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We derive cosmological constraints from the probability distribution function (PDF) of evolved large-scale
matter density fluctuations. We do this by splitting lines of sight by density based on their count of tracer
galaxies, and by measuring both gravitational shear around and counts-in-cells in overdense and underdense
lines of sight, in Dark Energy Survey (DES) First Year and Sloan Digital Sky Survey (SDSS) data. Our analysis
uses a perturbation theory model [42] and is validated using N -body simulation realizations and log-normal
mocks. It allows us to constrain cosmology, bias and stochasticity of galaxies w.r.t. matter density and, in
addition, the skewness of the matter density field.

From a Bayesian model comparison, we find that the data weakly prefer a connection of galaxies and matter
that is stochastic beyond Poisson fluctuations on ≤ 20 arcmin angular smoothing scale. The two stochasticity
models we fit yield DES constraints on the matter density Ωm = 0.26+0.04

−0.03 and Ωm = 0.28+0.05
−0.04 that are

consistent with each other. These values also agree with the DES analysis of galaxy and shear two-point func-
tions (3x2pt, DES Collaboration et al.) that only uses second moments of the PDF. Constraints on σ8 are model
dependent (σ8 = 0.97+0.07

−0.06 and 0.80+0.06
−0.07 for the two stochasticity models), but consistent with each other and

with the 3x2pt results if stochasticity is at the low end of the posterior range.
As an additional test of gravity, counts and lensing in cells allow to compare the skewness S3 of the matter

density PDF to its ΛCDM prediction. We find no evidence of excess skewness in any model or data set, with
better than 25 per cent relative precision in the skewness estimate from DES alone.

I. INTRODUCTION

Measurements of the two-point correlation function of the
evolved matter density field have provided competitive con-
straints on fundamental cosmological parameters. In combi-
nation with cosmic microwave background (CMB) and other
geometric data, they are stringent tests of ΛCDM predictions
on the evolution of structure over cosmic time [26, 51, 70,
105, 113]. Ostensibly, larger studies of this kind are the
primary goal of the upcoming ambitious ground-based and
space-based surveys by Euclid, LSST and WFIRST.

On a given smoothing scale, one can describe a field locally
by its PDF. An example of this is the PDF of fluctuations of the
mean matter density inside spherical or cylindrical volumes.
The variance, or second moment, of the PDF is measured by
two-point statistics. For Gaussian distributions, this captures
all the information in all the moments of the PDF. But when
the field is non-Gaussian, the third moment (skewness) can
take any value – therefore it contains information that is not
contained in two-point statistics.

Unlike the primordial CMB, which is extremely close to a
Gaussian random field, the density distribution in the evolved
Universe has been driven away from Gaussianity by gravita-
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tional collapse. Third and higher order moments arise on any
scale. Two-point measurements are therefore inherently very
incomplete pictures of the matter density field. Even the full
hierarchy of N -point correlations ceases to fully describe its
statistics [12, 13, 20]. This is unfortunate in two ways: (1) A
lot of information on cosmology, and (2) a lot of opportuni-
ties to test additional, independent ΛCMB predictions of the
growth of structure beyond its variance, are lost by looking at
two-point functions alone.

There are other reasons that make two-point correlations
a somewhat blunt tool. Firstly, the information to be gained
from galaxy auto- or cross-correlations must be related to the
clustering of matter by a bias model, i.e. a description of how
galaxies trace matter density. Yet the information on the bias
model that is available from two-point functions alone is lim-
ited. The primary reason for the success of joint probes is
that they can partially break these degeneracies. For instance,
the joint analysis of galaxy clustering and galaxy-galaxy lens-
ing can constrain two combinations of σ8, galaxy bias, and
galaxy stochasticity. As one pushes to smaller scales where
a lot of the cosmological constraining power resides, a linear
bias model without stochasticity is not sufficient. The result-
ing degeneracies thus largely annihilate the information that
is gained. Secondly, the information on the variance of the
matter density field can be used only if that variance can be
modeled – on non-linear scales, complex physics that involve
baryons and neutrinos begin to influence any moment of the
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matter density field. Using two-point functions, these com-
plex physics can be constrained [39, 68], although (for the
same reason as for the bias model) only with limited discrim-
inating power. If we could recover small scale information
with models that can be trusted, the ability of presently and
imminently available data sets to confirm or reduce tensions
between the CMB and evolved power spectrum would imme-
diately be boosted.

For these reasons, studies of the cosmic density PDF, which
address these problems from a different and complementary
direction, have gained interest over the last years. The full
shape of the joint matter and galaxy density PDF depends on
moments of the matter density field and parameters of the
bias model that are degenerate in correlation function mea-
surements. Numerical simulations [62, 76, 102], tree-level
perturbation calculations [9, 107], and extensions of theory
beyond that [106], have been shown to provide accurate pre-
dictions for the matter density PDF. Parameter forecasts show
that PDF measurements on data are promising [19, 66, 77]
due to the complementary information, different degenera-
cies, and different dependence on observational systematics
– factor-of-two improvements in constraining power can be
achieved in joint measurements of PDF and two-point func-
tions. While the galaxy count PDF alone can be used to break
degeneracies of cosmological and bias parameters [83], grav-
itational lensing greatly complements this by measuring the
actual matter density PDF. Practical application of shear PDF
statistics to data has been made with DES [16, 18], yet so far
with limited use for quantitative constraints.

In this paper, we use the smoothed, joint, projected galaxy
count and matter density PDF to constrain cosmological pa-
rameters and a galaxy bias model. Our basic concept is to
(1) split the sky by the count of tracer galaxies in a top-hat
aperture and extended redshift range into quantiles of density,
and to (2) measure the gravitational shear around each of the
quantiles to reconstruct the matter density PDF. These mea-
surements are a generalization of trough lensing, introduced
in Gruen et al. [48] (see also [4, 14, 50]). They are also closely
related to the galaxy-matter aperture statistics of Simon et al.
[96]. We make them on Dark Energy Survey Year 1 (DES Y1)
and SDSS DR8 data.

The measurements are analyzed with a tree-level pertur-
bation theory prediction for the joint statistical properties
of lensing convergence and density contrast and galaxy bias
models of varying complexity (cf. our companion paper
Friedrich et al.). We use the analysis not just to provide an in-
dependent measurement of cosmological parameters, but also
to confront the ΛCDM prediction for the skewness of the mat-
ter density field with data, in a model independent test of
structure formation. That is, we measure the asymmetry of the
low and high density tails of the distribution of matter density
in the Universe. Two-point statistics, which only measure the
width of the matter density distribution, discard this informa-
tion.

This paper is structured as follows. We describe the data
we use and our measurement methodology in section II. Our
modeling of these measurements, based on Friedrich et al.
[42], is summarized in section III. The covariance matrix we

estimate is described in section IV. We combine measure-
ments, model and covariance into an inference framework in
section V. Results are presented in section VI, and we con-
clude in section VII. Several tests and technical aspects of
this work are detailed in the appendix.

II. MEASUREMENT

In the following section, we first describe our method of
splitting lines of sight by density based on counts of a tracer
galaxy sample (section II A). The REDMAGIC tracer cata-
logs we use to do this in DES and SDSS and their redshift
distribution calibration are presented in section II B 1 and sec-
tion II C 1. Details on our DES and SDSS source shape and
photometric redshift catalogs are given in section II B 2 and
section II C 2. The measurement of shear and counts-in-cells
signals is described in section II D.

A. Splitting the sky by density

The basic idea of this study is to split the sky into lines of
sight of different density.

To this end, we use a sample of foreground galaxies as trac-
ers of the matter field (the REDMAGIC galaxies at 0.2 <
zT < 0.45 described in section II B 1 and II C 1). We count
these galaxies within circular top-hat apertures with a range of
radii θT = 10′, 20′, 30′, 60′, centered on a regular HEALPIX
[47] grid of Nside = 1024 (3.4 arcmin grid spacing).

We then assign each line of sight to one of five density quin-
tiles by sorting all lines of sight by galaxy count. The 20 per-
cent of lines of sight with the lowest galaxy count are what we
will call the lowest density quintile 1 (or troughs, cf. [48]).
The 20 per-cent of lines of sight with the highest galaxy count
(quintile 5) we will denote as overdense lines of sight.

Compared to Gruen et al. [48], we apply a more elaborate
scheme of accounting for varying fractions of masked area
within the respective survey region. A mask accompanying
the REDMAGIC [36] catalog that we will use as our tracers
(section II B 1) indicate what fraction of the area inside each
pixel in a Nside = 4096 HEALPIX map is covered by DES Y1
Gold photometry [34] to sufficient depth for detecting RED-
MAGIC galaxies out to at least z = 0.45. For each line of
sight, we estimate the fraction of masked area fmask within the
corresponding top-hat aperture from the REDMAGIC masks.
Centers with more than a fraction fmax

mask of area within the
aperture lost to masking are discarded.

The depth of SDSS is very uniform, with the REDMAGIC
sample being complete to z = 0.45 everywhere. In this case,
we use fmax

mask,SDSS = 0.1. Despite its greater overall depth,
DES Y1 [32] is generally more inhomogeneous than the final
SDSS imaging data. Where the REDMAGIC sample is not
complete to z = 0.45, we remove all tracer galaxies and de-
fine the area to be fully masked. Due to the larger fraction
of masked area, we use fmax

mask,DES = 0.2, above which we
discard lines of sight.
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To account for residual differences in fmask we apply the
following probabilistic scheme of quintile assignment. For
each line of sight i with masking fraction fmask,i and raw
tracer galaxy count Nraw,i, we define Ni as a draw from a Bi-
nomial distribution with Nraw,i repetitions and success prob-
ability pi = 1− (fmax

mask − fmask,i),

P (Ni|Nraw,i, fmask,i) =

(
Nraw,i

Ni

)
pNi
i (1− pi)Nraw,i−Ni .

(II.1)
This emulates the masking of a fixed fraction fmax

mask of area
within each aperture. It preserves the expectation value of
galaxy count in an aperture, regardless of its masking fraction.
Under the assumption that galaxies or masked pixels do not
cluster, and that galaxy count is not stochastic beyond Pois-
sonian noise, this masking procedure would preserve the full
distribution of galaxy counts at fixed matter density (see Ap-
pendix A). The latter conditions are not true in practice, which
is why the degree and spatial distribution of masking still af-
fects the width of P (Ni) at fixed expectation value. Tests of
likelihood runs and the masked P (N) in the Buzzard simu-
lations (see Appendix E and [42]) indicate that this is not a
major concern for our analysis.

We assign a line of sight i to a density quintile based on
many random realizations of Ni. Different realizations of Ni
can cause different quintile assignments. To account for this,
we define a weight wqi , proportional to the number of times
Ni is in quintile q. This weight is assigned to line of sight i
when measuring the signal, e.g. the mean tangential shear, of
quintile q.

Figure 1 shows the result of this quintile assignment proce-
dure for the joint region covered by DES Y1 and SDSS.

B. Dark Energy Survey Y1 data

The Dark Energy Survey data we use in this work is from
the SPT region of the first year of science observations (Y1)
performed between 31 August 2013 and 9 February 2014.
Details of the data and photometric pipeline are described in
Drlica-Wagner et al. [34].

We use catalogs of luminous red galaxies (REDMAGIC
galaxies) as tracers of the foreground matter density field and
galaxy shape and photometric redshift catalogs for measur-
ing its gravitational shear signal, all of which are described
briefly below and in detail in Elvin-Poole et al. [36], Hoyle
et al. [54], Zuntz et al. [112].

In all likelihood analyses run on data in this work, we prop-
agate the three most relevant calibration uncertainties of these
catalogs:

• the multiplicative bias of the shear signal, characterized
as m = γobs/γtrue − 1,

• the bias in mean redshift of each source bin i, charac-
terized by a ∆zis which we use to evaluate nis(z) =
ni,PZs (z − ∆zis), where ni,PZs is the photometric esti-
mate of the source redshift distribution, and

• the bias in mean redshift of the tracer galaxy sam-
ple, characterized by a ∆zl which we use to evaluate
nl(z) = nredMaGiC

l (z −∆zl).

The derivation of priors on these calibration uncertainties is
described or referenced in section V B.

1. Tracer catalog

The REDMAGIC [84] algorithm identifies a sample of red
galaxies with constant comoving density and fixed luminos-
ity threshold. This is done by fitting the DES photometry of
each galaxy in the survey to find its maximum likelihood lu-
minosity and redshift under the assumption of the redMaP-
Per [85] red sequence template. Galaxies are removed from
the REDMAGIC catalog if their fitted luminosity falls below
a threshold (0.5L? for the high density run used in this work).
The catalog is further pruned to retain a fixed number density
of galaxies per comoving volume element, keeping those that
are best fit (in terms of photometric χ2) by the red sequence
template. The resulting galaxy density is 10−3h3Mpc−3 in
the case of the high density catalog.

This procedure was run on two different photometric mea-
surements of DES Y1 galaxies, one with the SEXTRACTOR
MAG_AUTO method and one performing a joint fit to the
multi-epoch data of multiple overlapping objects (MOF). Po-
tential correlation of the surface density of REDMAGIC galax-
ies with observational systematics in DES Y1 have been ex-
tensively tested in Elvin-Poole et al. [36] for both versions of
the catalog. They found that in the redshift range used for the
tracer galaxies, the MAG_AUTO version of the REDMAGIC
catalog shows smaller correlations with observational system-
atics.

We hence adopt MAG_AUTO REDMAGIC with high density
as our fiducial tracer catalog. In a trade-off of signal and noise,
we choose zT = 0.2−0.45 as the tracer redshift range. We de-
rive weights for the correction of REDMAGIC density for the
effect of systematics as in Elvin-Poole et al. [36]. We find sig-
nificant correlations of REDMAGIC density with r band ex-
posure time and seeing, and with i band sky brightness. In the
algorithm described in section II A, we have applied these by
dividing the fraction of good area in each pixel by the system-
atics weight that decorrelates REDMAGIC density with these
survey properties.

We do, however, test whether the choice of photometry
pipeline (MAG_AUTO or MOF) and the choice of whether we
apply the systematics weight in our density splitting procedure
makes a difference to our analysis. These tests are detailed in
Appendix C and show that the effect on the amplitude of our
measured signals is negligible.

The redshift distribution of the tracer galaxy population, es-
timated by convolving the photometric redshift of each RED-
MAGIC galaxy with its error estimate σz ≈ 0.017 × (1 + z)
[36], is shown as the grey contour in Figure 2. Note that due
to scatter in photo-z this extends beyond the redshift range
zT = 0.2− 0.45 inside which these galaxies were selected.

As for other uses of REDMAGIC for cosmology [26, 36,
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FIG. 1. Overdense (red) and underdense (cyan) lines of sight in the DES Y1 (south/bottom) and SDSS (north/top) survey regions. Five
quintiles of density of the zT = 0.2− 0.45 REDMAGIC tracer galaxy sample smoothed within a θT = 30′ radius are shown in the same color
scheme as in Figure 3. Pixels are drawn in the color of the quintile with the highest probability/weight wq (see section II A). Graticule shows
lines of ∆RA,∆dec = ±30◦, centered on (RA, dec) = (0, 0).

81], we limit the catalog to the contiguous DES-SPT area of
1321 deg2.

2. Lensing source catalogs

Detailed descriptions and tests of the DES Y1 lensing
source catalogs are presented in Zuntz et al. [112], Troxel
et al. [105] and Prat et al. [81], and the redshift distributions
of source galaxies are estimated and calibrated in Davis et al.
[28], Gatti et al. [45], Hoyle et al. [54]. We only give a brief
summary of the two independent shape catalogs from DES Y1
here.

The fiducial catalog with the larger number of source galax-
ies is based on the METACALIBRATION method [55, 91]. In
this scheme, a Gaussian, convolved with the individual expo-
sure point-spread function, is fit jointly to all single-epoch r,
i, and z-band images of each galaxy. Galaxies are selected by
the size and signal-to-noise ratio of the best fit, and the ellip-
ticity of the Gaussian is used as an estimate of shear. Multi-
plicative biases in mean shear are caused by both the galaxy
selection (selection bias) and the use of a maximum likelihood
estimator with a simplified model (noise and model bias). In
METACALIBRATION, these are calibrated and removed using a
repetition of the Gaussian fit on versions of the galaxy images
that have been artificially sheared by a known amount.

As a second catalog, we use IM3SHAPE, which produces
a maximum likelihood estimate of shear based on a bulge or
disc fit to all DES Y1 r band images of each galaxy. Multi-

plicative biases in these estimators are calibrated using realis-
tic images simulations of DES Y1 [86, 112].

Our estimator of tangential shear around overdense and un-
derdense lines of sight, including the bias corrections, is de-
scribed in section II D 1. We use the galaxy selection criteria
recommended in Zuntz et al. [112]. We split galaxies into
redshift bins using the mean z of the individual galaxy p(z)
as estimated by BPZ [7, 54]. We note that for the META-
CALIBRATION catalog, we run BPZ on METACALIBRATION
measurements of galaxy fluxes (both on the original and ar-
tificially sheared images) to be able to correct for photo-z
related shear selection biases (see also section 3.3 of Hoyle
et al. 54 and section IV.A.1 of Prat et al. 81). The three
source redshift bins we use are identical to the three high-
est redshift bins of Hoyle et al. [54], i.e. with sources at mean
z = 0.43− 0.60, 0.60− 0.93, 0.93− 1.30. Their redshift dis-
tributions, as estimated by BPZ using MOF photometry, are
shown in Figure 2.

Uncertainties on residual multiplicative shear bias and on
the mean values of the binned redshift distributions [28, 45,
54, 112] are marginalized over in our analysis (see sec-
tion V B).
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C. SDSS DR8 data

1. REDMAGIC tracer catalog

The tracer population in SDSS is the REDMAGIC [84] high
density sample, selected by SDSS photometry and cut to the
same redshift range zT = 0.2 − 0.45. Despite this similarity,
we will not assume in this work that SDSS and DES RED-
MAGIC galaxies are the exact same populations.

SDSS has the benefit of an overlapping sample of galax-
ies with spectroscopic redshifts. We use this to calibrate the
mean of the redshift distribution with clustering redshifts, in-
dependent of the photometric estimate, in section F 1. We find
no significant bias, yet marginalize over the uncertainty in the
analyses presented herein (see section V B).

2. Lensing source catalogs

We use the shape and photometric redshift p(z) catalog of
Sheldon et al. [93] with minor modifications, identical to those
in Clampitt & Jain [17]. We refer to these papers for details,
but describe our source selection and priors on systematic un-
certainties of shears and photometric redshifts below.

Due to the lower observational depth, the SDSS shape cat-
alog peaks at much lower redshift than the one from DES Y1.
The source redshift dependence of the trough lensing signal
(cf. Figure 2) and complications arising from significant over-
lap of sources with the tracer redshift range lead us to only use
sources with a mean redshift estimate of 0.45 ≤ z < 1.0. We
split these into four bins of z = 0.45− 0.5, 0.5− 0.55, 0.55−
0.6 and 0.6 − 1.0. Within each of these bins, each individ-
ual source is assigned a minimum-variance relative weight (cf.
[17]) of

wi = [σ2
i,shape,meas + 0.322]−1 . (II.2)

Due to the moderate signal-to-noise ratio and redshift range
of sources, we combine the four source redshift bins into one
for the purpose of our final data vector. In this, we apply an
optimal relative weighting of the bins as follows.

The predicted amplitude of shear around our troughs at
zT = 0.2−0.45 (see black line in Figure 2) scales with source
redshift approximately as the amplitude of gravitational shear
Σ−1

crit (see Equation II.4) due to a lens at zd = 0.36. We use
the value of

〈
Σ−1

crit

〉
estimated for zd = 0.36 and the stacked

p(z) of each of these four bins to apply a relative weight of
Wbin = 1, 1.30, 1.56 and 1.81 to each of them. Because the
number density of sources is steeply falling with source red-
shift in this range, the effective total relative weights of the
four bins (equal to thisWbin times the sum of all source wi)
are 1, 0.697, 0.453 and 0.202. We use these effective weights
to combine the measured shear signal and the ns(z) from each
of the four bins into a single source sample.

As a calibration of the photometric estimate, the mean red-
shift of the sources is constrained by their angular cross-
correlation with galaxies with known spectroscopic redshift
(section F 2).
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FIG. 2. The redshift distributions of the DES source redshift bins (vi-
olet, red, yellow dashed lines) and SDSS sources (blue, dotted line),
and of the REDMAGIC tracer galaxies (grey shaded area) including
scatter in their photometric redshift estimates. The dependence of
predicted amplitude of the trough lensing signal on source redshift is
shown by the black curve. Grey marks on upper axis indicate nom-
inal redshift range of tracers galaxies zT = 0.2 − 0.45. Lines are
normalized to match maxima and the trough signal is evaluated at
θ = 2θT , although the dependence of source redshift scaling on an-
gular distance is minor.

D. Measured signals

Our data vector in this work contains two components,
the modeling of which was extensively tested in Friedrich
et al. [42]. In section II D 1, we describe the measurement
of gravitational shear signals around overdense and under-
dense lines of sight. Section II D 2 details our measurement
of mean counts-in-cells in each density quintile in the pres-
ence of masking.

All measurements are made in jackknife resamplings of the
survey. The covariance model constructed in section IV can
therefore be compared to an jackknife covariance. These were
made based on 100 and 200 patches in the DES and SDSS
footprint, respectively, defined by k-means clustering1 of the
tracer galaxies, an algorithm that splits the tracer galaxies
into spatially compact subsets by their distance to the near-
est among a set of centers, optimizing the center positions to
minimize these distances.

1. Shear

The ellipticity of a galaxy is a pseudo-vector with two com-
ponents, e1 and e2 that, for any lens position, can equivalently
be described by a component tangential to a circle around a
lens (et) and by a component rotated by π/4 relative to that
(e×).

1 https://github.com/esheldon/kmeans_radec
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FIG. 3. Shear signal around overdense and uncerdense lines of sight in DES Y1, split by line-of-sight density quintile (top row), source redshift
zs (central row) from BPZ run on METACALIBRATION (left) and MOF (right) photometry, and aperture radius (bottom panel). Our fiducial data
vector is the shear around the most underdense and most overdense quintile of θT = 20′ lines of sight as seen by sources in zs = 0.63− 0.90.
Left-hand panels: measurements with METACALIBRATION shears. Right-hand panels: measurements with IM3SHAPE. Error bars are from 100
jackknife resamplings of the survey, consistent with our model covariance (section IV). Dotted lines indicate model prediction at maximum
likelihood parameters (section VI) and are a good fit to the data (χ2 = 171 (METACALIBRATION) and 201 (IM3SHAPE) for ≈ 200 d.o.f., as
determined only after unblinding).
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Gravitational shear due to any single lens only affects the
mean component of et for an ensemble of sources sampling a
full annulus around the lens. As a function of angular separa-
tion θ from the lens, this effect is described by the tangential
shear profile γt(θ). For a single lens, the tangential shear pro-
file is directly related to the azimuthally averaged, projected
surface mass density Σ(θ) of the lens, i.e. the projected mass
per physical area, as

γt(θ) = [〈Σ〉(< θ)− Σ(θ)]× Σ−1
crit ≡ 〈κ〉(< θ)− κ(θ) ,

(II.3)
where, in a flat universe,

Σ−1
crit =

4πG

c2
χd (χs − χd)
χs (1 + zd)

(II.4)

is the inverse of the critical surface mass density and χd,s is
the co-moving distances to the deflector at redshift zd and the
lensed source, respectively. For a set of lenses along the line of
sight, the signal on any source is close to the sum of the effects
of all lenses. One can still define a convergence κ related to
mean gravitational shear as in Equation II.3, although it is no
longer relatable to a uniformly weighted surface mass density
(see Equation III.7).

The relation between tangential shear and measured tan-
gential ellipticity is less straightforward and depends on the
implementation of the selection and measurement of source
ellipticities. For the two schemes used on DES Y1, the re-
sponsivity R = d〈et〉/dγt of observed ellipticity to applied
tangential shear is calibrated very differently: for META-
CALIBRATION, it is estimated from versions of the actual
galaxy images sheared with image manipulation algorithms;
for IM3SHAPE, it is estimated from realistic simulations of
DES imaging data (and usually defined as m = R− 1). Both
types of calibration contain an explicit or implicit correction
for selection biases, i.e. the shear dependence of the choice of
whether to include a galaxy in the source sample.

For METACALIBRATION, we define the estimator γ̂qt of
mean tangential shear around lines of sight i with probabil-
ity wqi to be in a given density quintile q as

γ̂qt = γ̂q,signal
t − γ̂random

t =

∑
i,j w

q
i eij,t

R
∑
i,j w

q
i

−
∑
i,j eij,t

R
∑
i,j 1

,

(II.5)
where eij,t is the ellipticity of source j in the tangential di-
rection around line of sight i, the sums run over all lines of
sight i in the mask of the density-split sky and all sources j
in an angular bin around each line of sight. The second term
subtracts shear around random lines of sight – for our statistic,
these are all healpix pixels around which the masked fraction
of area fmask < fmax

mask (cf. section II A). R is the sum of shear
and selection responsivity,

R = Rγ +RS =
1

2

〈
e+

1 − e−1
2∆γ1

+
e+

2 − e−2
2∆γ2

〉
+

1

2

( 〈e1〉+ − 〈e1〉−
2∆γ1

+
〈e2〉+ − 〈e2〉−

2∆γ2

)
,

(II.6)
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FIG. 4. Shear signal around overdense and uncerdense lines of sight
in SDSS, shown for all quintiles, with θT = 20′ and a single source
bin of zs = 0.45 − 1. Error bars are from 200 jackknife resam-
plings of the survey. Dotted lines indicate model prediction at maxi-
mum likelihood parameters (section VI) and are a good fit to the data
(χ2 = 81 for ≈ 70 d.o.f., as determined only after unblinding). For
comparison with Figure 3, note the changed γt axis scale.

where superscripts ± on e indicate an ellipticity measured on
an image artificially sheared by ∆γ in the same component
and superscripts ± on 〈. . .〉 indicate an average taken on an
ensemble of source selected by quantities measured on an im-
age artificially sheared by ∆γ.

We note that this is identical to the methodology for DES
Y1 galaxy-galaxy lensing employed in Prat et al. [81], ex-
cept that we estimate the responsivity separately for the source
galaxies in each radial bin around the cluster, rather than as a
global scalar. The scale dependence, however, is negligible –
the METACALIBRATION R is equal to within 0.5 per-cent for
any two angular bins. As in other DES Y1 lensing analyses
[81, 105], we weight all sources in a bin uniformly – using
the inverse variance of the shape measurement underlying the
METACALIBRATION scheme as a weight would require a re-
derivation of the redshift calibration [54] and additional book-
keeping for selection bias correction, yet increases signal-to-
noise ratio only mildly.

For IM3SHAPE, we use the source weights Wj defined in
Zuntz et al. [112] to first measure the weighted mean R of the
source sample, then define the estimator for tangential shear
as

γ̂qt =

∑
i,j w

q
iWjeij,t

R
∑
i,j w

q
iWj

−
∑
i,jWjeij,t

R
∑
i,jWj

. (II.7)

The IM3SHAPE e are defined with the calibration correction
for additive bias already applied.

For SDSS, multiplicative bias is already corrected in the
source catalog. We therefore measure tangential shear with
the above equation by setting R = 1, and use weights Wj =
wj ×Wbin (see Equation II.2 and subsequent description).

The measured shear signals are shown for DES in Figure 3,
slicing the data by density percentile, source redshift, and
smoothing scale of the tracer galaxy field. SDSS signals are
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FIG. 5. Counts-in-cells distribution for REDMAGIC zT = 0.2−0.45
galaxies in circular θT = 20′ top-hat apertures for DES with 20
per cent masking fraction (blue) and SDSS with 10 per cent mask-
ing fraction (red). Lines indicate prediction of P (N) for the maxi-
mum likelihood model fit to the lensing and counts-in-cells data in
the (b, α0, α1) bias model. The color of the line denotes quintiles,
in the color scheme of Figure 4, i.e. the integral under each colored
segment is 0.2. The mean count in each quintile is part of the data
vector and consistent with out best-fit model, as checked via its χ2

after unblinding.

in Figure 4.

2. Counts-in-cells

The discriminating power of density split lensing signals
for cosmological parameters and parameters describing the
connection of galaxies and matter is greatly improved by
adding some degree of information of galaxy clustering or
bias. Here, we use a very basic statistic, the mean tracer
galaxy overdensity in our density quintiles, that was exten-
sively tested in Friedrich et al. [42] – other signals could sig-
nificantly improve the constraining power in the future.

Operationally, we define the mean tracer galaxy overden-
sity in all quintiles q as follows. We convert the raw tracer
galaxy countN raw

i within the aperture radius around each line
of sight i to a stochastically masked countNi with fixed mask-
ing fraction by a Bernoulli draw (section II A and section A).
We then order lines of sight by Ni and take the mean of Ni in
each quintile q of that list as 〈Ni〉q . The mean tracer galaxy
overdensity in quintile q is

Cq =
〈Ni〉q
〈Ni〉

, (II.8)

where the average in the denominator runs over all lines of
sight.

We note that this does account for the fact, in a stochas-
tic fashion, that a given line of sight can end up in different
density quintiles depending on the realization on masking that
decides the galaxy count.

Figure 5 shows the full P (N) distribution in both DES and
SDSS, alongside a model evaluated at the maximum likeli-

hood parameter values fit to the shear signal and mean tracer
galaxy overdensity in quintiles. The model not only fits these
mean overdensities, but also the full P (N) extremely well:
absolute differences in probabilities of finding N galaxies in
a random line of sight, |Pmodel−P data|, are below 10−3 and
3× 10−4 for any N in DES and SDSS, respectively. The bias
model used for the plot is one with two-parametric stochastic-
ity (called b, α0, α1 in section III C), although even a simpler
model can reproduce the P (N) well.

III. MODEL

In order to describe our signal as a function of

• cosmological parameters,

• parameters that connect galaxy counts to the matter
(over)density, and

• nuisance parameters,

we use the model developed and tested in Friedrich et al. [42].
We only briefly summarize it here, with an emphasis on re-
quired extensions for the use on observational data, and refer
the reader to that paper for details.

Let n̂ be a unit vector on the sky. The signal we have to pre-
dict in this work is the shear profile around lines of sight that
fall into a certain quintile of foreground tracer density. Also,
our data vector includes the average tracer density contrast in
each of those density quintiles. To model these two parts of
our data vector, we have to consider the following fields on
the sky:

• δm,2D(n̂): the line-of-sight density contrast underlying our
tracer galaxies. Given the redshift distribution nl(z) of our
tracer sample, this is given by

δm,2D(n̂) =

∫
dχ ql(χ) δm,3D(wn̂, χ) , (III.1)

where χ is co-moving distance and the projection kernel ql(χ)
is given in terms of nl(z) as

ql(χ) = nl(z[χ])
dz[χ]

dχ
. (III.2)

• δm,T (n̂): the result of smoothing the field δm,2D(n̂) with a
circular top-hat aperture T .

• NT (n̂): the number of tracer galaxies in the aperture T

around the line-of-sight n̂

• κ<θ(n̂): the convergence inside an angular radius θ around
the line-of-sight n̂.

Because the Universe is isotropic, we will omit the depen-
dence on n̂, i.e. only consider a single line of sight.

As detailed in Friedrich et al. [42], the density split lensing
signal can be calculated from the convergence profile around
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lines of sight with a fixed value of NT . This profile can be
computed as

〈κ<θ|NT 〉 =

∫
dδm,T 〈κ<θ|δm,T 〉 p(δm,T |NT ) (III.3)

where Bayes’ theorem can be used to express the PDF of δm,T
at fixed NT as

p(δm,T |NT ) =
P (NT |δm,T ) p(δm,T )

P (NT )
. (III.4)

Here p(δm,T ) is the overall PDF of δm,T , P (NT |δm,T ) is the
probability of finding NT in a line-of-sight with fixed δm,T
and

P (NT ) =

∫
dδm,T P (NT |δm,T ) p(δm,T ) . (III.5)

From the convergence profile 〈κ<θ|NT 〉 the corresponding
shear profile can be computed as (cf. Friedrich et al.)

〈γt(θ)|NT 〉 =
cos θ − 1

sin θ

d

dθ
〈κ<θ|NT 〉 (III.6)

and the shear profile around a certain quintile of tracer density
is given by the average of 〈γt(θ)|NT 〉 over the values NT oc-
curring in that quintile (cf. Friedrich et al. for further details).
Fundamentally, we therefore have to model

• p(δm,T ), the PDF of matter density smoothed inside our
aperture,

• 〈κ(< θ)|δm,T 〉, the expectation value of convergence inside
an angular radius θ around a line-of-sight with given density
contrast δm,T inside our aperture, and

• P (NT |δm,T ), the probability of finding NT galaxies in an
aperture, given its density contrast is δm,T .

We describe our approaches on each of these ingredients in
the following subsections, and close with a description of how
we account for biases in source redshift and shear estimates,
and overlap of the source redshift distribution with the tracer
redshift distribution.

In all these steps, in order to predict the non-linear 3D mat-
ter power spectrum, we use the Takahashi et al. [103] halofit
approximation with the Eisenstein & Hu [35] transfer function
with baryonic features, which is sufficiently accurate given
our large scale binning.

A. PDF of matter density contrast

The PDF p(δm,T ) can be computed from its cumulant gen-
erating function (CGF). This function can be derived at tree-
level in perturbation theory with the help of the the cylindrical
collapse model ([42], see also pioneering work on the compu-
tation of the CGF in [8, 9, 107]).

The computations are numerically involved and, at least in
our implementation, too slow for application in a likelihood
analysis. We however show in Friedrich et al. that, on the

scales used in this work, the perturbation theory computation
of p(δm,T ) is well approximated by a log-normal distribution
that matches the second and third moments 〈δ2

m,T 〉 and 〈δ3
m,T 〉

of the perturbation theory approach. We use this log-normal
model [section 4.1.1 in 42] for the smoothed, projected matter
density field in this work.

B. Mean convergence around apertures with fixed density
contrast

We now turn to the convergence field κ, defined as

κ(n̂) =

∫
dχ Ws(χ) δm,3D(χn̂, χ) , (III.7)

where the lensing efficiency Ws is given by

Ws(χ) =
3ΩmH

2
0

2c2

∫ ∞
χ

dχ′
χ(χ′ − χ)

χ′ a(χ)
qs(χ

′) , (III.8)

and

qs(χ) = ns(z[χ])
dz[χ]

dχ
(III.9)

is the line-of-sight density of the sources. As before, denote
by κ<θ the result of smoothing the convergence field over cir-
cles of angular radius θ.

As described in Friedrich et al. [42] [see also 9, and refer-
ences therein], the expectation value of κ<θ around lines of
sight with fixed values of δm,T is mostly determined by the
moments

〈δ2
m,T 〉, 〈δ3

m,T 〉 (III.10)

as well as the mixed moments

〈δm,T κ<θ〉, 〈δ2
m,T κ<θ〉 . (III.11)

In a similar way as for the projected density PDF, a full tree-
level computation of 〈κ<θ|δm,T 〉 can be replaced by a log-
normal approximation that involves the above moments (cf.
Friedrich et al. for details of this). We want to stress, that this
does not mean that we employ a log-normal approximation
for the joint PDF of δm,T and κ<θ. E.g. Xavier et al. [111]
have shown that such an approximation can be inaccurate if
the lensing kernel Ws(χ) and the line-of-sight distribution of
tracers ql(χ) have strongly different widths in co-moving dis-
tance. Rather, we model the convergence field as a sum of
two fields, one of which is a log-normal random field and one
of which is Gaussian and uncorrelated to δm,T . Also, unlike
for a joint log-normal distribution, we allow the log-normal
parameter of κ<θ, i.e. the minimum allowed value of κ<θ, to
depend on the scale θ. In Friedrich et al. [42] we have shown
that this indeed gives a good approximation to the joint statis-
tical properties of convergence and density contrast.
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C. Probability of galaxy counts in apertures with fixed density
contrast

Finally, we need to model the probability of finding NT
galaxies inside an aperture given the matter density contrast
δm,T . As defined in Friedrich et al. [42], we consider three
models of increasing complexity. All of them assume bias to
be linear, i.e. the mean count of galaxies to be proportional to
the overdensity of matter in the large aperture volumes we
consider. They differ, however, in their parametrization of
stochasticity [31]. We note that the latter may arise arise from
non-linear biasing on scales smaller than our apertures or from
truly non-Poissonian noise in galaxy density at fixed matter
density that is present in subhalo distributions [11, 57, 71].

In all equations below, N̄ denotes the mean count of tracer
galaxies inside apertures after masking a fraction fmax

mask of
area, and the generalized Poisson distribution that is also de-
fined for non-integer arguments is

Poisson(N, N̄) = exp[N ln N̄−N̄−ln Γ(N+1)] , (III.12)

with the Gamma function Γ.
Our three models are:

• bias only: b model – as in Gruen et al. [48], one could
assume P (NT ) to be a Poisson distribution of a non-
stochastic tracer population with bias b,

P (NT |δm,T ) = Poisson(NT , N̄(1 + bδm,T )) . (III.13)

• bias and stochasticity: b, r model – in this case, the
galaxy count is assumed to be distributed as

P (NT |δg,T ) = Poisson(NT , N̄(1 + δg,T )) , (III.14)

where δg,T is an auxiliary galaxy density field with〈
δng,T

〉
= bn

〈
δnm,T

〉
. (III.15)

The auxiliary field is correlated with the smoothed mat-
ter density field with a correlation coefficient r. Setting
r = 1 reduces this to the b model with no stochasticity.

• bias and density dependent non-Poissonianity:
b, α0, α1 model – because it introduces independent
scatter, stochasticity with r < 1 boosts the shot noise in
galaxy count at fixed matter density; yet a dependence
of this super-Poissonianity on matter density that may
be present in the data need not be fully described by the
b, r model; to account for this, we use a more general
model defined in Friedrich et al. [42]. Here,

P (NT |δm,T ) = α−1(δm,T )×
Poisson[NT /α(δm,T ), N̄(1 + bδm,T )/α(δm,T )] .(III.16)

We note that this model can be related to the halo count
and occupation distributions [44]. Our ansatz can be
thought of as a model of Poisson-distributed haloes

with α REDMAGIC galaxies in each one of them, sim-
ilar to e.g. the relation of Poissonian photon and non-
Poissonian electron shot noise in CCD detectors, de-
scribed by a gain factor α. It could similarly accommo-
date non-Poissonianity in halo counts [75]. We allow
for α to be different in higher and lower density regions,
e.g. because more massive haloes might be more com-
mon in the former, by means of a linear dependence of
α on δm,T as

α(δm,T ) = α0 + δm,Tα1 . (III.17)

We note that a bias model without stochasticity is a com-
mon assumption made for the galaxy distribution on large
scales [e.g. 26]. MacCrann et al. [67] show that in the Buz-
zard simulations, large scale stochasticity is present. From
the combination of probes with different sensitivity to b and
r, such as the three galaxy and convergence auto- and cross-
correlation functions, the two parameters could be disentan-
gled. Density split statistics, in addition, are sensitive to dif-
ferences in higher moments of the galaxy and matter density
field, and can test and, potentially, constrain, more complex
models such as b, α0, α1.

D. Nuisance effects on data

In all runs on data, biases ∆z in the means of redshift distri-
butions in DES and SDSS are accounted for at the level of the
model: we marginalize over lens redshift and (multiple, in the
case of a tomographic analysis) source redshift bias parame-
ters ∆z by shifting the tracer galaxy and source galaxy red-
shift distributions accordingly before computing predictions
for the signals. Likewise, we scale the predicted shear signal
by (1 +m) to account for multiplicative shear biases m.

A more complex issue arises from the clustering of sources
with the overdense and anti-correlation of sources with the un-
derdense lines of sight. This is a common problem in cluster
lensing or galaxy-galaxy lensing, accounted for by so-called
boost factors [69, 92].

In the case of density split lensing, we apply the assumption
of linear bias to predict the radius dependence of boost fac-
tors and their effect, given the non-thin lenses, on our model
predictions. For a given tracer redshift distribution and a the
matter field at redshift zs, the angular clustering wq(θ, zs) of
quintile q with matter can be calculated with the same formal-
ism as the convergence in section III B. Assuming a linear bias
of source galaxies bs, their redshift distribution at separation
θ from quintile q changes due to clustering to

ns(z)→ ns,q(z, θ) = [1 + bswq(θ, z)] ns(z)×[∫
dzs [1 + bswq(θ, zs)]ns(zs)

]−1

.(III.18)

The lowest redshift bin in DES Y1 or the Buzzard simulations
and the sources in SDSS have sufficiently strong overlap with
the lens redshift distribution that we include this effect in the
modeling and marginalize over bs in the analysis. This means
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that we use a different source redshift distribution for predict-
ing each point of the density split, radially binned shear signal
data vector. While bs is in reality a function of zs, one can
very accurately describe the de-boosting of the lensing sig-
nals by an effective bs because the radial profile shape of the
shear signal is almost independent of source redshift.

We note that in this derivation we neglect a second, but
likely subdominant effect: the source redshift dependence of
the probability of failing to include a source in the DES shape
catalogs due to blending, that might cause a similar density
dependence of source ns(z).

A potential spurious signal is due to intrinsic alignment of
physical source galaxy shapes with the underdense or over-
dense lines of sight due to gravitational interactions (see
[58, 104] for a review). For cross-correlations between the
positions of object and gravitational shear, such as counts and
lensing in cells, intrinsic alignments affect only the signal
from source galaxies that are physically associated with the
lensing objects, i.e. if redshift distributions of source galaxies
and lensing objects overlap. This is the case primarily in the
lowest redshift bin for DES Y1. Hence test (4) in Sect. V D,
which demonstrates the robustness of the results to removing
the lowest source redshift bin from the data vector, indicates
that the current analysis is at most weakly affected by intrinsic
alignments. This is in agreement with our expectation that the
tidal alignment of galaxies with the comparatively small mean
over- and underdensities of our density quintiles is small at
θ > 20′ separation.

On small scales, baryonic effects can modify the matter
power spectrum from its dark matter only prediction, primar-
ily by affecting overdense regions. For our statistic, this could
be absorbed by the bias model on scales smaller than the top-
hat aperture θT . The shear signal is used on scales larger than
θT = 20′ only, and parameter constraints are robust to a more
conservative scale cut of θ > 40′ (section V D). We hence
do not expect a significant impact of baryonic effects on the
parameter constraints at the accuracy level of the current anal-
ysis, but note that these effects require further study for future,
more constraining analyses.

IV. COVARIANCE

In order to interpret our measurements, we need an accurate
description of their covariance. We construct this covariance
from a large number of mock realizations of our data vectors.
In that, we make use of the fact that the noise in our measure-
ments can be separated into two components: a contribution
from shape noise and a contribution from large scale structure
and shot noise in the galaxy catalog. This approach is similar
to the one of Murata et al. [73].

In the following, we describe how we measure these contri-
butions, and how we combine them into a covariance matrix.

We assume in all following analyses that the signals mea-
sured in SDSS and DES Y1 are uncorrelated, justified by the
fact that the survey footprints (using only the contiguous SPT
region of DES) are well separated.
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FIG. 6. Variance of the shear signal around troughs due to shape
noise in DES Y1 METACALIBRATION zs = 0.63 − 0.9 galaxies.
Subtracting the shape noise around random points (cross symbols),
as we also do in our data, lowers the variance considerably on scales
above 300 arcmin.

A. Shape noise

The primary contribution to the shape we measure for any
individual galaxy in our survey is the sum of its intrinsic shape
and measurement noise, not the weak gravitational shear that
distorts the galaxy image.

Because of this dominance of the noise over the signal, and
because the intrinsic shapes of neighboring galaxies are al-
most uncorrelated, we can measure shape noise by rotating
each galaxy in our shape catalog by an independent random
angle. The shear signal around our actual underdense and
overdense lines of sight as measured from these rotated source
catalogs represents a random realization of the shape noise
(cf., e.g., [61], for a similar technique for shear peak statistics,
[87] for void lensing, and [73] for cluster lensing).

In measuring the signals on the rotated catalogs, we take
care to use the same methodology as for the measurements
on data. That means we use each randomly rotated source
catalog for cross-correlation with all of the maps contributing
to our data vector. As on the data, we subtract the mean shears
measured around random points, for which we simply use the
centers of all HEALPIX pixels that are used as lines of sight in
any density quintile. The subtraction of shear around random
points considerably reduces shape noise on large scales (see
Figure 6, and refer to [97] for a detailed study of the effect).

B. Cosmic variance and shot noise

Two additional effects cause our signal to deviate from its
expectation value:

• The cosmic density field present in our survey volume
is a random realization. This is true both for the volume
in which our tracer galaxies are located (and in which
the signal of troughs and overdense lines of sight orig-
inates) and for the redshift range along the line of sight
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in between us and the source galaxies that is not con-
tained in that volume. This causes there to be noise in
the true convergence around the lines of sight we iden-
tify, and in the counts-in-cells distribution.

• In a given realization of the matter density field, tracer
galaxies could be placed differently (for instance, ac-
cording to Poisson noise around their expectation value
in any given volume). Which of these possible galaxy
catalogs is realized causes there to be a different true
shear signal around what we identify as troughs and
overdense lines of sight, and a different counts-in-cells
distribution.

On the scales we care about in this work, we can measure
the sum of both contributions to the covariance, to good ap-
proximation, from log-normal simulations of the related mat-
ter and convergence fields and Poissonian realizations of the
tracer galaxy catalog. We do this by generating a large number
of realizations of these fields and catalogs with FLASK [111].

We note that this part of the covariance is dependent on
cosmology and the parameters describing the connection of
galaxies and matter. For the covariance in this work, we will
assume the settings of the Buzzard simulations, namely a fidu-
cial flat ΛCDM cosmology with Ωm,0 = 0.286, σ8 = 0.82,
Ωb = 0.047, ns = 0.96 and H0 = h × 100km s−1 with
h = 0.7.

For the matter and associated galaxy field in the tracer red-
shift range, we use the power spectrum with a linear bias of
b = 1.54, a redshift distribution, and a mean density of the
tracer galaxy population as in the Buzzard-v1.1 suite of simu-
lations. We assume Poissonianity of the galaxy count at fixed
density, i.e. the b model (section III C). Note that the relation
of galaxies and matter in the Buzzard simulations [67] and,
potentially, the actual Universe is more complex than that.
We ensure, using mock likelihood runs on Buzzard, that this
does not mean our covariance from the log-normal mocks is
significantly underestimated (see Appendix E). To set the log-
normal parameter of the projected matter field (i.e., the mini-
mum allowed value of δm ≥ −δ0), we use the methodology
of Friedrich et al. [42]. In the Buzzard cosmology and at a
top-hat smoothing scale of 20 arcmin, this yields δ0 = 0.669.
Details are given in Appendix B.

For the source redshift distributions of the simulated con-
vergence fields, we use those estimated for the source samples
in our data.

We separate the convergence field into two parts: a com-
ponent correlated with the matter field that our tracer galax-
ies populate, and an uncorrelated component (mostly com-
prised of the parts of the lensing kernel in front and behind
our tracer galaxies). The correlated component is modeled as
a log-normal field with cross-power spectrum and κ0 set to
match the perturbation theory predictions for 〈δκ〉 and

〈
δ2
Tκ
〉

at a fiducial smoothing scale. This constrains the auto power
spectrum of this component to be only a fraction of the total
convergence power spectrum. The uncorrelated component is
then simulated as a Gaussian random field that is uncorrelated
to all other fields and whose power spectrum is chosen to give
the correct total convergence power spectrum (see Appendix

B for the details of the procedure).
We apply the same mask to the tracer galaxies as in our

data (or in our simulations, for the mock analysis described
in Appendix E), and the same prescription for splitting the
survey into lines of sight of different density.

We then measure tangential shear signals, as in our data,
yet on the noiseless shear maps output by FLASK at Nside =
4096 resolution. In order to sample the density fields as in
our data, we use the sum of weights of sources in our actual
shear catalogs situated in a pixel as the weight of the shear
signal in that pixel. We do this both for the correlated and the
uncorrelated part of the convergence field (see above) and co-
add the two signals. In addition, as in our data, we measure
the mean tracer galaxy overdensity in our density quintiles.

On scales much smaller than the aperture radius θT = 20′,
a checkerboard pattern in the off-diagonal shape noise covari-
ance is apparent (see Figure 7). We find that this is due to an
interference of the HEALPIX grid we use to sample the density
field and the angular binning scheme for our shear signal – for
adjacent HEALPIX pixels, sources move from one angular bin
to the next and their intrinsic shape orientation changes rela-
tive to the pixel centers. Since these effects are present in the
data as well (as seen from the jackknife covariance) and only
significant on angular scales below our scale cut, we do not
attempt to address them further.

C. Constructing the covariance matrix

We create 1000 realizations of both the shape noise and the
large scale structure and shot noise contributions to the covari-
ance. Despite this relatively large number, there is noise in our
estimated covariance matrix. When inverting the covariance
matrix to calculate χ2 values and run a likelihood analysis,
this noise has two consequences.

First, the inverse of a noisy estimate of the covariance ma-
trix is a biased estimate of the inverse covariance matrix. We
follow the correction described in Hartlap et al. [49] to cor-
rect for this effect, i.e. we multiply the χ2 calculated with the
inverse of our estimated covariance matrix by a factor

fAH =
N cov −Ndata − 2

N cov − 1
. (IV.1)

The number of entries in our data vector is at most Ndata =
208 in the fiducial DES analysis and we use N cov = 960 re-
alizations of the log-normal field to estimate the covariance,
which means fAH is 0.78 or larger for all our likelihood runs.
We confirm, using independent log-normal mock realizations
of our data vector, that the inverse covariance matrix re-scaled
such does lead to a consistent χ2 distribution of residuals (Ap-
pendix D).

Second, the noise in the inverse variance leads to additional
scatter in the best fit we find [33, 40, 89]. Under the assump-
tion that the model is linear in all parameters within the range
probed, this can be compensated by multiplying χ2 with a fac-
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tor

fDS =

[
1 +

(Ndata −Npar)(N cov −Ndata − 2)

(N cov −Ndata − 1)(N cov −Ndata − 4)

]−1

,

(IV.2)
where Npar is the number of free parameters in the model.

These corrections are only appropriate for a monolithic co-
variance estimated from a fixed number of independent real-
izations. From the previous subsections, we can get indepen-
dent, unbiased estimates of the two contributions, Covshape

and CovLSS. The sum of Covshape + CovLSS would be an
unbiased and less noisy estimate of the total covariance. But
to apply the above corrections, we need to resort to co-adding
shape noise and cosmic variance realizations before estimat-
ing the full covariance matrix.

In addition to the 960 realizations used to estimate the co-
variance, we use 40 independent realizations to confirm that
our prediction indeed matches the mean signal measured from
the log-normal simulations at the expected χ2 ≈ Ndata.
This is a test of both the numerical scheme employed by
FLASK and the implementation of the analytical calculations
of Friedrich et al. [42]. We find that the two are in excellent
agreement, except for a small offset of the predicted and mea-
sured counts-in-cells statistic. The mean tracer galaxy over-
densities (section II D 2) we measure in log-normal mocks are
offset from the predictions at most at the 10−3 level. We hy-
pothesize that this is due to resolution effects of the simula-
tions, but cannot exclude that similar effects could also present
in the data.2 To compensate for this, we boost the variance of
each of the four counts-in-cells entries in our data vector by
0.0022. Using this covariance and fAH (but not fDS) as de-
fined above, the mean of all realizations with no shape noise
matches the predicted signal at the true input parameters at
total χ2 = 0.19 with 208 degrees of freedom, proving the nu-
merical accuracy of the prediction code at a sufficient level.
Additional tests of our likelihood pipeline run on the 40 log-
normal realizations are shown in Appendix D.

D. Comparison with jackknife covariances

From jackknife resamplings of our data, we can internally
estimate the covariance matrix. While more care would have
to be taken for applying this estimate of the covariance matrix
in a likelihood analysis [41], it does provide confirmation of
our scheme to compare the jackknife estimate to the covari-
ance estimated above.

Figure 7 shows the shape noise and cosmic variance + shot
noise components of the covariance matrix and compares their
sum to the jackknife covariance, for the shear signal around
underdense lines of sight in SDSS. The same for the full
density and source-redshift tomographic covariance matrix of
DES, including counts-in-cells, is displayed in Figure 8.

2 We confirm, however, that the mean tracer galaxy overdensities in our data
are well fit by the model at its maximum likelihood parameters.
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FIG. 7. Covariance of shear signal around SDSS troughs from shape
noise (top), large scale structure and shot noise (second from top,
note the different scale). The model (third from top) is the sum of
these two and closely matches the jackknife covariance (bottom).
White lines indicate aperture radius θT = 20′ – only data above
that is used in the likelihood.



15

101 102

θ [arcmin]

10−9

10−8

σ
2 γ

model=shape noise + LSS

shape noise from random rotations

log-normal LSS

jackknife

FIG. 8. Covariance of tomographic shear signal around DES density
quintiles (20’, lowest to highest density quintile, then lowest to high-
est redshift source bin, division indicated by white lines) and counts
in cells (last 5 bins) from shape noise (top), large scale structure and
shot noise (second from top, note the different scale), and the full
model from the sum of these two (third from top). Bottom panel:
diagonal of shear around troughs in intermediate source redshift bin.
Counts in cells residuals have been rescaled by factor 1/50 to match
a common color scale.

V. LIKELIHOOD

We compare our data to model predictionsM in a Bayesian
fashion, i.e. we sample the posterior distribution of model pa-
rameters p with a Monte Carlo Markov Chain (MCMC) run
on the likelihood

−2 lnL = fAHfDS [D −M(p)]
T
C−1 [D −M(p)]+Prior(p) .

(V.1)
For our fiducial likelihood analysis, we remove the follow-

ing parts of the full data vector:

• lensing and counts-in-cells signal for any aperture radii
other than θT = 20′ – on smaller smoothing scales,
small but significant deviations of our model and mea-
surements inN -body simulations appear [42]. Smooth-
ing on larger scales than 20’ yields signals with errors
that are highly correlated to the 20’ measurements, thus
adding little independent information.

• lensing signal on scales smaller than θT = 20′ –
small but significant deviations of our model and mea-
surements in N -body simulations are present on scales
smaller than the aperture radius θT = 20′. The lensing
signal on these scales has low signal-to-noise ratio. In
addition, shape noise in adjacent small-scale bins is an-
ticorrelated, visible as the checkerboard pattern in the
lower left of Figure 7. This is due to interference of
the radial binning scheme with the HEALPIX grid of
lines of sight: when we measure the contribution of a
source galaxy to the shear signal around two adjacent
lines of sight, its intrinsic orientation relative to a line
of sight and its distance from the line of sight change
coherently. While the effect is consistently seen in jack-
knife and model covariance, it makes these small scale
lensing signals numerically redundant. This leaves 17
angular bins in each shear profile.

• signal for quintile 3 – the signals we use are not linearly
independent between all quintiles; we therefore discard
the signal in the median quintile, which is close to zero
by construction anyway.

Therefore, in all of the following, unless otherwise noted,
D contains the shear signals measured at θ = 20 − 600′ and
the relative overdensity of tracer galaxy count for the lower
two and upper two quintiles of galaxy count, measured in
θT = 20′ apertures. For the source tomographic DES Y1
analysis, these are 208 entries (72 for SDSS).

The precision matrix C−1 is estimated as detailed in sec-
tion IV.

In the following subsections, we describe our choice of
parametrization, the nuisance parameters and associated pri-
ors, and the consistency tests we perform before unblinding
the estimated cosmological parameters.

A. Cosmological parameters

Since this is our first cosmological analysis of counts and
lensing in cells, we choose to only vary a minimal set of cos-
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mological parameters, adopting fixed priors for ones that the
density split lensing and counts signal is not very sensitive
to. For the fiducial run of our likelihood, we validate this ap-
proach by marginalizing over these parameters with informa-
tive external priors.

All likelihoods assume a flat ΛCDM cosmology. The main
parameters we wish to constrain are the matter density in units
of the critical density Ωm, and the amplitude of structure in the
present day Universe, parametrized as the RMS of overdensity
fluctuations on 8h−1Mpc scale, σ8.

In an alternate run of our likelihoods, we will also leave
free the parameter S3 that describes the skewness of the mat-
ter density field when smoothed over the given aperture and
redshift range,

S3 = 〈δ3〉/〈δ2〉2 . (V.2)

S3 was first defined by Peebles [78], who derived a perturba-
tion theory prediction S3 = 34/7 for the unsmoothed matter
density field, and later generalized to top-hat smoothed fields
and higher orders [8, 43, 60]. Perturbation theory predicts
also the smoothed S3 to be almost independent of Ωm and σ8

and to only vary slowly with redshift or scale. A skewness
S3 that is inconsistent with these predictions could be caused
either by non-Gaussian initial density fluctuations (although
CMB limits set tight constraints on these [79]) or by physics
beyond gravity that affect collapse either in the overdense or
underdense regime.

We assume wide, flat priors for Ωm, σ8 and, in the likeli-
hood runs that vary it, S3 that do not limit the range sampled
by the likelihoods. We fix the Baryon density Ωb = 0.047, the
spectral index of primordial density fluctuations ns = 0.96,
and a dimensionless Hubble parameter h = 0.7, equal to the
values used in the Buzzard simulations and consistent with
best constraints. For the transfer function of primordial to
initial matter power spectrum, we assume a radiation density
Ωrh

2 = 4.15× 10−5. The evolution of expansion and growth
of structure in the late universe assumes only matter and a
cosmological constant.

An overview of these choices is given in Table I.

B. Nuisance parameters

In our likelihoods, we apply three different models
to describes the distribution of REDMAGIC galaxy count
NT inside an aperture at given mean matter overdensity
δm,T , P (NT |δm,T ). Details of this are described in sec-
tion III C, and sampling ranges for the parameters b, (b, r),
or (b, α0, α1), designed to span any physically sensible con-
figurations, are listed in Table I.

Similar to previous cosmological constraints derived from
DES Y1 data, we assume and always marginalize over nui-
sance parameters describing photometric redshift and shear
biases in our measurements. The nuisance parameter for
the redshift bias of REDMAGIC sources in the zT = 0.2 −
0.45 redshift range that is constrained from cross-correlations
with a sample of galaxies with spectroscopic redshifts as in

TABLE I. Priors for likelihood runs

Parameter Prior
Cosmology

Ωm flat (0.1, 0.9)
σ8 flat (0.2, 1.6)
S3 fixed to PT / flat
Ωb fixed (0.047)
h fixed (0.70)

Ωrh
2 fixed (4.15× 10−5)

Tracer Galaxies
b flat (0.8, 2.5)
r flat (0, 1)
α0 flat (0.1, 3.0)
α1 flat (-1.0, 4.0)

Tracer galaxy photo-z shift
∆zl,DES Gauss (0.003, 0.008)
∆zl,SDSS Gauss (0.002, 0.006)

Source photo-z shift
∆z2s,METACALIBRATION Gauss (−0.019, 0.018)
∆z3s,METACALIBRATION Gauss (+0.009, 0.016)
∆z4s,METACALIBRATION Gauss (−0.018, 0.031)

∆z2s,IM3SHAPE Gauss (−0.024, 0.018)
∆z3s,IM3SHAPE Gauss (−0.003, 0.016)
∆z4s,IM3SHAPE Gauss (−0.057, 0.031)
∆zs,SDSS Gauss (−0.014, 0.011)

Shear calibration
mi

METACALIBRATION(i = 2, 3, 4) Gauss (0.012, 0.023)
mi

IM3SHAPE(i = 2, 3, 4) Gauss (0.0, 0.029)
mSDSS Gauss(0.0, 0.05)

Cawthon et al. [15]. Specifics of this are described in Ap-
pendix F 1.

The photometric redshift biases and multiplicative shear bi-
ases of source galaxies are described by two parameters in
each redshift bin. The three bins we use, i.e. all but the low-
est redshift bin of DES Collaboration et al. [26], are labeled
as i = 2, 3, 4 in Table I. Priors on the redshift biases are
taken from the combination of the redshift distributions of a
matched sample of galaxies in the COSMOS survey and an-
gular cross-correlation with REDMAGIC galaxies [27, 28, 45]
as described in detail in Hoyle et al. [54]. The priors on multi-
plicative shear bias in DES Y1 are described in detail in Zuntz
et al. [112]. Both of these priors are widened in our analy-
sis to account for their potential correlation between bins [see
appendices of 54, 112], conservatively assuming comparable
signal-to-noise ratio in each bin.

Multiplicative bias in an independent SDSS shear catalog
that is consistent with the one we use [94] was investigated
in detail in Mandelbaum et al. [70]. The authors in that pa-
per find a Gaussian uncertainty related to multiplicative shear
calibration of σm = 0.037, in addition to photometric red-
shift biases over which we marginalize separately. We as-
sume a slightly more conservative Gaussian uncertainty of
σm = 0.05 for the multiplicative shear bias in the SDSS cata-
log used in this work.

These priors are also summarized in Table I.
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C. Sampling and Evidence

To sample the posterior likelihoods efficiently, we employ
both the EMCEE [38] and the MULTINEST [37] algorithm.
The latter has the advantage of also estimating Bayesian evi-
dences E,

E ∝ p(D|model) =

∫
dµ p(D|model, µ) p(µ|model) ,

(V.3)
where µ are the parameters of the model.

Knowing the evidence of two models 1 and 2 allows com-
paring them with the Bayes factor, E1/E2. If the latter ratio
exceeds 3.2 or 10, the evidence for model 1 over model 2 can
be considered substantial or strong in the nomenclature of Jef-
freys [56].

We confirm in the tests performed in Appendices D and E
that both sampling algorithms and the analysis of their outputs
with CHAINCONSUMER [52] and custom codes yield reliable
parameter constraints and test results.

D. Blinding and tests

Since most of the tests in this paper were performed af-
ter the scaling factors of the initial, blinded shear catalogs
had been revealed [112], we primarily rely on parameter level
blinding. This means that we do not compare measurements
on data to predictions in a known cosmology before the fol-
lowing tests are passed:

1. Log-normal simulations show χ2 values of data vs.
model at the input set of parameters consistent with
a fiducial χ2 distribution with the appropriate number
of d.o.f.. Likelihood runs on mock data have a cover-
age within expectations (i.e., the input cosmology lies
within the confidence interval the expected fraction of
times). Results are unremarkable and described in Ap-
pendix D.

2. Bayesian model comparisons run on log-normal simu-
lations without stochasticity do not provide evidence for
more complex models. We find that this requirement is
met, both for the b, r model of stochasticity and models
with free skewness S3, in Appendix D.

3. 21 independent Buzzard N -body realizations of our
data vector give consistent χ2 relative to the model eval-
uated at the input cosmology and independently mea-
sured nuisance parameters. Their coverage in likeli-
hood runs, i.e. the number of times the input cosmology
is within derived confidence limits, is within expecta-
tions only for the b, α0, α1 model of bias and stochas-
ticity (Appendix E). The fact that the most complex
bias model is required may be particular to these mock
galaxy catalogs, which may have different relations to
matter density than real REDMAGIC galaxies. We still
take this as evidence that the most general stochasticity
model, unless disfavored by the data, needs to be con-
sidered in our analysis.
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FIG. 9. Likelihoods run on variants of the data to test robustness to
analysis choices. Use of IM3SHAPE shape catalogs (turquoise), re-
moval of the highest (orange) or lowest (violet) source redshift bin,
use of a direct estimate of source redshift distributions from COS-
MOS instead of BPZ (magenta), removal of small (green) or large
scales (yellow) in the lensing data or neglect of the clustering of
sources in the lowest redshift bin with the lenses (brown) do not have
an effect on recovered parameters beyond their statistical uncertainty.
Contours are centered on the fiducial result in the bmodel. The same
likelihood run on fully independent SDSS data vectors (grey) yields
consistent results. Panels show different models for the connection
of galaxies and matter (top: b only, center: b, r, bottom: b, α0, α1).
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4. Likelihood runs on N -body realizations are insensi-
tive to replacing true source redshift distributions with
source redshift distributions estimated from BPZ and
marginalizing over ∆z uncertainties. Results: we find
that the mean shifts in cosmological parameters are at
or below the ten per cent level of their statistical un-
certainty, and that the statistical uncertainty increases
by less than five per cent due to marginalization over
∆z, both tested with the b, α0, α1 model for the galaxy-
matter connection.

Once these tests are successful, we continue to make tests
on likelihood analyses run on the data itself. To ensure that
these do not introduce experimenter bias, before looking at
any chains we shift all cosmological parameters by a constant
unknown vector, uniformly distributed between +2 and −2
standard deviations of the parameters as found from N -body
simulations. We then proceed with the following tests, the
results of which are shown in Figure 9:

5. Cosmological constraints from the data are consis-
tent between the fiducial METACALIBRATION and addi-
tional IM3SHAPE measurements. For models including
galaxy stochasticity (lower two panels of Figure 9) this
is the case to a fraction of the statistical uncertainty. For
the b only model (top panel), IM3SHAPE constraints on
Ωm are offset by ≈ σ/2. Accounting for the fact that
shape noise is largely uncorrelated between the two cat-
alogs, is is possible that this is simply a statistical fluctu-
ation. We note, however, that DES Collaboration et al.
[26] found a similar discrepancy, likely attributed to the
multiplicative bias or source redshift calibration of the
IM3SHAPE highest source redshift bin.

6. Cosmological constraints are robust to removing the
lowest or highest source redshift bin from the data vec-
tor. This is the case for all models, indicating that the
calibration of METACALIBRATION catalogs is consis-
tent between bins.

7. Cosmological constraints are robust to replacing the
source redshift distributions estimated by BPZ by ones
directly estimated from COSMOS. Again, this is the
case for all models, with a noticeable but insignificant
offset in the b only model.

8. Cosmological constraints are robust to cutting scales
smaller than 2 × θT or larger than 250’ from the shear
signal. Removal of small scale shear information shifts
σ8 in the b, α0, α1 model by approximately 1σ. Given
the cosmic variance in large-scale modes and the unre-
markable result of all other variants of the scale cut test,
this does not pose a significant issue.

9. Cosmological constraints are robust to not correcting
for clustering of the overlapping source redshift bins
with the matter distributions around overdense and un-
derdense lines of sight. While this is not necessary
a null test – it could be possible that we need to ac-
count for the effect – we find that marginalizing over

bs, the source bias in the lowest redshift source bin, nei-
ther significantly widens nor shifts the contours in either
model.

10. Cosmological constraints are consistent between DES
and SDSS. We note that these are completely indepen-
dent data sets, i.e. have no cross-covariance, and thus
we a priori expect larger offsets between the two than
in the other tests. We find that constraints on Ωm are
very similar and σ8 is offset by ≈ 1σ, both consistent
with these expectations.

In addition, we confirm that the central value of the nui-
sance parameter priors (multiplicative shear bias, tracer and
source galaxy redshift biases as defined in Hoyle et al. [54],
Zuntz et al. [112], section F 1 and section F 2) is within the 1σ
confidence interval of the posteriors for both DES and SDSS.

Only after unblinding do we test whether the model at its
maximum likelihood parameters is a good fit to the data. For
the tomographic data vector of DES Y1, there are 208 ele-
ments fit with 13 parameters in the (b, α0, α1) model. Because
the model is not linear in the parameters, the number of de-
grees of freedom and expectation value for the χ2 distribution
is not known precisely [3], but likely between 208 − 13 and
208. Its standard deviation is σχ2 =

√
2Nd.o.f ≈ 20. The data

vectors for the two shear pipelines have a χ2
METACALIBRATION =

171 and χ2
IM3SHAPE = 201, respectively, both consistent with

expectations for multivariate Gaussian noise around a signal
that is correctly described by our model. The b only and
(b, r) models give equally acceptable fits. For the SDSS single
source bin data vector with 72 entries and 9 parameters in the
(b, α0, α1) model, we find χ2 = 81, and equally acceptable
results for the other models.

We also perform a run of the fiducial DES Y1 data vector
with a full cosmological model that marginalizes, in addition,
over baryon density Ωb, spectral index of primordial density
fluctuations ns and Hubble parameter h with the flat priors
also used in DES Collaboration et al. [26]. We find that this
does not shift or increase the uncertainty on the reported pa-
rameters at a discernible level in any of the models for the
connection of galaxies and matter.

VI. COSMOLOGICAL CONSTRAINTS

We perform likelihood analyses, i.e. we determine the prob-
ability of finding our fiducial data vectors (section II) as a
function of the parameters of our model (section III) and given
their covariance (section IV). We use models of different
complexity for the connection of galaxies and matter den-
sity – one with linear bias only (b), one adding stochasticity
(b, r), and one allowing for density dependence of stochastic-
ity (b, α0, α1) (for details see section III C). Our philosophy,
decided with parameters still blinded, will be to compare these
models via their Bayesian evidence (section V C) and report
the results for models that are supported by the data.

Figure 10 shows constraints on the matter density Ωm,
the amplitude of late-time structure formation σ8, and galaxy
bias of the REDMAGIC tracer galaxies, when marginalizing
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FIG. 10. Constraints on matter density Ωm, amplitude of late-time structure formation σ8, and galaxy bias of the REDMAGIC tracer galaxies.
Shown are results for three different models for the connection of matter density and galaxy density on the scales of our apertures: linearly
biased tracers with Poissonian noise (black, b); biased, stochastic tracers (green, b, r); and biased tracers with density-dependent stochasticity
(orange, b, α0, α1). The Bayes factors of these different models indicate substantial evidence that stochasticity of galaxy count is required to
model the measurements. Constraints from DES galaxy and shear auto- and cross-two-point correlation functions for fixed neutrino mass are
shown as blue, dotted contours [26].

TABLE II. Constraints from counts and lensing in cells likelihood runs. Bayes factors are quoted relative to the b, r model. Results for the b
only likelihoods are not shown, since this simpler model is disfavored by the data. Constraints on cosmological parameters and REDMAGIC
bias in z ≈ 0.2− 0.45 from two-point functions are reproduced from DES Collaboration et al. [26] for comparison.

Data Model Bayes S8 Ωm σ8 b r α0 α1

factor
DES b, r ≡ 1.0 0.90+0.11

−0.08 0.26+0.04
−0.03 0.97+0.07

−0.06 1.45+0.10
−0.11 0.77+0.10

−0.13 - -
SDSS b, r ≡ 1.0 0.78+0.13

−0.08 0.25+0.05
−0.04 0.86+0.06

−0.05 1.48+0.09
−0.09 0.70+0.16

−0.14 - -

DES b, α0, α1 0.7 0.78+0.05
−0.04 0.28+0.05

−0.04 0.80+0.06
−0.07 1.75+0.22

−0.26 - 1.5+0.4
−0.6 1.7+1.1

−0.9

SDSS b, α0, α1 1.6 0.76+0.08
−0.07 0.28+0.07

−0.05 0.80+0.08
−0.11 1.18+0.37

−0.23 - 2.3+0.3
−0.5 2.9+1.1

−1.0

3× 2pt, fixed ν 0.80+0.02
−0.02 0.26+0.02

−0.03 0.85+0.06
−0.05 1.54+0.09

−0.10 DES Collaboration et al. [26]
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over all remaining model parameters. Confidence limits are
summarized in Table II. The stochastic models, favored by
the data (see next subsection), constrain the matter density
consistently as Ωm = 0.26+0.04

−0.03 for the (b, r) model and
Ωm = 0.28+0.05

−0.04 for the (b, α0, α1) model from DES data.
The degeneracy directions of Ωm-σ8 for the two stochastic-
ity models are different, thus leading to a higher central value
of σ8 = 0.97+0.07

−0.06 for (b, r) and a lower σ8 = 0.80+0.06
−0.07 for

(b, α0, α1).
Bias models and cosmology are thus interdependent: a

prior, even a weak one, on the values of stochasticity pa-
rameters would significantly improve these cosmological con-
straints – if galaxies have less stochasticity, the relevant re-
gions of the green and orange contours in Figure 10 are closer
to the black region. Likewise, external information on cosmo-
logical parameters allows to constrain bias parameters and,
potentially, even choose between the bias models. If the true
cosmology is Ωm = 0.3 and σ8 = 0.8, both the b and the b, r
model are ≈ 2σ off, while the b, α0, α1 model is consistent.

For a sense of how these results compare to two-point func-
tion measurements, Figure 10 contains constraints from the
three tomographic auto- and cross-correlation functions of
DES REDMAGIC galaxy positions and source galaxy shapes
[3x2pt, 26].3 The 3x2pt contours are tighter than the con-
straints that counts and lensing in cells yield. This is due to
the wide freedom on stochasticity parameters and models that
we have allowed: if we could fix the stochasticity (such as in
the black contour with r = 1), the smaller scale density PDF
measurements would yield highly competitive cosmological
constraints. It is clear from this and the different degeneracies
that a joint analysis would result in improved constraints – yet
we are lacking a covariance matrix and inference pipeline to
perform this at this point. Prima facie, the 3x2pt constraint is
consistent with any of the bias models, and indicates a rela-
tively small stochasticity, i.e. a point in parameter space close
to where the black, green, and orange contours intersect.

Finally, we compare the results from our DES Y1 and SDSS
analysis. Within their mutual uncertainty, the two indepen-
dent data sets provide consistent measurements of cosmologi-
cal parameters. It is less clear whether the bias model of RED-
MAGIC galaxies in SDSS and DES is identical, a question we
turn to in the following subsection.

A. Results on bias and stochasticity

The Bayes factors for the stochastic models, i.e. the ratio
of their evidence over the evidence of the b only model, are
3.6 (b, r) and 2.5 (b, α0, α1). This means that there is substan-
tial evidence, as defined by the Jeffreys scale, for stochasticity

3 We use the version of the likelihood that does not vary neutrino mass, as in
our counts and lensing in cells analysis. The galaxy bias parameter plotted
is the mean bias of REDMAGIC galaxies in the first two bins (z = 0.15−
0.3 and 0.3− 0.45), weighted 1:2, which is not quite the same as the bias
of our single zT = 0.2− 0.45 lens bin.

in the count of REDMAGIC galaxies at fixed projected mat-
ter density within 20’ apertures and with a redshift range of
zT = 0.2−0.45. Similar observations are made in SDSS, with
Bayes factors 2.8 and 4.5 for the introduction of the stochas-
tic models. The data thus prefers a model with stochasticity,
but at an odds ratio of ≈ 3 : 1, the preference is not very
conclusive.

The DES constraint on r is r = 0.77+0.10
−0.13. In likelihood

runs of the (b, r) model on log-normal mocks with no stochas-
ticity (Appendix D), we find smaller central values for r than
this in 3 out of 40 independent realizations.

We note that this finding is not in conflict with the non-
detection of stochasticity in the DES Collaboration et al. [26]
3x2pt analysis, and the associated explicit tests for consis-
tency of the clustering and galaxy-galaxy lensing constraints
on bias [36, 81]. Those analyses use significantly larger scales
(> 27′ and > 45′ in the lowest lens redshift bins, correspond-
ing to > 8h−1 comoving Mpc for clustering, and > 12h−1

comoving Mpc for galaxy-galaxy lensing), on which stochas-
ticity, if present, is expected to be small. Our statistic in sen-
sitive to stochasticity on scales smaller or equal to the radius
θT = 20′ of the apertures inside which we count tracer galax-
ies. Physically, this corresponds to . 3.5 − 7h−1 comoving
Mpc in the zT = 0.2− 0.45 redshift range. Uncertainty as to
whether the non-stochastic bias model would be sufficient on
these smaller scales was a primary reason for the conservative
3x2pt scale cuts [63].

Figure 11 shows constraints on S8 ≡ σ8

√
Ωm/0.3, bias

and stochasticity of the tracer galaxies, in both DES and
SDSS. The deviation of r from unity is at the ≈ 2σ level. In-
dividual parameter constraints are consistent, while there is a
hint for a lower value of r in SDSS at fixed cosmology. Note
that the primary degeneracy of S8 is not with bias, but with
stochasticity – even a mildly informative prior on r would
significantly lower uncertainty on S8. For cosmological con-
straints close to those of the 3x2pt analysis (S8 = 0.80± 0.02
for the run with fixed ν mass), the counts and lensing in cells
data is well fit by small stochasticity.

For the more complex α0, α1 model of density dependent
stochasticity, which is not significantly preferred to r by the
data anywhere, the situation is qualitatively similar. The
SDSS data does not constrain these parameters very well, es-
pecially α1 (cf. Table II), but there is an indication of super-
Poissonian scatter in galaxy count at fixed matter density, the
amplitude of which increases with density, broadly consistent
with the effect of a single stochasticity parameter r [42, their
figure 6].

It is difficult to compare this tentative detection of stochas-
ticity on the . 7h−1 comoving Mpc aperture scale to the
literature. Various works have found levels of stochastic-
ity that are broadly consistent, using a range of samples and
scales in numerical simulations [e.g. 10, 98] and data [e.g.
53, 64, 95, 100, 108, 110]. The comparison of low-z galaxy
clustering and galaxy-galaxy lensing in DES SV on scales
above 4h−1 comoving Mpc provided similar hints of r < 1
([25, 80], see also [46]). Even those studies that found no
evidence for r 6= 1 do not exclude a mild stochasticity on
the relevant scales within their uncertainties [21, 59]. Most of
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FIG. 11. Constraints on S8 = σ8

√
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ity of the REDMAGIC tracer galaxies from density split lensing and
counts-in-cells in DES Y1 (blue) and SDSS (red).

these studies use two-point correlations, which means their re-
sults on stochasticity would have to be transformed to aperture
statistics using a numerical model or simulations.

Note that we do not attempt to combine the DES and SDSS
results because, without more detailed study, it is not certain
that the REDMAGIC samples trace the exact same galaxy pop-
ulations. A larger stochasticity of REDMAGIC galaxies in
SDSS, if at all significant, could also be due to correlations of
the REDMAGIC density with SDSS observational systematics
that, unlike in the case of DES [36], has not been removed.

B. Test for excess skewness of matter density

As described in section V A, we can allow for the skewness
of the projected, smoothed matter density field, S3, to be a
free parameter in our likelihood, rather than predicting it from
perturbation theory.

We first test whether the introduction of this additional pa-
rameter to our model is justified by the data. The Bayes factor
of the extended models with ∆S3 as a free parameter, rela-
tive to any of the three models for the connection of galaxies
and matter with fixed S3, is smaller than unity, both on DES
and on SDSS runs. This indicates no evidence that such an
extension is required.

If we still perform a likelihood analysis of the extended
models despite of this, we can find constraints on S3. For the
(b, r) model, these are shown in Figure 12. DES Y1 and SDSS
provide independent constraints, both of which are consistent
with ∆S3 = 0. The DES constraint, ∆S3/S3 = −0.08+0.25

−0.20

is significantly tighter, primarily due to the fact that the lens-

ing signal that breaks the degeneracy of bias and skewness is
measured with higher signal-to-noise ratio.

Generalizing the likelihood to a two-parametric α0, α1

model for stochasticity and leaving S3 free yields similarly
tight constraints on from DES data, again consistent with no
excess skewness at ∆S3 = −0.18+0.25

−0.22. In SDSS, the poste-
rior distribution of α1 is not constrained in this model within
our sampling range.

The joint interpretation of these results is that we find no
hints for an excess or deficit in skewness of the matter den-
sity relative to our ΛCDM perturbation theory prediction.
This conclusion is largely independent of the bias model we
choose, and tested at the 20 per cent level. Future analyses
with larger data sets or joint constraints from counts and lens-
ing in cells and additional probes could provide much tighter
constraints on S3.

VII. CONCLUSIONS

We perform the first cosmological analysis using counts
and lensing in cells, a method that constrains the matter den-
sity PDF with the combination of counts-in-cells and gravi-
tational lensing signals around low and high density lines of
sight. We do this by creating quintiles based on the galaxy
counts in apertures and evaluating the stacked lensing for each
quintile.

This analysis is tested extensively, using the perturbation
theory model of Friedrich et al. [42], by applying it to log-
normal density fields and realistic N -body mock catalogs
from the Buzzard simulations. Robustness to systematics in
the data and choices in the analysis is confirmed by a series
of tests, performed while blind to the cosmological parameter
values constrained by our data.

Applying the analysis to data vectors from DES and SDSS,
we find that

• The data prefer stochasticity (beyond Poisson sam-
pling) in galaxy count at fixed matter density, on the
< 20′ or < 3.5−7h−1 comoving Mpc smoothing scale
of our aperture. This is indicated by a Bayesian model
comparison of bias parameterizations, whose odds ra-
tios of ≈ 3 − 4 : 1 in favor of stochastic models repre-
sent substantial evidence on the Jeffreys scale. Our data
does not discriminate between the two different models
of stochasticity we apply, one with the correlation coef-
ficient of galaxy and matter density r as a free parame-
ter, and one with two parameters α0, α1 that allow for a
density dependent deviation from Poissonian noise.

• Either of these models yields consistent DES con-
straints on the cosmic matter density, Ωm = 0.26+0.04

−0.03

for the (b, r) model and Ωm = 0.28+0.05
−0.04 for the

(b, α0, α1) model. These are consistent with, and not
much less constraining than, results from the three to-
mographic auto- and cross-two-point correlation func-
tions of galaxy counts and gravitational shear (3x2pt) in
DES Collaboration et al. [26], Ωm = 0.26+0.02

−0.03.
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FIG. 12. Constraints on excess skewness of the projected matter density field ∆S3, amplitude of structure S8 = σ8

√
Ωm/0.3, bias and

stochasticity of the REDMAGIC tracer galaxies from density split lensing and counts-in-cells in DES Y1 (blue) and SDSS (red). Bayesian
model comparison indicates that the introduction of S3 as a free parameter, rather than fixing it from perturbation theory calculations (the
∆S3 = 0 indicated by dashed lines), is not necessary to describe the data.

TABLE III. Constraints from counts and lensing in cells likelihood runs with skewness of the matter density field S3 as a free parameter. Bayes
factors are quoted relative to the b, r model without free S3. SDSS does not constrain the two-parametric stochasticity model α0, α1 within
our sampling range.

Data Model Bayes S8 Ωm σ8 b r α0 α1 ∆S3/S3

factor
DES b, r,∆S3 0.3 0.91+0.10

−0.10 0.26+0.07
−0.05 0.96+0.17

−0.13 1.37+0.32
−0.27 0.72+0.14

−0.10 - - −0.08+0.25
−0.20

SDSS b, r,∆S3 0.4 0.76+0.12
−0.09 0.28+0.09

−0.07 0.72+0.17
−0.13 1.64+0.44

−0.46 0.73+0.15
−0.15 - - 0.06+0.40

−0.27

DES b, α0, α1,∆S3 0.3 0.80+0.06
−0.05 0.26+0.07

−0.05 0.86+0.10
−0.13 1.48+0.41

−0.32 - 1.7+0.4
−0.6 2.0+1.1

−0.9 −0.18+0.25
−0.22

SDSS b, α0, α1,∆S3 0.6 0.78+0.07
−0.08 0.27+0.09

−0.05 0.80+0.14
−0.12 0.98+0.49

−0.17 - 2.5+0.3
−0.5 > 2.1 (68% c.l.) −0.14+0.44

−0.39
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• The degeneracy direction of Ωm and σ8 and best-fit val-
ues of σ8 depend on the stochasticity model – for (b, r)
we find a higher amplitude σ8 = 0.97+0.07

−0.06 and σ8 =

0.86+0.06
−0.05 from DES and SDSS than for the (b, α0, α1)

model. The latter has a central value of σ8 = 0.80
and somewhat larger uncertainty. In turn, this means
that external constraints on cosmology would yield an
improved model selection and posterior on stochastic-
ity and vice versa. For small stochasticity, both models
are consistent with each other and with the 3x2pt con-
straint. The assumption of linear bias with no stochas-
ticity, which is however mildly disfavored by the data,
would allow constraints from the matter PDF that are
competitive with 3x2pt. Thus if we could use prior
knowledge to select a particular model or a narrower
range of possible bias parameter values, this would
greatly improve the constraining power on cosmolog-
ical parameters.

• Because counts and lensing in cells measure the width
and skewness of the matter PDF independently, they
can be used to constrain S3 = 〈δ2〉2/〈δ3〉, for which
ΛCDM and gravitational collapse make a very stable
prediction. We find that the deviation from this predic-
tion, ∆S3/S3, is consistent with zero, within 20-30 per
cent uncertainty, in any bias and stochasticity model.

This analysis of the density PDF opens several avenues for
future research:

• Towards tightly constraining cosmological parameters
and performing model independent tests on higher mo-
ments of the matter density PDF generated by gravity –
this could be achieved best with external priors or data
on stochasticity or bias, or in the regime of larger scales
or larger tracer density, where predicted signals are less
sensitive to the bias model.

• Towards discriminating between and constraining pa-
rameters of bias and stochasticity models – optimally by
analyzing smaller scales, which will require improved
models of the matter density PDF and baryonic effects
on it.

• Towards joint analyses, e.g. with two-point functions or
CMB lensing data, that can break cosmological, galaxy
bias parameter and nuisance parameter degeneracies.

Given a suitable model and analysis framework, counts and
lensing in cells with present and imminently available data
will allow tight constraints on cosmological parameters and
the hierarchy of moments of the matter density field.
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Appendix A: Bernoulli masking of a count with Poissonian noise

Assume that the true number of galaxies N in a randomly
selected volume follows a Poisson distribution around the ex-
pectation value N̄ (which is conditional on the matter density
inside the volume),

P (N) =
e−N̄

N !
× N̄N . (A.1)

If incompleteness and masking act on each galaxy with some
detection probability p, then the observed number of galaxies
in that volume Nobs is related to N by a Bernoulli process,

P (Nobs|N) =
N !

Nobs!(N −Nobs)!
pNobs(1− p)N−Nobs .

(A.2)
The resulting probability distribution for Nobs,

P (Nobs) =
∑
N

P (Nobs|N)P (N) (A.3)

=
e−N̄

Nobs!

(
pN̄
)Nobs

∞∑
N=Nobs

[(1− p)N̄ ]N−Nobs

(N −Nobs)!

=
e−pN̄

Nobs!
(pN̄)Nobs ,

is again Poisson-distributed around the expectation value pN̄ .
Masking-induced scatter in Nobs is therefore correctly de-
scribed by Poisson noise. This justifies the accounting for
masking used in section II A. Note that we have implicitly
assumed intrinsic Poisson noise and independent random re-
moval of galaxies due to masking, when in fact clustering im-
plies a more complex form of Equations A.1 and A.2, yet at a
level not relevant at first order.

Appendix B: Choice of log-normal parameters for the simulated
density and convergence fields

In this appendix, we describe how we chose the log-normal
parameters (i.e., the minimum allowed values of the log-
normal PDFs) and power spectra for generating simulated
convergence and density fields that closely match the 2-point
and 3-point auto- and cross-correlation statistics we expect
from our fiducial model.

1. Configuration of FLASK maps of simulated density
contrast

As we have shown in Friedrich et al. [42], at a scale of
θA = 20′ the PDF of the smoothed matter density contrast
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δm,T is well described by a zero-mean shifted log-normal
distribution, when the parameters of the log-normal PDF are
chosen such as to match the variance and skewness of δm,T .
For the cosmological parameters and redshift distributions of
REDMAGIC galaxies in the Buzzard simulations, the variance
and perturbation theory prediction for skewness result in a
log-normal shift parameter of δ0 = 0.669.

We input this parameter and an angular power spectrum
computed by Limber’s approximation from our fiducial mat-
ter power spectrum to the FLASK tool to generate maps of
projected density contrast. FLASK will generate HEALPIX
maps of δm,2D such that on the pixel scale of these maps
δm,2D is a log-normal random variable with δ0 = 0.669. In
our case, the pixel scale is much smaller than the smoothing
scale θ = 20′ for which we determined the log-normal pa-
rameter. Fortunately, a limit theorem derived by Szyszkowicz
& Yanikomeroglu [101] ensures that a smoothed version of
a log-normal random field, while not formally log-normal, is
still well described by a log-normal field with the same shift
parameter. We have verified this approximation to be accurate
in our situation.

2. Configuration of FLASK maps of simulated convergence
fields

For the convergence field κ, defined in Equation III.7, we
again need to fix the parameters of the log-normal simulations.
The expectation value of κθ around overdense or underdense
lines of sight with given matter contrast δm,T is fully deter-
mined by the moments

〈
δnm,T

〉
and joint moments 〈δnm,T κθ〉,

n ≥ 1.
Hence, the expectation value of the density split lensing sig-

nal obtains contributions only from those redshifts where the
distribution of tracers and the lensing efficiency kernelWs(w)
overlap. The covariance of the signal, however, also has con-
tributions from foreground and background structures at dis-
tances where only Ws(w) is non-zero.

As pointed out by e.g. Xavier et al. [111], 2D projections
of the 3D density contrast such as δm,T and κθ are not well
described by a joint log-normal distribution if the kernels of
their projection have a very different width along the line-of-
sight. In our situation, the lensing kernel Ws(w) is signif-
icantly broader than the distribution in co-moving distance
of our tracer galaxies. In order to still accurately match the
higher-order statistics of δm,θ and κθ with the FLASK log-
normal simulations, we split κ into a contribution from the
overlap of tracers and Ws(w) and a contribution from fore-
ground and background structures, i.e.

κ(n̂) = κoverlap(n̂) + κnon−overlap(n̂) (B.1)

with

κoverlap(n̂) =

∫ wmax

wmin

dw Ws(w) δm,3D(wn̂, w) (B.2)

and

κnon−overlap(n̂) =

∫ wmin

0

dw Ws(w) δm,3D(wn̂, w)

+

∫ ∞
wmax

dw Ws(w) δm,3D(wn̂, w) .(B.3)

Here, wmin and wmax are the minimum and maximum co-
moving distances of our tracer population. We separately
compute the power spectra of κoverlap and κnon−overlap using
Limber’s approximation and our fiducial matter power spec-
trum.

Instead of approximating the distribution of κoverlap and
δm,T with a joint log-normal distribution, we point out in
Friedrich et al. [42] that it is better to further split κoverlap

into two contributions as

κoverlap = κlog−normal + κuncorr. , (B.4)

where only κlog−normal is a log-normal variable and κuncorr.

is assumed to be completely uncorrelated with δm,T . The
reason for this is the following: The density split lensing
signal mainly depends on the moments

〈
δ2
m,T

〉
and

〈
δ3
m,T

〉
as well as 〈δm,T κoverlap〉 and

〈
δ2
m,T κoverlap

〉
. Requiring

our simulated convergence fields to obey our analytic pre-
dictions of these moments would already fix the log-normal
PDF for κoverlap. Importantly, it would also fix the variance〈
κ2

overlap

〉
. And in general, this variance will disagree with

the variance of κoverlap as defined in Equation B.2 that is
predicted from our power spectrum. Splitting κoverlap into
κlog−normal and κuncorr. solves this disagreement, since we
can use the above moments to fix the log-normal PDF of
κlog−normal and attribute part of the variance of κoverlap to
κuncorr. to keep the total variance in agreement with our power
spectrum. We then use FLASK to simulate the contributions
to κoverlap as two distinct random fields. We assume that
κlog−normal and κuncorr. are uncorrelated and that their power
spectra are simply proportional to that of κoverlap. The pro-
portionality factors are determined such that the two power
spectra sum up to the total power spectrum of κoverlap and
also such that the variance of κlog−normal is indeed the one
predicted by its log-normal PDF.

Finally, while in Friedrich et al. [42] we allow the log-
normal PDF to vary depending on the scale θ of the con-
vergence field, we have to choose a fixed scale in order to
generate log-normal random fields with FLASK. We consider
θ = 20′ as a reasonable choice. At larger scales the log-
normal PDF of our formalism quickly transitions to a Gaus-
sian PDF anyway, and we do not consider smaller scales in
our analysis. The log-normal shift parameters we get this way
are κ0 = 0.0088, 0.0150, 0.0181 for our three DES source
redshift bins and 0.0094 for the SDSS sources. The remaining
ingredient needed by FLASK to generate the field κlog−normal

is its cross power spectrum with δm,2D. Since we assume all
other contributions to the convergence to be uncorrelated to
the tracer density contrast, this is just the cross power spec-
trum of the total convergence and δm,2D. Also, the theorem by
Szyszkowicz & Yanikomeroglu [101] ensures that generating
log-normal fields with the above values of κ0 at the pixel scale
is sufficient to obtain the same log-normal properties also on
larger smoothing scales.

The contributions κuncorr. and κnon−overlap enter the co-
variance of our signal via 2-point statistics only. Hence, we



27

just use the sum of their power spectra to generate a single
Gaussian random field, i.e. no log-normal shift parameters
have to be determined for these components. Since we in-
clude 3 source bins in our analysis, we also have to include
their cross-power spectra in our FLASK configuration. The
cross-power spectra of the non-overlap contributions to the
convergence can be computed straightforwardly using Lim-
ber’s approximation. The cross-power spectra of κoverlap be-
tween different source bins are split to cross-power spectra
of the fields κlog−normal and the fields κuncorr. in a similar
way as the auto-power spectra for identical source bins: this
time we assume that δm,2D and the two convergence fields
κlog−normal,i and κlog−normal,j corresponding to source bins
i and j have a joint log-normal distribution. We then compute
their combined third order moment with the method presented
in Friedrich et al. [42], which fixes this PDF and allows us
to compute the covariance of κlog−normal,i and κlog−normal,j .
The cross power spectra are then split between the κlog−normal

and κuncorr. contributions such that they add up to the to-
tal cross power spectrum of κoverlap,i and κoverlap,j while
also giving the correct covariance between the κlog−normal

contributions in each source bin. No cross-correlation is as-
sumed for κlog−normal and κuncorr. between any combination
of source bins.

Appendix C: Dependence of signal on REDMAGIC variant

As discussed in section II B 1, there are two variants of
REDMAGIC catalogs in DES Y1 (based on either MAG_AUTO
or MOF photometry), and either can optionally be corrected
with a set of weights that removes the correlation of galaxy
density with observational systematics. Our fiducial choice,
as in Elvin-Poole et al. [36] for the redshift range we use, is
the MAG_AUTO catalog with these weights applied. In this ap-
pendix, we repeat our measurements with the remaining three
variants of the REDMAGIC catalogs to see whether there are
appreciable differences in the recovered signals.

Results from this are shown in Table IV and, for selected
samples, in Figure 13. We find that the ratios of shear sig-
nals between the variants are are consistent with unity, with a
hint of lower signals in the MOF variant when not applying the
weights to correct for systematics related density variations.
This is consistent with the analysis of Elvin-Poole et al. [36],
who found larger, significant correlations of galaxy density
with observational systematics in this catalog.

Appendix D: Mock analysis of log-normal simulations

We perform a set of tests of our model prediction code,
our covariance estimation and likelihood pipeline using log-
normal realizations of our data vector.

We first check that the χ2 distributions of residuals of the
individual log-normal realizations follow expectations. To
this end, we add realizations of shape noise from random rota-
tions of our actual source catalog to the log-normal data vec-
tors. We have usedNreal = 960 out of 1000 realizations of the

TABLE IV. Shear ratios of REDMAGIC variants
zs bin variant γt γt,0 γt,4

ratio-1 ratio-1 ratio-1
[10−2] [10−2] [10−2]

0.43− 0.63 COADD, no corr. −0.2± 2.7 0.7 −1.1
0.63− 0.90 COADD, no corr. 0.6± 1.2 2.0 0.9
0.90− 1.30 COADD, no corr −1.2± 1.3 −0.2 −2.2
0.43− 0.63 MOF, corr. −4.1± 7.1 7.5 −15.7
0.63− 0.90 MOF, corr. −2.2± 3.9 −5.7 −1.2
0.90− 1.30 MOF, corr. −1.2± 4.3 5.5 −7.8
0.43− 0.63 MOF, no corr. −6.3± 7.4 3.6 −16.2
0.63− 0.90 MOF, no corr. −3.5± 4.1 −7.3 0.4
0.90− 1.30 MOF, no corr. −2.7± 4.7 3.6 −9.0
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FIG. 13. Ratio of tangential shear measured around troughs (cyan)
and overdense lines of sight (red), identified using different variants
of the REDMAGIC catalog. The fiducial variant is based on co-add
MAG_AUTO photometry and corrects tracer density for its correlation
with observational systematics. The top and bottom panel compare
this to REDMAGIC runs on the same photometry and multi-epoch
MOF photometry, both without correcting for the correlation with
systematics.
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sum of cosmic variance and shape noise to estimate the covari-
ance matrix, and for these the mean χ2 when evaluated with
the inverse of the estimated covariance matrix is equal, within
uncertainties, to the number of degrees of freedom. For the
additional 40 realizations that we have reserved for the pur-
pose of testing, the mean χ2 is larger by a factor consistent
with the inverse of Equation IV.1 [2, 49]. We apply this fac-
tor to our estimated covariance matrix for all following anal-
yses. We also confirm that this correction is not appropriate
when estimating the cosmic variance and shape noise parts of
our covariance independently and co-adding them in the end,
which is why we do not apply this (statistically desirable) pro-
cedure [but cf. 40, for a possible way out].

The mean data vector of all 1000 log-normal realizations
is described well by the analytical prediction of Friedrich
et al. [42]. The total χ2 of the residual of the mean vs.
the model, at our fiducial scale cuts and for the DES anal-
ysis with three source redshift bins with 208 d.o.f., eval-
uated at the input cosmology and galaxy bias and the co-
variance matrix of section IV, is 0.19, without the increase
in the diagonal of the counts-in-cells covariance discussed
in section IV C. This is well below the statistical uncer-
tainty

(√
Var [χ2

208 d.o.f ] > 20
)

and confirms that the ana-
lytical calculations used in Friedrich et al. [42] to get from
input power spectra and skewness parameters for the matter
and convergence fields to a prediction of our signals are de-
rived and implemented correctly and to sufficient precision in
our codes.

Next, we run a full likelihood analysis on the 40 reserved
realizations to check the coverage, i.e. whether the 68 per cent
confidence contour contains the input cosmology in a suffi-
cient fraction of cases. Since nuisance parameters for mea-
surement systematics are fixed to zero in these data vectors,
we only vary b, α0, α1,Ωm, σ8, and in an additional run ∆S3

in these analyses.
Figure 14 shows the resulting confidence contours. The

fraction of times that these contain the true input cosmology
(horizontal / vertical lines) is consistent with 68 per cent. This
statement is also true when adding the additional parameter
∆S3. The mean half-width of the marginalized confidence in-
tervals for (Ωm, σ8) are (0.05, 0.07) and for (Ωm, σ8,∆S3)
are (0.07, 0.10, 0.28).

We repeat the test for the (b, r) model, finding consistent
coverage for σ8 and marginally low coverage for Ωm, poten-
tially related to the asymmetry of the flat prior around r, which
is correlated with Ωm (and which cannot physically take a
value larger than 1, its true value in the log-normal simula-
tions).

Finally, to test our methodology of model comparison with
Bayes factors, we sample these likelihoods again with the
MULTINEST algorithm. We first confirm that parameter con-
straints derived from MULTINEST and EMCEE closely match
each other. We then determine ratio of Bayesian evidence be-
tween complex models and the most simple run (linear bias
with no stochasticity, ∆S3 = 0). Since the log-normal simu-
lations should be fully described by this simple model, there
should be no evidence for any more complex model. We show
in Figure 15 that this is indeed the case.

FIG. 14. Realizations of likelihoods on 40 log-normal mocks, sam-
pled with EMCEE, with the input parameters given by the dashed
black lines. The coverage of these mock likelihoods is within ex-
pectations, i.e. any input parameter lies within its marginalized 1σ
confidence interval ≈ 68 per cent of the times.
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FIG. 15. Model comparison based on the Bayes factor, i.e. the ra-
tio of evidences of the more complex over the less complex model,
from likelihoods run on log-normal mocks. These mocks contain
no stochasticity and no ∆S3 and hence should not favor the more
complex models. Dotted and solid vertical lines indicate the Jeffreys
scale for substantial and strong evidence, showing that this is indeed
the case.
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Appendix E: Mock analysis of Buzzard simulations

We repeat the steps of section D, but instead of log-normal
realizations using density split lensing and counts-in-cells sig-
nals measured on the Buzzard suite of N -body simulations.

The Buzzard simulations are a suite of mock galaxy cata-
logs built on top of dark matter only N -body simulations. We
describe only the essential details here and refer the reader to
more complete descriptions in DeRose et al. [30]. Each set of
6 Buzzard DES Y1 catalogs is generated from a combination
of 3 N -body lightcones runs using L-Gadget2, a version of
Gadget2 [99] optimized for memory efficiency. 2nd order La-
grangian perturbation theory initial conditions were generated
using 2LPTIC [24]. The lightcones were produced on the fly
as the simulations ran from boxes of volumes 10503, 26003,
and 40003 (h−1Mpc)3 and mass resolutions of 2.7 × 1010,
1.3 × 1011, 4.8 × 1011h−1M� respectively. The lightcones
are joined at redshifts 0.34 and 0.9, and arranged such that the
highest resolution simulations are used at lower redshifts.

Galaxy catalogs are produced from the dark matter light-
cones using the ADDGALS algorithm [109]. ADDGALS
uses the relation between large scale density and r-band abso-
lute magnitude determined from a subhalo abundance match-
ing [22, 65, 82] algorithm run on a high resolution N-body
simulation to place galaxies with magnitudes into a low res-
olution density field. Galaxies are then assigned SEDs from
SDSS DR7 [23] based on the distance to their fifth nearest
neighbor. DES griz fluxes are generated from these SEDs and
photometric noise is added to them using the DES Y1 depth
map. These galaxies are then lensed using the multiple plane
raytracing algorithm CALCLENS [6] which uses a spherical
harmonic transform Poisson solver allowing for curved sky
boundary conditions. Two different versions of ADDGALS
were used to create the catalogs referred to as Buzzard-v1.1
and Buzzard-v1.6 below. The main differences come from
changes to the assumed luminosity function of galaxies, the
evolution of the red fraction of galaxies with redshift and the
use of different depth maps to produce photometric noise.

In order to obtain a simulated REDMAGIC galaxy sample,
we run the REDMAGIC algorithm on the simulations with the
same configuration as the data, yielding very similar photo-
metric redshift and clustering properties to those found in DES
Y1. A METACALIBRATION like sample is created by making
signal to noise cuts in order to approximate the source density
found in the data.

While the true input cosmology is known and identical be-
tween versions 1.1 and 1.6 of the Buzzard mock catalogs, their
model for early-type galaxy SEDs vary, and thus the RED-
MAGIC selection is not the same. Consequently, we can-
not use the values for bias and stochasticity parameters de-
termined in Friedrich et al. [42, their sections 4.3.1 and 4.3.2]
for version 1.1 as truth inputs for version 1.6. We repeat the
analysis performed there to find that REDMAGIC galaxies in
z = 0.2 − 0.45 have a somewhat larger bias and stochastic-
ity in version 1.6 (b, α0, α1 = 1.72, 1.36, 0.29) than in version
1.1 (b, α0, α1 = 1.54, 1.26, 0.29). The same is true in the sim-
pler parametrization with (b, r = 1.84, 0.96 vs. 1.62, 0.96).
We note that the finding that these galaxies in the Buzzard-

v1.6 simulation show large-scale stochasticity is in line with
the analysis of MacCrann et al. [67].

The masks of the Buzzard-v1.1 simulations cover a some-
what smaller sky area (cf. Friedrich et al., their fig. 1) than
the full DES-SPT footprint (cf. Figure 1). We therefore gen-
erate a separate covariance matrix for Buzzard-v1.1 by cutting
the mask of the FLASK realizations accordingly and repeat-
ing the procedure of section IV B. The larger galaxy bias in
Buzzard-v1.6 causes a larger cosmic variance than the one de-
rived in section IV for Buzzard-v1.1 parameters. We account
for this by simply re-scaling the Buzzard-v1.6 covariance ma-
trix by a factor 1.05 that brings the mean χ2 of the Buzzard-
v.1.6 and v1.1 simulations to agreement.

We split the survey area by density and measure counts-
in-cells and lensing signals in Buzzard-v1.1 and Buzzard-
v1.6 mock catalogs as described in section II. As source
galaxies, we use the approximated lensing source sample
described above. For source redshift tomography, we de-
fine three bins based on BPZ redshift expectation values at
zs = 0.43 − 0.70, 0.70 − 0.78, 0.92 − 1.30 in v1.1 and
zs = 0.43 − 0.66, 0.66 − 0.76, 0.76 − 1.00. These limits
were defined such that the mean true redshift matches that of
the three highest redshift source bins in Hoyle et al. [54]. In
measuring tangential shear profiles, we use true shear infor-
mation from raytracing inBuzzard [5]. Shape noise is added
at the level of the data vector using measurements of den-
sity split lensing made with randomly rotated source galaxy
catalogs on DES Y1 data itself that were not used for esti-
mating the covariance matrix (section IV A). We generate 62
data vectors in total, 28 (7 different shape noise realizations
each) based on the 4 Buzzard-v1.1 N -body mocks and 34 (2
different shape noise realizations each) from 17 Buzzard-v1.6
mocks. Caution must be taken in interpreting results, espe-
cially on coverage, due to the fact that these realizations are
not completely independent.

For a test of our model and the covariance matrix, we
predict the signal, using the model of Friedrich et al. [42],
with the true input parameters for cosmology and the directly
measured parameters for the b, α0, α1 model of galaxy bias-
ing. In this, we use the mean true redshift distributions of
REDMAGIC and lensing source galaxies, and the mean RED-
MAGIC counts in the v1.1 or v1.6 sets of Buzzard simula-
tions. For the source bias of the lowest redshift bin, we assume
bs1 = 0.5.

From the residuals of this model relative to the 62 real-
izations with 208 data points each, we generate the statistics
shown in Figure 16. The distribution of χ2 is consistent with
expectations (left panel). The root-mean-square of individual
data point residuals in units of the expected standard devia-
tion according to the covariance matrix is slightly larger than
unity, but by less than 5 per cent (right panel). We have con-
firmed that in the case of the Buzzard-v1.1 simulations it is in-
deed consistent with unity, and suspect that the small increase
in Buzzard-v1.6 might be due to the larger cosmic variance
caused by the increased REDMAGIC galaxy bias, which we
have not fully accounted for in the covariance matrix (see dis-
cussion above). There is thus no apparent non-Gaussianity in
the distribution of residuals [but cf. 90]. These statistics look
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FIG. 16. Residuals of measurements of lensing and counts-in-cells
signal in Buzzard relative to model evaluated at true parameters of
the simulations. Top panel: χ2 of each realization with 208 entries
in the data vector. Bottom panel: Residuals of individual data points
in units of their expected standard deviation. Black lines indicate
expected distributions. The figures use 62 realizations based on 21
independent N-body mocks from the Buzzard-v1.1 and v1.6 runs, to
which different realizations of Y1 METACALIBRATION shape noise
were added.

very similar when using the b, r instead of the b, α0, α1 model,
i.e. the prediction evaluated at the true cosmology and directly
measured stochasticity is a good fit to the simulations.

For a test of our inference methodology, we run mock like-
lihood chains on these Buzzard realizations, with Ωm, σ8, b,
stochasticity parameters, and galaxy bias of sources in the
lowest redshift bin bs1 as free parameters. All other param-
eters are fixed to their input values, and we use true redshift
distributions for the predictions.

Figure 16 shows the most relevant run, of the fiducial
b, α0, α1 biasing model on the 17 independent Buzzard-v1.6
realizations with 2 independent versions of shape noise each.
Coverage of cosmological parameters is within expectations
for 17 independent realizations (58 per cent for Ωm, 62 per
cent for σ8). We find a mean source bias of bs1 = 0.62.

For the b, r model, in contrast, coverage of σ8 is low (only
18 per cent) because σ8 is biased high (with the best fit being
0.93 on average, significantly above the true input 0.82). We

FIG. 17. Realizations of likelihoods on 34 mock realizations based
on the Buzzard-v1.6 catalogs with the true parameters given by the
dashed black lines. The coverage of these mock likelihoods is within
expectations, i.e. any input parameter lies within its marginalized 1σ
confidence interval ≈ 68 per cent of the times. Likelihoods are sam-
pled with MULTINEST, which is a significant improvement in speed.
While the appearance is more patchy, results are consistent with long
EMCEE chains, as we have checked from a subset of dual runs on
identical simulations.

confirm that this is not only caused by the asymmetry of the
allowed parameter range around the directly measured r =
0.96: allowing linear extrapolation of the model to r > 1 still
yields a coverage of only 33 per cent in σ8. We also confirm
that the same low coverage is found regardless of whether we
use EMCEE or MULTINEST as a sampler.

Some understanding might be gained from the Bayesian
model comparison we perform in Figure 18. While the Buz-
zard simulations should not prefer a model with free ∆S3, it
is up to tests like this to determine what level of complex-
ity is needed to describe the stochasticity in the galaxy count
distribution. Notably, in some cases the b, α0, α1 model is
strongly preferred to the b, r model, and in one case the b, r
model prefers the introduction of ∆S3 as a free parameter,
potentially to compensate for the excess skewness in a galaxy
count distribution with density-dependent stochasticity. Both
could be an indication of density dependent stochasticity actu-
ally being present in Buzzard-v1.6. In this case, the high bias
of σ8 in the b, r model seen in the coverage tests could be a
partial compensation of the missing variance.

We conclude that the b, α0, α1 model is required for de-
scribing the galaxy distribution in Buzzard-v1.6 sufficiently
well. In this framework, the coverage test and model com-
parison test for adding ∆S3 as a free parameter have results
that are within expectations for a reliable inference scheme.
Whether or not the complexity in Buzzard is realistic or
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FIG. 18. Model comparison based on the Bayes factor, i.e. the ra-
tio of evidences of the more complex over the less complex model,
from likelihoods run on Buzzard-v1.6 mocks. These mocks contain
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FIG. 19. χ2 of comparing Buzzard realizations of the data vector to a
model of the signal in which the skewness of the matter density field
was set to 0, i.e. the smoothed matter density field was assumed to
be Gaussian. In all realizations, the Gaussian model is excluded at
more than 3σ.

caused, in part, by peculiarities of the simulations (such as the
stitching of simulation boxes or the placement of galaxies) is
not clear at this point [see also 67].

Finally, we test how well the Buzzard realizations of our
data vector are fit in a model in which the smoothed matter
field δm,T is assumed to be Gaussian with the variance pre-
dicted by the power spectrum, i.e. to have no skewness. This
is a model that provided a reasonable fit to the data in Gruen
et al. [48]. Figure 19 shows the χ2 of the residuals of data and
Gaussian model, where we have used true cosmology and di-
rectly measured galaxy bias (b, α0, α1) parameters for the lat-
ter. Even for the least χ2 among the 62 realizations, the large
χ2 allows us to exclude the Gaussian model at p < 0.001.

Appendix F: Clustering constraints on source and lens redshift
distributions

For both our REDMAGIC tracer population and our lensing
source galaxies, we calibrate the mean value of redshift dis-
tributions using clustering redshifts. In these, excess angular
correlations with thinly-sliced spectroscopic or spectroscopic-
like samples are used to determine the redshift distributions
[15, 27, 28, 45, 72, 74]

For the case of DES Y1, this calibration and its systematic
uncertainties are described in Cawthon et al. [15], Davis et al.
[28], Gatti et al. [45]. Here, we give the missing details rel-
evant to the specific tracer galaxy selection in DES and the
tracer and source samples in SDSS not described in those pa-
pers.

1. REDMAGIC galaxies

We perform a clustering redshift analysis to assess the ac-
curacy of the REDMAGIC photometric redshift algorithm. In
this, we follow the same techniques as described in Cawthon
et al. [15], yet with a different redshift cut on the redMaGiC
sample.

We cross-correlate the SDSS and DES redMaGiC high den-
sity sample, selected by the photometric estimate zred =
0.2− 0.45, with the BOSS spectroscopic samples LOWZ and
CMASS [29]. The clustering redshift measurement follows
the method described in Schmidt et al. [88], using physical
scales of 0.5 to 1.5 Mpc. Statistical error estimates are from
jackknife resampling.

As described in Cawthon et al. [15], the main systematic
to this measurement is the redshift evolution of the galaxy
bias of the two samples across the redshift bin. We can mea-
sure the evolution of the spectroscopic samples using auto-
correlations. The amplitude of the autocorrelations of RED-
MAGIC though will be impacted by photo-z errors. Results in
Cawthon et al. [15] suggest that the quantity bl

√
wmm, where

bl is the galaxy bias of REDMAGIC and wmm is the autocor-
relation of the matter density on the scales we measure, shows
very little evolution with redshift for REDMAGIC. We param-
eterize the galaxy bias evolution with bl

√
wmm ∝ (1 + z)γ .

In Cawthon et al. [15], we assumed that γ is in the range
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FIG. 20. Comparison of the distribution of DES (left panel) and SDSS (right) redMaGiC photometric redshifts with the estimated redshift
distribution from clustering using SDSS DR12 LOWZ and CMASS as a reference sample. By shifting the photo-z distribution to fit the mean
of the clustering estimate, we estimate the photometric bias to be ∆z = 0.003± 0.008 (DES) and ∆z = 0.002± 0.006 (SDSS).
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FIG. 21. Clustering measurements on a subset of the SDSS lens sam-
ple that has spectroscopic measurements. (79, 583, 4.9% of the full
sample.) The clustering measurement contains a correction for the
evolution of galaxy bias, γ = −1.4 which best fits the true redshift
distribution mean. This subsample gives a photo-z bias of -0.0015.

0.0 ± 2.0, but found that is shows less spread around 0 for
wider redshift bins. Since the redshift range zT = 0.2− 0.45
used in this work is significantly wider than that used in the
bins of Cawthon et al. [15], we assume γ = 0 ± 1.5 here.
These choices of γ range broadly fit the various estimates of
γ from the auto-correlations of REDMAGIC on the full DES
sample, the Stripe 82 sample which contains the galaxies that
overlap with BOSS, and simulations as measured in Cawthon
et al. [15].

After the galaxy bias correction is selected, the clustering
measurement is also narrowed to ±2.5σ around the mean of
the clustering redshift distribution estimate, with σ being the
standard deviation of that estimate. This cut is indicated in
Figures 20 and 21. This is done since the clustering measure-

TABLE V. Cross Correlation Estimates of Photo-z bias on RED-
MAGIC

Sample ∆z δ∆z (syst) δ∆z (stat)
DES 0.003± 0.008 0.006 0.005
SDSS 0.002± 0.006 0.006 0.001

ment can be noisy and biased where the signal is low. We then
fit for a single photometric bias parameter, ∆z = z − zphot,
where z is the clustering redshift mean and zphot is the pho-
tometric redshift mean over the redshift range selected by the
±2.5σ cut.

The results of this analysis are shown in Table V and Fig-
ures 20. The measurement on DES REDMAGIC can only be
done on a subsample of 20,347 galaxies in Stripe 82, which
has overlap with the BOSS spectroscopic samples. For this
reason, the statistical uncertainty on the DES measurement is
significantly larger than on SDSS REDMAGIC. For both sam-
ples, the dominant systematic error is the uncertainty in the
REDMAGIC galaxy bias evolution parameterized by γ. The
uncertainty in γ of±1.5 leads to approximately an uncertainty
of ∆z of ±0.006. Figure 21 shows the cross correlation red-
shift estimate using just a subsample of SDSS REDMAGIC
that has spectra. This is a biased sample that is brighter and
likely has a different photo-z bias and galaxy bias, though it
appears to confirm some similar trends seen in Figure 20, such
as a lower galaxy density around z = 0.4 and higher density
around z = 0.3 compared to the photo-z code.

2. SDSS source galaxies

We measure the excess angular clustering from 500 to 1500
kpc between SDSS source galaxies selected and weighted as
in section II C 2 and the SDSS DR12 spectroscopic galaxy
sample. This method is similar to that detailed in Ménard
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FIG. 22. Redshift distribution of combined SDSS samples as
measured by photo-z (solid line) and clustering (points) with SDSS
DR12 spectra Alam et al. [1]. The photo-z is calibrated with a mean
redshift offset of ∆z = −0.014 ± 0.011, while the clustering esti-
mates are calibrated with a bias evolution model of bPZbspectra ∝
(1 + z)γ with γ = −2.0± 0.6.

et al. [72]. Statistical errors in clustering-z are estimated by
jackknife resampling. We find that reliable clustering sig-

nal can only be recovered over a subset of the sample, from
0.32 < z < 0.80, but this is sufficient to calibrate the photo-
z distribution with our method, where we assume the shape
of the source n(z) is correctly estimated by photo-z and only
determine its shift. More details for the calibration procedure
may be found in Davis et al. [28] as well as in Gatti et al. [45]
and Cawthon et al. [15].

We fit a relative redshift bias, z → z − ∆z in the photo-
z distribution, and parameterize the clustering bias evolu-
tion in the clustering-z as a power-law with free exponent,
bPZbspectra ∝ (1 + z)γ . As we found in Gatti et al. [45]
we expect that systematic uncertainties in modeling the un-
derlying bias evolution to dominate over our statistical un-
certainties. Systematic uncertainties in Gatti et al. [45] are
of the order σ∆z ≈ 0.01, while our statistical uncertainty is
σ∆z = 0.002. In quadrature, these combine to be an uncer-
tainty of σ∆z = 0.011. We find ∆z = −0.014 ± 0.011 and
γ = −2.0 ± 0.6, indicating only a marginal preference for a
mean offset in redshift, and moderate combined bias evolu-
tion. We note that the bias evolution measured is the product
of the bias evolutions of the lens and source samples, and so
the bias evolution measured here will likely differ from the
calibration of the lens bin even though both use the same ref-
erence galaxies and scales.
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