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Detections of gravitational waves emitted by binary black holes allow for tests of General Relativity
in the strong-field regime. In particular, deviations from General Relativity can be observed by com-
paring incoming signals to waveform templates that include parametrized deviations from General
Relativity. However, it is essential that the General Relativity sector of these templates accounts
for all predictable physics. Otherwise, missing physics might be mimicked by the “beyond General
Relativity” sector of the templates, leading the analysis to report apparent deviations from General
Relativity. Current parametrized tests implement templates that omit physical phenomena such
as orbital eccentricity and higher-order modes. In this paper, we show how the omission of higher
modes can lead to false deviations from General Relativity when these effects are strong enough.
We study the extent of these deviations as a function of the mass ratio and the orbital orienta-
tion. We find that significant false deviations can arise when current tests are performed on signals
emitted by asymmetric binaries whose orbital angular momentum is orthogonal to the line-of-sight.
We estimate that the Advanced LIGO-Virgo network operating at its design sensitivity can observe
false violations with a significance above 5σ as often as once per year. Similar results are expected
for other tests of General Relativity that that compare the data to waveforms where some physical
effects are omitted.

I. INTRODUCTION

Since its postulation in 1916 [1], General Relativity (GR)
has successfully passed all consistency tests performed.
Most of them have been testing gravity in its so called
weak-field regime based on astrophysical observations [2–
4]. It was not until the recent detection of gravitational
waves (GWs) from binary black holes (BBH) [5–7] and
a binary neutron star (BNS) [8] that GR has started to
be tested in its strong field regime. Since then, a vari-
ety of tests have been performed. As a result, bounds
on the mass of the graviton improved by a factor of two
previous existing ones [9]. Tests of the dynamics pre-
dicted by GR have been performed by comparing the
final black hole states predicted from the early and late
inspiral emission. Moreover, the recent joint detection of
GW170814 by the Advanced LIGO [10] and Virgo [11]
detectors, has allowed for the first direct measurement
of the GW polarization, enabling to test the hypothesis
that GWs are purely tensorial [12, 13]. Finally, the de-
tected signals have been compared to generalized, analyt-
ical inspiral-merger-ringdown waveform templates that
include parametrized deformations with respect to GR.
Although none of these tests have shown strong evidence
for deviations from GR, 2σ deviations have been observed
for some of these events. These deviations can be as-
cribed to the stochastic nature of the noise or any physics
that has not been captured by our waveform models.

Most tests of GR using GW from BBH involve the
comparison of the signal to waveform templates. As de-
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scribed above, in some cases these models explicitly in-
clude deviations from GR. In doing so, it is crucial that
the GR piece (or “sector”) of these templates, to which
non-GR parameters (or a “nonGR sector”) is added, cap-
tures all physics predicted by GR. Otherwise, it is possi-
ble that the omitted physics is mimicked by physics be-
yond GR, leading to apparent false deviations from GR.
State-of-the-art tests of this kind use templates whose
GR sector omits the impact of physical phenomena such
as the orbital eccentricity of the binary and the higher
modes of the GW emission. In particular, current tests
of GR implement underlying waveform models, or GR
sector, that only consider the dominant ` = 2 modes
[14], omitting the impact of further higher-order modes
(see Section II). This is partly due to the fact that no
waveform model accounting for the effect of both higher
modes and generic spins were available. However, higher
modes are known to have a large impact on the GW sig-
nal emitted by BBH with mass ratios q = m1/m2 > 4
and total mass M = m1 +m2 > 100M� [15–21].

In this work, we investigate how the impact of omitting
physical effects in the GW signal can be mimicked by
physics beyond GR, leading to apparent deviations from
GR. In particular, we investigate the impact of omitting
higher modes in the waveform model as a proxy for a
missing physical effect.1

We note that, to date, no source in the region of the
parameter space described above has been found [22].
Moreover, it is known that matched-filter searches [23],

1 We note that although the spin of the binary has an impact on
its higher mode content, this is dominated by the value of the
mass ratio [16, 19].
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FIG. 1. Impact of higher modes in a time domain
waveform:. The last cycles of a waveform from a non-
spinning, q = 8 binary (in geometrical units) with only the
(2, 2) mode (EOBNRv2, blue dashed) and with higher-order
modes included (EOBNRv2HM, red solid), when the source
is face-on (top panel) and edge-on (bottom panel). There are
no visible differences when the source is face-on, but higher
modes introduce strong features near the merger-ringdown
regime in the edge-on case.

which are in principle optimal once the morphology of
the signal is known, have a poor sensitivity in this part
of the parameter space. This may be partly due to
the fact that current templates used as filters omit the
higher-order modes of the signals, and partly due to the
strong background of non-Gaussian noise transients af-
fecting the high mass region of the parameter space [24].
In fact, this region is currently better covered by mor-
phology agnostic searches [25, 26]. However, the current
development of enhanced matched-filter searches [27, 28]
and the expected increase in sensitivity of the Advanced
LIGO detectors for future observation runs might en-
able the first observation of the sources considered in this
study.

The rest of this paper is structured as follows. Section
II provides a brief overview of higher-order modes and
the situations in which these produce strong effects. Sec-
tions III and IV introduce the parametrized test of GR
and its implementation within the framework of Bayesian
Inference. Section V gives an overview of the simulated
signals and recovery templates we use. In section VI
we show that omission of higher modes in the GR sec-
tor of our templates can lead to strong apparent devia-
tions from GR. This is, in the case of highly asymmet-
ric BBH whose orbital plane is not perpendicular to the
line-of-sight. Finally, we provide an outlook for future
gravitational-wave detections Sec. VII.

II. GRAVITATIONAL WAVES FROM BINARY
BLACK HOLES

In GR, the emission from a non-eccentric BBH is charac-
terized by a set of 15 parameters. The set of 8 parameters

given by the masses m1,2 and spins ~s1,2 of the individ-
ual black holes are known as the intrinsic parameters Ξ
of the binary. Next, the sky location of the observer in
the frame of the detector can be described in standard
spherical coordinates (dL, ι, ψ) with origin in the center
of mass of the BBH. The axis ι = 0 is chosen to be or-
thogonal to the orbital plane, defined by ι = π/2. In this
framework, a BBH is said to be face-on or edge-on if the
observer is located at ι = 0 or ι = π/2, respectively. Fi-
nally, the time of coalescence tc, the sky-location of the
binary in the sky of the detector (θ, ϕ), and the polari-
sation angle ψp of the signal complete the 15 parameters
set.

The GW strain h of a binary located at a luminosity
distance dL, as observed by a GW detector with antenna
pattern (F+, F×) [29] can be expressed as a combination
of the two GW polarizations (h+, h×) as

h(Ξ, dL, ι, ψ, θ, φ, ψp; t− tc) =
∑

i=+,×
Fi(θ, ϕ, ψp)hi(dL, ι, ψ,Ξ; t− tc). (1)

Each GW polarization can be expressed as a superposi-
tion of gravitational wave modes h`,m

h+ − ih× =
1

dL

∑

`≥2

m=∑̀

m=−`

Y −2`,m(ι, ψ)h`,m(Ξ; t− tc)

≡ h.
(2)

For the case of non-precessing binaries, the above sum
is always dominated by the (`,m) = (2,±2) modes dur-
ing the inspiral part of the coalescence. The remain-
ing modes, known as higher-order modes, have a sub-
dominant effect and only contribute significantly to the
GW signal during the last few cycles and merger of the bi-
nary. Notably, the amplitude of the higher-order modes
grows with the mass ratio q, so that highly asymmet-
ric binaries tend to have strong higher modes. Finally,
the orientation of the binary also impacts the contribu-
tion of higher modes to the GW signal. The spherical
harmonics Y2,±2 have their maximum at ι = (0, π) and
minimum at θ = π/2, while the rest of the harmonics
behave in different ways, having their maxima close to
ι = π/2. This makes the (2, 2) mode especially domi-
nant for face-on/off sources, while edge-on sources have
a more important contribution from higher-order modes
[15, 16, 30].

III. PARAMETRIZED TESTS OF GENERAL
RELATIVITY

In this study we will focus on a generic test of GR
that focuses on measuring parameterized deviations de-
formation from the template waveform [31]. In partic-
ular, the method uses a closed-form expression for the
waveform which is parameterized by a set of parameters
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{pi}. For example, in the so-called IMRPhenomPv2 model
these parameters are given by inspiral PN parameters
{ϕ0 . . . ϕ7} and {ϕ5l, ϕ6l}, phenomenological inspiral-
merger {β0 . . . β3} and merger-ringdown {α0 . . . α5}. De-
viations from GR, or the non-GR sector, are represented
by relative deviations pi → (1 + δp̂i)pi. In this so-called
parametrized test, GW data is compared to waveforms h
with the goal of obtaining a probability distribution for
δp̂i. Values of δp̂i 6= 0 indicate that the GR sector of h
can not recover the whole physics present in the incoming
signal, therefore providing evidence that the signal con-
tains physics beyond GR. In these sorts of analyses, it is
essential that the GR sector of the sector hGR(t) includes
all the physics predicted by GR. Otherwise, it is possible
that GR physics missing in GR sector of the template
could be absorbed by the non-GR one. This would lead
to an apparent false violation of GR.

Alternatively, the idea of the parameterized tests can
also be re-expressed as

h(t) = hincomplete
GR (t) + hnonGR(t) (3)

where, in general

hincomplete
GR (t) = hGR(t)− hmissing

GR . (4)

Above, hGR(t) denotes an ideal GR sector accounting for

all physics predicted by GR while hmissing
GR (t) denotes the

part of the full GR sector omitted by some incomplete

GR sector hincomplete
GR (t). And hnonGR(t) denotes nonGR

sector accounting for physics beyond GR.
Current parametrized tests of GR implement a GR sec-

tor that omits the higher-order modes of the GW emis-
sion [14]. Denoting by Ξ the set of intrinsic parameters
of a given BBH, we can express this as:

hGR(t,Ξ) =
∑

(`≥2,|m|≤`)

Y −2`,m(ι, ψ)h`,m(t,Ξ),

hincomplete
GR (t,Ξ) =

∑

(`=2,|m|≤`)

Y −2`,m(ι, ψ)h`,m(t,Ξ),

hmissing
GR (t,Ξ) =

∑

(` 6=2,|m|≤`)

Y −2`,m(ι, ψ)h`,m(t,Ξ).

(5)

In the following, we will investigate how the higher
modes, or missing physics hmissing

GR (t,Ξ) omitted by the

GR sectors hincomplete
GR (t,Ξ) of the templates h can be

mimicked by the physics beyond GR present in its nonGR
sector hnonGR(t), leading to apparent violations of Gen-
eral Relativity. Our goal is to systematically study the
strength of these violations as a function of the param-

eters ~λ = (Ξ; ι, ψ) of the binary. To this end, we will
perform parametrized tests of GR on a large set of sim-
ulated signals with different physical parameters, which
refer to as injections, including higher modes. In order to
prove that any violations we find are caused the presence
of higher modes in the injections, and not by other possi-
ble differences between the injections and the templates,
we repeat our analysis using a second injection set with
identical physical parameters in which higher modes are
omitted.

IV. BAYESIAN INFERENCE

The inner product of two real functions a(t) and b(t) is
defined as

(a|b) = 4<
∫ fhigh

flow

ã(f)b̃∗(f)

Sn(f)
df. (6)

Here, ã(f) is the Fourier transform of a(t), ∗ denotes
complex conjugation and Sn(f) denotes the one sided
power spectral density of the detector noise. Our anal-
ysis considers the predicted Advanced LIGO sensitivity
curve, also known as the zero-detuned-high-power config-
uration [32]. We use lower and higher frequency cutoffs
flow and fhigh, of 20Hz and 4096Hz respectively.

The posterior p(~λ|d) that a signal h(~λ) with parameters
~λ is embedded in a given signal d, is given by

p(~λ|d,H) =
p(d|~λ,H)p(~λ|H)

p(d|H)
. (7)

Assuming Gaussian noise, the likelihood p(d|~λ) that a sig-
nal d(t) with unknown parameters is the result of bury-

ing some signal template h(~λ) with parameters ~λ in such
noise, is given by

p(d|~λ) ∝ exp

[
−1

2
(d− h(~λ)|d− h(~λ))

]
. (8)

In general, the vector of parameters ~λ con-
sists on a combination of 15 physical parameters
{Ξ; dL, θ, ϕ; ι, ψ, ψp; t − tc} and the parameters δp̂i
accounting for deviations from GR. The shape and
spread of the likelihood function along the parameter
space follow from the signal present in the data and the
power spectral density of the noise. In this study, our
data d will consist in simulated signals hinj injected in
Gaussian noise h, generated according to some power
spectral density Sn. In what follows, we will refer to our
input data hinj as injections, while we will refer to our
recovery waveforms h(λ) as templates.

The parametrized test of GR can be further extended
to a model selection problem. In particular, one needs to
decide which of two models is a better description of our
GW data: a model that only accounts for GR physics, or
another one including physics beyond it. Model selection
is a problem that is now well established in gravitational
wave data analysis in the framework of Bayesian infer-
ence. Given a simulated signal hinj we want to compare
two hypothesis: H0 and H1. These assume respectively
that data is well described by GR and that parametrized
deviations from GR are needed for a good description of
the data. The posterior probability of H being true is
given by

p(H|d) =
p(d|H)p(H)

p(d)
, (9)
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where the marginal likelihood p(H) is given by

p(d|H) =

∫
p(~λ,H)p(d|~λ,H)d~λ. (10)

The two hypothesis can be then compared by means of
their odds that, given by

O1
0 =

p(H1|d)

p(H0|d)
=
p(d|H1)

p(d|H0)

p(H1)

p(H0)
≡ B10

p(H1)

p(H0)
. (11)

Above, O and B are the so-called odd ratio and Bayes
factor, respectively. A result of O1

0 > 1 indicates that H1

provides a better description of the data than H0, vice
versa.

In this work, we want to show how inclusion of higher
modes in the injections can lead to apparent deviations
from GR when these are omitted in the templates. Since
the effect of higher-order modes is only significant in the
merger-ringdown stages of the binary [15, 17, 30, 33], we
focus our analysis on these parts of the emission. There-
fore, the set of extra GR parameters is reduced to those
affecting these stages of the coalescence. These are com-
monly expressed as [9]:

{δp̂n} = {δα̂2, δα̂3, δα̂4}. (12)

The parametrised test will yield posterior distributions
for each of the above parameters. We stress that values
δαi 6= 0 indicate deviations from GR. In this situation,
we can define the strength of a violation of GR as the
distance between the median of the posterior distribu-
tion of a given nonGR parameter δαi and 0 measured in
number of standard deviations. Finally, the odds ratio
OnonGR

GR can be written as

OnonGR
GR =

1

7

P (HnonGR)

P (HGR)
(Bδα̂2 6=0

GR +Bδα̂3 6=0
GR +Bδα̂4 6=0

GR

+Bδα̂2,δα̂3 6=0
GR +Bδα̂2,δα̂4 6=0

GR +Bδα̂3,δα̂4 6=0
GR

+Bδα̂2,δα̂3,δα̂4 6=0
GR ) (13)

≡ BnonGR
GR

P (HnonGR)

P (HGR)
. (14)

We will say that evidence for deviations from GR have
been found when either the posterior distributions for
{δα̂2, δα̂3, δα̂4} exclude the 0 value or when the odds ra-
tio is such that OnonGR

GR � 1. In our study, we take the
the prior preference between hypothesis to be 1. There-
fore OnonGR

GR = BnonGR
GR . Finally, the sampling of the

likelihood function over our 9 to 12-dimensional parame-
ter space is carried using the Nested Sampling algorithm
lalinference_nest [34] implemented in LAL [35].

V. WAVEFORMS

The true GW emission from a BBH contains, in gen-
eral, higher modes. Hence, for our injections, we need

a model that includes higher modes. By the time
this study was performed, the available inspiral-merger-
ringdown waveform models including higher modes were
the effective-one-body models for non-spinning BBH pre-
sented in [36, 37], and we chose the former one as
it includes more harmonic modes, namely, (`,m) =
(2,±1), (2,±2), (3,±3), (4,±4) and (5,±5) modes.2 The
reliability of this model has been tested recently in the
appendix of [26]. However, we note that waveform mod-
els with the effects of higher modes have been published
[38, 39].

We want to demonstrate how the effect of higher modes
in the GW waveform can be mimicked by physics beyond
GR. Therefore, we need to demonstrate that any viola-
tions we find are indeed produced by the effect of higher
modes. Hence, we repeat our analysis using a target
waveform model that omits higher modes and check that
no violations are observed. To this, we choose as injec-
tions the restriction of the previous model to the (2,±2)
modes 3. We note that there exists a large collection of
models of the (2,±2) modes emitted by a BBH that we
could have used, in principle [40–45]. However, we want
to be sure that the only differences in the two analyses
is strictly due to the presence of higher modes in one of
the models, and not due to different modelings of the
dominant (2, 2) mode.

Following recent studies of this kind [9] our templates
implement GR sectors computed by the phenomenolog-
ical inspiral-merger-ringdown model for precessing coa-
lescing binaries described in [14, 41], to which an extra
nonGR sector is added in the parametrized way described
in section III4. We note that this model aims to account
for generic spin effects. In particular, an approximate
modeling of precession effects is implemented via a pre-
cession parameter χp. Finally, and most relevant for our
purposes, this waveform model contains all ` = 2 modes,
omitting the higher-order modes. Hence, our templates

implement an incomplete GR sector hincomplete
GR that can

be expressed as in Eq. 5.

VI. RESULTS

In this section, we show how the higher modes present in
our injected signals, which are omitted by the GR sec-
tors of our templates, can be interpreted as effects due
to physics beyond GR. Whether these violations are ob-
served or not will depend on the strength of the higher
modes present in the injected signal, which in turn de-
pends on the parameters of the corresponding source.
Stronger higher modes will have a larger chance of being

2 The former model is available in the LIGO LALSimulation li-
brary [35] and denoted as EOBNRv2HM.

3 This model is known as EOBNRv2 in the LALSimulation library.
4 This model is known as IMRPhenomPv2 in the LIGO Algorithm
Library and we will refer to it as PhenomP throughout the text
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FIG. 2. Impact of higher modes on parameterized deviations from GR: Posterior distributions of the nonGR param-
eters affecting the merger-ringdown emission (α2, α3 and α4) obtained for four different injections. These correspond to four
BBH sources with total mass of M = 200M�, but different inclination angle ι and mass ratio q. In all cases, we inject signals
including (red) and omitting (blue) higher modes. All injections have an optimal SNR ρopt = 15. Note that no significant
deviations from GR are observed for ι = 0, q = 1 (upper left panel), ι = π/2, q = 1 (upper right panel) and ι = 0, q = 8 (lower
left panel). However, a strong deviation from GR is observed the case with ι = π/2, q = 8 (lower right panel) when higher
modes are included in the injected signal.

interpreted physics beyond GR, while signals for which
higher modes are weak will be well recovered by the GR
sectors of our templates.

A. A First Example

The upper panels of Fig. 2 show the results of the
parametrized test applied on signals emitted by an equal-
mass binary with M = 200M�, for inclinations ι = 0 and
ι = π/2. In particular, we show the posterior distribu-
tions obtained for each of the nonGR parameters δαi. In
these cases the impact of higher modes in the signal is
small and the GR sector of our templates, given by the
PhenomP model, can recover most of the power of the
signal. This leaves almost no power available to be ab-
sorbed by the nonGR sector of the templates. Therefore,
no deviations from GR are reported by the test.

In the bottom case, we set the mass ratio of the bi-
nary to q = 8. In the face-on case, higher modes have a
minimal effect and no deviations from GR are observed.

However, in the edge-on case, the strong features intro-
duced by higher modes cannot be recovered by the incom-
plete GR sector. Instead, an important fraction of this
is mimicked by the nonGR sector of the templates. As a
consequence, none of the posterior distributions includes
the GR value δαi = 0, and the test reports a strong devi-
ation from GR. In all cases the simulated source has been
placed at a distance such that its optimal signal-to-noise
ratio (SNR) is ρopt = 15 (see Eq. 15)

Fig. 3 illustrates the above effect. The left panel shows,
in the Fourier domain, the injected signal (green), the GR
PhenomP template that best recovers it (blue) and the
best fitting waveform allowing for deviations from GR
(orange). The GR template is unable to capture the high
frequency components introduced by the higher modes of
our injection. Instead, contributions from higher modes
can be accounted for when one allows for deviations from
GR. The right panel shows the same waveforms in the
time-domain. In this case, it is particularly clear that
the differences between the performance of the GR and
beyond GR templates is caused by the strong impact that



6

higher modes have in the late merger-ringdown part of
the signals. In particular, note how the blue GR wave-
form fails to capture the morphology of our injected sig-
nal (green) while this is quite well mimicked by when we
allow for deviations from GR (orange).

B. Predicting False Violations

As suggested in [46], the fractional amount of power in
the injections that can not be recovered by the GR sector,
and which could instead be picked up by the nonGR one,
is the key ingredient to estimate the magnitude of poten-
tial deviations from GR. In our case, this can be given
by the fraction of SNR that the best matching PhenomP
template can recover from our injection [47].

The optimal SNR ratio of an injection hinj is given by

ρopt =
√

(hinj|hinj). (15)

Instead, the SNR that a template h can recover from hinj
is proportional to their overlap O(hinj|h), as:

ρ(hinj|h) =
(hinj|h)√

(h|h)
=

(hinj|h)√
(hinj|hinj)(h|h)

× ρopt

≡ O(hinj|h)× ρopt
(16)

The effectualness E of a template family (or a template

bank) to an injection hinj(~λinj) is defined as the maximum

overlap between hinj(~λinj) and any template h(λ) belong-
ing to a given family, maximised over the parameters λ
[47]. In our case:

E = max
λ
O(hinj(~λinj)|h(~λ)) (17)

The effectualness gives the maximum SNR (or power)
from the signal that can be recovered by the non-modified
PhenomP templates. The maximum SNR that can be
picked by its nonGR sector is given by

ρ⊥ = ρopt ×
√

1− E2. (18)

Computing E implies a rather expensive maximization

of O over all the possible parameters ~λinj. Instead, we
find that a good proxy for this quantity is given by the
faithfulness of PhenomP to our injection. This is defined
as the overlap of the PhenomP template having the same

parameters ~λinj as our injection :

F = max
φc,tc
O(hinj(~λinj)|h(~λinj)). (19)

Fig. 4, shows the distribution of the strength of de-
viations from GR as a function of F . Since injections
with low ρopt will have relatively low ρ⊥, we expect such
injections to reveal no clear violations of GR. For this

reason, we choose to distribute our injections uniformly
in co-moving volume with ρopt ∈ [15, 25]. 5

Red dots correspond to cases in which higher modes
are included in the injections. Blue dots correspond to
injections having the same parameters as the previous
ones but omitting the higher modes. For the latter, we
always get F ∼ 1, and all cases can be well recovered by
PhenomP, leading to no significant deviations from GR.
Addition of higher modes causes F to deviate from 1 for
those cases in which higher modes are strong, leaving a
larger power in the injection that can be absorbed by
the nonGR sector of our templates. This leads to devi-
ations from GR whose magnitude increases, in average,
as F decreases. Of course, not all the power that is not
recovered by PhenomP will be recovered the nonGR sec-
tor of the template. Instead, this will be proportional to
the overlap between the portion of the injected waveform
not recovered by the GR sector and the corresponding
nonGR sector, which will vary depending on the specific
effect that higher-order modes have on the injection. As
a result one may write the signal portion causing the ap-
parent violation of GR as

happarentnonGR = ρ(hinj − hincomplete
GR |hnonGR)ĥnonGR, (20)

with ĥnonGR = hnonGR/
√

(hnonGR|hnonGR). For some of
the cases we considered, the portion of signal not recov-
ered by PhenomP is almost orthogonal to the nonGR
sector of the templates, thus yielding no evidence for vi-
olations of GR. This, together with the fact that signals
are injected in different realizations of Gaussian noise, is
partly responsible for the spread in the strength of the
violations we see for a given value of F .

C. Landscape of False Violations

Fig. 5 shows the density of sources showing violations
of GR stronger than 5σ as a function of the inclination ι
and mass-ratio q of the binary. Not surprisingly, these are
more likely to occur for the cases for which higher modes
are known to be stronger. This is, highly asymmetric
(large q) binaries with an orientation far from face-on
(ι = 0). For these cases, the strong higher-order mode
content of the signals causes the GR sector of the recovery
templates (described by the PhenomP model) not being
able to recover all the power from the injection, leaving
a lot of power available to be picked up by the nonGR
sector of the templates [15, 17, 19]. Conversely, we never
observe any violation of GR for the case of face-on/off
binaries or for binaries with q < 3.

5 In principle, we could have extended our range down to ρopt = 0.
However, due to the high computational cost of this study, we
preferred to avoid performing runs for which the result is fairly
predictable.
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Although the detection of a single violation from GR
stronger than 5σ might be sufficient to question the cor-
rectness of GR, it is natural to ask how this evidence
can accumulate with several detections, even if these are
weaker than 5σ. To address this, we build a set of in-
jections with more astrophysically motivated parameters
and perform parametrized tests of GR on them. These

distribute uniformly in M , q and cos(ι). Fig. 6 shows the
distribution of the logarithm of the Bayes factor BnonGR

GR
for each individual parameterized deviation for our injec-
tion set. As before, the red histogram corresponds to the
case in which the injections contain higher modes while
these are omitted in the blue histograms. As expected,
the latter histogram shows no evidence for for deviations
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injections.

from GR (i.e, logB < 0) while clear excursions toward
positive values are obtained when our injections contain
higher modes.

D. Rate of False Violations of GR

To close this section, we address the question of how
long would it take to observe a fake violation of GR us-
ing current parametrized tests. To assess this we con-

sider a source distribution more realistic than the one in
the previous paragraph. This is driven by the recent
population distributions and merger rates of BBH re-
cently obtained by the LSC. In particular, we consider
the same standard BBH population used by the LSC in
[49]: a power law distribution m1 and uniform in m2

p(m1,m2) ∝ m−α1 /(m1 − 5M�) and consider the merg-
ing rates derived from the LIGO First Observation Run
[48] and GW170104[7]. We distribute our injections uni-
formly in co-moving volume with their optimal SNRs ρopt
ranging between 8 and 30. With these ingredients, we
can compute the time that it would take to “detect”
a signal hinj such that performing a parametrized test
on it would lead to a false violation stronger than Nσ.
For our purposes, “detect” means that the corresponding
source would be observed with an SNR ρobs ≥ 8, which
is the standard threshold used in the literature. More-
over, we assume that the search observing the event can
recover its full optimal SNR ρopt =

√
(hinj|hinj). Hence,

we only need to compute how many sources show strong
fake deviations and coalesce close enough to us to pro-
duce ρopt ≥ 8 per unit time.

We note that assuming ρobs = ρopt may be too opti-
mistic. In fact, matched filter searches are designed to
recover ρobs ≥ 0.956ρopt in the regions of the parame-
ter space that are well covered by their template banks
and, more importantly, these are not currently sensi-
tive enough to signals with strong higher modes [23, 50].
However, promising progress has been made to make
these searches sensitive to such signals [27]. Further-
more, more generic searches which remain agnostic to
the morphology of the signals [51] should ideally be able
to recover all of the optimal SNR of any kind of signal.

Fig. 7 shows the expected observation time for ob-
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serving a false violation of GR with given strength com-
ing from each of the considered nonGR parameters, and
assuming a three detector network formed by advanced
LIGO and advanced Virgo operating at their design sen-
sitivities. Results are shown for source populations cor-
responding to three different values of α. In particular,
these are chosen to be the 5th, 50th and 95th percentile
of the α distribution inferred in [49]. The width of the
bands corresponds to the 90% credible interval of the
event based merger rate.

We note again that for a signal to show strong false
violations of GR, it requires a strong higher order mode
content. Hence, the corresponding source should have
a large mass ratio and be fairly edge-on. Signals from
these sources are much weaker than signals from nearly
equal-mass ones, or face-on sources. It is therefore rea-
sonable that the vast majority of current and future BBH
detections will mostly correspond to the latter group, re-
ducing the chances of observing false violations from GR
produced by higher modes.

Consistently, in the worst case, corresponding to the
source distribution having α = 0.9, we estimate that a
fake violation with a significance of 5σ can occur once per
year (left and right panels) of observation. Although the
probability of observing this kind of effect seems quite
low, a single of these observations might be enough to
put into question the correctness of the theory of General
Relativity.

In this work we have only focused on biases produced
on parameters accounting for deviations from GR due
to the omission of higher modes in our templates. How-

ever, consistently with other studies like [16, 18, 19], we
also obtain biased values for other parameters, like the
total mass M , mass ratio q or inclination angle ι. Exist-
ing work has shown how these biases are corrected once
higher modes are included into the parameter estimation
analyses [21] for the case of non-spinning binaries and
how the accuracy of the measurement can be improved
[39]. These improvements may then also reduce the bias
in beyond-GR parameters.

VII. CONCLUSIONS

The direct detection of gravitational waves from the coa-
lescence of binary black holes has allowed for tests Gen-
eral Relativity in the strong gravitational field regime.
So far, the results of all tests are consistent with General
Relativity being correct. In this paper, we have focused
on one of these tests, known as parametrized test, which
seeks evidence for physics beyond General Relativity in
the incoming signals. To this, gravitational wave sig-
nals are compared to waveform templates that account
for possible deviations from General Relativity. In doing
this, it is crucial that part ( or “sector”) of these wave-
forms that accounts for physics within General Relativ-
ity includes all of its effects. Otherwise, missing physics
might be mimicked by the non-GR sector of these tem-
plates. This would lead the analysis to report false ap-
parent violations of General Relativity.

Here, we have showcased this effect using the exam-
ple of current parametrised tests of General Relativity
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performed on signals from binary black holes, which cur-
rently omit physical phenomena like higher modes and
eccentricity. In particular, we have demonstrated that
when higher-order modes are present in the signal but are
omitted in the templates, its effect can be mimicked by
physics beyond General Relativity, leading to apparent
violations. To this end, we have performed parametrized
tests on simulated signals containing higher-order modes.
We have done this for a large family of non-spinning bi-
naries with total masses ranging in [100, 200]M�, mass
ratios q ≤ 8 and varying inclinations. Strong deviations
from General Relativity, with significance larger than
5σ, are reported for highly asymmetric binaries (q ≥ 4)
whose orbital angular momentum is almost orthogonal to
the line-of-sight (or edge-on oriented). This is consistent
these sources being known to have a strong higher-order
mode emission.

Finally, considering several astrophysically motivated
source distributions and assuming an Advanced LIGO -
Advanced Virgo network operating at design sensitivity,
we have computed the rate at which false violations could
arise if current parametrized test of GR are performed in
future detections. In the most pessimistic scenario, we es-
timate that false observations from GR could be observed
once per year. We note however that the low mass ra-
tio of the binary black holes detected by Advanced LIGO
and Virgo so far makes it unlikely that the effects we have
described could affect the tests of GR based on these ob-

servations.

We stress that even though we have focused on
parametrized tests of General Relativity and showcased
the impact of omission of higher modes, there is a whole
family of similar tests which involve the comparison of
data with templates that are modified to account for
given effects beyond General Relativity. Examples of
these are searches for dipole radiation or dispersion ef-
fects. It is reasonable to expect that the effects described
in this work do affect these and similar studies. Hence, we
stress the importance of using complete waveform models
(ideally including higher modes, eccentricity and preces-
sion) and quantify some of the systematics when this is
not the case.
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