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Recently there has been much interest in light dark matter, especially ultra-light axions, as they
may provide a solution to the core-cusp problem at the center of galaxies. Since very light bosons can
have a de Broglie wavelength that is of astrophysical size, they can smooth out the centers of galaxies
to produce a core, as opposed to vanilla dark matter models, and so it has been suggested that this
solves the core-cusp problem. In this work, we critically examine this claim. While an ultra-light
particle will indeed lead to a core, we examine whether the relationship between the density of the
core and its radius matches the data over a range of galaxies. We first review data that shows the
core density of a galaxy ρc varies as a function of the core radius Rc as ρc ∝ 1/Rβc with β ≈ 1.
We then compare this to theoretical models. We examine a large class of light scalar dark matter
models, governed by some potential V . For simplicity, we take the scalar to be complex with a global
U(1) symmetry in order to readily organize solutions by a conserved particle number. However, we
expect our central conclusions to persist even for a real scalar, and furthermore, a complex scalar
matches the behavior of a real scalar in the non-relativistic limit which is the standard regime of
interest. For any potential V , we find the relationship between ρc and Rc for ground state solutions
is always in one of the following regimes: (i) β � 1, or (ii) β � 1, or (iii) unstable, and so it never
matches the data. We also find similar conclusions for virialized dark matter, more general scalar
field theories, degenerate fermion dark matter, superfluid dark matter, and general polytropes. We
conclude that the solution to the core-cusp problem is more likely due to either complicated baryonic
effects or some other type of dark matter interactions.

I. INTRODUCTION

The distribution of matter in galaxies has been a con-
troversial subject for some time. The vanilla dark matter
models (modeled by classical particles with only gravi-
tational interactions) lead to an NFW type profile [1],
which appears to match the density profile of the halo of
a galaxy quite well. On the other hand, the agreement
between vanilla dark matter and observations is less clear
towards the center of a galaxy. In particular, most galax-
ies appear to exhibit a “core” near their center wherein
the density profile ρ(r) flattens as r → 0, while the clas-
sic NFW profile has a “cusp” wherein the density profile
ρ(r) rises sharply as r → 0. This discrepancy is known
as the “core-cusp” problem.

The size of a galactic core is typically on the order of a
few kpc. So naively this problem could have an obvious
solution: as we go towards the center of the galaxy, on
the order of kpc, the baryonic density is rather large, so
one can imagine that baryonic effects, such as supernovae
and other astrophysical processes, smooth out the center
of the galaxy producing a core. However, this candidate
explanation is non-trivial to implement for the following
reason: the presence of the core appears to persist for
small (dwarf) galaxies that are dark matter dominated
and baryon deficient. So it is not clear how baryonic
feedback effects can solve this puzzle; we shall return to
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this possibility in the discussion section.

A popular alternate explanation has been put forward
for quite some time in which non-vanilla dark matter
properties are invoked to smooth out the cores of galax-
ies. One such popular example is self-interacting dark
matter, wherein massive dark matter particles undergo
self-scattering with a mean free path λMFP = 1/(nσ) =
m/(ρ σ) with a rather large scattering cross-section σ.
Under come conditions, this can plausibly lead to a core
[2]. However, such large scattering cross-sections may
be at odds with other dark matter measurements, such
as observations of the bullet cluster, which puts an up-
per bound on the dark matter scattering cross-section
to mass ratio of σ/m < O(1) cm2/g [3]. If we take
a representative core density of ρ = 0.1M� pc−3 (see
Fig. 1), we obtain a mean free path lower bound of
λMFP > O(50) kpc, which is somewhat larger than the
corresponding observed core size of ≈ 1 kpc; we shall also
return to this in the discussion section.

Another popular proposal has been put forward in
which the galactic core may be due to the quantum na-
ture of the dark matter particles. In particular, if the
dark matter particles are bosons, they can be extremely
light, with a huge occupancy number. One of the moti-
vations for this comes from string theory, in which it is
plausible that a typical compactification includes axions
with exponentially small masses [4]. In this case, the de
Broglie wavelength λ = h/(mv) can be of astrophysi-
cal size, which is sometimes called “fuzzy dark matter”
[5]. This gives rise to a kind of “quantum pressure” that
prevents the center of the galaxy from becoming arbi-
trarily dense, leading to a type of core. A typical mass
of m ∼ 10−22 eV is often invoked to produce cores of
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size ∼ kpc. Note that in this regime, the particle’s occu-
pancy number must be huge in order for this type of dark
matter to be most of the galactic mass. So the theory
is well described by classical field theory. (See Ref. [7]
for a rigorous explanation of why classical field theory
provides an accurate description of the dynamics in this
regime, despite claims to the contrary in Ref. [8].) Other
interesting consequences of this proposal are studied in
Ref. [6].

In this work we critically examine this proposal. Our
primary motivation is the following: if indeed the large
de Broglie wavelength of these ultra-light bosons is re-
sponsible for the presence of the core of a galaxy, then
it should self consistently explain the core of many other
(if not all) galaxies. While one can always fix param-
eters, say the mass of the dark matter, so that the re-
lationship between core density ρc and core radius Rc
works for one galaxy, it needs to then correctly predict
this relationship for other galaxies; some data is given in
Fig. 1. Here we show that if the bosons organize into a
type of Bose-Einstein condensate, and consequently oc-
cupy their ground state configuration near the center of
a galaxy, then we can compute this relationship for all
galaxies. We find that the resulting relationship between
ρc and Rc does not match the data for a large family of
scalar dark matter models, including “fuzzy dark matter”
in which self-interactions are assumed negligible and for
more general scalar field models in which self-interactions
are important. We extend these results to scalar dark
matter that has not gone into the ground state, but has
virialized in a more conventional sense. Finally, we ex-
tend our results to even more general scalar field models,
degenerate fermions, superfluids, and general polytropes.

Our paper is organized as follows: In Section II we
present some galactic data which indicates ρc ∝ 1/Rc.
In Section III we present the family of scalar dark mat-
ter models that we analyze. In Section IV we outline the
form of ground state solutions that we are interested in.
In Section V we present the numerical solution to these
models for a range of parameters. In Section VI we de-
scribe a simple variational technique to capture the quali-
tative behavior of the solutions. In Section VII we discuss
the possibility of non ground state behavior. In Section
VIII we discuss various other scalar field and fermionic
models. Finally, in Section IX we summarize our results
and mention future directions.

II. GALACTIC DATA

The halos of galaxies are dominated by dark matter,
which organize into the famous NFW profile [1], in which
the density falls off as ∼ 1/r3 at large radii and rises as
∼ 1/r at small radii. While this matches data quite well
for radii much bigger than ∼ kpc, it appears to fail on
scales r . kpc. In particular, typical galaxies appear to
exhibit a core where the density approaches a constant
as r → 0. In the vicinity of the core, a convenient density
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FIG. 1. Core density ρc versus core radius Rc for a range of
galaxies. Black dots are data taken from Ref. [10]. Orange
dashed curve is the best fit power law curve ρc ∝ 1/Rβc with
β = 1.3 for this data set, while we find β ≈ 1 more generally.

profile is the following functional form [9]

ρ(r) =
ρc

1 + r2/R2
c

, (1)

where the core density ρc is taken to be the central
density and the core radius Rc is taken to be the ra-
dius at which the density has dropped to half its central
value. In Fig. 1 we plot core density ρc versus core ra-
dius Rc for a range of different galaxies from Ref. [10].
(In fact this reference used the so-called Burkert profile
ρ(r) = ρc/(1 + r/RB)(1 + r2/R2

B) in which the core ra-
dius RB is when the density has dropped to a quarter
of its central value; so we have re-scaled by a factor of
Rc ≈ 0.54RB accordingly.) Their data {Rc, ρc} comes
from measuring rotation curves. Although there is signif-
icant scatter in the data, an overall trend can be clearly
seen. By parameterizing the relationship between core
density and core radius as a power law

ρc ∝
1

Rβc
, (2)

we find that the best fit value for the exponent for this
particular data set is β = 1.3. We have also examined
other data sets, including faint galaxies [9], finding β =
0.9, etc. In general we find that β ≈ 1. We note that this
roughly holds for both small (dwarf) and large galaxies,
including galaxies that are dominated by dark matter.



3

III. SCALAR MODELS

Our task then is to see whether the above behavior can
be reproduced by extremely light bosons. As a reasonable
model for light bosonic dark matter, we take the dark
matter particle to be spin 0. One could imagine studying
a massive spin 1 particle, though we expect qualitatively
similar behavior. For simplicity, we will focus in this pa-
per on a complex scalar Φ whose dynamics is organized
by a global U(1) symmetry Φ → Φ eiθ. (Other work on
complex scalar dark matter includes Ref. [11].) We do
not have a physical motivation for this ad hoc symme-
try, we only introduce this to simplify the analysis. In
particular, the global symmetry leads to a conserved par-
ticle number N , which we can use to organize solutions.
More precisely, we will focus on ground state solutions at
fixed number N . If instead we studied a real scalar field,
there would technically be no conserved particle number
to organize solutions, and so the only true ground state
solutions would be vacuum solutions. So for real scalars
with self-interactions, one is forced to consider particle
number changing processes, whose time dependence can
be complicated in general. However, this problem only
arises at large field values. At small field values, par-
ticle number changing processes are suppressed, and the
real scalar field evolution matches the complex scalar field
evolution. We shall return to the difference between com-
plex and real scalar field dynamics in the next section and
the discussion.

We assume this scalar Φ is minimally coupled to Ein-
stein gravity with a canonical kinetic term and allow for
self-interactions from a potential V . The action is then
(signature + - - -, units ~ = c = 1)

S =

∫
d4x
√
|g|
[
R

16πG
+ |∂Φ|2 − V (|Φ|)

]
. (3)

By varying the action, we obtain the standard Einstein
equations for gravity, as well as the following equation of
motion for Φ

�Φ ≡ |g|−1/2 ∂µ

(√
|g| gµν∂νΦ

)
= −∂Φ∗V. (4)

The primary choice to make is the potential V . Since
we know cold dark matter (described by non-relativistic
particles) works very well on large scales, we demand that
the potential is quadratic V = m2|Φ|2 + . . . around its
minimum. At large field values, one is allowed to consider
various possibilities for the potential. For simplicity, we
consider potential functions that are monotonically in-
creasing as we increase Φ. Otherwise we would have the
complication of potentials with multiple minima. This
could lead to topological defects that are currently unob-
served and so we shall avoid this possibility here.

A family of potential functions that captures a range
of qualitatively different behavior is the following

V (|Φ|) =
m2F 2

α

((
1 +
|Φ|2

F 2

)α
− 1

)
, (5)

where F is some mass scale that represents the cutoff
of the effective theory and α > 0 is a positive exponent.
Note that if we Taylor expand the potential around small
Φ, we have

V (|Φ|) = m2|Φ|2 + κ|Φ|4 + . . . , (6)

where

κ ≡ m2(α− 1)

2F 2
. (7)

So if α = 1 we have no self-interactions, if α > 1 we have
repulsive self-interactions (κ > 0), and if α < 1 we have
attractive self-interactions (κ < 0). The case of α < 1 is
therefore representative of (i) typical axion models (albeit
axions are real scalars φ) in which the canonical single in-
stanton potential V (φ) = m2F 2

a (1− cos(φ/Fa)) gives the
small field expansion V (φ) = m2φ2/2−m2φ4/(24F 2

a )+. . .
and (ii) axion-monodromy models in which the above po-
tential is indicative [12]. For a possible construction of a
repulsive (α > 1) light dark matter model see [13].

IV. BOSE-EINSTEIN CONDENSATE

The above action’s global U(1) symmetry gives rise to
the following conserved current associated with particle
number

Jµ = i
√
|g| gµν(Φ∗ ∂νΦ− Φ ∂νΦ∗), (8)

with ∂µJ
µ = 0 and a corresponding conserved particle

number

N =

∫
d3xn(x, t), with n(x, t) ≡ J0(x, t) (9)

the local number density.
Since particle number is conserved and since we have

bosons at high occupancy, the system can in principle
organize into a Bose-Einstein condensate. This occurs if
the system has sufficiently fast interactions to re-organize
towards the ground state. As discussed in Refs. [14–16]
the gravitational interaction rate for a typical mode k for
an initially messy field configuration can be estimated as

Γ ∼ 8πGm2 n

k2
. (10)

At first sight this appears to be tiny for very light fields
due to the m2 factor. However, this is incorrect for the
following reasons: (i) in order for Φ to be the bulk of the
dark matter in the galaxy, then we need ρ = mn fixed
to the observed galactic density, and (ii) we can re-write
the wavenumber as k = mv, where v is a virial speed
in the galaxy. This gives Γ ∼ 8πGρ/(mv2) ∝ 1/m and
so it is evidently becoming large for very light fields. A
representative value from Fig. 1 is ρ = 0.1M� pc−3 with
corresponding virial speed v ≈ 10−4 c (using Eq. (33)
with R = kpc). Then if we take m = 10−22 eV, we obtain
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1/Γ ≈ 5 Myr, which is smaller than a typical galactic
age (in fact this time-scale can be further reduced due
to self-interactions). This suggests there may be enough
time for gravitational interactions to organize the field
towards a Bose-Einstein condensate, which will be our
assumption going forward for most of this paper. How-
ever, see Section VII for a discussion of the case in which
this assumption is not satisfied.

The Bose-Einstein condensate is a configuration that
minimizes the energy at fixed particle number. This
comes from extremizing the free energy

E − µN, (11)

where E is the energy and µ is a chemical potential. It
can be readily shown that this is extremized for field
configurations with the following simple time and space
dependence

Φ(x, t) =
φ(r)√

2
e−i ω t, (12)

where ω = µ is the frequency of oscillation of the field
in the complex plane. Here φ(r) is some real function of
radius only, as the ground state selects out a spherically
symmetric configuration. Since we will extremize the free
energy, we can in general find both local minima (stable
solutions) and local maxima (unstable solutions).

Note that if we were to consider our starting field Φ
to be a real scalar, then in the non-relativistic limit,
we would simply add to the right hand side of Eq. (12)
the complex conjugate. The equation of motion for φ(r)
would essentially remain the same, up to some trivial re-
scalings by O(1) factors. (See Ref. [17] for a systematic
treatment of corrections to the non-relativistic theory of
a real scalar.)

V. NUMERICAL SOLUTION

Here we would like to describe our numerical recipe
and numerical results for the above set of models.

A. Setup

For spherically symmetric static (ground state) solu-
tions, we can write the space-time metric without loss of
generality as [18]

ds2 = e2ψ(r)S(r)dt2 − S(r)−1dr2 − r2dΩ2, (13)

where ψ and S are constrained variables which are func-
tions of radius r. Here S(r) = 1−2GM(r)/r, with M(r)
the enclosed energy up to radius r. The total energy is

E = M(r →∞). (14)

The total energy density is given by a sum over kinetic T ,
gradient W , and potential V energy densities, as follows

ρ(r) = T (r) +W (r) + V (r), (15)

where

T =
1

2
e−2ψS−1ω2 φ2, W =

1

2
S φ′2. (16)

Here a prime ′ denotes a derivative with respect to radius.
The enclosed energy M and the metric function ψ are
then obtained from the following pair of 1st order ODEs

M ′ = 4πr2ρ, (17)

ψ′ = 8πGrS−1(T +W ). (18)

The equation of motion for the scalar field Eq. (4) in
this spherically symmetric static configuration becomes
the following 2nd order ODE

e−2ψS−1ω2φ+Sφ′′+

(
1 + S

r
− 8πGrV

)
φ′ = ∂φV, (19)

and the conserved particle number Eq. (9) is given by the
following integral

N = 4π ω

∫ ∞
0

dr r2 e−ψS−1φ2. (20)

B. Results

We have solved these equations numerically for a range
of values of the exponent α in the potential V . For each
field amplitude at the center φ(0), we numerically deter-
mine the corresponding frequency ω that gives rise to a
localized solution with no nodes. This involved repeated
trials of different ω until the correct one is obtained with
high accuracy. We then determined the core density and
radius for this solution. This process is then repeated for
many different field amplitudes.

Our results are summarized in Fig. 2, where we plot
the core density (defined by ρc = ρ(0)) versus the core
radius (defined implicitly by ρ(Rc) = ρ(0)/2). We have
scaled out the mass m and gravitational constant G by
measuring Rc in units of m−1 and ρc in units of m2G−1.
Then the physics is controlled by the one residual scale F ,
which we have chosen to be F = 10−3/

√
G (≈ 1016 GeV)

in this plot. We have shown 3 representative values of
the exponent α: α = 1/2 (attractive self-interaction),
α = 1 (no self-interaction), and α = 2 (repulsive self-
interaction).

The results in Fig. 2 show that the solution is some-
what complicated, undergoing multiple branches for each
choice of α. As we will explain in the next section, each
branch can be described by a power law ρc ∝ 1/Rβc for
some value of the power β. Furthermore, some branches
are stable (solid lines) and some branches are unstable
(dashed lines). As indicated in the plot, there is no
regime in which β ≈ 1. There are branches where β = 2,
which is not so far off the observational data, however
those are always unstable solutions.

To summarize, we find that in all branches we have (i)
β � 1, or (ii) β � 1, or (iii) unstable solutions. So none
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FIG. 2. Core density ρc versus core radius Rc for differ-
ent exponents α in the potential functions V = m2F 2((1 +
|Φ|2/F 2)α − 1)/α. Here we have scaled out the constants m

and G, and chosen F = 10−3/
√
G (≈ 1016 GeV). The lower

red curve is for α = 1/2 (attractive self-interaction), the mid-
dle blue curve is for α = 1 (no self-interaction), and the upper
green curve is for α = 2 (repulsive self-interaction). The solid
branches represent stable solutions (true ground states), while
the dashed branches represent unstable solutions. The differ-
ent branches all asymptote to power law behavior ρc ∝ 1/Rβc
with the value of β labelled for each branch. The dotted
black line indicates the boundary of the black hole regime,
above which the scalar field would be trapped inside its own
Schwarzschild radius; since the cores of galaxies are in the
weak gravity regime, the important region of this plot is the
part well below the dotted black line.

of these branches is compatible with the galactic data (see
Fig. 1). We find that this result persists for any choice of
the exponent α and any choice of the parameter F , and
we believe this persists for general potential functions V
(some generalizations are in Section VIII A 3).

VI. ANALYTICAL APPROXIMATIONS

In this section we would like to provide an analytical
understanding of the above numerical results.

A. Non-Relativistic Regime

Firstly, the standard regime of interest in light scalar
dark matter models is the non-relativistic regime, where
fields are small allowing the potential to be approximated
as V ≈ m2|Φ|2 + g|Φ|4, gravity is given by the weak field
Newtonian limit, and gradient energies are small com-

pared to kinetic energies. In this non-relativistic limit
the above total energy reduces to the following sum of
mass-energy, gradient energy, self-interaction energy, and
gravitational energy, respectively [19, 20]

E = N m+ 4π

∫ ∞
0

dr r2

[
φ′2

2
+
κ

4
φ4

]
− Gm4

2
(4π)2

∫ ∞
0

dr r2

∫ ∞
0

dr′ r′2
φ(r)2φ(r′)2

r>
, (21)

where r> is the greater of the pair {r, r′}, and the particle
number in this limit is simply

N = 4πm

∫ ∞
0

dr r2 φ2. (22)

Note that these equations are identical to the non-
relativistic limit of a real scalar; which is in fact
the classic form of fuzzy dark matter, including ultra-
light axions. Following Ref. [19], we take a simple
exponential ansatz for the spatial profile as φ(r) =√
N/(πmR3

c) exp(−r/Rc) (here Rc is the radius at
which the density is e−2 of its central value, which can be
trivially re-scaled to give the radius at which the density
is 1/2 of its central value if desired). Then we obtain the
following energy

E = N m+
N

2mR2
c

+
κN2

32πm2R3
c

− 5Gm2N2

16Rc
. (23)

Static solutions arise from extremizing this energy with
respect to core radius Rc at fixed particle number N .

For large radii, we need to balance the 2nd (gradient)
and 4th (gravitational) energies in Eq. (23). This requires
Rc ∝ 1/N . So then E ≈ N m ∝ 1/Rc. Then using
ρc ∼ E/R3

c , this implies

ρc ∝
1

R4
c

, large Rc (stable), (24)

where we have indicated that this solution is stable, since
it is a local minimum of the above energy function. This
accounts for the lower right β = 4 region of Fig. 2, which
is obeyed by all potential models, independent of α, in
this gravitationally dominated limit. This is an impor-
tant result: when ultra-light axions are in the standard
regime in which their behavior is governed by Newtonian
gravity, the model predicts ρ ∝ 1/Rβc with β = 4, rather
than β ≈ 1, which is favored by the data.

For repulsive self-interactions (α > 1 and κ > 0) an-
other branch of solutions emerges as we go to higher par-
ticle number N . In this case the 3rd (self-interaction)
and 4th (gravitational) energies in Eq. (23) can balance
each other. Since they both scale as N2, this requires
Rc = const, leading to a vertical line, which we can ex-
press heuristically as

ρc ∝
1

R∞c
, repulsive only (stable). (25)
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This accounts for the vertical branch of the repulsive
(green) case in Fig. 2.

For attractive self-interactions (α < 1 and κ < 0) a dif-
ferent type of solution emerges as we decrease radius Rc.
In this case the 2nd (gradient) and 3rd (self-interaction)
energies in Eq. (23) can balance each other. This requires
Rc ∝ N . So then E ≈ N m ∝ Rc, which implies

ρc ∝
1

R2
c

, attractive only (unstable). (26)

Note that since this only leads to an extremum if g < 0,
this gives rise to a local maximum of the above energy
function, leading to an unstable branch. This accounts
for the centrally located dashed (red) branch in Fig. 2
with β = 2.

B. Large Scalar Field Regime

There are two basic ways in which the above non-
relativistic theory can breakdown. The first is if the field
amplitude becomes sufficiently large that the potential
V is no longer dominated by its mass term, meaning fre-
quencies are no longer near m, as we now explore.

At large field amplitudes, |Φ| = φ/
√

2 � F , the po-
tential can be approximated as

V ≈ ξ φ2α, (27)

where ξ ≡ m2F 2−2α/(2αα). As above this can permit
a regime in which the self-interaction is dominant and
gravity is negligible, however we need to now operate
fully relativistically. In this case, the total energy be-
comes

E = 4π

∫ ∞
0

dr r2

[
ω2φ2

2
+
φ′2

2
+ ξ φ2α

]
, (28)

with particle number N = 4π ω
∫∞

0
dr r2 φ2. By again

taking a simple exponential ansatz for the spatial pro-
file as φ(r) =

√
N/(π ωR3

c) exp(−r/Rc), we obtain the
energy

E =
ωN

2
+

N

2ωR2
c

+ ξ̃
R3−3α
c Nα

ωα
, (29)

where ξ̃ ≡ π1−αξ/α3. By extremizing E with respect to
both ω and Rc, one can show that solutions only exist
for α < 1, ω ∼ 1/Rc, and Rc ∝ N (1−α)/(4−2α). So then

E ∼ N/Rc ∝ R(3−α)/(1−α)
c , which implies

ρc ∝ R
2α

1−α
c , attractive only (stable), (30)

which can be readily shown to be a stable branch. This
accounts for the upper (red) attractive case in Fig. 2,
which for α = 1/2, gives β = −2. These types of solu-
tions are often referred to as “Q-balls” in the literature
[21]. Since 0 < α < 1 for these solutions to exist, they
always give a core density that grows with radius, in clear
contradiction to the galactic data.

C. Strong Gravity Regime

The second way in which the non-relativistic theory
can breakdown is when we enter the strong gravity regime
with gravitational potential GM/r = O(1). Such a
regime is invariably associated with orbital speeds that
are a significant fraction of the speed of light, which can-
not possibly account for the behavior near the cores of
galaxies on scales ∼ kpc, which are measured to have
v ∼ 10−4 c − 10−3 c. Nevertheless we include this here
for completeness.

As we explore solutions with smaller and smaller radii
and higher densities, the core radius Rc gets closer and
closer to its Schwarzschild radius RS = 2GM ; the radius
of a spherically symmetric black hole. To indicate this
region, let us define a critical density

ρS ≡
3M

4π R3
S

=
3

8πGR2
S

. (31)

At a fixed radius, any density above this critical value will
be a region that is trapped inside its own Schwarzschild
radius and will collapse to a black hole. We have indi-
cated this critical density by a dotted black line in Fig. 2.

Note that all scalar field static solutions stay below,
but become close and parallel to, this critical density in
the upper left region of the figure. These solutions are
evidently not black holes, but are in the strong gravity
regime with a radius that is only a factor of a few larger
than their Schwarzschild radius. Hence these solutions
are characterized by the same power law as the black
hole, namely

ρc ∝
1

R2
c

, small Rc (unstable). (32)

Such solutions are unstable as they can collapse to a black
hole under the appropriate perturbation.

VII. VIRIALIZED BEHAVIOR

In the analysis above we have assumed that the scalar
field has condensed into its ground state at the core
of a galaxy. Since the gravitational thermalization rate
Γ ∼ 8πGρ/(mv2) gave a value 1/Γ ∼ 5 Myr for typical
input parameters, this assumption seems at least plau-
sible. However, we do not have a proof that this would
happen, so it is useful to consider the case in which the
field has yet to fall into its ground state.

In this case we still expect the field’s velocity distribu-
tion to virialize. Let us focus here on the simplest version
of ultra-light scalar dark matter in which self-interactions
are negligible and the dynamics is governed by Newto-
nian gravity. The virialized speed at the core radius is

v =

√
GMc

Rc
, (33)
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FIG. 3. de Broglie wavelength λ = h/(mv) versus core radius
Rc for a range of galaxies in the fuzzy dark matter hypothesis.
Black dots correspond to the data from Ref. [10] that we used
in Fig. 1. We have taken the velocity v that determines the
de Broglie wavelength to be the virial speed corresponding to
the core density ρc for that radius Rc, and we have taken the
dark matter particle mass to be m = 10−22 eV for the sake
of illustration (since λ ∝ 1/m, other values of m involves a
simple re-scaling of the vertical axis). Dashed orange curve is

the corresponding best fit power law λ ∝ 1/R
1−β/2
c from Fig. 1

with β = 1.3 for this data set. The dotted cyan curve is λ =
2Rc; for points that lie well above this line, the theoretical
model is unphysical, and for points that lie well below this
line, the core seems to require some alternate explanation.

where Mc is the enclosed mass up to radius Rc. In the
vicinity of the core, we take the density profile to be given
by the fiducial form in Eq. (1). Integrating this gives the
core mass as

Mc = (4− π)π ρcR
3
c . (34)

Now a non-relativistic quantum particle has a de Broglie
wavelength set by its characteristic speed v as

λ =
h

mv
. (35)

By using Eqs. (33, 34) this expression gives the de Broglie
wavelength in the vicinity of the core of a galaxy as a
function of core density and radius. This is given in
Fig. 3 as a function of core radius for a range of ob-
served galaxies, where we have used the corresponding
core density data from Fig. 1. We chose a particle mass of
m = 10−22 eV for illustrative purposes. We have also in-
cluded the corresponding best fit curve (dashed orange),

which is λ ∝ 1/R
1−β/2
c with β = 1.3 for this data set.

Note that the data indicates that the de Broglie wave-
length is a decreasing function of the galactic core radius.
However, this appears to go in the opposite direction to
the idea behind the ultra-light or “fuzzy” dark matter
proposal. To illustrate this we have also plotted as the
dotted cyan curve λ = 2Rc. Any galaxies that lie well
above this line would have a core diameter that is much
smaller than the corresponding scale over which the par-
ticles are localized, which we consider to be an unphysical
prediction of the model. On the other hand, any galaxies
that lie well below this line have a core diameter that is
much bigger than the size of the particle’s wave-packet.
While this latter scenario can be perfectly physical, it
begs the question as to what is then actually responsi-
ble for the large core size, since the proposal of fuzzy
dark matter is that the core arises from the particle’s de
Broglie wavelength itself. In fact to match λ = 2Rc, the
data should follow ρc ∝ 1/R4

c . Since the orange curve
(best fit data) and cyan curve (theoretical prediction)
are essentially orthogonal to each other, it disfavors this
proposal.

VIII. OTHER MODELS

In this Section we generalize our results to a range
of other models, including more general scalar theories,
fermions, superfluids, and general polytropes.

A. Other Scalar Field Theories

1. Real Scalars

An important subject is that of a real scalar field. How-
ever, we expect similar behavior to the case of the com-
plex field studied here. In fact in the non-relativistic
limit, both theories obey the same equations of motion.
Hence the standard regime of the ultra-light axion sce-
nario is fully encompassed by our analysis here. However,
for large field amplitudes, there can be differences. In
particular, there can be particle number changing pro-
cesses allowed. It appears unlikely that such processes
could at all help to explain galactic cores; if anything,
such behavior would limit the stability of such cores,
making it even less likely to produce a consistent model.

2. Kinetic Corrections

Other possibilities are to include corrections to the ac-
tion, including higher order kinetic terms, such as

∆L = γ |∂Φ|4 + . . . , (36)

for a complex field or a real field (γ is some coupling).
However, in the non-relativistic limit, this introduces the
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correction

∆L = γ m4 |Φ|4 + . . . , (37)

which is merely a correction to the quartic term in the
potential function V , with ∆κ = −γ m4. Hence in this
non-relativistic regime (which is the primary regime of
interest for galactic cores) this does not introduce any
new behavior that is not already captured by the earlier
analysis in this paper. There may be new behavior in
the relativistic regime, however, which we will not pursue
here.

3. Potential Corrections

Another possibility is to generalize the small field ex-
pansion of the potential V in Eq. (6) to

V = m2|Φ|2 + κ |Φ|2a + . . . . (38)

Previously we considered a = 2, which is the standard
form expected of the leading self-interaction term. One
is allowed to consider other values of a for the sake of gen-
erality. We shall focus here on the non-relativistic limit.
In this case one may simply assume that ∆V = κ |Φ|2a is
present in some non-relativistic effective theory, regard-
less of its origin. From this point of view, we may even
allow a to be a fractional power. In the non-relativistic
limit, the energy becomes a simple generalization of
Eq. (21) by replacing the term κφ4/4→ κφ2a/2a. Once
again we have two scenarios in which the self-interaction
term can be important. The first is if it balances the
gradient energy, which we shall study here. The second
is if it balances the gravitational energy, which we shall
study in Section VIII D.

The self-interaction and gradient energies together
scale as

∆E = c1
κNa

maR
3(a−1)
c

+ c2
N

mR2
c

, (39)

where c1,2 are positive O(1) numbers. Balancing these
two terms and using ρc ∝ N/R3

c leads to

ρc ∝
1

Rβc
with β =

2

a− 1
. (40)

For κ > 0 the existence of a solution requires a < 1
(which would be a strange non-local term in the effective
theory) leading to β < 0. For κ < 0 a stable solution
requires 0 < 3(a−1) < 2 leading to β > 3. In either case
it is disfavored by the data.

B. Degenerate Fermions

Another possibility is to study moderately light
fermions, which will undergo Pauli exclusion in the de-
generate regime. This can lead to a core at the center

of galaxies if the fermion mass is sub-keV [22]. The re-
lationship between core density and core radius in this
scenario can be estimated as follows: In the degenerate
regime ρc = mnc ∼ m/λ3 ∼ m(mv)3, and virialization

implies v ∼
√
GMc/Rc ∼

√
GρcR2

c . Eliminating v from
this pair of equations, we have

ρc ∝
1

R6
c

, (41)

which is ruled out by galactic data.

C. Superfluid Dark Matter

An interesting proposal for the dark matter is that
it permits a type of phase transition to a superfluid
state that implements a type of MONDian dynamics
on galactic scales [23]. The effective Lagrangian for

a scalar field θ in this regime is L ∝ X
√
|X|, where

X = θ̇−mφN − (∇θ)2/(2m). This is associated with an
equation of state P ∝ ρ3 [23], which leads to a core (see
next subsection), with relation

ρc ∝ R2
c , (42)

which is also disfavored by the data. However, this model
involves non-trivial coupling to baryons - such that dark
matter somewhat mimics MONDian gravity - which may
alter the predictions. See e.g. Ref.[24] for discussions on
MOND and its predictions.

D. General Polytropes

The above models are examples of systems where the
pressure (e.g., from self-interactions or Fermi degeneracy)
is simply a function of the density, which is known as a
polytrope equation of state

P = K ρ1+ 1
p . (43)

Here p is known as the polytropic index and K is a con-
stant of proportionality. For κ|Φ|2a potential corrections
we have p = 1/(a − 1), for degenerate fermions we have
p = 3/2, and for the above superfluid dark matter model
we have p = 1/2.

In astrophysical systems, this pressure force is used to
balance against the gravitational force to achieve some
equilibrium configuration (note for ordinary scalar fields,
the “pressure” here refers to self-interactions, and not
to be confused with the “quantum pressure” or gradi-
ent energy, which is not of the polytropic form). Since
pressure is a force per unit area, this gives rise to a pres-

sure force of characteristic size FP ∼ P r2 ∝ ρ1+ 1
p r2.

On the other hand, gravity is a force of characteristic
size FG ∼ GM2/r2 ∝ ρ2 r4. In hydrostatic equilibrium
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these forces balance each other, leading to the following
relationship between core density and core radius

ρc ∝
1

Rβc
with β =

2 p

p− 1
, (44)

which reproduces the fermion result in Eq. (41) for p =
3/2 and the superfluid result in Eq. (42) for p = 1/2.
Stable solutions from this balance between pressure and
gravity requires 0 < p < 3 (and K > 0). Hence the
exponent β is constrained to be either β < 0 or β > 3.
So once again it can never be close to 1 in order to match
the galactic data.

IX. SUMMARY AND OUTLOOK

We have shown that it is very difficult for light dark
matter to reproduce the observed relationship between
core density and core radius in galaxies, which obeys the
rough scaling law ρc ∝ 1/Rβc with exponent β ≈ 1.

In particular, we have shown the following: ultra-light
scalars, with negligible self-interactions, lead to β = 4
when Newtonian gravity is balanced against “quantum
pressure”; large self-interactions give rise to the wrong β
for any potential and/or instabilities; the strong gravity
regime can lead to instabilities and is in any case strongly
disfavored by the data; virialized ultra-light scalars pre-
dict the wrong relation between the de Broglie wave-
length and core radius; kinetic corrections to the scalar
field Lagrangian are redundant with these results in the
non-relativistic limit; and any polytrope equation of state
leads to instabilities and/or the wrong exponent, includ-
ing potential corrections, degenerate fermions, and su-
perfluid dark matter.

Further work would be to generalize this class of theo-
ries. In order to have the correct scaling in this context
of very light scalars, would appear to involve unusual
fractional derivatives, etc, which is associated with non-
locality. Such effective theories may be very difficult to

reconcile with a range of other observations. Other im-
portant work is to perform numerical simulations to de-
termine to what extent the field organizes into its ground
state versus other states.

A natural possibility is to return to heavy dark matter
particles that may exhibit more standard interactions.
As mentioned in the introduction, if dark matter parti-
cles have a large scattering cross section σ, they will have
a finite mean free path λMFP = 1/(nσ) = m/(ρ σ). In-
terestingly, if this mean free path sets the size of the core,
and if the cross section is velocity independent, then this
naturally predicts ρc ∝ 1/Rc. However, there are a range
of constraints on these strongly interacting models, such
as from bullet cluster observations, halo properties, etc,
so this requires careful future analysis. In any case, these
types of interactions, or other possible dark matter inter-
actions, are worthwhile exploring as a possible solution
to the core-cusp problem.

Finally, one should include baryons into simulations
as fully as possible to examine whether this may explain
the presence of cores. Since baryons tend to accumulate
towards the center of galaxies, this may be very impor-
tant and indeed may well explain the discrepancies, at
least, for largest galaxies. However, galactic cores tend
to persist even for smaller galaxies, including those that
are rather dark matter dominated, so it is unclear what
the final solution will be.
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