes the
frequency rescaling and it will also introduce errors
to the normalized parameters but, this is out of the
present scope. Thus considering mainly synchronization
problems, we showed that the summation method,
after selecting signals with SNRrp > 2.6, can ensure
a signal summation efficiency of 80%. Depending on
the expected BBH mass distribution, 40 to 70% of the
potential BBH signals detected can still be used to
extract normalized remnant properties.

We are presently working to include more parameters
in our tests. To consider spinning initial BHs, we have
to adopt the three dimensional function: spin and mass
ratio vs (2,2) frequencies, for instance derived in [34].
The effects of the subdominant modes were averaged by
using an averaged sky direction, we will introduce dif-
ferent BH orientations. And as we mentioned, the error
propagation on the mass ratio inferred from the inspiral-
merger will be incorporated in future results. All these
points will not affect the numbers of BBH system we can
use as they depend mainly on the individual SNRs but
will affect the summation efficiency and consequently the
normalized parameters. This will require an independent
study of the extractable information.

We are also working on new and more robust signal
synchronization techniques to allow the use of more sig-
nals. Finally, an important step will be the synchroniza-
tion of the subdominant modes. Their information will

allow a more constraining test on the Kerr nature of the
remnant BH population.
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APPENDIX
1. QNM fitting functions

Several authors [22, 35-37] have developed semi-
analytic or numerical methods to compute the QNMs.
Nowadays, the parameters f1, fa, f3,q1,¢2 and g3 are de-
termined by fitting simulation results [19, 38], the modes
(I,m) =(2,2), (3,3), (2,1) and (4,4) are then given by:

1 c?
_ L Y 895 1157(1 — 0129 14
f22 2m GMppy [ 0 T ] -
Q22 = 0.700 + 1.419(1 — a) =>4 (15)
For = 1 a [0.600 — 0.234(1 — a)>**®]  (16)
2r GMpy - .
Q21 = —0.300 + 2.356(1 — a) "> (17)
fas = o 3 [1 896 — 1 304(1 _ a)0'182] (18)
37 on GMpy .
Q33 = 0.900 +2.343(1 — a)"** (19)
Fas = 1 & [2.300 — 1.505(1 — a)**]  (20)
2r GMpy - .

Qa4 = 0.700 + 1.419(1 — a) 453 (21)

2. Tested waveforms

All the SXS waveforms used for our tests are listed
in Tab. III; they are low eccentricity and non-spinning
initial BHs. For the ringdown, we use a specific set of
data called “outermost”, where NR extractions were per-
formed without extrapolation. This set better describes
the ringdown as extrapolations will contain numerical er-
rors.



Table III. Chosen simulations from SXS. All values are ex-
pressed in geometrical units,c = G = 1, the time is normal-
ized by the total initial mass Mppm while the initial masses
are normalized to Mppy = 1.

Mass ratio ¢| Waveform Id. Mass Mgy Spin a
1 002 0.952 0.622
1.5 007 0.955 0.606
2 169 0.961 0.576
3 030 0.971 0.510
4 167 0.978 0.451
4.499 190 0.980 0.425
5 054 0.982 0.402
6 166 0.985 0.362
7.187 188 0.988 0.323
8 063 0.989 0.300
9.167 189 0.990 0.273
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