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A stochastic gravitational-wave background (SGWB) is expected from the superposition of a wide
variety of independent and unresolved astrophysical and cosmological sources from different stages
in the evolution of the Universe. Radiometric techniques are used to make sky maps of anisotropies
in the SGWB by cross-correlating data from pairs of detectors. The conventional searches can
be made hundreds of times faster through the folding mechanism introduced recently. Here we
present a newly developed algorithm to perform the SGWB searches in a highly efficient way.
Taking advantage of the compactness of the folded data we replaced the loops in the pipeline with
matrix multiplications. We also incorporated well-known HEALPix pixelization tools for further
standardization and optimization. Our Python-based implementation of the algorithm is available
as an open source package PyStoch. Folding and PyStoch together has made the radiometer analysis
a few thousand times faster; it is now possible to make all-sky maps of a stochastic background in
just a few minutes on an ordinary laptop. Moreover, PyStoch generates a skymap at every frequency
bin as an intermediate data product. These techniques have made SGWB searches very convenient
and will make computationally challenging analyses like blind all-sky narrowband search feasible.

PACS numbers: 04.80.Nn, 95.55.Ym, 98.70.Vc

I. INTRODUCTION

A new era in astronomy began with the detection
of gravitational waves (GW) [1]. As was anticipated,
the first detected sources are all compact binary coales-
cence [2–6]. GW astronomy, however, promises much
more excitement. A vigorous global effort is underway
to observe GW signals in widely separated frequency
bands. This includes ground-based interferometric de-
tectors aLIGO, aVIRGO, GEO, TAMA, KAGRA [7–11],
pulsar timing arrays [12], and the planned space-based
detectors such as LISA, DECIGO, BBO [13–15]. Differ-
ent kinds of sources [16–18] are expected to be seen in
the current and future generation network of detectors,
the stochastic background being one of the most interest-
ing ones. A stochastic background of gravitational waves
(SGWB) [19, 20] can be generated by the superposition of
a wide variety of independent and unresolved astrophys-
ical and cosmological sources from different stages in the
evolution of the universe. The unresolved compact binary
coalescence consisting of black holes and neutron stars,
spinning neutron stars, supernovae, cosmic strings, infla-
tionary models, phase transitions, and the pre-Big-Bang
scenario are some of these sources which contribute to-
wards this background [21–27]. The background is likely
to be anisotropic if it is dominated by the nearby uni-
verse [25, 28]. The detection of an anisotropic SGWB
will offer novel opportunities to study the origin, distri-
bution, and properties of various astrophysical objects,
which are still not accessible to the current observational
windows of astronomy[21, 29, 30].
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Various techniques have been developed to search for
isotropic and anisotropic SGWB in data from detectors
in different bands [31]. For GW detectors, since noise in
geographically far away detectors are likely to be uncor-
related, data from pairs of detectors are cross-correlated
to look for a stochastic signal [28, 32–36]. To probe
anisotropies of the SGWB using ground-based detectors,
the standard technique presently is the GW radiometer
algorithm [37–39], which is analogous to aperture syn-
thesis often used in radio astronomy [40, 41]. The algo-
rithm has been thoroughly studied and implemented in a
pixel [38, 39] and spherical harmonic basis [42], where ap-
propriate time-varying phase delays are applied to probe
various spatial scales, and is routinely applied to LIGO
data [43–47]. GW can also cause a considerable amount
of perturbations in the time of arrival of pulses from mil-
lisecond pulsars. Efforts are on to measure these pertur-
bations for some of the well modelled pulsars [48–50] to
constrain stochastic background in the nano-Hertz band,
as well as, to probe the anisotropy of the background [51].

In a recent work, the efficiency of the GW radiometer
algorithm was dramatically improved through the mech-
anism of data folding [52]. A temporal symmetry in the
GW radiometry algebra was utilized to fold the entire
data into one sidereal day, thereby reducing the compu-
tational cost by a factor equal to the total number of
days of observation. The enormous efficiency brought by
folded data allows one to perform new kinds of analyses
on long duration signals observed by ground based detec-
tors using much lower computational resources, e. g., a
blind all-sky narrowband search [53]. A parallel pipeline
developed to implement folding on LIGO data, and the
advantages gained from that are well documented [52].

However, folding does not exhaust the possibilities for
computational improvement of the radiometer analysis.
Here we present steps that can boost the efficiency of
the algorithm by another factor of few tens. Moreover,
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the existing implementation of the stochastic pipeline is
not equipped to take full advantage of folded data. Since
the folded data volume is generally between 1-10 GB,
the whole dataset can be loaded into a computer’s RAM,
thereby dramatically reducing disk access and providing
huge I/O advantage.

The scope for improvement is not limited to compu-
tational cost and associated conveniences. The current
searches for an anisotropic SGWB in LIGO-Virgo data
either use a spherical harmonic basis [46], which is ap-
propriate for smooth and diffuse sources, but has lim-
ited sensitivity for localized sources like a galaxy clus-
ter, or a pixel space radiometer search on a Cartesian
grid. However, analysis of an equal area pixelization
scheme is highly desirable for an all-sky map-making
application like ours, primarily for better handling of
noise in every pixel. Here we present the first imple-
mentation of radiometer search that is fully integrated
with the Hierarchical Equal Area isoLatitude Pixeliza-
tion of the sphere (HEALPix) scheme [54], which is per-
haps the most widely-used pixelization scheme in astron-
omy at present for describing all-sky maps and has been
rigorously tested by the cosmology community. Apart
from the advantages of equal area pixels, HEALPix of-
fers highly efficient tools for Fourier transforms on the
sky, making it easy to transform a map from pixel to
spherical harmonic bases and vice-versa, thus making the
analysis suitable for both localised and diffused sources1.

Finally, the existing LIGO-Virgo stochastic pipeline is
suitable for broadband searches or targeted narrowband
searches. The directional upper limits on GW intensity
using data from the first Advanced LIGO observing run
(O1) has been calculated [55]. With the fast tools in
hand, we wanted to design the implementation in such a
way that the intermediate results, the observed maps at
every frequency bin, should be derivable in a straightfor-
ward way, which can then be combined to get the broad-
band result. This would also alleviate the need to per-
form separate searches for different spectral shapes of the
modeled power spectral densities of the sources.

This paper is organized as follows. We briefly re-
view the GW radiometer formalism as well as the fold-
ing method in Sec. II. Algorithms used in PyStoch and
the narrowband map-making process are explained in
Sec. III. Implementation of PyStoch and the results are
presented in Sec. IV. We conclude the paper with a sum-
mary and discussion of algorithm performance in Sec.V
along with results from simulated data, whose noise char-
acteristics are statistically identical to that of O1 data.

1 However it is important to note that in practice, the final results
(e.g., clean map, upper limit map, etc.) do depend on the chosen
basis because of the different kinds of numerical errors associated
with the inversion of the Fisher information matrices in different
bases.

II. MAPPING THE STOCHASTIC
GRAVITATIONAL WAVE BACKGROUND

A. Gravitational wave radiometer

Detectors which are geographically separated by vast
distances are expected to have nearly statistically in-
dependent noise. Moreover, since a Gaussian stochas-
tic background is characterized by its second moment,
weighted cross-correlation of data from two independent
detectors turns out to be the optimal statistic for detect-
ing and mapping a SGWB [35, 39]. The GW radiometer
algorithm is based on this fundamental principle, which
is commonly used to search for an isotropic or anisotropic
SGWB in data from the ground-based interferometric de-
tectors.
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FIG. 1: Geometry of baseline: schematic diagram of the ra-

diometer. To measure the signal coming from a direction Ω̂,
data from the detectors are correlated with a phase delay of
Ω̂ · ∆xI(t)/c.

The GW radiometer algorithm considers the delay in
the GW signal arrival at detectors which are at differ-
ent locations. For a given direction in the sky, this de-
lay changes as the baseline orientation changes due to
the Earth’s rotation. If the time delayed data from two
detectors are cross-correlated, the potential GW signals
arriving from the given direction interfere constructively
while the noises do not. When integrated over a long ob-
servational time, the signal cross-correlation grows faster
than the noise variance, making the detection statistic
more and more significant. The changes mentioned above
in baseline orientation due to the Earth’s rotation allows
one to construct an SGWB map by performing the syn-
thesis for each direction in the sky, with an appropriate
choice of the size of the pixel, even with only two detec-
tors.

The working principle can be explained with the help
of Fig 1. Consider two gravitational wave detectors de-
noted by I1 and I2. The output data from the detectors
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can be written as,

sI1(t) = hI1(t) + nI1(t) , (1)

sI2(t) = hI2(t) + nI2(t) , (2)

where hI1(t) and hI2(t) denote the gravitational wave
strain in the two detectors due to the SGWB, and nI1(t)
and nI2(t) denote the noises intrinsic to the first and
second detectors respectively. Since the response of a de-
tector (i.e., its antenna pattern with respect to the sky)
changes with time, it is convenient to split the data taken
from the detectors (time series data) into chunks of dura-
tion τ , such that τ is much greater than the light-travel
time between the detectors, but small enough so that the
detector response functions do not change considerably
over that period. The typically acceptable chunk sizes
are a few tens to a few hundreds of seconds. The Fourier
transform of such a data segment, often called a short-
term Fourier transforms (SFTs), is defined as,

s̃I(t; f) :=

∫ t+τ/2

t−τ/2
dt′sI(t

′)e−i2πft
′
, (3)

where a tilde above a variable denotes its Fourier trans-
form of a time series. As mentioned before, the noise in
different geographically distant detectors can be assumed
to be mutually uncorrelated and also uncorrelated with
the signal. Thus we have,

〈h̃∗I1,2(t; f)ñI1,2(t; f)〉 = 0, (4)

〈ñ∗I1(t; f)ñI2(t; f)〉 = 0. (5)

The cross-power spectral density (CSD) of data, CI , from
a baseline I constituted by two detectors I1 and I2 and
its noise component nI are given by,

CI ≡ CIft := s̃∗I1(t; f)s̃I2(t; f) , (6)

nI ≡ nIft := ñ∗I1(t; f)ñI2(t; f) . (7)

In the small signal limit, 〈|h̃(t; f)|2〉 � 〈|ñ(t; f)|2〉, the
instantaneous cross-power noise variance becomes,

σ2
Ift := 〈nI∗ft nIft〉 =

τ2

4
PI1(t; f)PI2(t; f) , (8)

where PI1,2(t; f) are the one-sided power spectral density
(PSD) of noise nI1,2 for a segment at time t and τ is the
duration of a segment.

The SGWB is characterized by the CSD of the signal.
A search for anisotropic SGWB for a specific spectral
distribution H(f) (assuming that the frequency spectral
shape is the same in every direction of the sky) boils

down to estimation of the SGWB skymap P(Ω̂) that is
proportional to the flux coming from different directions
on the sky [39]. One can however perform the search in

different set of basis ep(Ω̂) on the two-sphere, in which
the anisotropy map can be expanded as,

P(Ω̂) :=
∑
p

Ppep(Ω̂). (9)

Then the expectation value of the CSD for a baseline can
be written as [42]

〈CIft〉 := τH(f)
∑
p

PpγIft,p, (10)

where γIft,p is is a geometric factor usually known as the

overlap reduction function (ORF) defined as [33, 56],

γIft,p :=
∑
A

∫
S2

dΩ̂FAI1(Ω̂, t)FAI2(Ω̂, t)e2πif
Ω̂·∆xI (t)

c ep(Ω̂),

(11)
where ∆xI(t) is the separation vector between the two

detectors and FAI1,2(Ω̂, t) denotes the antenna pattern

functions of the detectors. Thus the observed CSD is
a convolution of the SGWB skymap with the kernel K,
plus an additive noise term n,

CI = KI ·P + nI . (12)

Here KI , the kernel or the beam function is defined as,

KI ≡ KI
ft,p := τ H(f) γIft,p . (13)

The convolution equation has a standard maximum-
likelihood (ML) solution P̂p which produces the estimates
for the SGWB skymaps [39],

P̂p ≡ P̂ = Γ−1 ·X , (14)

where X, the dirty map, is given as,

X =
4

τ

∑
Ift

H(f)γI∗ft,p
PI1(t; f)PI2(t; f)

s̃∗I1(t; f)s̃I2(t; f) , (15)

and Γ, the Fisher information matrix, as,

Γ = 4
∑
Ift

H2(f)

PI1(t; f)PI2(t; f)
γI∗ft,p γ

I
ft,p′ . (16)

ML estimation of the convolution equation [Eq. (12)]
takes the simple form given in Eq. (14) only when the
inverse of the beam matrix exists. So directly inverting
the beam matrix is non-trivial. Hence we prefer to solve
the linear algebraic equation

Γ · P̂ = X , (17)

to find P̂ , the ML estimate for the GWB sky map2.

2 Fisher information matrix Γ in most cases is not easily invertible.
And, due to the noise term in Eq. (12), the solution of Eq. (17)
is noisy. A conjugate gradient or least square method is used to
find the best ‘clean’ map P̂.
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B. Folding

As we mentioned previously, gravitational wave ra-
diometry relies on the basic principles of Earth rotation
image synthesis. Characteristic properties of the SGWB
and the algebra of analysis technique reveal that there
exists a temporal symmetry. In the expressions for the
dirty map X in Eq. (15) and the Fisher information ma-
trix Γ in Eq. (16), the only two quantities needed for
ML estimation of P , the geometric part has a period of
one sidereal day (i.e. 23 hr 56 min 4 sec). One can use
this property to fold the entire detector data of several
hundreds of days to only one sidereal day [52]. This can
be done by splitting the time segment t into multiples
of sidereal day plus remainder within that sidereal day:
t = iday × Ts + ts and, correspondingly we can rearrange
the sum over segments into a sum over sidereal time and
a sum over days, Σt → Σiday

Σts , where iday is an integer
representing the sidereal day number in which a given t
lies and Ts is the duration of one sidereal day. Then one
can rewrite (15) and (16) as,

Xp =
∑
Ifts

KI∗
fts,p

∑
iday

σ−2If(idayTs+ts)
CIf(idayTs+ts)

, (18)

Γpp′ =
∑
Ifts

KI∗
fts,pK

I
fts,p′

∑
iday

σ−2If(idayTs+ts)
. (19)

The summation over iday part of the above equations
correspond to the folded data. It is evident that the
folded objects are independent of the search basis indexed
with p. That is, once the data are folded the same data
can be used for fast searches in any basis.

The algebra gets more involved in practice due to the
application of overlapping window functions to reduce
spectral leakage. Noise in the neighboring segments no
longer remains statistically independent.

A window function is a mathematical function of time,
WI(t), that is zero-valued outside of some chosen inter-
val. In GW radiometry, usually a smooth window func-
tion is applied to the time series data. Such windows
would lead to loss of detector data. In order to prevent
that the windows are made to overlap. The usual prac-
tice is to use a Hanning window [57] with 50% overlapping
segments. Overlapping windows makes the noise in the
neighboring segments partly correlated and the algebra
gets more involved. After incorporating the correction
in the algebra to account for the effect of overlapping
windows, one can express the dirty map and the Fisher
information matrix respectively as [52],

Xp =
∑
Ifts

KI∗
fts,p x

I
fts , (20)

Γpp′ =
∑
Ifts

KI∗
fts,p

[
KI
fts,p′ v

I
fts (21)

− KI
f(ts−1),p′ u

I
fts − KI

f(ts+1),p′ w
I
fts

]
.

Here the folded data are given by three real frequency
series,

vIfts =
∑
iday

σ−2If(idayTs+ts)
,

uIfts =
∑
iday

1

2
εIidayTs+ts−1 ×[
σ−2If(idayTs+ts)

+ σ−2If(idayTs+ts−1)

]
,

wIfts =
∑
iday

1

2
εIidayTs+ts+1 ×[
σ−2If(idayTs+ts)

+ σ−2If(idayTs+ts+1)

]
,

(22)

and one complex folded time-frequency map

xIfts =
∑
iday

[
σ−2If(idayTs+ts)

CIf(idayTs+ts)
− 1

2
εIidayTs+ts−1

{
σ−2If(idayTs+ts)

+ σ−2If(idayTs+ts−1)

}
CIf(idayTs+ts−1)

− 1

2
εIidayTs+ts+1

{
σ−2If(idayTs+ts)

+ σ−2If(idayTs+ts+1)

}
CIf(idayTs+ts+1)

]
,

(23)

expressed in terms of the redefined CSD,

CI ≡ CIft :=
1

WI1(t)WI2(t)
s̃∗I1(t; f) s̃I2(t; f) , (24)

and its variance,

σ2
Ift =

W2
I1(t)W2

I2(t)[
WI1(t)WI2(t)

]2 τ24 PI1(t; f)PI2(t; f) . (25)

The quantityWI a usually a small fraction that depends
on the window functions. For 50% overlapping Hanning
windows, which is often the standard choice in the cur-
rent analyses, WI = 3/70. Here s̃I1,2(t; f) are windowed

SFTs and a line over a quantity, e.g., WI1(t)WI2(t), de-
notes average over time [58].

εIt±1 =

{
WI if segment t± 1 exists for baseline I
0 otherwise

.

Using the deconvolution technique discussed previ-
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ously, we will then produce the clean map out of the
dirty map with the help of Fisher matrix. The science is
carried out by producing the clean skymaps. In [52] we
have discussed in detail about the advantages of the fold-
ing algorithm. The advantages include efficiency : com-
putational resources reduces by a factor of few 100; porta-
bility : folded data size is ∼ 1.3GB for standard stochas-
tic search; management : irrespective of the observation
time computation time is fixed; modularity : one can do
intensive folding part in a low-level language like C and
complex algebra of filtering for different searches in MAT-
LAB or Python; and convenience: possible to analyse in
a portable computer. In this scenario, we are aiming
towards developing a new pipeline, which is capable of
using the folded data to produce the skymap in pixel
basis with a significant improvements.

III. EFFICIENT MAPMAKING ALGORITHM:
PyStoch

A variety of data analysis techniques have been pro-
posed and implemented in the past for the SGWB
searches. In the recent times, the searches for anisotropic
backgrounds are being performed either in spherical har-
monic basis, by measuring the first few spherical har-
monic multipoles of the sky, or in the pixel basis with
an equispaced grid in latitude and longitude (i.e., the
pixel are not of equal area). The PyStoch pipeline is
an attempt to develop a new implementation incorpo-
rating the Hierarchical Equal Area isoLatitude Pixeliza-
tion (HEALPix) scheme [54], which makes it possible to
trivially obtain the spherical harmonic moments as well.
PyStoch also generates maps at every frequency bin as
intermediate results. PyStoch uses some existing PyCBC
modules [59, 60] and is designed to take full advantage of
folded data, which, in addition to the speed-up resulted
from folding, leading to nearly a factor of hundred boosts
in the computational efficiency.

A. Narrowband maps

From Eq. (6), Eq. (8) and Eq. (15), it is evident that
one can split the expression for dirty map into a frequency
sum and a time dependent sum,

Xp = τ
∑
f

H(f)
∑
It

γI∗ft,pσ
−2
IftC

I
ft, (26)

such that, the broadband map Xp becomes a source spec-
trum weighted sum of narrowband maps Xp,f ,

Xp =
∑
f

H(f)Xp,f , (27)

where the expression of the narrowband maps at each
frequency is given by,

Xp,f = τ
∑
It

γI∗ft,pσ
−2
IftC

I
ft. (28)

In the existing pipeline, the summation over time follows
the summation over frequency because the length of data
is arbitrary. This order is non-trivial to change once the
pipeline is fully developed. PyStoch is designed to do the
time summation first and hence the narrowband maps
are automatically produced as an intermediate product.
Computation of the Fisher information matrix for each
frequency bin can also be split in this manner, indicating
that it will be possible to deconvolve the narrowband
maps or to produce upper limit maps at each frequency
saving the extra computation power that was necessary
for making these maps.

B. HEALPix

HEALPix is arguably the most popular equal area pix-
elization scheme in modern Astronomy. Equal area pix-
elization makes it easier to track pixel noise and its co-
variances. HEALPix has been primarily developed by
the Cosmic Microwave Background community for two
decades[54]. In HEALPix, the 2-sphere is tessellated
into 12n2side pixels where nside is an integer power of

2 which defines the number of divisions along the side of
a base-resolution pixel that is needed to reach a desired
high-resolution partition. By considering the optimal res-
olution required for the radiometer analysis for the two
LIGO detectors in the US, we choose nside = 16 which
corresponds to a pixel width of ∼ 3◦ and 3072 pixels for
the full sky. The advantage of using pixel basis is that
one need not worry about the loss of information as com-
pared with the analysis in spherical harmonics basis.

Figure 2 shows how a spherical harmonics basis sup-
presses pixels with extreme values. The top left image
has more information than the spherical harmonic in the
bottom right. This is obvious because the HEALPix map
(n side = 16) has 3072 pixels with unique information in
each pixel, but the spherical harmonics up to lmax = 15
has only 256 components.

Furthermore, HEALPix offers ready-made tools to pro-
vide spherical harmonic transform of a pixel-space map
and vice-versa, via Fast Fourier Transform (FFT) by tak-
ing advantage of isoLatitude pixelization. Hence a sep-
arate search for anisotropic SGWB in a spherical har-
monic domain may become redundant. We have used
here the healpy package, the Python implementation of
HEALPix.

C. Posing mapmaking as a matrix multiplication

Taking advantage of the compression achieved by fold-
ing, PyStoch is explicitly calculating KI∗

fts,p
, xIfts for all

time segments and performing Eqs. (20,21) as a matrix
multiplication for a fixed frequency f . This provides
much more efficiency compared to the usual practice of
looping over time segments and computing each com-
ponent in place. When using folded data for the sky
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FIG. 2: Illustration of the fact that HEALPix is more effi-
cient in detecting localized sources. The top left image is a
random HEALPix map (n side = 16), the top right is the
same map in spherical harmonics (n side = 16). The bottom
two maps are produced from the top right map but the ‘colour
scale’ is same as the top left map. The bottom left map is
in HEALPix (converted from the top right) the bottom right
one is same as the top right but with different colour scale. It
is evident that spherical harmonics cannot retain the localized
pixel information.

map making, the segment times and data lengths are
predictable. Every data-segment can have previously de-
termined start times, as the segment division is now in
sidereal times. This allows pre-calculation of the overlap
reduction function. Hence it reduces computational time
significantly compared to the usual method of calculat-
ing the overlap reduction function (ORF) on-the-go for
all available segments. This approach makes it easy to
perform the analysis for a network of detectors by calcu-
lating the dirty map and Fisher matrix (Xp, Γpp′) for all
detector pairs in the network and adding them.

D. Efficient computation of overlap reduction
function

Calculation and storage of ORF for a sidereal day with
a segment duration of 52 sec and a bin size of 0.25 Hz
requires almost 292 GB of RAM for a resolution corre-
sponding to nside = 16. PyStoch alleviates this high
RAM requirement issue by introducing seed matrices for
the ORF, which can be used to compute the ORF in
a fast manner, alleviating the demand for an unusually
large amount of memory.

Let us consider the algebraic structure of ORF. It
can be seen in Eq. (11) that the ORF depends on two
components, the combined antenna pattern function,
FAI1(Ω̂, t)FAI2(Ω̂, t), and the time delay, Ω̂ · ∆xI(t)/c,
which have no frequency dependence and they are sky
maps for a particular time segment. We call these two
quantities the ORF seeds, which are easy to store in the
RAM and can be used to calculate the ORF for each
time segment and frequency bin. The combined antenna

pattern function provides all possible combination of an-
tenna pattern function corresponding to different detec-
tors (in this demonstration we have used two), whereas
from the phase factor expressed in the overlap reduction
function one can find the time delay corresponding to
each pixel. The quantity Ω̂ ·∆xI(t)/c gives the time de-
lay between two detectors in receiving a signal from a
certain direction Ω̂. The process is pictorially shown in
Fig. 3.

FIG. 3: The top left map is essentially the sensitivity map
for a baseline for a particular time. The top right map is the
time delay map for the same time. Multiplying the top right
map with a frequency dependent term (2πif) and taking the
exponential then multiplying it pixel by pixel with the top left
map we get the ORF for that time and that frequency. Here
only the real part of the ORF is mapped in the bottom map.
We call the top two maps ORF seeds. The ORF seeds for all
available time segments are called ORF seed matrices (each
row of the ORF seed matrices corresponds to ORF seeds for
a particular segment).

E. Putting the pieces together

In this pipeline, our first step is to go through the
folded data, produced by folding the entire data of
LIGO’s observational run to a single sidereal day, and
produce the combined antenna pattern function map for
every time segment in the folded data. One can store
this combined antenna pattern function maps as a ma-
trix which has a dimension equal to the number of pixels
times the number of time segments. Similarly, for the
time delay maps one can calculate and store the delay
between two detectors for different baselines as maps.
This can be considered as calculating and storing the
time delay for different time segments in a matrix hav-
ing a dimension of the number of time segments times
number of pixels. One can calculate and store these seed
maps within no time as matrices using a small amount
of RAM. This entire process of calculating and storing
these quantities took only 155 MB of RAM each. As a
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result, the 3314 pairs of seed maps corresponding to one
sidereal day’s data with 52 sec segment duration could
be produced on a laptop in just 20 seconds.

From these pairs of seed maps, by considering both the
combined antenna pattern function map as well as the
exponential of the time delay map, for each frequency
one can calculate the overlap reduction function. This
can also be stored as a matrix with dimension equal to
the number of frequency segments times number of time
segments.

Once we have the ORF, calculation of the dirty map is
straightforward. The CSD CIft and PSD σIft are stored
in two different channels in stochastic intermediate data
(SID) or folded SID (FSID). The CSD and PSD are in the
frequency domain, where the minimum and maximum
frequencies and the frequency resolution of CSD and PSD
determine how many frequency bins are there. We have
to loop over all the frequency bins, and each iteration
of the loop will produce one narrowband map for that
frequency.

In each loop, the ORF is calculated from the ORF
seeds for the particular frequency corresponding to that
loop. Then the columns in CSD and PSD for that fre-
quency are multiplied with the ORF. As per Eq. (28), the
result is the narrowband map for that frequency. Looping
over all the frequencies gives all the narrowband maps.

IV. IMPLEMENTATION AND RESULTS

We have implemented the PyStoch code on LIGO’s
first observational run (O1) data from the Hanford and
Livingston detectors We have also used it for simulated
data. Raw data from the detectors are down-sampled
to 4 kHz and cross-correlated. Cross-correlation is done
in the frequency domain for faster calculation. We then
used the folding code to fold the data into one sidereal
day. The folding code can take care of the overlap of the
segments and data quality cuts, but the data we used
already had it done during the cross-correlation. The
output of folding is 3314 frames of 52 sec segment dura-
tion which span a complete sidereal day.
PyStoch reads the parameters which are the same for

all the frames (e.g., GPS start time, frequency cutoffs,
segment durations, etc.) from the first frame. Then it
reads the CSD and PSD from all other frames. We had
our data in a spectrum where the lower and higher cutoff
was 20 Hz and 1980 Hz respectively, and it had a resolu-
tion of 0.25 Hz. The HEALPix map resolution we choose
corresponds to nside = 16, which uses 3072 pixels for the
entire sky (each pixel covers approximately 13 square de-
grees of the sky). The overlap reduction function had to
be calculated for all the 3314 time segments. Each of the
two sets of seed matrices was hence a matrix of dimen-
sion 3072 × 3314 with each element a real number. The
memory consumption of the seed matrices is 156MB. On
a typical laptop (2.6 GHz processor, 4 CPU threads) it
takes less than 20 seconds to calculate and save the seed

matrices.

FIG. 4: Sample narrowband dirty maps from simulated data
at four different frequencies 70, 170, 270 and 470 Hz are
shown. The simulated data has the same statistical prop-
erties as O1 data. In these plots it can be seen that the spot
sizes get smaller as the frequency goes up due to the diffrac-
tion limit.

While calculating the narrowband maps, we restricted
ourselves to an upper cutoff of 500 Hz, so we had 1920
frequency bins. Then we load the CSD (CIft) and PSD
(σIft). The appropriate 1920 frequency bins are taken
for the calculations so the data (CSD and PSD) are ma-
trices of 1920 × 3314. We now have to loop over 1920
frequencies. In each loop for a particular frequency, ORF
is calculated using the ORF seed matrices. Then we take
one column from the CSD and PSD matrices which is of
the size 1× 3314. This corresponds to the data for that
frequency and all time segments. When this data column
is multiplied with the ORF, we get a 3072 × 1 matrix.
This matrix is the narrowband map for that frequency.
In Fig. 4, 4 of the 1920 narrowband maps generated from
simulated data are shown. This simulated data which we
used is generated by adding a random phase factor to
the O1 CSD for all frequency bins. This preserves the
statistical properties of the data but renders the results
unphysical.

To further validate PyStoch, we tested the code with
some injections. The injection sources we used were
broadband point sources with a flat spectrum at three
different points of the sky, the strengths were two orders
higher than the noise PSD. We calculated the CSD for
these injected sources and added them to the CSD data.
After running the code, the injected sources were prop-
erly recovered. The results from applying this injection
on simulated data are shown in Fig. 5. This figure also
includes a map in the bottom right which is obtained
by deconvolution of the dirty map with a Fisher matrix.
This was a check to see if the source strength and loca-
tion in the clean map match the injected map. In this
case, the point sources in the clean map appears at the
same location as the injected map, thus validating the
deconvolution method. Moreover, the point sources in
the clean map are more localized than in the dirty map.
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FIG. 5: The top left map is broadband dirty map from simu-
lated data, the top right map shows the injected sources. The
bottom left map is the dirty map made from simulated data
including the injections. The bottom right map is the clean
map obtained by deconvolution of the (bottom left) dirty map
including injections.

V. CONCLUSIONS

The primary advantage of PyStoch is the speed up and
convenience. It makes the map calculation few hundred
times faster3. Table I shows the scale of speed up by
folding and PyStoch. It also gets rid of the requirement
for storage to save intermediate results. With folding and
PyStoch SGWB searches with LIGO data can be done on
a laptop, in place of parallel computing on few hundred
processors, which is very convenient.

Conventional
Pipeline

Folding
Pipeline

Folding and
PyStoch

Intermediate
Data

450 GB 1.5 GB 1.5 GB

Processing
Time

10 CPU years 10 CPU days 40 CPU minutes

Intermediate
Results

800 TB 2.5 TB not required

Final
Results

500 MB 500 MB 500 MB

TABLE I: This table shows the estimated calculation time
(on a single node of IUCAA computational facility) and stor-
age required to calculate the narrowband maps using three
pipelines: the standard pipeline, the standard pipeline with
folded data and PyStoch with folded data.

Another advantage is that PyStoch produces results
regarding narrowband maps. In the older pipeline one
had to specify the expected SGWB spectrumH(f) before
running the pipeline. But PyStoch does not require the

3 Tens of times faster on a single thread, hundred times faster when
used with multi-threading.

spectrum. From Eq. (28), the set of narrowband maps,
the spectrum-specific result can be produced using the
following equation,

Xp =
∑
If

H(f)Xf,p (29)

The above summation of narrowband maps can be
done in one matrix multiplication. Also, PyStoch is a
directed search for all directions in the sky, which means
that if one wants to search a particular direction of the
sky, e.g., Sco X-1 or Virgo cluster, it is straightforward.
We only have to see which pixel(s) include the source
and we can just add the pixels (since HEALPix pix-
els corresponds to the equal area in the sky one does
not even have to worry about pixel weights). Similarly,
PyStoch search results can be contracted into the result
of isotropic search just by adding all the pixel values.
All data quality cuts, removing bad frequencies (notch
list) and correction for the windowing and the segment
overlaps can be incorporated during or before running
PyStoch.

FIG. 6: Flowchart for a pipeline including folding and
PyStoch. The interferometer data are cross-correlated in the
first step preproc (short for pre-processing), turning the data
into SID. The SID is then folded into FSID by the folding
module. PyStoch takes the FSID and calculates the narrow-
band maps. Directional or spectrum specific searches can be
performed on those narrowband maps. Corrections for bad
frequencies (notch list), segment overlaps, data qualities can
be applied at many points in this pipeline (solid arrows indi-
cate where we applied it, dotted arrows indicate other mod-
ules where it can be applied).

The enormous efficiency achieved by folding is further
enormously amplified by PyStoch. Folding makes the
analysis few hundred times faster, PyStoch also makes
the analysis few ten times faster. So our new algorithm
for stochastic analysis (Fig. 6) is about ten thousand
times faster than the standard pipeline, and the results
are more general and versatile. PyStoch automatically
uses multi-threading when utilized by a multi-core CPU.
This can make the SGWB search even faster. Also, this
new pipeline eliminate the need for intermediate data
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storage. The results of PyStoch are more practical. In
future, PyStoch will enable more in-depth searches and
maps of SGWB.
PyStoch uses PyCBC routines to calculate the ORF.

PyCBC has information about other detectors (aVIRGO,
GEO600, KAGRA, etc. [8, 11, 61]) incorporated into it.
This makes it very easy to tweak PyStoch for baselines
other than the Livingston-Hanford baselines. We have
tested it for many different baselines. As a toy model,
let us consider the situation where VIRGO becomes as
sensitive as AdvLIGO and when LIGO-India starts op-
erating. In these scenarios, PyStoch can be easily used
to map the SGWB using the global network of terrestrial
detectors.
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