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We investigate the splashback features of dark-matter halos based on cosmic density and velocity
fields. Besides the density correlation function binned by the halo orientation angle which was used
in the literature, we introduce, for the first time, the corresponding velocity statistic, alignment
momentum correlation function, to take into account the asphericity of halos. Using large-volume,
high-resolution N -body simulations, we measure the alignment statistics of density and velocity.
On halo scales, x ∼ R200m ∼ 1h−1 Mpc, we detect a sharp steepening in the momentum correlation
associated with the physical halo boundary, or the splashback feature, which is found more prominent
than in the density correlation. We also find that the splashback radius determined from the
density correlation becomes ∼ 3.5% smaller than that from the momentum correlation, with their
correlation coefficient being 0.605. Moreover, the orientation-dependent splashback feature due to
halo asphericity is measured when the density profile is determined by dark-matter particles, which
can be used as a test of collisional CDM since the halo shape is predicted to be rounder in such a
model.
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I. INTRODUCTION

In the current paradigm of cosmic structure forma-
tion, galaxies, which are observed as a tracer of the
large-scale structure of the universe, are considered to
be formed within dark-matter halos. Besides, model-
ing a halo power spectrum is the important first step
to properly interpreting the observed galaxy clustering,
from which to extract cosmological information. Dark-
matter halos thus play a fundamental role in both struc-
ture formation and cosmological studies (e.g., [1, 2]).

Recently, the phase-space structure in halo outskirts
has been extensively studied based on N -body simula-
tions, leading to the discovery of a steepening in the outer
density profile of dark-matter halos [3]. This feature is in-
terpreted as a sharp density enhancement associated with
the orbital apocenter of the recently accreted matter in
the growing halo potential. The location of this steepen-
ing is referred to as the splashback radius, Rsp, and de-
pends on cosmology as well as on halo mass and redshift.
The splashback radius provides a physical boundary of
halos [3–6], and is related to the transition scale between
the 1-halo and 2-halo regimes in the galaxy power spec-
trum or correlation function to a certain extent [1, 5].

Using efficient cluster-finding algorithms based on the
observed galaxy distribution [7, 8], the splashback fea-
tures have been studied by observing the galaxy density
profile and weak lensing profile [9–12] (see [13] for difficul-
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ties in observing the splashback feature). Further studies
revealed that dynamical friction acting on massive sub-
halos orbiting in their parent clusters makes splashback
features appear at smaller cluster radii [14–16]. How-
ever, the detected splashback radius is found to be sig-
nificantly smaller than predicted by N -body simulations,
even though the effect of dynamical friction is considered
[9, 12]. Thus, careful work is required both from theo-
retical and observational aspects.

Splashback features are determined by the orbits of
dark matter around halo centers and thus fully character-
ized in phase space. Hence, the commonly used density
statistic alone cannot capture the full dynamical informa-
tion. Furthermore, the 2-halo term of the density statis-
tic is enhanced by the galaxy bias, whereas its impact on
the determination of the splashback radius has not been
discussed in the literature. Another important fact on
precisely measuring the splashback radius is that halos
are aspherical. Thus, spherical averaging would smear
out the splashback features [17]. While the caustic tech-
niques have been extensively studied in phase space to
measure dynamical mass profiles of clusters from infall
velocity patterns [18–22], these analyses have not been
performed in the context of splashback studies. In this
paper we present a detailed study of splashback features
based on both density and velocity statistics, focusing on
the issues described above.

This paper is organized as follows. In Sec. II, we
present the formalism of alignment density and veloc-
ity statistics used to study the splashback features. Sec-
tion III describes the N -body simulations and how we
construct mock cluster and galaxy samples. Section IV
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presents measurements of alignment density and momen-
tum correlation functions, their splashback features, and
constraints on the splashback radius. Our conclusions
are given in Sec. V.

II. FORMALISM

The 3-dimensional density profile around clusters is
computed by the cross-correlation functions between halo
centers and mass tracers. When dark matter particles
and galaxies are used as the tracers, the cross correlations
are respectively expressed as ξmc(r) = 〈δm(x1)δc(x2)〉
and ξgc(r) = 〈δg(x1)δc(x2)〉 (e.g., see [23]), where r =
|r| = |x2 − x1|, and δc, δg and δm are the overdensity
fields traced by clusters, galaxies and matter, respec-
tively. In weak lensing and galaxy redshift surveys, one
can respectively observe the weak lensing profile, Σ(R)
(or ∆Σ(R)), and the galaxy density profile, Σg(R), which
are the line-of-sight projection of the cross-correlation
functions, ξmc(r) and ξgc(r).

A. Alignment density correlation

In order to take into account the asphericity of dark
matter halos, we consider the angle-binned or alignment
correlation function [24–26], an extension of the conven-
tional matter and galaxy density profiles around clusters,
respectively ξmc(r) and ξgc(r), by taking account of the
orientations of the clusters:

ξAc(r, θ) = 〈δA(x1, θ)δc(x2)〉 , (1)

where A = {m, g}. Here θ is the angle between the elon-
gated orientation of cluster halos, defined by the major
axis of ellipsoidal halo shapes, and the separation vector
r. The conventional correlation function can be obtained
by integrating over θ,

ξAc(r) =

∫ 1

0

d cos θξAc(r, θ). (2)

The alignment correlation is related to the density-
ellipticity correlation, a main source of contamination
for measurements of the gravitational shear power spec-
trum in weak lensing surveys, also known as intrinsic
alignments: ξg+(r) =

〈
δg(x1) [1 + δc(x2)] γI(x2)

〉
, where

γI(x) = 1−q2
1+q2 cos(2θp), θp is the angle projected onto the

celestial sphere, and q is the minor-to-major-axis ratio of
halos [27–34]. This function is related to the alignment
correlation function by

ξ̃g+(r) = (2/π)

∫ π/2

0

dθ cos(2θp)ξgc(r, θp), (3)

where ξ̃g+ is the same as ξg+ but with q fixed to q = 0
[25, 35, 36]. While these two statistics are complimentary

to each other, we will focus on the alignment correlation
function because it provides a direct insight on how the
matter is distributed along and perpendicular to the ma-
jor axis of halos.

B. Alignment velocity statistics

Next we consider a statistic with respect to the cosmic
velocity field, the momentum correlation function [37–
41]: ψAc(r) = 〈[1 + δA(x1)] [1 + δc(x2)]vA(x1) · vc(x2)〉,
where vA is the peculiar velocity of field A (namely the
cosmic expansion term is not included) [63]. We pro-
pose to use this momentum correlation as a probe of
the splashback radius because the splashback features are
fully characterized in phase space. In analogy to the den-
sity statistic, we define the alignment momentum correla-
tion, ψAc(r, θ), by replacing δA(x1) in the above equation
by δA(x1, θ),

ψAc(r, θ) = 〈[1 + δA(x1, θ)] [1 + δc(x2)]

×vA(x1) · vc(x2)〉 . (4)

This and Eq. (1) are the main statistics we use to investi-
gate the splashback features of non-spherical dark halos.
Similarly to the density case, the conventional momen-
tum correlation, ψAc(r), can be obtained by averaging
Eq. (4) over θ,

ψAc(r) =

∫ 1

0

d cos θψAc(r, θ). (5)

We also introduce the angle-binned, density-weighted
pairwise velocity dispersion:

σ2
v,Ac(r, θ) = 〈[1 + δA(x1, θ)] [1 + δc(x2)]

× |vA(x1)− vc(x2)|2
〉
. (6)

However, its behavior is found to be essentially sim-
ilar to that of ψAc, and hence we do not present
this statistic in this paper. Moreover, we define the
angle-binned pairwise infall momentum, pAc(r, θ) =
〈[1 + δA(x1, θ)] [1 + δc(x2)] [vA(x1)− vc(x2)] · r̂〉, where
the hat denotes a unit vector. Since the splashback fea-
ture is smeared out in this statistic by construction, we
do not show it in this paper [64].

III. N-BODY SIMULATIONS

In order to study splashback features, we use a se-
ries of large and high-resolution N -body simulations of
the ΛCDM cosmology seeded with Gaussian initial con-
ditions. These are performed as a part of the dark
emulator project [42]. We adopt the cosmological pa-
rameters of Ωm = 1 − ΩΛ = 0.315, Ωb = 0.0492,
h = 0.673, ns = 0.965, and σ8 = 0.8309. We employ
np = 20483 particles of mass mp = 1.02 × 1010M�/h in
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TABLE I: Properties of mock central/satellite subhalo sam-
ples at z = 0.306. fsat is the number fraction of satellites,
Mmin and M are the minimum and average masses of central
subhalos in units of 1012h−1M�, respectively, n is the num-
ber density in units of h3Mpc−3, and bA (A = {c, g}) is the
cluster/galaxy bias computed at the large-scale limit.

halo types label fsat Mmin n bA M

Clusters (central) c 0 100 2.05× 10−5 3.05 188

Galaxies (cen + sat) g 0.137 0.224 5.58× 10−4 1.69 27.9

a cubic box of side Lbox = 1h−1 Gpc. We use 24 realiza-
tions in total, and analyze the snapshots at z = 0.306.

Subhalos are identified using the Rockstar algorithm
[43] from phase-space information of matter particles.
The velocity of each subhalo is determined by the av-
erage particle velocity within the innermost 10% of the
subhalo radius. We use the standard definition for the
halo radius and mass:

Mh ≡M∆m = M(< R∆m) = (4π/3)∆ρm(z)R3
∆m, (7)

where ρm is the mean mass density of the universe at
given redshift z, and we adopt ∆ = 200. In the Rockstar
algorithm, if one subhalo is within the virial radius of
another subhalo but the opposite is not the case, the
latter halo is labeled as a central subhalo. On the other
hand, if two or more subhalos are located within the virial
radius of each other, the most massive one is labeled as
a central subhalo and another as satellite subhalo(s).

To study cluster-scale halos, we select central subha-
los with Mh ≥ 1014h−1M�, which roughly corresponds
to the typical threshold of the richness parameters used
by the cluster-finding algorithms in the literature. We
create mock galaxy catalogs using a halo occupation dis-
tribution (HOD) model [44] applied for the LOWZ galaxy
sample of the SDSS-III Baryon Oscillation Spectroscopic
Survey obtained by [45]. We populate halos with galaxies
according to the best-fitting HOD N(Mh). For halos that
contain satellite galaxies, we randomly draw N(Mh)− 1
member satellite subhalos to mimic the positions and ve-
locities of the satellites (see [46, 47] for alternative meth-
ods). We use a random selection of subhalos rather than
the largest subhalos, because a satellite subhalo under-
goes the effect of a tidal disruption in the host halo and its
mass decreases as it goes toward the center of the gravita-
tional potential. Thus, if we selected the largest satellite
subhalos to host galaxies, we would preferentially pick
up the satellite subhalos residing it the outskirts of the
gravitational potential, which conflicts with the galaxy
distribution in observation. For this HOD prescription
we use all the subhalos with equal to or more than 20 par-
ticles in the simulation box. We assume central subhalos
to have triaxial shapes and estimate the orientations of
their major axes using the second moments of the mass
distribution [48]. Table I summarizes properties of our

mock samples.

IV. NUMERICAL ANALYSIS

A. Measurements

Since one usually considers a correlation function pro-
jected along the line of sight in observational studies, the
splashback features are smeared out to some extent by
projection effects. On the other hand, since we are in-
terested in physical properties of the splashback radius,
we present the alignment density and velocity correla-
tion statistics in 3D space. The alignment correlation
function of the galaxy density and cluster shape can be
measured by

ξgc(r, θ) =
〈DgDc〉
〈RgRc〉

− 1, (8)

where 〈DgDc〉 (r, θ) and 〈RgRc〉 (r, θ) are respectively the
normalized pair counts of the data and their randoms as
functions of separation, r, and position angle of clusters,
θ. Note that 〈RgRc〉 can be analytically computed since
we place the periodic boundary condition on the simu-
lation box. The momentum correlation function can be
measured by

ψgc(r, θ) =
〈Vg ·Vc〉
〈RgRc〉

, (9)

where 〈Vg ·Vc〉 (r, θ) is the normalized pair count of
galaxies and clusters weighted by the scalar product of
their velocities as functions of r and θ. We also com-
pute the same statistics but galaxies are replaced by dark
matter as a density/velocity tracer, namely ξmc(r, θ) and
ψmc(r, θ). In the following analysis, we measure these
statistics from each of the 24 realizations and present
their means. We also compute the standard errors from
the scatters, but we do not show them since the errors
are negligibly small.

The top-left panel of Fig. 1 shows the cluster-galaxy
cross-correlation function binned in the cluster angle
θ for the density field and that for the velocity field.
The top-right panel is the same as the top-left panel
but shows the cluster-dark matter cross-correlation func-
tion. The bottom panels present the ratios of the align-
ment statistic to the conventional one, Xgc(r, θ)/Xgc(r)
and Xmc(r, θ)/Xmc(r), where X = {ξ, ψ}. The devia-
tion from unity is the evidence of halo-shape alignments.
While this effect in the density correlation has been ex-
tensively studied both theoretically and observationally
[25, 49–51], that in the momentum correlation is mea-
sured by us for the first time.

Using the cluster-galaxy and cluster-dark matter cross-
correlation functions, one can determine the galaxy den-
sity and momentum biases, respectively as,

bg(r) =
ξgc(r)

ξmc(r)
, bp(r) =

ψgc(r)

ψmc(r)
. (10)
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FIG. 1: Top left: Alignment density correlation (lower lines) and momentum correlation (upper lines) of galaxies and clusters.
The dashed and dotted lines respectively show the correlations parallel and perpendicular to the major axes of the clusters,
Xgc(r, θ), while the solid lines are the conventional, angle-averaged statistics, Xgc(r), where X = {ξ, ψ}. Bottom left: Ratios
of angle-binned correlations to the conventional ones between galaxies and clusters, Xgc(r, θ)/Xgc(r). Top right: Same as
the top-left panel but the alignment correlation functions of dark matter and clusters, Xmc(r, θ). Bottom right: Ratios of
angle-binned correlations to the conventional ones between dark matter and clusters, Xmc(r, θ)/Xmc(r).
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FIG. 2: Galaxy bias (blue) and momentum bias (red)
obtained from the cross-correlation functions, bg(r) =
ξgc(r)/ξmc(r) and bp(r) = ψgc(r)/ψmc(r), respectively. The
blue and red horizontal lines represent the large-scale limit of
the galaxy and momentum bias, respectively bg = 1.69 and
bp = 1.

On sufficiently large scales where linear perturbation the-
ory is believed to be applicable, they approach constants,
and particularly we have bp = 1 in the absence of the
velocity bias. See [52] for redshift and halo mass depen-
dences of these bias parameters. We present the density

bias and momentum bias in the left and right panels of
Fig. 2, respectively. The horizontal blue lines are the
bias values at the large-scale limit. As studied in detail
by [52], the density bias approaches the linear bias on
smaller scales than the momentum bias.

B. Splashback features

On the scale of x ∼ 1h−1 Mpc, an abrupt change in
the slope of the both density and momentum correlations
can be seen, coinciding with the transition scale between
1-halo and 2-halo regimes [1, 53]. As described in Sec.
I, this steepest-slope location is regarded as a signature
of the splashback radius Rsp [3–5, 15] if the logarith-
mic slope there, γ = d log ξgc/d log r, is steeper than the
Navarro–Frenk–White profile [54] (See [55] for an alter-
native approach to define the boundary using the satel-
lite distribution). The top-left panel of Fig. 3 presents
γ, where the derivatives are computed by interpolating
the measured ξgc with the Gaussian Processes [56]. We
used the “squared exponential” kernel and optimized its
amplitude and length parameters to fit logXgc as a func-
tion of log r in the range 0.1h−1 Mpc < x < 10h−1 Mpc
[57]. The steepest slope of our conventional correlation
function reaches γ ' −4.5. This is significantly steeper
than the NFW profile depicted as the black dotted curve
(γ → −3) and consistent with the characteristic splash-
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gc /d log r. Bottom: Same as the top panels but the density and velocity fields of galaxies are replaced by
those of dark matter. The black dotted curves in the left panels are the NFW profile.

back properties in ΛCDM found by [3]. Intriguingly, the
slopes are shallower and steeper, respectively, for the
alignment correlation parallel and perpendicular to the
major axes of the clusters. This can be interpreted by
the fact that the halo size varies more significantly along
the direction of the major axis (i.e., smaller θ), leading
to a less prominent boundary.

Likewise, we compute the logarithmic derivative for
the momentum correlation, γp = d logψgc/d log r, in the
top-right panel of Fig. 3. It is interesting to note that the
slope approaches γp → −5.5, steeper than the boundary
slope determined by the density correlation. As discussed
by [58] in the context of ΛCDM structure formation, the
orbital velocity anisotropy is tightly coupled with the log-
arithmic density slope around halos and thus expected
to be sensitive to the location of the halo edge [3], which
physically and sharply separates the multi-stream intra-
halo region from the outer infall region (see also [59]).

Another reason for the sharper splashback feature in
the momentum correlation is that it is much less biased
than the density correlation. Due to the nonlinear, scale-
dependent bias, the steepening splashback feature probed
by the density profile is further smeared out by the shal-
low 2-halo term (See [40] for the full bias dependence on
the velocity statistics). To confirm this, we split the cor-
relation of galaxies and clusters into the correlation with
those inside and outside the halo, Xgc = X1h

gc + X2h
gc ,

where X = {ξ, ψ}. We measure the 1-halo terms, X1h
gc ,

by cross-correlating clusters and their member galaxies
identified by the phase-space friends-of-friends technique
in the Rockstar algorithm. We then take their derivatives,
d logX1h

gc /d log r. As shown as the blue thin curves in
the top panels of Fig. 3, the logarithmic slope profiles in
the 1-halo regime probed by the density and momentum
correlations are essentially the same and the difference
is less than a few percent around the splashback radius.
This confirms that the differences in the sharpness of the
steepeneing and the location of the steepest slope come
from the 2-halo terms.

To further see the effect of the bias, we also com-
pute the same derivatives but galaxies are replaced
by dark matter as a density/velocity tracer, namely
d logXmc/d log r (X = {ξ, ψ}). They are shown in the
lower panels of Fig. 3. As explained in [17], the splash-
back feature in the mass density is smeared out compared
to that traced by subhalos, because of extended substruc-
tures that are abundant in the halo outskirts. However,
the slope is still steeper than that of the NFW profile as
depicted by the black-dotted line.
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sp = 1.035Rsp.

C. Constraints on the splashback radius

We constrain the splashback radius, Rsp and Rpsp,
the locations of the steepest slopes in the density cor-
relation (dγ/dr|r=Rsp

= 0) and momentum correlation
(dγp/dr|r=Rp

sp
= 0), respectively. The covariance error

matrix is estimated by the scatter among our 24 realiza-
tions. In Fig. 4, the blue point with the error bars is the
constraint from the angle-averaged halo-matter cross cor-
relations. The blue star represents a model prediction of
[16], defined as the 75th percentile of the distribution of
particle apocenters, corresponding approximately to the
the radius of steepest slope in simulated halos [5]. For
our cluster sample with M200m = 1.88 × 1014h−1M�, it
gives Rsp = 1.15R200m = 1.58h−1 Mpc, consistent with
our constraints within 1σ. The green and red points are
the constraints from the correlations parallel and perpen-
dicular to the halo major axis, respectively. A clear axis
dependence is detected: Rsp along and perpendicular to
the major axis is constrained to be higher and lower than
the spherically averaged value.

The resulting locations of Rsp and Rpsp from the
subhalo number density (black cross) are significantly
smaller than those from matter density. This can be

interpreted as the effect of dynamical friction [14]. Ac-
cording to [15], Rsp constrained from the subhalo field
can be smaller than the true value by up to ∼ 20% as
indicated by the arrow in Fig. 4. Since we find the
correlation matrix of Rsp and Rpsp is 0.605, the momen-
tum correlation indeed provides extra information on the
splashback radius. Interestingly, the determined Rsp is
∼ 3.5% smaller than Rpsp for all the cases studied here.
Hence, one can use this tight correlation to infer the value
of Rpsp from Rsp or vice versa. This slight shift is qual-
itatively interpreted as follows. The momentum corre-
lation is equivalent to the density correlation weighted
by velocities of tracers. As demonstrated by [5], the in-
fall velocity reaches its (most negative) minimum at the
radius larger than the splashback radius determined by
the density profile. Thus, the splashback radius deter-
mined in 3D space, Rsp, is systematically smaller than
that in phase space (6D). However, this relation should
be tested in more detail for different redshifts and halo
masses in future work. On the other hand, the fact that
the relation Rpsp = 1.035Rsp holds for both dark matter
and galaxies indicates that the galaxy bias does not affect
the location of the splashback feature at the level studied
in this paper.

V. CONCLUSIONS

We have proposed a velocity statistic to investigate de-
tailed properties of the splashback radius of non-spherical
dark-matter halos. The splashback radius in the momen-
tum correlation, Rpsp, has been detected for the first time
from simulations. The feature is even sharper than that
in the density correlation, because it separates distinct
infall and multi-stream regions of collisionless CDM. By
measuring the splashback radius from both density and
momentum correlations, we also demonstrated that the
commonly used density statistic yields Rsp that is about
3.5% smaller than that expected in phase space, Rpsp. In
other words, the velocity field provides a less biased esti-
mator to probe the halo boundaries. Under certain con-
ditions, a self-interacting dark matter scenario [60] can
predict a ∼ 20% smaller value of the splashback radius
in the satellite distribution, through the drag force act-
ing between dark-matter particles of subhalos and clus-
ter halos [9]. The small shift due to radial infall velocity
thus needs to be taken into account in precise theoretical
modeling.

We found clear dependences of halo asphericity on
splashback features: the density/velocity slopes are shal-
lower along the halo major axis. We have also deter-
mined the orientation-dependent splashback radius using
the cluster-matter density cross correlation as well as the
momentum cross correlation. This demonstrates that the
collisional feature of the CDM model can be constrained
by precision measurements of anisotropic splashback fea-
tures because the halo shape is predicted to be rounder
in such a model (see discussion in [9]).
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This paper has focused on the alignment statistics only
on small, cluster scales. In a companion paper [61], we
perform a comprehensive analysis by extending to larger
scales, x > 100h−1 Mpc.
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