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Due to late time non-linearities, the location of the acoustic peak in the two-point galaxy correla-
tion function is a redshift-dependent quantity, thus it cannot be simply employed as a cosmological
standard ruler. This has motivated the recent proposal of a novel ruler, also located in the Baryon
Acoustic Oscillation range of scales of the correlation function, dubbed the linear point. Unlike the
peak, it is insensitive at the 0.5% level to many of the non-linear effects that distort the clustering
correlation function and shift the peak. However, this is not enough to make the linear point a useful
standard ruler. In addition, we require a model-independent method to estimate its value from real
data, avoiding the need to deploy a poorly known non-linear model of the correlation function. In
this manuscript, we precisely validate a procedure for model-independent estimation of the linear
point. We also identify the optimal set-up to estimate the linear point from the correlation function
using galaxy catalogs. The methodology developed here is of general validity, and can be applied
to any galaxy correlation-function data. As a working example, we apply this procedure to the
LOWZ and CMASS galaxy samples of the Twelfth Data Release (DR12) of the Baryon Oscillation
Spectroscopic Survey (BOSS), for which the estimates of cosmic distances using the linear point
have been presented in Anselmi et al. (2017) [1].

I. INTRODUCTION

Baryon Acoustic Oscillations (BAO) in the late-time
matter power spectrum result from primeval acoustic
waves propagating in the coupled baryon-photon plasma
before decoupling [2–4]. These manifest as a peak in the
two-point correlation function (CF) of galaxies, located
at the scale of the sound horizon at the so-called drag
epoch, when the acoustic waves stop freely propagating
through the plasma. This provides a natural comoving
standard ruler to constrain the cosmic expansion history
[5–7].

Ideally, one would estimate cosmic distances by mea-
suring the location of the BAO peak directly from CF
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data, without the need to model the processes that shape
the CF. Unfortunately, on BAO scales the late-time dis-
tribution of matter is sensitive to the non-linear dynamics
of matter’s gravitational clustering. Several studies, us-
ing both high-precision cosmological simulations and an-
alytic models, have shown that non-linearities distort the
BAO pattern: smearing the BAO peak, lowering its am-
plitude and shifting its position [8–11]. Therefore peak-
finding algorithms cannot be just blindly applied to the
data to extract cosmic distance information, rather the
opposite – one should use cosmology-dependent fits of the
full CF [12, 13]. This would be a minor inconvenience if
we knew how to predict the full non-linear galaxy CF as
a function of only the cosmological parameters. Unfor-
tunately, we are far from achieving that goal.

In the past ten years, several approximate methods
have been developed to extract cosmic distance infor-
mation from BAO measurements. The most widely ac-
cepted technique defines the BAO scale in terms of a
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fiducial-model template CF, where the cosmological pa-
rameters are kept fixed at the fiducial values. Ad hoc nui-
sance parameters are added, to capture the effects of non-
linearities and with the intent of “marginalizing over” the
chosen fiducial cosmology [14, 15]. This model template
is then used to infer the cosmic distance from the statis-
tical data analysis. Moreover, since non-linearities sup-
press the amplitude of the BAO, the observed galaxy po-
sitions are adjusted, using approximate non-linear model
algorithms, to enhance the signal-to-noise of the BAO
peak in the CF. This is done with the intent of restoring
the pristine information on the acoustic scale; however,
this reconstruction procedure explicitly depends on the
choice of a fiducial cosmology and on the specification
of a heuristic model of non-linear effects [16]. Hence, in
both the treatment of the data and the statistical analy-
sis, model-dependent assumptions intervene. These carry
the inherent risk of underestimating the uncertainties on
cosmic distances, and potentially introduce a source of
systematic bias in the cosmological-parameter inference.

In order to overcome these limitations, a new promis-
ing BAO standard ruler in the galaxy CF, dubbed the
linear point (LP hereafter), was suggested by some of us
[17]. Its position, defined as the midpoint between the
positions of the peak and dip in the monopole CF, is
located at ∼ 95 Mpc/h in comoving units [17]. Using re-
sults from N-body simulations of ΛCDM models, it has
been shown that the LP is insensitive to non-linear effects
at 0.5% relative to the linear-theory prediction. This
holds for the matter-density field as well as for the spa-
tial distribution of halos. Moreover, analytic arguments
suggest that the LP remains stable (in both position and
amplitude) with respect to the effects of redshift-space
distortions and scale-dependent bias [17]. An additional
advantage of the LP is that it is a purely geometrical
standard ruler, i.e., its position is independent of the am-
plitude and slope of the spectrum of primordial density
fluctuations (at least for models similar to the ΛCDM
scenario). Hence, unlike any other known BAO analysis,
the LP can provide estimates of cosmic distances without
the need for theoretical modelling of the CF data.

Recently, we have presented [1] a cosmological relation
that allows us to infer the isotropic-volume distance DV

using estimates of the LP from galaxy data. In particular,
we focused on the CMASS and LOWZ galaxy samples
from the Twelfth Data Release (DR12) of the Baryon
Oscillation Spectroscopic Survey (BOSS)1, and found

DLP
V (z̄LOWZ−DR12 = 0.32) = (1264 ± 28) Mpc ,

DLP
V (z̄CMASS−DR12 = 0.57) = (2056 ± 22) Mpc , (1)

thus providing distance estimates that are competitive
with those obtained from standard assumption-rich BAO
methods.

1 https://www.sdss3.org/surveys/boss.php

In this manuscript, we aim to validate the LP para-
metric model-independent estimation already applied in
[1] to the actual LOWZ and CMASS galaxy samples.
To this end, we employ the Quick Particle Mesh (QPM)
mock catalogues (“mocks”) [18] built by the BOSS col-
laboration explicitly to mimic the LOWZ and CMASS
clustering properties. They were largely used by the col-
laboration to test their Twelfth Data Release (DR12)
BAO data analysis [19].

Our approach relies on a simple polynomial interpo-
lation of the CF in the BAO range of scale. In this
paper, we first validate the polynomial fit. Then, for
each mock, the best-fit polynomial parameters and un-
certainties provide the LP estimate and error. We find
the optimal values of the polynomial order, the fitted
range of scales, and the bin size to use for LP estimation
on this data set. Optimization for future, larger-volume
or higher-precision data sets would yield different values;
but remarkably, our preliminary tests suggest that it will
be sufficient just to shrink the fitted range of scales.

The paper is structured as follows. In Section II, we
detail the methodology employed to validate the linear-
point estimation through the polynomial fit: we summa-
rize the characteristics of the QPM mocks, we define the
systematic bias, we provide a checklist that the optimal
fitting set-up should pass to be validated. In Section III,
we perform the previously introduced tests, discussing
step by step the results of the analysis. In Section IV,
we present our conclusions.

II. METHODOLOGY

In this section, we present the procedure developed to
estimate the linear point from galaxy data. Our goal
is to show that a simple model-independent parametric
fit, applied to the monopole clustering correlation func-
tion, recovers the LP position without introducing sys-
tematic biases. We test this on mock catalogues, gener-
ated by the BOSS collaboration to reproduce the Lumi-
nous Red Galaxies (LRG) DR12-BAO clustering proper-
ties and used to test the BOSS BAO analysis [18, 19]2

A. QPM Mocks

QPM mocks [18] were employed for the BOSS clus-
tering analysis. The QPM method uses a low-resolution
particle-mesh N-body solver. The halo catalogue and its
properties were built to match the mass function and

2 Since we want to test the LP estimation procedure for different
survey volumes we do not focus on the final galaxy clustering
analysis performed by the BOSS collaboration [20]. We consider
instead the CF analysis presented in [19] where the LOWZ and
CMASS galaxy samples are taken into account.
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large-scale bias of halos of high-resolution simulations.
The halo catalogue was then populated with galaxies
using a halo occupation distribution (HOD) modelling,
where the HOD parameters were adjusted for each mock
by fitting the observed small-scale projected two-point
galaxy correlation function for the LRGs. Each mock
matches the angular and radial selection functions of the
survey and the observed number density of galaxies. The
final galaxy catalogue consists of 1000 realizations of the
LOWZ sample and 956 for CMASS [17]. For each of
these mocks, the CF has been computed using the Landy-
Szalay algorithm [21].

The fiducial cosmology of the QPM mocks is a flat
ΛCDM model, with cosmological parameter values close
to the best-fit Planck+BOSS cosmology: Ωm = 0.29,
ΩΛ = 0.71, Ωbh

2 = 0.02247, Ωνh
2 = 0.0, h = 0.7, ns =

0.97, and σ8 = 0.8.

B. Estimating the Linear Point position with a
model-independent parametric fit

In order to extract the LP position from the galaxy
monopole correlation function ξ0(s) (s being the redshift-
space coordinate in comoving units), we first estimate
the positions of the maximum and the minimum of the
CF in the BAO range of scales. This can readily be
accomplished using a model-independent parametric fit.
A simple, but (as we will see) efficient and robust, way
to do so consists of first interpolating the CF data with
a polynomial

ξfit
0 (s) =

n∑
i=0

ais
i , (2)

where n is the order of the polynomial fitting function.
The solutions of dξfit

0 /ds = 0 are then computed, to find
the location of the peak (ŝfit

peak) and dip (ŝfit
dip) in the

CF.3 The estimated location of the LP is the mid-point
between the computed dip and peak locations

ŝfit
LP =

1

2
(ŝfit

peak + ŝfit
dip) , (3)

which can be expressed in terms of the best-fit polyno-
mial coefficients to the CF data.4 This allows us to esti-
mate the uncertainty on the LP location, by propagating
the uncertainties in the polynomial coefficients.

3 It is worth noting that, in the analysis of real (rather than sim-
ulated) galaxy-survey data, one should account for the Alcock-
Paczynski effect [22, 23], which distorts the CF. In such a case,
one can conveniently express the CF in terms of the dimension-
less distance y ≡ s/constant [13, 17]. However, the procedure
to extract the LP is the same whether the correlation function
is expressed as function of y or s. Therefore, to ease the reading
of the present article, we work in comoving coordinates.

4 To simplify the notation hereafter, we omit the hat and the “fit”
subscripts.

We would like to stress two considerations concern-
ing the use of the polynomial interpolation of the CF.
First, it provides an effective way of smoothing the noisy
data points, thereby enabling the LP estimation. Indeed
the more parameters we allow (i.e., the higher the order
of the polynomial) the less effectively the polynomial fit
smooths the CF. Nevertheless, we expect that the fitting
procedure does not introduce a systematic bias in the de-
termination of the LP, as we will show in Section III B.
Second, the authors of [17] found that, in the BAO range
of scales, the CF is nearly anti-symmetric with respect
to the LP. As we will show in Section III C, this provides
us with a guideline to choose the optimal range of scales
over which to interpolate the CF.

In principle, the order of the CF polynomial-fitting
function may depend on the range of scales considered,
the redshift and the survey volume. Here, we find that an
unbiased estimator of the LP requires n ≥ 5. In the case
of the LOWZ and CMASS mocks, we find that a quin-
tic polynomial fit the CFs well over the range of scales
considered. We will show this in Section III B, by com-
paring to the LP estimate obtained using a seventh-order
polynomial.

C. Linear Point estimation: bias definition

Our analysis has two goals: on the one hand, we want
to show that a simple polynomial fit to the CF can pro-
vide an unbiased estimate of the LP; on the other hand,
we want to determine the optimal combination of poly-
nomial order, range of scales, and binning that minimizes
the LP statistical error. To this end, we introduce a mea-
sure of the LP systematic bias:

bLP = s̄LP − strue
LP . (4)

Here, s̄LP is the mean of the LP positions estimated from
the mocks, and strue

LP is our reference LP value, which we
set to the value of the LP estimated from the average
CF over the mocks. This is because we are interested
in evaluating only the uncertainty in the LP estimation
due to the polynomial-interpolation procedure, and not
any small uncertainty that arises due to the non-linear
clustering of matter [17]. As already mentioned in Sec-
tion I, that non-linear clustering systematically shifts the
location of the LP relative to the linear CF up to a 0.5%
[17], but this can be mitigated by shifting the defini-
tion of the LP estimator relative to Eq. (3). (This shift
leaves Eq. (4) unaffected, since it affects s̄LP and strue

LP
equally.) We therefore take strue

LP to be the value esti-
mated from the CF averaged over all the mocks. This
has negligible cosmic-variance and sampling-variance er-
ror compared to the individual mocks, but (deliberately)
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FIG. 1: Normalized histograms of the rescaled linear-
point positions recovered from the LOWZ (upper panel) and
CMASS (lower panel) mock catalogues. The unit normal
probability distribution function is overplotted. The p-values
of the Kolmogorov-Smirnov test show that, for both cata-
logues, there is a reasonable probability that the LP values
are drawn from a Gaussian distribution.

shares with them any potential systematic bias in s̄LP .5

5 In [17], we have shown that the LP position in the CF, for both
high-resolution N-body simulations and theoretical models, shifts
with respect to the linear theory prediction by no more than
1%. This shift is secular, and its effect is halved with a simple
redshift-independent correction. In the case of the LOWZ and
CMASS mocks, we find the “true” LP position to deviate by

We would like to recall that measuring the LP position
(or the BAO feature) is really a two-part process: detect-
ing the LP and estimating its location. Indeed given the
finite volume of the mocks, the BAO feature in the CF
might not be detected (by the chosen BAO estimator)
in a given mock, due to cosmic variance. In our specific
case, the polynomial estimator might fail to “detect” the
peak and dip in the BAO range of scale, i.e., dξfit

0 /ds = 0
could have no solutions. Clearly only the mocks where
the LP is detected can be used to estimate its error. To
estimate it we thus need to condition the analysis to the
mocks in which the LP is detected (for each configuration
of the polynomial-fit estimator – order of the polynomial,
bin size and range of scales). We therefore compute the
conditional CF data covariance recursively: we perform
a first polynomial fit of the CF of each mock using the
covariance from the entire mock dataset, and, if the LP
is not detected, we discard the mock and recompute the
CF data covariance from the selected mocks. Depend-
ing on the polynomial-fit configuration, the fraction of
retained mocks (Mock Acceptance Rate) is & 80% for
LOWZ and & 90% for CMASS. Notice that, since in the
corresponding real data the LP is detected, the specific
value of the MAR is not relevant for the present anal-
ysis [1]. As stated above, the bias and statistical error
on the LP position are calculated using only the retained
mocks. The rejected mocks contain no information on
the LP position, but contribute only to the false negative
rate for LP detection. The need to separately minimize
false negative rates, bias and statistical error contributes
to the design of all estimators of cosmological quantities,
including other estimators of the BAO [26–28]. This is
not widely discussed in literature. Rather than looking
at false negative rates, what is often done is to impose a
threshold significance of BAO detection – typically taken
to be 2σ.

Given the finite size of the mock samples, we correct
the LP error budget according to [29, 30]. Similarly, we
follow [30] for estimating errors on the determination of
the fitting-polynomial coefficients for each mock’s CF.

In summary, our validation of the LP estimation will
assess the following points:

1.3% and 1.2% w.r.t. the linear theory prediction respectively.
This disagreement could be due to the approximate treatment
of clustering in the modeling used to built the QPM mocks [18].
Alternately, it might be due to the way the HOD model is imple-
mented in the QPM mocks. For instance, rather than adjusting
the HOD parameters separately for each mock, one should prop-
erly fit the projected CF on small scales once for all the mocks
(see e.g. [24]). Furthermore, the parameter uncertainties due
to the HOD fitting should be correctly propagated to the BAO
scales. We plan to properly address these points with further
investigations to be carried out with high-resolution and large-
volume N-body simulations [25] and improved implementations
of the HOD [24]. Nevertheless, for the purpose of the present
analysis, which is validating the non-linear LP extraction, we
can safely ignore this issue.
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Estimator Test

Polyn. bLP σ̄sLP
mean AICc

- LOWZ

Quintic −0.41 Mpc/h 2.4 Mpc/h 34

7th order −0.37 Mpc/h 2.7 Mpc/h 41

- CMASS

Quintic −0.25 Mpc/h 1.5 Mpc/h 35

7th order −0.20 Mpc/h 1.7 Mpc/h 41

TABLE I: We show the results of the estimator test. Both the
quintic and the seventh-order polynomials are unbiased (i.e.,
negligible-bias) linear-point estimators. The quintic polyno-
mial is the chosen LP estimator, as it provides the smallest
errors and is preferred by the model-selection criterion.

A. Gaussianity of the correlation-function and linear
point distributions: we show that the both the CF
and the LP are consistent with a Gaussian distri-
bution.

B. Optimal polynomial estimator: we consider poly-
nomials of different orders as LP estimators, and
discuss their suitability.

C. Optimal BAO range of scales: we analyze the BAO
range of scale fit for the CF, and identify the opti-
mal one for LP estimation.

D. Optimal bin size: we identify the bin sizes that
return an unbiased LP estimate.

III. LINEAR POINT ESTIMATION TESTS

As mentioned in Section I, the advantage of the LP is
that it is a geometric standard ruler on the BAO scale
that is preserved by non-linear effects. LP estimation
therefore does not require the use of reconstruction meth-
ods to be applied to galaxy catalogs. Hence, we test
the LP estimation procedure on pre-reconstructed QPM
mocks from the BOSS collaboration.

The results of the error evaluation, which will be pre-
sented below, indicate that the optimal setup for LP es-
timation consists of fitting the galaxy CF with a quin-
tic polynomial estimator, in the range of scales 60 < s
[Mpc/h] < 130, with bins of size ∆s = 3 Mpc/h.

85 90 95 100 105

85

90

95

100

105

sLP ⟷ 5th polynomial

s L
P

⟷
7
th
po
ly
no
m
ia
l

��������� ����

� = ����

����

85 90 95 100 105

85

90

95

100

105

sLP ⟷ 5th polynomial

s L
P

⟷
7
th
po
ly
no
m
ia
l

��������� ����

� = ����

�����

FIG. 2: Scatter in the LP estimator for the quintic versus
the seventh-order polynomial fits to the CF of the LOWZ (up-
per panel) and CMASS (lower panel) mock catalogues. The
scatter along the continuous black line indicates the cosmic-
variance error, while the scatter perpendicular to the line rep-
resents the estimator error. The larger values of the correla-
tion coefficients quoted in the panels suggest that the errors
on the LP estimator are dominated by cosmic variance.

A. Gaussianity of the correlation function and
linear point distributions

We verify that the distribution of the mock CF is al-
ways well-described by a Gaussian function. Hence, we
can perform a statistical analysis of the CF assuming a
Gaussian likelihood, and find the coefficients of a poly-
nomial fitting function by simple χ2 minimization.
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We check that the distribution of the χ2
min values from

the polynomial fit to the CF of the mocks is consistent
with a χ2 distribution, while the distribution of inferred
values of sLP is consistent with a Gaussian. The lat-
ter is shown in Fig. 1, where we plot the LOWZ (up-
per panel) and CMASS (bottom panel) normalized his-
tograms of (sLP − s̄LP )/σsLP

. The unit normal prob-
ability distribution function is overplotted. We perform
the Kolmogorov-Smirnov test for the LOWZ and CMASS
mocks. The p-values are respectively 0.22 and 0.86, indi-
cating reasonable probabilities that the posterior of sLP
is Gaussian distributed. Therefore, we can assign the
usual Gaussian meaning to the rms of the LP distribu-
tion.6

The mean sLP errors for the two simulated galaxy sam-
ples are σLOWZ

sLP
= 2.4 Mpc/h and σCMASS

sLP
= 1.5 Mpc/h.

Therefore, the intrinsic 0.5% deviation of sLP with re-
spect to slin

LP (found in [17]) is subdominant.
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FIG. 3: LP-estimation error (upper panel) and bias (lower
panel) as functions of the range of scales used to fit the CF.
As we can see, the bias is always negligible, since bLP ≤ 0.2×
σ̄sLP .

6 We recall that, in this manuscript, we always use the error esti-
mated from the likelihood and not from the distribution. How-
ever, after applying the corrections for the small number of mocks
[30], the two agree to better than 7%.

B. Optimal polynomial estimator

As LP estimators we analyze polynomials of cubic or
higher order 7. For the LOWZ and CMASS galaxy sur-
veys we find that the cubic and the quartic polynomials
return an LP systematic bias that is comparable to the
statistical error budget. Therefore, since they are biased
estimators, we do not analyze them any further in this
manuscript.

To test the dependence of the LP estimation on the
choice of the order of the polynomial fit to the CF, we
consider a quintic polynomial and a seventh-order one.
For each of these cases, we estimate sLP from Eq. (3)
and evaluate the bias as in Eq. (4). The results of the
comparison are summarized in Table I, where we quote,
for each mock, both the value of the bias and the aver-
age error on the LP estimator. In all cases, the absolute
systematic shift is much smaller than the mean error es-
timated from the likelihood, i.e., bLP < 0.2 × σ̄LP . As
expected, σ̄s5thLP

< σ̄s7thLP
, since the quintic-polynomial in-

terpolation needs to fit a smaller number of parameters.
In Fig. 2, we show the scatter-plots of the recovered LP

position for the two polynomial orders, using the LOWZ
(upper panel) and CMASS (lower panel) mocks.

The scatter along the solid diagonal line is an indi-
cation of the cosmic-variance error, indeed due to cos-
mic variance the LP value shows some scatter around its
mean value. If two estimators would be completely corre-
lated that would be the only source of scatter. The pres-
ence of some scatter perpendicular to the solid line indi-
cates a contribution from estimator error – the difference
between the “true” value of the quantity being estimated
(which we cannot know) and its estimated value. Quan-
titatively, Pearson’s correlation coefficient r for the two
samples, rLOWZ = 0.67 and rCMASS = 0.63, reveals that
cosmic variance is the dominant error. We have checked
that combined use of the two estimators does not signif-
icantly reduce the statistical error compared with using
only the quintic-polynomial fit. Therefore, using only the
quintic polynomial is sufficient for our purposes.

Since both of the estimators are unbiased, to choose be-
tween them we adopt a simple model-selection criterion:
the finite-sample-corrected Akaike information criterion
AICc [31]. We report its formula here for convenience
(dropping an irrelevant additive constant):

AICc ≡ χ2
min +

2(n+ 1)N

N − n− 2
, (5)

where n was introduced in Eq. (2) and N is the number
of points fit. The idea behind the AICc is to balance the
quality of fit to the observed data against the complexity
of the model. The polynomial fit that gives the minimal

7 Notice that lower order polynomials are not LP estimators as
they do not have both a maximum and a minimum.
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AICc value is selected. From Table I, we see that the
smallest mean AICc belongs always to the quintic poly-
nomial. This motivates its choice for the optimal set-up.

C. Optimal BAO range of scales

We focus next on determining the optimal range of
scales from which to extract the LP from measurements
of the CF.

The values of the coefficients of the best-fit polyno-
mial to the CF, and their associated errors, depend on
the range of scale over which the CF is fit. This calls
for selecting an optimal range of scales that minimizes
the statistical uncertainty, while introducing negligible
systematic bias in the estimated LP location. We recall
that the CF is anti-symmetric with respect to the linear
point over the BAO range of scales [17]. This motivates
interpolating the CF with a quintic polynomial over a
range that is symmetric with respect to 95 Mpc/h.
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FIG. 4: LP-estimation error (upper panel) and bias (lower
panel) as functions of the bin width. We see that the bias in
the LP estimate induced by the choice of the binning of the
CF is negligible (i.e., bLP ≤ 0.2 × σ̄sLP ) for ∆s ≤ 4 Mpc/h.

In Fig. 3, we plot the statistical error (upper panel)
and bias (lower panel) in the LP position, as functions
of the interval of scales over which the CF is interpo-
lated. We observe that, when the CF is interpolated

over (smax − smin) = 70 Mpc/h, the statistical error in
the LP is minimized, while the systematic bias is neg-
ligible, bLP ≤ 0.2 × σ̄sLP

. This trend is expected, as
the fitting parameters are better determined when more
information from the data is included.

We do not explore wider ranges of scale, since for the
LOWZ real galaxy data, due to the low signal-to-noise,
the LP is detected only for (smax−smin) ≤ 70 Mpc/h [1].
For the CMASS mock data, extending the fit over a larger
range of scales does not result in a further reduction of
the statistical errors. Thus we conclude that the optimal
range of scales to is (smax − smin) = 70 Mpc/h.
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FIG. 5: LP-estimator scatter plot, for a quintic-polynomial
fit to the CF, with bins of width ∆s = 2 and 3 Mpc/h, for
the LOWZ (upper panel) and CMASS (lower panel) mock
catalogues.
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D. Optimal bin size

The CF is measured in bins of finite width from
datasets, whether simulated or real. In principle, the bin-
ning procedure can affect the LP estimation. To assess
this effect, we have considered bins of varying size, from
∆s = 1 Mpc/h to ∆s = 10 Mpc/h, and rebinned the
CF mock data accordingly. In Fig. 4, we plot the values
of σsLP

and bLP corresponding to the most biased result
among all the possible CF sampling possibilities for that
bin size. While the LP statistical uncertainty is largely
independent of the bin size, for ∆s ≥ 5 Mpc/h the mean
LP value recovered from the mocks can be significantly
biased. A too-large bin size introduces uncertainties in
the bin positions, it does not provide enough sampling of
the CF in the BAO range of scales, and it introduces a
dependence on the sampling choice.

In Fig. 5, we show that the recovered LP posi-
tion exhibits small scatter for small bin-sizes and, con-
sequently, a high correlation coefficient r between the
∆s = 2 Mpc/h and the ∆s = 3 Mpc/h LP estimators.

We conclude that, for ∆s ≤ 4 Mpc/h, the LP sys-
tematic bias is negligible; hence, recalling that a larger
bin-size allows to reduce the covariance matrix noise [30],
we choose ∆s = 3 Mpc/h for the optimal set-up.

IV. CONCLUSIONS

Equipping the Baryon Acoustic Oscillations with a cos-
mological standard ruler is a highly desirable goal. It
must be independent of the parameters characterizing
the primordial fluctuations (within inflationary ΛCDM),
and insensitive to non-linearities that develop during the
late-time dark-energy-dominated era. The linear point
provides such a ruler.

Another feature of the LP was not previously consid-
ered: its simple definition allows a model-independent
BAO analysis. In this work, using mock galaxy catalogs,
we have presented a validation of LP-estimation through
a theory-free parametric fit to the galaxy CF. In [1], we
applied such an estimator to galaxy data, and showed
that the method presented here holds, even when the
Alcock-Paczynski distortion is present. We thus discov-
ered that cosmological distances can be estimated with-
out any need to model the non-linear physics that af-
fects the galaxy correlation function at the BAO range
of scales.

In this paper, we have determined the optimal set-
up to extract, by means of the LP, distance information

from the BOSS-DR12 LOWZ and CMASS galaxy sam-
ples, justifying the methodology applied in [1]. This con-
sists in using a quintic polynomial to fit the galaxy CF
over the range of scales 60 < s < 130 Mpc/h, with a bin
width of ∆s = 3 Mpc/h.

We found that the peak and the dip are not detected
in a fraction of the available mocks. In forecasting for
a future survey, one would want to design both survey
and estimator to minimize the probability of such false
negatives. Fortunately, with a judicious choice of esti-
mator parameters, both LOWZ and CMASS data ex-
hibit the needed peak and dip [1]. We consequently con-
sistently condition our analysis to the mocks compati-
ble with these observations, a practice followed by those
characterizing other BAO estimators [26–28], although
this is often not explicitly discussed.

We plan to perform a LP-standard-ruler forecast anal-
ysis for future galaxy surveys such as Euclid (http://
sci.esa.int/euclid/), DESI (http://desi.lbl.gov)
and WFIRST (https://wfirst.gsfc.nasa.gov). The
LP is also promising as a probe of the growth of structure,
given that the amplitude of the CF at the LP is insen-
sitive to non-linearities [17]. Also worth investigating is
the effect on the LP of massive neutrinos [32, 33], which
is still not considered even in standard BAO analysis.
The LP may also serve as a smoking gun of modified-
gravity, especially if the BAO-LP anti-symmetric feature
[17] is altered in candidate models (such as Quasidila-
ton Massive Gravity Theory [34, 35]). Alternatively, one
could construct a maximal-deviation test where, in the
context of the concordance ΛCDM, the maximal allowed
deviation from the predicted CF anti-symmetry feature
(in the BAO regime) is quantified.
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