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We study statistical anisotropies generated in the observed two-point function of the cosmic
microwave background (CMB) fluctuations if the primordial statistics are non-Gaussian. Focusing
on the dipole modulations of the anisotropies, we find that the hemispherical power asymmetry
observed in the CMB temperature fluctuations can be modeled by a local-type trispectrum with
amplitude τNL(kp = 0.05 Mpc−1) ≈ 2 × 104 and a large red tilt n ≈ −0.68. We numerically
evaluate the non-Gaussian covariance of the modulation estimators for both temperature and E-
mode polarization fluctuations and discuss the prospects of constraining the model using Planck
satellite data. We then discuss other effects of the scale-dependent trispectrum that could be
used to distinguish this scenario from other explanations of the power asymmetry: higher-order
modulations of the two-point function and the non-Gaussian angular power spectrum covariance.
As an important consequence of the non-Gaussian power spectrum covariance, we discuss how the
CMB-inferred spectral index of primordial scalar fluctuations can be significantly biased in the
presence of a scale-dependent local-type trispectrum.

I. INTRODUCTION

Several anomalies have been observed in the cosmic
microwave background temperature fluctuations at the
largest scales [1]. They are measured features that are
primordial and not due to instrumental noise or system-
atics, or due to late-time physics. Such anomalies are
moderately unlikely to arise as mere statistical fluctua-
tions in the Gaussian, isotropic models of cosmological
fluctuations which otherwise describe observations with
great precision. While the statistical significance of these
unexpected features is not very strong, their presence has
led to several model building attempts [2–12] aiming to
constrain physics of the primordial universe.

The current ambiguous status of the anomalies on large
scales [13], and in particular the hemispherical power
asymmetry [14–16] which has motivated this work, is
driven by the fact that the large-scale temperature fluc-
tuations have been measured to cosmic-variance limit.
But, there is additional data available in principle, in
particular from large-scale polarization [17], from galaxy
surveys [18], from the scattering of CMB photons by free
electrons after reionization [19–21], or from 21-cm fluc-
tuations [22].

The different efforts to model the observed statistical
anisotropies in the CMB can be roughly categorized into
two groups in which: (i) there is an explicit breaking
of statistical isotropy [3, 23], which means a preferred
direction in the Universe, or (ii) the statistical isotropy
breaking is spontaneous due to some stochastic modu-
lating field [24] or primordial non-Gaussianity [25]. In
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this work, we use a framework where the observed power
asymmetry arises spontaneously as the result of look-
ing at a sub-volume of a larger space whose fluctuations
are described by isotropic but non-Gaussian statistics.
In a non-Gaussian model, the dipolar modulation of the
Fourier space two-point function is described by the col-
lapsed limit of the Fourier space four-point function (the
trispectrum) of primordial fluctuations.

The relation between non-Gaussianity and statistical
anisotropy has been discussed previously in the context of
the CMB [26–28]. In particular, Planck satellite data was
used to constrain the amplitude τNL of a scale-invariant
local-type trispectrum by using statistical anisotropy es-
timators [27], giving τNL < 2800 at 95% confidence level
[29]. (See also [30].) However, since the observed asym-
metry has a significant scale dependence, it is useful to
expand on the Planck analysis and study in detail a scale-
dependent trispectrum model. Non-Gaussianity that is
scale dependent and larger on large scales can be con-
sistent with the very tight scale-independent constraints,
since those are driven by the many modes measurable
on small scales. An easy way to see this is to note that
the τNL constraint from WMAP data, which are domi-
nated by larger scales than Planck data, is an order of
magnitude weaker [31].

We study the effect of a scale-dependent trispectrum
in the CMB fluctuations by calculating the induced non-
Gaussian covariance of modulation estimators. Such a
formalism allows us to simultaneously consider the effect
on the (correlated) modulations expected in CMB polar-
ization and forecast the improvement in trispectrum con-
straints when adding polarization data. Further, we can
also straightforwardly extend the study to other trispec-
tra that have a large collapsed limit. The following pri-
mary results of our work all provide strong motivations
to expand the current search for non-Gaussianities to the
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case of scale-dependent local-type trispectrum:

1. Two of the large-scale CMB temperature anoma-
lies — the hemispherical power asymmetry and the
power deficit at large scales — can be well-modeled
by a scale-dependent trispectrum,

2. Such a trispectrum has other modulating effects
on the temperature and polarization fluctuations
that can be used to improve constraints on the
scale-dependent trispectrum parameters, and

3. If we require the trispectrum amplitude and pa-
rameters be large enough to explain both the hemi-
spherical power asymmetry and the power deficit at
large scales, then we find that the non-Gaussian co-
variance between the measured angular power spec-
tra of the CMB can be large enough to significantly
bias the inference of cosmological parameters (see
Figure 4).

The rest of the paper is organized as follows. In Sec
II, we discuss the general relationship between statistical
anisotropies observed in a finite volume when the curva-
ture fluctuations on larger scale are coupled to those on
smaller scales. We then define modulation estimators in
Sec III and describe how the effect of the non-Gaussian
nature of fluctuations on the covariance of these estima-
tors can be computed when a model for the primordial
trispectrum is specified. In Sec IV, we numerically eval-
uate these covariances and obtain a fiducial set of scale-
dependent trispectrum parameters that can explain the
observed hemispherical power asymmetry at large scales,
and study how including polarization and higher-order
modulations can improve model constraints. We discuss
the non-Gaussian covariance of angular power spectra
generated by a scale-dependent primordial trispectrum
and how it can bias the reconstruction of the spectral in-
dex of the power spectrum in Sec V. We summarize and
conclude in Sec VI.

II. SPONTANEOUS ISOTROPY BREAKING
FROM NON-GAUSSIANITY

The statistics of the power asymmetry observed in a
finite volume can be modeled as a spatial modulation
of the observed temperature fluctuations. Simplifying to
the scale-independent case for the moment, this is

δT

T0
=
δT

T0
(1 +An̂ · d̂) (1)

where n̂ is the direction of observation, d̂ is the direction
of the asymmetry, and A is the amplitude. The stan-
dard Gaussian, isotropic model predicts that any given
finite-sky realization will have an asymmetry drawn from

a distribution with 〈A〉 = 0 and a finite variance deter-
mined by the power spectrum of the fluctuations. Models
that introduce a new parameter for the asymmetry can
either explicitly break isotropy, predicting a distribution
with 〈A〉 6= 0, or introduce a second, modulating Gaus-
sian field that effectively boosts the variance of A to be
larger than expected from the measured isotropic fluctu-
ations. For example, to boost the likelihood of an asym-
metry only on large scales, one can introduce a field h(x)
into the primordial potential perturbations (Φ), where
h(x) has fluctuations only on large scales and so is not a
stochastic field in the finite volume [32]:

Φ(x) = g(x)[1 + h(x)] (2)

In this case, 〈g(x)h(x)〉 = 0 and the observed asymmetry
in a finite volume constrains the power spectrum of the
second field. On the scales where the modulating field is
stochastic, the curvature perturbations in this scenario
have a connected four-point function proportional to the
power in the two Gaussian fields (PgPh). For this rea-
son, trispectrum estimators can be used, in the collapsed
limit, to constrain the power asymmetry from such a
modulating field.

In the simplest, scale-independent non-Gaussian sce-
nario, the model for infinite volume statistics is

Φ(x) = σ(x) + fNL[σ2(x)− 〈σ2(x)〉]. (3)

In any finite volume, the long wavelength modes of σ
play the role of the non-stochastic, modulating field ex-
actly as in Eq.(2) previous case. The correlation between
the power in short-wavelength modes and any gradient
in the fluctuations of the long-wavelength modes results
in spontaneous isotropy breaking observed in the finite
volume. However, the extra variance of A is not a new
parameter to be constrained only by the asymmetry but
is also constrained by isotropic non-Gaussianity in the
finite volume (assuming the power spectrum is not sud-
denly very different on large scales). In the scenario in
Eq.(3), there will be a Fourier space connected three-
point function whose amplitude is proportional to fNL,
and a four-point function with amplitude proportional to
f2

NL. While the observed value of fNL is itself subject to
infrared divergent cosmic variance in this case [33, 34],
the non-Gaussian variance of A is infra-red finite and is
very nearly determined by the locally measured fNL [25].

The models above are useful to contrast because they
are simple1, but the class of scenarios of actual interest is
more complicated since the observed asymmetry in CMB

1 In this work, we use “model” to refer to a description of the
statistics of the inhomogeneities after reheating. We consider the
construction of dynamical models of the primordial (inflationary)
era that generates these statistics to be an extra layer, that likely
provides an additional set of theoretical priors reflecting how
difficult it seems to generate the respective dynamical models
and how much inflation they tend to produce.
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temperature is significantly scale dependent. Although
constraints on non-Gaussianity have improved dramati-
cally in recent years, there is still a surprising amount
of space for non-Gaussian models to match existing data
and generate the power asymmetry. The expression in
Eq.(3) is an example of a much more general class of sce-
narios where the level of spontaneous isotropy breaking
in a finite volume is enhanced by correlations between
modes of different wavelengths. The momentum-space
statistics of Eq.(3) have the feature that modes of very
different wavelengths are coupled in a scale-independent
way. A much wider range of couplings between modes of
different wavelengths (including, of course, no coupling as
is consistent with single-clock inflation) can be modeled
by writing down particular 3-, 4-, ...n-point correlations

in Fourier space and expanding the field Φ(~k) in terms
of a Gaussian field φ with appropriate kernels Kn in the
convolutions. Schematically [35, 36]

Φ(~k) = φ(~k)+

(∫
φ ∗ φK2

)
~k

+

(∫ ∫
φ ∗ φ ∗ φK3

)
~k

+. . .

(4)
Notice that there will be two contributions to the trispec-
trum: one that depends twice on the quadratic kernel K2,
and another from a single K3 term. (In the local ansatz,
these are the τNL ∝ f2

NL and gNL terms, respectively.)
Even for a globally homogeneous, isotropic field, we

expect some level of anisotropy if we restrict our obser-
vations to a sub-volume: for any single realization of the
CMB sky, there is a direction that divides the map into
two pieces with maximally different average amplitudes
of power in the two halves. To see how the spontaneous
breaking of isotropy is enhanced if the underlying field
has a non-Gaussian component, we may divide the modes
in Fourier space into long- and short-wavelength modes,
and look at the expression for modes of the field that
satisfy k >∼ kmin:

Φ(~kS) =φ(~kS)

[
1 +

∫
kL

φK2 +

∫
kL

∫
kL

φ ∗ φK3 + . . .

]
+

(∫
φ ∗ φK2

)
~kS

[
1 +

∫
kL

φK3 + . . .

]
+

(∫ ∫
φ ∗ φ ∗ φK3

)
~kS

[1 + . . . ] + . . . (5)

The fact that one may trade explicit isotropy breaking
in a sub-volume for non-Gaussianity in an encompassing
volume has been known for some time (see, eg the clear
discussion in [27]). The calculation above, however, gives
a straightforward means of generating both the isotropic
and anisotropic statistics expected in a sub-volume for a
wide range of models. The statistical shift to the small-
volume power spectrum (the linear term in Eq.(5)) can
be expanded in spherical harmonics to give the expected
level of isotropy breaking in the two-point function ex-
pected for a given model [25].

From Eq.(5), it is also clear that the sub-volume statis-
tics depend on parameters that control the size of all

higher order, tree-level connected correlations. In gen-
eral, then, the observed anisotropy is probing features of
both the bispectrum and the trispectrum, and possibly
beyond. An asymmetry in the observed power spectrum
may be primarily generated by a four-point function if its
amplitude (properly normalized by factors of the ampli-
tude of fluctuations) is larger than that of the three-point
function. Particularly relevant for the observed power
asymmetry is the case where the collapsed limit of the
trispectrum is larger than it would be from the simple
example of the single-source local ansatz given in Eq.(3).
That is, the effective τNL that governs the collapsed limit
of the trispectrum is greater than f2

NL [37]. In Eq.(5),
such an example requires a K4 kernel that effectively
subtracts off the K2

3 contribution to the trispectrum and
adds back the same shape, but with the appropriately
scaled coefficient2. An enhanced trispectrum, and power
asymmetry, can also be generated by modifying Eq.(4)
to allow two separate fields additively sourcing the cur-
vature (eg, Gaussian field + non-Gaussian field).

III. MODULATIONS IN THE CMB
FLUCTUATIONS

In this section, we describe and compute statistics
of CMB modulations from a scale-dependent primordial
trispectrum. The observed statistics in the CMB are the
multipole moments of temperature or polarization fluc-
tuations, which depend on the primordial potential Φ(k)
as follows

ax`m = 4π(−i)`
∫

d3k

(2π)3
Φ(k)gx` (k)Y ∗`m(k̂), (6)

where gx` (k) is the CMB transfer function with x = T,E
describing temperature and E-mode polarization fluctu-
ations respectively.

The role of polarization fluctuations in helping pin
down whether the modulations observed in the temper-
ature fluctuations are primordial or not has been previ-
ously studied in [17, 32, 42]. Here we write down the
general expressions for the covariances of modulation es-
timators in the presence of a trispectrum. We will use
them to generate realizations of the estimators and study
the expected constraints by using Planck temperature
and polarization data in the next section. For the most
part, we will focus on dipole modulations of the cosmic
microwave background fluctuations (both T and E).

2 An interesting test case of this type, that naturally gives a scale-
dependent asymmetry, is that of quasi-single field inflation [38–
41]. We find, however, that the quasi-single field parameters
do not easily allow for fNL small enough to be consistent with
Planck constraints but τNL as large as required by our fiducial
model here (see Section IV).
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Let us define the dipole modulation estimators using
`, `+ 1 correlations as follows:

∆X̂wx
0 (`) =

1

(2`+ 1)
√
Cww

` Cxx
`+1

∑̀
m=−`

aw∗`ma
x
`+1,m (7)

∆X̂wx
1 (`) =

1

(2`+ 1)
√
Cww

` Cxx
`+1

∑̀
m=−`

aw∗`ma
x
`+1,m+1 (8)

where w, x can be either T,E and C`s are the CMB an-
gular power spectrum of the best-fit cosmology. (Note

that, while we use the notation from [17] of ∆X̂M s, our
definition does not include additional `-dependent factors
that exactly map the `, ` + 1 correlations to the Carte-
sian components of dipole modulation parameter A as
defined as in Eq.(1).) Similar estimators can be defined
for higher-order modulations, by considering `, `+ 2 cor-
relations, for example for quadrupolar modulation. If
the primordial fluctuations are Gaussian, the covariance
of the dipole modulation estimators is given by〈

∆X̂wx∗
M (`)∆X̂yz

M ′(`
′)
〉

G
=
δM,M ′δ`,`′

2`+ 1

Cwy
` Cxz

`+1√
Cww

` Cxx
`+1C

yy
`′ C

zz
`′+1

, (9)

where M,M ′ = 0, 1. Note that ∆X̂0(`) are real, whereas

∆X̂1(`) are complex and the three degrees of freedom
among the two estimators determine the amplitude and
direction of the dipole modulation.

For models that generate a CMB power asymmetry
by explicitly changing the power spectrum (for exam-
ple, assuming that the primordial power spectrum has
a dipole modulation), the means of ∆X̂M are non-zero:

〈∆X̂M (`)〉 6= 0. However, in models where the primordial
fluctuations have significant non-Gaussianity, it is possi-
ble that global isotropy is respected, i.e. 〈∆X̂M (`)〉 =
0, but the expected cosmic variance of CMB dipolar
modulation increases. The resulting apparent statistical
anisotropy is a spontaneous statistical isotropy breaking
[24] caused by the non-Gaussian nature of fluctuations.
In that case, the non-Gaussian contribution to the covari-
ance depends on a particular configuration of the CMB
trispectrum:〈

∆X̂wx∗
M (`)∆X̂yz

M ′(`
′)
〉

nG

= δM,M ′

∑
m,m′

〈
aw`m ax∗`+1,m+M ay∗`′m′ az`′+1,m′+M ′

〉
c

(2`+ 1)(2`′ + 1)
√
Cww

` Cxx
`+1C

yy
`′ C

zz
`′+1

(10)

where the subscript c indicates connected part of the
trispectrum.

To compute the CMB four-point function we follow the
method in [43, 44], which constructs the CMB trispec-
trum from a “reduced trispectrum” that automatically

enforces the trispectrum to have rotation, parity and per-
mutation symmetries. The CMB four-point function can
be written using Wigner-3j symbols, as:

〈
aw`1m1

ax`2m2
ay`3m3

az`4m4

〉
c

=
∑
LM

Pw`1x`2
y`3z`4

(L)

(
`1 `2 L
m1 m2 −M

)
(
`3 `4 L
m3 m4 M

)
(−1)M + (`2 ↔ `3) + (`2 ↔ `4)

(11)

where [43]:

Pw`1x`2
y`3z`4

(L) = T w`1x`2
y`3z`4

(L) + (−1)L+`1+`2T x`2w`1
y`3z`4

(L)

+ (−1)L+`3+`4T w`1x`2
z`4y`3

(L)

+ (−1)`1+`2+`3+`4T x`2w`1
z`4y`3

(L)

(12)

The reduced CMB trispectrum T depends on the
model of primordial trispectrum. In this work, we will
consider a scale-dependent local τNL trispectrum [45]

T (k1,k2,k3,k4) = τNL

(
k2k4

k2
p

)n

P (k1)P (k3)P (|k1 − k2|)

+ permutations (13)

where the index n describes the scale dependence of
the trispectrum amplitude of the otherwise local-type
trispectrum, and kp is the pivot at which the τNL is the

amplitude; we take kp = 0.05 Mpc−1. Similar to the
calculation for the constant τNL trispectrum [44, 46], we
obtain

T w`1x`2
y`3z`4

(L) = τNLh`1`2Lh`3`4L

∫
dr1r

2
1α

w
`1(r1, n)βx

`2(r1)∫
dr2r

2
2α

y
`3

(r2, n)βz
`4(r2)FL(r1, r2)

(14)

where

h`1`2,L =

√
(2`1 + 1)(2`2 + 1)(2L+ 1)

4π

(
`1 `2 L
0 0 0

)
(15)

αw
` (r, n) =

2

π

∫
dk k2

(
k

kp

)n

gw` (k)j`(kr) (16)

βx
` (r) = 4π

∫
dk

k
PΦ(k)gx` (k)j`(kr) (17)

FL(r1, r2) = 4π

∫
dK

K
PΦ(K)jL(Kr1)jL(Kr2) (18)

and the j` are spherical Bessel functions. Note that the
angular power spectrum can be written as an integral
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over the comoving distance r, using the quantities α`(r)
and β`(r) defined above:

Cwx
` =

∫
dr r2αw

` (r, 0)βx
` (r). (19)

Numerically evaluating the reduced trispectrum of
Eq.(14) allows us to compute the non-Gaussian covari-
ances, Eq.(10), for the dipole modulation estimators.
The full covariance matrix for dipole modulation estima-
tors (including the fsky scaling for partial sky coverage
and the noise power spectra) is given by,

C =
〈

∆X̂wx∗
M (`)∆X̂yz

M ′(`
′)
〉

=
1

(2`+ 1)fsky

δM,M ′√
Cww

` Cxx
`+1C

yy
`′ C

zz
`′+1

δ`,`′C̃wy
` C̃xz

`+1 +
1

2`′ + 1

∑
m,m′

〈
aw`ma

x∗
`+1,m+Ma

y∗
`′m′a

z
`′+1,m′+M ′

〉
c

 , (20)

where w, x, y, z can be T,E, while M,M ′ = 0, 1 (of the

∆X̂0,1) and C̃wy
` = Cwy

`,cmb + Cwy
`,noise. The noise power

spectrum for Planck is approximated using the specifi-
cations for two channels as in [47] with fsky = 0.65.
For numerical evaluations, we use camb [48] to obtain
the transfer functions g`(k) using Planck 2015 best-fit
cosmological parameters [49]. We also follow the ap-
proximation outlined in Appendix A for faster numer-
ical evaluation, and mostly limit ourselves to ` ≥ 30
for which the approximation is correct within a few per-
cent. In the next section, we use realizations of ∆X̂M s
obtained using the full covariance matrix Eq.(20) to ob-
tain our fiducial scale-dependent trispectrum parameters:
τNL = 2× 104, n = −0.68.

In Figure 1, we plot the expectation value of the non-
Gaussian contribution to the dipole modulation ampli-
tude,〈
A(`)

〉
nG
≡
√〈

A2
x(`)

〉
nG

+
〈
A2

y(`)
〉

nG
+
〈
A2

z(`)
〉

nG

using the fiducial τNL, n values. Here A(`) corresponds
to the harmonic transform of a dipolar modulation of

the fluctuations A(n̂ · d̂) as in Eq.(1). Note that there
are additional ` dependent factors between our defi-
nition of ∆X̂M s and the Cartesian components of A,
which approach constant values at large `: ∆X̂0 ≈
(4/5)Az,Re∆X̂1 ≈ Ax/2, Im∆X̂1 ≈ Ay/2; we account

for these factors between ∆X̂M s and Ax,y,zs when com-
puting A(`) and comparing our results to that of [50],
which fitted the Planck temperature dipole modulation
data to a phenomenological `−dependent model:

A(`) = A`0

(
`

`0

)n

. (21)

From Figure 1, we can see that a scale-dependent trispec-
trum can generate a scale-dependent dipole modulation
of the CMB temperature fluctuations similar to the best-
fit values found by [50]. We have also plotted the cor-
responding scale-dependent dipole modulations expected
in EE and TE spectra.

200 400 600 800 1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A(
) n

G
or

A(
)

NL = 2 × 104

n = 0.68
Aiola et.al.
A( ) nG TT

A( ) nG EE

A( ) nG TE

FIG. 1. The expected ` dependent amplitude of dipole mod-
ulation from the scale-dependent trispectrum model given in
Eq.(13) for our fiducial parameters. For reference, we have
plotted the best-fit `−dependent dipole modulation ampli-
tude obtained by Aiola et. al [50] using Planck tempera-
ture data. The 〈A(`)〉nG TT (solid blue) values only include
the non-Gaussian contribution (and no Gaussian noise) which
could explain its smaller magnitudes than that of the best-fit
Aiola et.al. model (black dotted).

In Figure 1, we see that in general the polarization
asymmetry amplitude is larger than that of the temper-
ature. See also [17, 42] for similar results and discussion.
The reason is that temperature multipoles get contribu-
tion from a wider range of scales, and each modulation
multipole roughly traces the average level of modula-
tion over this range of scales. The transfer functions
for E-modes, however, are generally narrower in range
of wavenumber k and trace, on average, larger scales
compared to the temperature fluctuations. The modula-
tion amplitude in our fiducial model decreases at smaller
scales, which results in larger E-mode modulation. If,



6

however, we postulate a scale dependence of the mod-
ulation amplitude which increases at smaller scales (i.e.
n > 0), the temperature modulation amplitudes on aver-
age will be larger than the polarization modulation am-
plitudes.

IV. FORECAST

In this section, we use numerical evaluations of the
non-Gaussian covariances described in the previous sec-
tion and generate various realizations of modulation pa-
rameters — at different multipoles — for both tempera-
ture and polarization fluctuations. We make use of these
realizations to choose fiducial trispectrum model parame-
ters by selecting “look-alike” realizations in temperature
fluctuations over a range ` = 30− 600, where there is 3σ
evidence for hemispherical power asymmetry. The po-
larization realizations that are generated simultaneously
with the temperature realizations are then used to fore-
cast the prospect of detecting the fiducial trispectrum
model by using the log-likelihood difference.

A. Studies on ∆X̂M (`) realizations and fiducial
model

Using the full covariance matrix Eq.(20) we generate
realizations of modulation parameters

d = {∆X̂0(`),Re∆X̂1(`), Im∆X̂1(`)}

for various values of τNL, n. From the realizations, we
measure the best-fit dipole amplitude and scale depen-
dence (A,n) by fitting to the function Eq.(21): A(`) =
A(`0)(`/`0)n; we choose `0 = 300 instead of `0 = 60 as
in [50] but translate their constraints accordingly. Based
on the distributions of A,n obtained using realizations
for a number of (τNL, n) values, we choose our fidu-
cial scale-dependent trispectrum parameter values to be
τNL = 2 × 104, n = −0.68. The non-Gaussian model
using these fiducial parameters produces median ampli-
tude and scale dependence for the temperature modula-
tion similar to the marginalized values found in [50], in-
dicated by the dashed lines in Figure 2. We contrast the
(A,n) distribution generated by our fiducial trispectrum
model to the distribution of (A,n) obtained from Gaus-
sian, isotropic realizations. The 2D smoothed histograms
obtained by these two set of realizations are shown in Fig-
ure 2. The shape of the contours indicates that even a
significantly smaller τNL would make the observed power
asymmetry more likely compared to τNL = 0.

Interestingly, the rough estimates for the scale-
dependent trispectrum parameters in an inflationary
model that generates dipole asymmetry while respect-
ing current bispectrum constraints given in [51] are sim-
ilar to our fiducial parameters. However, it is important
to note that an actual data analysis of the temperature
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τNL(kp) = 20000, n = −0.68

FIG. 2. Distributions (smoothed histograms) of scale-
dependent power asymmetry parameters (A`0=300, n) for two
different models: (i) a Gaussian and isotropic model (brown,
contour with smaller amplitudes), and (ii) our fiducial non-
Gaussian isotropic model (blue, contour with larger ampli-
tudes). For all the distributions, we have used temperature
multipoles ` = 30 − 600, and assumed fsky = 0.65. These
smoothed distributions are generated from 25,000 modula-
tion data realizations and the two contours indicate 1σ and
2σ intervals. The dashed lines show the marginalized median
values obtained from fit to Planck data by [50].

modulation data to fit for the scale-dependent trispec-
trum parameters hasn’t been done yet, which may result
in different values than our fiducial model — especially
when larger multipoles and higher-order modulations are
included.

To examine the constraints on the scale-dependent pa-
rameters from Planck temperature data (and information
added by polarization data), we select “look-alike” real-
izations from our set of fiducial non-Gaussian realizations
that produce scale-dependent dipole modulation in tem-
perature fluctuations similar to the best fit values found
in [50] (within ten percent of A300 = 0.011, n = −0.64).
We then compute the log-likelihood improvement with
respect to the isotropic and Gaussian model, (∆ lnL ≡
lnLmax(τNL, n)− lnL(0, 0)), where

lnL(τNL, n) = −1

2

[
detC + dTC−1d

]
(22)

and C is a function of (τNL, n) given in Eq.(20). The
estimated log-likelihood improvement ∆ lnL as a func-
tion of the maximum multipole used to compute the log-
likelihoods is plotted in Figure 3. Using only the tem-
perature dipole modulation data upto `max = 1000 we
estimate a log-likelihood improvement of ∆ lnL ∼ 8 for
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FIG. 3. The log-likelihood improvement as a function of max-
imum multipole used in the analysis using Planck-like tem-
perature ∆X̂T

M realizations only, and in combination with
Planck-like E-mode ∆X̂E

M realizations. We find that, for our
fiducial trispectrum model, adding E-mode polarization data
from Planck increases the ∆ lnL ∼ 3 over the temperature-
only data. The data points in the figure are median ∆ lnL
values from fit to realizations while the band shows the 68%
spread around it.

two extra parameters over the isotropic Gaussian model.
We limit to `max = 1000 for two reasons: (i) the signal
for the models with strong scale dependence decreases
sharply at larger multipoles, and (ii) the Doppler and
aberration contribution starts to become important at
higher multipoles that needs to be accounted [52].

B. Addition of polarization data

To investigate the expected improvement by adding
E−mode polarization data, we select the E-mode real-
izations corresponding to the “look-alike” temperature
realizations with power asymmetry similar to what is
observed; recall that this is done assuming our fidu-
cial model parameters: τNL(kp) = 2 × 104, n = −0.68.
Also, the polarization realizations are generated simul-
taneously with the temperature realizations to account
for both the Gaussian and non-Gaussian covariances be-
tween T and E. Then, we quantify the contribution from
the addition of polarization data by the improvement in
log-likelihood, plotted in Figure 3 by including TT, EE
and TE modulation estimators.

The results are plotted in Figure 3. Even with the
noise levels of Planck, we expect significant improvement
in log-likelihood ∆ lnL ∼ 3 by adding EE and TE dipole
modulation data, for our fiducial trispectrum model.

C. Expected improvement by using higher-order
modulations

We estimate the improvement when including higher-
order (L > 1) modulations by calculating the signal-
to-noise ratio from the connected CMB trispectrum, for
each modulation order, using [44, 53]:

(
S

N

)2

L

≈
`max∑
`1≥`2
`2≥`3
`3≥`4

∑
abcd

∑
wxyz

T
w`1

x`2
y`3

z`4
(L) [Cov]

−1
T

a`1
b`2

c`3d`4
(L),

(23)

[Cov] =(2L+ 1)Caw
`1 C

bx
`2 C

cy
`3
Cdz

`4 (24)

where abcd, wxyz = {TTTT,EEEE,TETE} for informa-
tion using the TT, EE and TE modulation estimators
(note that there are other combinations possible when
using the trispectrum directly rather than using modula-
tions), in which case the covariance [Cov] for each unique
set of `1, `2, `3, `4 is a 3× 3 matrix. We find that for our
fiducial model,

∑
L

(
S

N

)2

L=2,3,4

= 0.3

(
S

N

)2

L=1

(25)

so, we can expect ∼ 30% increase in ∆ lnLmax shown in
Figure 3 by adding L = 2, 3, 4 modulations of TT, EE,
TE from Planck.

The use of higher-order modulations can help distin-
guish between a primordial trispectrum and a model in
which the primordial power spectrum has a genuine sta-
tistical anisotropy. In the latter case, the preferred di-
rection for higher-order modulations is the same as that
of the dipole modulation. However, for a non-Gaussian
model, the dipole and quadrupole modulation directions
are uncorrelated as 〈aw`max∗`+1,ma

y∗
`ma

z
`+2,m〉c = 0 for a

parity-invariant primordial trispectrum.

V. ISOTROPIC MODULATION OF THE
POWER SPECTRUM

A trispectrum with large collapsed-limit signal also
modulates the isotropic angular power spectrum (the
C`) of the CMB. The collapsed-limit configuration of the
trispectrum induces covariance between measured angu-
lar power spectra at widely separated multipoles. For
the case of a constant modulation or a scale-invariant
local trispectrum, the effect only rescales the amplitude
of fluctuations. However, as we show below, for a scale-
dependent trispectrum there can be more interesting ef-
fects. The covariance between measured angular power
spectra in the presence of a non-zero connected trispec-
trum is given by,
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of C` realizations was generated using the non-Gaussian model with spectral index (at the pivot wavenumber k0 = 0.05Mpc−1)
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non-primordial parameters fixed.

C(Ĉ`, Ĉ`′) =
2C2

`

2`+ 1
δ`,`′ +

1

(2`+ 1)(2`′ + 1)∑
m,m′

〈
a`ma`,−ma`′,m′a`′,−m′

〉
c

(26)

where,

Ĉ` =
1

2`+ 1

∑̀
m=−`

a∗`ma`m. (27)

In standard cosmological analyses, the second term in
Eq.(26) is ignored assuming that the primordial fluc-
tuations are Gaussian distributed. Inclusion of the
second term, if non-zero and known (say from direct
trispectrum measurements), can increase the measure-
ment errors on cosmological parameters, which can be
estimated through a Fisher analysis [43]. In the ab-
sence of tight scale-dependent trispectrum constraints,
one can marginalize over the non-Gaussian covariance,
which may however significantly degrade some of the cos-
mological parameter constraints. In the case that the pri-
mordial fluctuations do have a scale-dependent trispec-
trum, but one follows the standard cosmological analysis
without the non-Gaussian covariance term, the inferred
cosmological parameters can be significantly biased.

In the form written in Eq.(13), the isotropic power
modulation (non-Gaussian covariance term of Eq.(26))
is infrared-divergent because of the integral FL=0(r) ∝

∫
(dK/K)j2

0(Kr), in which arbitrarily large wavelength
modes (K → 0) contribute. To study any possible mod-
ulation of the isotropic power spectrum, therefore, we
need an infrared cutoff. We also need to assume a form
for the power spectrum on large scales; we simply take
the near scale-invariant form of primordial power spec-
trum to be valid at all scales above the infrared cutoff
scale. For Kminr � 1, and ns ≈ 1, F0(r) can be approx-
imated as

F0(r) ≈ 4πAΦ

∫ ∞
Kmin

dK

K
j0(Kr)2 ≈ 4πAΦ ln

(
1

Kminr

)
(28)

For `, `′ � 2, the non-Gaussian power spectrum co-
variance term is given by

CNG(Ĉ`, Ĉ`′) ≈
τNLAΦN

π

∫
dr1r

2
1α`(r1, n)β`(r1)∫

dr2r
2
2α`′(r2, n)β`′(r2), (29)

where we have defined

N = ln

(
1

Kminrcmb

)
that determines the strength of the non-Gaussian covari-
ance. The scale dependence can be independently con-
strained by higher-order modulations for a non-zero τNL.
In Figure 4, we plot the fractional non-Gaussian contri-
bution for our fiducial model, for a chosen value of N .
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Scale-dependent non-Gaussianity can significantly
change the scale dependence of the observed power spec-
trum and introduce additional cosmic variance uncer-
tainty in the observed spectral index ns [54]. A CMB
data analysis allowing for non-Gaussian covariance struc-
ture as in Eq.(26) will account for the additional uncer-
tainty. Ignoring the non-Gaussian term will result in in-
ference of cosmological parameters that are different than
the true values. We provide an example next.

An increasing correlation between C`s at large scales
can explain [25] the observed power deficit at low mul-
tipoles [55] in the temperature fluctuations. If the low-`
deficit is due a scale-dependent trispectrum similar to our
fiducial model, the decreasing strength of correlations at
larger multipoles — as can be seen in Figure 4 — means
that the inferred spectral index ns is shifted higher than
the true value. The allowed level of shift due to non-
Gaussianity can be much larger at ∆ns ∼ 0.04 [54] for
example, than the precision of the measurement from the
Planck mission. Specifically, a typical realization of our
fiducial non-Gaussian model with the additional param-
eter N = 40 fixed can have large-scale power lower than
the true value; in that case, a CMB analysis without the
non-Gaussian covariance will produce a biased high es-
timate of the spectral index as exemplified on the right
panel of Figure 4.

In such a scenario, the Planck-inferred values for other
cosmological parameters may also be biased. Perhaps
most straightforwardly, an incorrect reconstruction of the
scalar power amplitude will change the inferred bound on
(or, in the event of a detection, the value of) the tensor-
to-scalar ratio, r. This can affect conclusions drawn
about the inflaton field range. However, more generally
the structure of non-Gaussian covariance is complex and
it is difficult to predict if and how other non-primordial
parameters are biased as there are degeneracies between
the parameters. A detail analysis of this possibility and
how well the parameters N , τNL, n in Eq.(26) can be
constrained by combining power spectrum and higher-
order modulations using Planck, CMB measurements at
smaller scales [56], and other large-scale structure probes
is left for future study.

VI. SUMMARY AND CONCLUSION

We have systematically studied the modulation effects
of scale-dependent primordial non-Gaussianity in the cos-
mic microwave background fluctuations. We do so, in
detail, by using a scale-dependent local-type trispectrum
which has a large collapsed-limit signal i.e. in which
long-wavelength modes are significantly coupled to small-
scale modes. We assume global statistical isotropy and
compute covariances of statistical anisotropy estimators
of two-point functions, in the presence of a primordial

trispectrum. Such a method is necessary when we want
to include multiple observables (temperature and polar-
ization fluctuations for example), that probe the same
underlying primordial density field which are addition-
ally correlated in the non-Gaussian model.

While current constraints on a scale-dependent trispec-
trum are rather weak, we find that for our fiducial model
parameters which can explain the hemispherical power
asymmetry, the prospects of detection using Planck data
(dipole modulation estimators only) are promising: an
estimated log-likelihood improvement of ∼ 11 using
Planck T+E data up to `max = 1000, with only two ex-
tra parameters. Addition of higher-order modulations
L = 2, 3, 4 improves the signal by ∼ 30%.

A primordial trispectrum generically also produces
covariance between different multipoles of the angular
power spectrum. If such a scale-dependent non-Gaussian
covariance term is present but ignored in CMB analy-
sis, we have shown that the resulting level of bias in the
spectral index can be significant. Further, the bias in the
spectral index itself is scale dependent, which presents
the possibility of its detection by combining small-scale
CMB measurements to that of the larger-scale Planck
data. Given that we get much of our precision cosmology
from the CMB C`s, we must, therefore, constrain primor-
dial trispectra (with possible scale dependence) that have
large signal in the collapsed limit.

In addition to constraining the scale-dependent
trispectrum parameters from CMB data, there are sev-
eral other interesting and useful future studies that can
extend our work. First, it will be interesting to study
how a non-Gaussian covariance from a scale-dependent
trispectrum will bias other cosmological parameters and
if it can explain some of the current parameter tensions
observed from large-scale and small-scale measurements.
Second, for ease of numerical evaluations, we mostly fo-
cused on multipoles ` ≥ 30; a natural extension of this
work, therefore, will be to carefully examine the effects
of a scale-dependent trispectrum at lower multipoles as
the contributing trispectrum configurations begin to de-
viate from the exact collapsed limit of the trispectrum.
Third, it will be useful to compute the consequences of a
scale-dependent trispectrum and forecast constraints by
including other probes such as CMB lensing and large-
scale structure.
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784, L42 (2014), arXiv:1402.0870 [astro-ph.CO].

[16] S. Adhikari, Mon. Not. Roy. Astron. Soc. 446, 4232
(2015), arXiv:1408.5396 [astro-ph.CO].

[17] D. Contreras, J. P. Zibin, D. Scott, A. J. Banday,
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Appendix A: Evaluation of the trispectrum in the
collapsed limit

Following the approximation in [57] for the n = 0 case,
we can approximate the integral in Eq.(14) as products
of separate integrals over r. For L� `1, `2, `3, `4, α`(r)’s
are sharply peaked around r = rcmb and FL(r1, r2) ≈
FL(rcmb, rcmb) varies slowly for r values where the other

terms are contributing. Then,

T w`1x`2
y`3z`4

(L) ≈ τNLh`1`2Lh`3`4LFL(rcmb)

Dwx(`1, `2, n)Dyz(`3, `4, n) (A1)

where,

Dwx(`1, `2, n) =

∫
dr r2αw

`1(r, n)βx
`2(r) (A2)

We have tested that when the smallest multipole used
is ` = 30, the approximation provides results within 2.4%
percent, and quickly improves to sub-percent level ac-
curacy for ` ≈ 100. This allows for fast evaluation of
non-Gaussian covariance matrices for dipole modulation
parameters. Further, with the following ansatz:

Dwx
L=1(`, `+ 1, n) = Bwx

` (n)

(
`

`0

)n√
Cwx

` Cwx
`+1 (A3)

we can interpolate B`(n) using the exact integral values
of Eq.(A2) on a `, n grid, and use it for a likelihood or
MCMC analysis to fit for both τNL and n.
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