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The ability to directly detect gravitational waves has enabled us to empirically probe the nature of ultra-
compact relativistic objects. Several alternatives to the black holes of classical general relativity have been
proposed which do not have a horizon, in which case a newly formed object (e.g. as a result of binary merger)
may emit echoes: bursts of gravitational radiation with varying amplitude and duration, but arriving at regular
time intervals. Unlike in previous template-based approaches, we present a morphology-independent search
method to find echoes in the data from gravitational wave detectors, based on a decomposition of the signal in
terms of generalized wavelets consisting of multiple sine-Gaussians. The ability of the method to discriminate
between echoes and instrumental noise is assessed by inserting into the noise two different signals: a train of
sine-Gaussians, and an echoing signal from an extreme mass-ratio inspiral of a particle into a Schwarzschild
vacuum spacetime, with reflective boundary conditions close to the horizon. We find that both types of signals
are detectable for plausible signal-to-noise ratios in existing detectors and their near-future upgrades. Finally,
we show how the algorithm can provide a characterization of the echoes in terms of the time between successive
bursts, and damping and widening from one echo to the next.

PACS numbers: 04.40.Dg,04.70.Dy,04.80.Cc

Introduction. Since 2015, the twin Advanced LIGO obser-
vatories [1] have regularly detected gravitational wave (GW)
signals from coalescing compact binary objects [2–6]. Re-
cently Advanced Virgo [7] also joined the global network
of detectors, leading to further detections, including a binary
neutron star merger [8, 9]. These observations have enabled
far-reaching tests of general relativity: for the first time the
genuinely strong-field dynamics of the theory could be em-
pirically investigated, including the behavior of pure vacuum
spacetime; and the propagation of gravitational waves over
large distances could be studied, leading to stringent bounds
on the mass of the graviton and on violations of local Lorentz
invariance [4, 5, 10]. A natural next step is to probe the na-
ture of the compact objects themselves. For the more massive
compact binary coalescences that were observed, how certain
can we be that these involved the black holes of classical gen-
eral relativity? In quantum gravity, Hawking’s information
paradox has led to the suggestion of Planck-scale modifica-
tions of black hole horizons (firewalls [11]) and other alter-
ations of black hole structure (fuzzballs [12]). In cosmology,

dark matter particles have been proposed that congregate into
star-like objects [13]. Yet another possibility concerns stars
whose interior consists of self-repulsive, de Sitter spacetime,
surrounded by a shell of ordinary matter (gravastars [14]). Fi-
nally, there is the idea of boson stars, macroscopic objects
made up of scalar fields [15]. What these objects have in
common is the absence of a horizon, causing ingoing gravi-
tational waves (e.g. resulting from merger) to reflect multiple
times off effective radial potential barriers, with wave pack-
ets leaking out to infinity at regular times; these are called
echoes [16–19]. For an exotic object with mass M and a mi-
croscopic correction at the horizon scale of size `, the time
between echoes tends to be constant, and well approximated
by ∆t ' nM log (M/`), with n a factor of order unity that
is determined by the nature of the exotic object (e.g. n = 8
for a wormhole, n = 6 for a gravastar, and n = 4 for an
empty shell) [17]. As an example, taking M to be the de-
tector frame mass of the remnant object resulting from the
first gravitational wave detection GW150914 (M ' 65 M�)
[2, 20], setting n = 4, and identifying ` with the Planck length,
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one has ∆t ' 117 ms. This is much longer than the dura-
tion of the “ringdown” of the remnant (about 3 ms), but at
the same time sufficiently short that it would be practical to
search for echoes immediately following the main inspiral-
merger-ringdown signal.

In [21–23], template-based searches were proposed using
a heuristic expression for the echo waveforms in terms of ∆t
as well as a characteristic frequency, a damping factor, and
a widening factor between successive echoes. Though ex-
pressions exist for echo waveforms from selected exotic ob-
jects under various assumptions [17, 18], concrete calcula-
tions have so far only been exploratory [24]. Moreover, there
may well be other types of objects that also cause echoes but
have not yet been envisaged. For this reason, it is desirable
to have a generic search for echoes which can capture and
characterize a wide variety of different waveform morpholo-
gies [25]. A commonly used method to search for and recon-
struct gravitational wave signals of a priori unknown form is
through the BayesWave algorithm [26, 27]. Here the output
of a network of detectors, s, is written as s = R ∗ h + ng + g,
where R is the response of the network to gravitational waves,
h is the signal, g denotes instrumental transients or glitches,
and ng is a stationary Gaussian noise component. The signal
model h and the glitch model g are both characterized as su-
perpositions of appropriate basis functions, and Bayesian evi-
dences can be computed for the associated hypotheses. From
an observational perspective, the defining difference between
signals and glitches is that the signal is present in the out-
put of all detectors in the network in a coherent way, whereas
any instrumental glitch will be present in only a single de-
tector’s data stream. Thus, if a coherent signal is present in
the data, then typically a smaller number of basis functions
will be needed to reconstruct it than to reconstruct incoherent
glitches, leading to an Occam penalty for the glitch model; at
the same time, the signal is reconstructed with a superposition
of the basis functions.

The choice of basis functions to model signals and glitches
with is not unique. Due to their simplicity, sine-Gaussians
were originally employed and they have been shown to lead
to efficient detection [28, 29] and reconstruction [30, 31] of a
wide range of signal morphologies, though more options have
been explored [32]. In this paper and for the study of echoes
we propose generalized wavelets which are “combs” of sine-
Gaussians, characterized by a time separation between the in-
dividual sine-Gaussians as well as a fixed phase shift between
them, an amplitude damping factor, and a widening factor.
Exponential damping at late times as well as widening is a
feature of linearized calculations, and is also seen in numerical
simulations [19]. Even though actual echo signals are unlikely
to resemble any single generalized wavelet and may not even
have well-defined values for any of the aforementioned quan-
tities, we do expect superpositions of generalized wavelets to
be able to capture a wide variety of physical echo waveforms.
Moreover, one can assume the distribution of samples over
the generalized wavelet parameter space to yield basic infor-
mation about the structure of the echoes signal, which should
then be of help in identifying the nature of the object that is
emitting them.

Description of the method. As in the standard BayesWave
algorithm, given a detector I the signal model in the frequency
domain takes the form

(R∗h)I( f ) =
(
F I

+(θ, φ, ψ) h+( f ) + F I
×(θ, φ, ψ) h×( f )

)
e2πi f ∆tI (θ,φ),

(1)
where h× = εh+eiπ/2, with ε the ellipticity as in [26]. The
sky position (θ, φ) and the polarization angle ψ are consistent
across detectors, whose beam pattern functions are denoted
by F I

+ and F I
×; ∆t(θ, φ) is the delay between the geocentric

and detector arrival times. h+ is decomposed into a sum of
generalized wavelets that are “combs” of NG sine-Gaussians
in the time domain which are functions of 9 parameters:

Ψ(A, f0, t0, τ, φ0,∆t,∆φ, γ, w; t)

=

NG∑
n=0

γnA exp

− (
t − (t0 + n∆t)

wnτ

)2
× cos(2π f0(t − (t0 + n∆t)) + φ0 + n∆φ). (2)

Here A is an amplitude, f0 is a central frequency, t0 is the cen-
tral time of the first echo, τ is a damping time, φ0 a reference
phase, ∆t is the time between successive sine-Gaussians, ∆φ
is a phase difference between them, γ is a damping factor be-
tween one sine-Gaussian and the next, and w is a widening
factor. The glitch model also involves a decomposition into
the generalized wavelets above. The number of wavelets is
allowed to vary. Given Nd detectors, a signal described by N
generalized wavelets requires 9N+4 parameters to be sampled
over (the 9 intrinsic parameters and 4 extrinsic ones), while
glitches described by N generalized wavelets involve 9 NdN
parameters. Hence, when Nd > 1 and with a signal present,
the signal model will be preferred over the glitch model be-
cause it enables a more parsimonious description. The noise
model consists of colored Gaussian noise whose power spec-
tral density is computed using a combination of smooth spline
curves and a collection of Lorentzians to fit sharp spectral fea-
tures [27].

For each of the three hypotheses, the corresponding param-
eter space is sampled over using a Reversible Jump Markov
Chain Monte Carlo algorithm, in which the number of gener-
alized wavelets is free to vary as in [26]. Evidences for the
three hypotheses are then estimated by means of thermody-
namic integration, giving the Bayes factors BS/N and BS/G for
the signal versus noise and signal verus glitch hypotheses, re-
spectively. The samples in parameter space that are produced
after a “burn-in” stage allow us to perform model selection
and parameter estimation. Finally, a background distribution
for BS/N and BS/G is constructed by analyzing many stretches
of detector noise preceding the main signal.

Results. In order to test the algorithm we generate station-
ary, Gaussian noise for a network of two Advanced LIGO de-
tectors at the predicted design sensitivity [33]. In this we co-
herently inject (a) a single generalized wavelet as in Eq. (2),
and (b) a train of echoes from a numerically solved toy model
involving the inspiral of a particle in a Schwarzschild space-
time with Neumann reflective boundary conditions just out-
side the horizon, the mass ratio being q = 1000 [34, 35].
The signals are shown in Fig. 1. For case (a), one has
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FIG. 1: The simulated signals used to evaluate the method. Top
panel: A train of sine-Gaussians. Bottom panel: the waveform from
a toy model for a mass ratio q = 1000 inspiral of a particle in a
Schwarzschild spacetime, with Neumann reflective boundary condi-
tions just outside the horizon.

f0 = 166.7 Hz, τ = 0.0095 s, φ0 = 0, ∆t = 0.04 s, γ = 0.7,
and w = 1.2. Both for cases (a) and (b), values for the ampli-
tudes of the injected signals are chosen such that the combined
(matched-filtering) signal-to-noise ratio (SNR) in all echoes
is, respectively, 8, 12, 18, and 25. The higher values corre-
spond to the SNR in the ringdown signal of a gravitational
wave detection like GW150914 [2] under the assumption that
it would be seen in Advanced LIGO at final design sensitivity,
whereas an SNR of 8 roughly equals the SNR that the ring-
down actually had for GW150914 [10].

For both types of simulated signals, 10 echoes are in-
jected (in reality one would expect infinitely many although
only a finite number will be detectable), and the generalized
wavelets used to characterize the simulated signals have 5
sine-Gaussians in them. Case (a) has a well-defined damp-
ing factor γ and widening factor w, allowing us to establish
that the method works as intended, by ascertaining that these
parameters are recovered correctly. In case (b), γ and w may
not have rigorous meaning, but the distributions on parameter
space that are obtained should be indicative of the physics in-
volved; moreover, the peaks of their distributions should cor-
respond to what one estimates from a visual inspection of the
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FIG. 2: Background distributions for the (log) Bayes factors BS/N

(top) and BS/G (bottom), containing 380 trials. The dashed lines show
the values of these quantities for the injection of echoes from the
inspiral toy model with SNRs of 8, 12, 18, and 25.

signal. In the latter case, the stretch of data analyzed excludes
the main signal, as one would also do in reality. In both cases
the first echo is searched for in a window for t0 that has a width
of 0.5 s; for the other parameters the prior distributions are flat
in ∆t ∈ [0, 0.25] s, γ ∈ [0, 1], w ∈ [1, 2], and ∆φ ∈ [0, 2π].

In order to confidently detect echoes, the Bayes factors
BS/N and BS/G must be compared with a background distri-
bution for these quantities, computed on stretches of detec-
tor noise, e.g. at times immediately preceding the inspiral-
merger-ringdown signal. These are shown in Fig. 2, together
with the values obtained from the injection of echoes for the
inspiral toy model. For all simulated signals considered here
we find that, starting from SNR = 12, log BS/G and log BS/N
are above their respective backgrounds; hence trains of echoes
with this loudness would be detected with confidence. It is
worth noting that very similar Bayes factors are obtained with
the original BayesWave algorithm, which instead of the gen-
eralized wavelets of Eq. (2) uses the standard Morlet-Gabor
wavelets consisting of single sine-Gaussians. Hence the use
of generalized wavelets does not significantly improve detec-
tion. However, the generalized wavelets allow for the charac-
terization of echoes, to which we now turn.
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FIG. 3: The distribution of samples for the case where the injected
signal is a comb of sine-Gaussians. Top: Damping factor γ against
the time ∆t between echoes. Bottom: The widening factor w against
∆t. The colors indicate the number of samples per pixel, while the
dashed lines show the true values of the parameters.

Fig. 3 shows the distribution of samples for case (a), for an
SNR of 25 and injected echo-related parameters ∆t = 0.04 s,
γ = 0.7, and w = 1.2. These are measured correctly, with
peak values and standard deviations ∆t = 0.040 ± 0.007 s,
γ = 0.69 ± 0.05, and w = 1.16 ± 0.09. In Fig. 4 we show the
distribution of samples for case (b), again for an SNR of 25;
visual inspection of the signal in Fig. 1 indicates similar values
for ∆t, γ, and w as for case (a), and these are indeed the values
where sample distributions have their main peaks. The peak
values and standard deviations are ∆t = 0.040 ± 0.007 s, γ =

0.71 ± 0.11, and w = 1.12 ± 0.12. The distribution of (w,∆t)
samples also shows secondary peaks at 3∆t and 5∆t. These
correspond to secondary peaks with γ ' 0 in (γ,∆t) space,
which are cases where essentially only one echo was found.
However, the secondary modes are considerably weaker than
the main one. Fig. 5 shows that the recovered echoes signal
is indeed consistent with what has been injected. Finally, by
looking at the injections with SNRs 18, 12, and 8, we checked
that measurement uncertainties roughly increase with inverse
SNR, as expected. We conclude that, given a sufficiently loud
source, not only will we have the ability to detect the presence
of echoes with high statstical confidence, we will also have a
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FIG. 4: The distribution of samples for the case where the injected
signal is the inspiral toy model. Again we show γ versus ∆t (top) and
w versus ∆t (bottom).

way to infer the properties of the exotic compact object.
Summary. We have constructed a method to search for,

and characterize, gravitational wave echoes in a morphology-
independent way. The algorithm decomposes the signal into
generalized wavelets taking the form of “combs” of sine-
Gaussians in order to capture the essence of echoes in the
data. As in the original BayesWave, the evidences for three
hypotheses are compared through a sampling over parameter
space: signal, glitch, and Gaussian noise. We have shown
that for a heuristic but physically motivated train of echoes,
with plausible loudness given expected detector upgrades, the
echoes signal can be confidently detected. We expect this to
be the case for a wide variety of possible signal shapes cor-
responding to different types of compact objects, irrespective
of an object’s detailed nature; in particular, no template wave-
forms are needed. Moreover, the distribution of samples over
parameter space will reveal key characteristics of the echoes
such as the time between successive bursts, as well as their
widening and damping. This information can in turn be used
to identify the nature of the potentially horizon-less merger
remnant.
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