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We present and compare several cosmological constraints on the cross section for elastic scattering
between dark matter (DM) and baryons, for cross sections with a range of power-law dependences on
the DM-baryon relative velocity v, especially focusing on the case of σ ∝ v−4. We study constraints
spanning a wide range of epochs in cosmological history, from pre-recombination distortions to the
blackbody spectrum and anisotropies of the cosmic microwave background (CMB), to modifications
to the intergalactic medium temperature and the resulting 21cm signal, and discuss the allowed
signals in the latter channels given the constraints from the former. We improve previous constraints
on DM-baryon scattering from the CMB anisotropies, demonstrate via principal component analysis
that the effect on the CMB can be written as a simple function of DM mass for v−4 scattering,
and map out the redshifts dominating this signal. We show that given high-redshift constraints on
DM-baryon scattering, a v−4 scaling of the cross section for light DM would be sufficient to explain
the deep 21cm absorption trough recently claimed by the EDGES experiment, if 100% of the DM
scatters with baryons; we estimate the minimal necessary velocity scaling and find that it is close to
v−4. For millicharged DM models proposed to explain the observation, where only a small fraction
of the DM interacts, we estimate that a PIXIE-like future experiment measuring CMB spectral
distortion could test the relevant parameter space.

I. INTRODUCTION

Scattering between the visible matter and its dark-
matter (DM) counterpart could potentially imprint a
wide range of modifications on observational probes of
the early universe. In particular, DM-proton or DM-
electron scattering prior to recombination will generi-
cally (1) modify the evolving small-scale perturbations,
leaving imprints on the temperature and polarization
anisotropies of the cosmic microwave background (CMB)
[1–5], and (2) slightly cool or heat the visible matter, re-
sulting in a spectral distortion to the CMB blackbody
spectrum [6]. At later times, the same heating or cooling
processes could modify the thermal evolution of the bary-
onic matter, and in turn alter the absorption or emission
of 21cm photons. After reionization, the Lyman-alpha
forest provides an even lower-redshift probe of the gas
temperature.

This possibility has recently garnered great interest
due to the claimed detection of an enhanced 21cm ab-
sorption feature from z ∼ 15 − 20, by the EDGES ex-
periment [7]. It was quickly pointed out that such en-
hanced absorption could be due to a lower-than-expected
gas temperature, which in turn could originate from DM-
baryon scattering [8]. In order to evade other constraints,
it has been proposed that the DM-baryon scattering
cross section could have a large velocity dependence, e.g.
σ ∝ v−4. This would lead to a strong signal at the
end of the cosmic dark ages, while suppressing scattering
at large redshifts where thermal velocities are higher, as
well as within Galactic halos where gravitational poten-
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tial wells increase the velocity dispersion.

Several authors [9–11] have considered the possibility
of DM possessing some small electric millicharge, which
would ensure a cross-section of this v−4 form from the
scattering due to the Coulomb interaction (analogous to
Rutherford scattering). In this case, only a small frac-
tion of the DM should be millicharged, in order to evade
constraints from the early universe and the distribution
of DM in the present day. These works have identified a
nominally allowed region of parameter space, capable of
producing a low enough gas temperature to generate the
EDGES absorption signal, for 10-80 MeV millicharged
DM, comprising 0.3 − 2% of the DM, and with a mil-
licharge in the 10−4 − 10−6 range.

We note that there are other possible explanations for
the EDGES claim, even if foreground and instrumental
effects are excluded:

• Additional radiation backgrounds in the relevant
frequency range could enhance 21cm absorption
[12], in lieu of a low gas temperature. These back-
grounds could potentially originate either from a
DM-related source [13, 14] or from astrophysical
objects such as black holes (e.g. [15, 16]).

• A lowered gas temperature could in principle be
achieved by a mechanism other than scattering off
a colder thermal bath; e.g. any phenomenon that
causes the baryons and CMB to decouple earlier
than expected will lower the late-time gas temper-
ature [17–19].

• Modifications to the evolution of the Hubble pa-
rameter could also alter the absorption signal, e.g.
through interacting dark energy [20], although the
required change to H(z ∼ 20) is quite large.
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Finally, the DM-baryon scattering cross section could be
enhanced at low redshift / suppressed at high redshift by
mechanisms other than velocity dependence; for example,
if the scattering component is absent at early times but
produced at late times through decays or oscillations.

In this work, however, we will focus on adapting,
understanding, and extending the existing cosmological
constraints on velocity-dependent scattering, and testing
their compatibility with the EDGES signal. We leave
other directions for future studies.

We present constraints on DM-baryon scattering from
measurements of the CMB anisotropy spectrum, follow-
ing Ref. [5], for the cases of σ ∝ vn with n = 0 and
n = −4. We study the effect on the constraints of adding
high-` data from ACT and SPT, and find a modest im-
provement in the limits for n = −4, with a more pro-
nounced improvement for n = 0. We determine which
redshifts contribute most strongly to the signal for n = 0
and n = −4, by considering turning on scattering for
limited redshift ranges, and validate a Fisher-matrix ap-
proach to estimating the detectability of scattering. We
perform a principal component analysis and confirm the
suggestion of Ref. [5] that the mass dependence of the
constraints can be parameterized in a simple way for
n = −4 scattering; we quantitatively estimate the er-
ror in this parameterization to be at the percent level.
Such a parameterization is also valid for n = 0 scatter-
ing at masses above ∼ 0.1 GeV, but breaks down at low
masses, as we will discuss.1 Again using principal com-
ponent analysis, we provide a basis of redshift-dependent
scattering histories with orthogonal effects on the CMB
(after marginalization over the other cosmological param-
eters), which can be used to estimate constraints on gen-
eral scattering histories.

Assuming that 100% of the DM scatters on baryons
with the given cross section, we compute the maximum
modification to the low-z gas temperature consistent with
the cosmological constraints for n = 0 and n = −4. We
find that at z = 17, the maximum temperature decrease
for n = 0 scattering is below 10−3 K, and can thus safely
be neglected; however, for n = −4 scattering, changes in
the gas temperature of several K at z ∼ 17 can indeed be
consistent with the CMB constraints – at least within our
current approximations – for light DM with mass below
1 GeV.

We then examine constraints on DM-baryon scattering
from spectral distortions of the CMB blackbody, follow-
ing the methodology of [6] (which considered scattering
with n ≥ −2). We go beyond the approximations of
[6] in order to estimate constraints from FIRAS and the
sensitivity of a future PIXIE-like experiment for n = −4
scattering.

While these constraints are nominally weaker than

1 We thank Vera Gluscevic for valuable discussions which clarified
our understanding of this point.

those from the CMB anisotropies, they measure the en-
ergy losses from the photon-baryon fluid due to scatter-
ing with DM, and so can still provide non-negligible con-
straints on a small fraction of the DM interacting with
baryons (or photons), in the same way that a small frac-
tion of the DM interacting with the gas could cool the gas
at late times. In the regime where the perturbation to the
DM temperature for the interacting component is small,
the fraction of DM that interacts is degenerate with the
DM-baryon scattering cross section. Thus this bound can
be used to constrain the scenario of a subdominant mil-
licharged component, in contrast to the constraints from
the CMB anisotropies, which we expect to become invalid
if the scattering component is too small. In particular,
if the scattering component is smaller than the uncer-
tainties in the DM and baryon abundances, it is difficult
to see how it could be constrained by the CMB; for very
large cross sections leading to tight coupling between this
scattering component and the baryons, it could appear
simply as a slight increase in the overall baryon abun-
dance [10].

Furthermore, if the scattering component is indeed mil-
licharged, its scatterings with visible matter at z ∼ 17
are only with the small ionized fraction of the gas,
xe ∼ 2 × 10−4, whereas at redshifts prior to recombina-
tion relevant for spectral distortions (103 < z < 106), the
ionization fraction is close to 1. Consequently, we esti-
mate that near-future experiments could have sensitivity
to the region of parameter space relevant to EDGES, in
the scenario where a small fraction of DM is millicharged.

Finally, for completeness, we review constraints from
the gas temperature after reionization, and compute new
limits for the case of n = −2; however, these constraints
are in general weaker than the others we consider.

The paper is organized as follows. In Sec. II, we re-
view the formalism to compute the modified evolution of
cosmological perturbations and temperature in the pres-
ence of DM-baryon scattering, in particular for scatter-
ing cross sections with a power-law dependence on the
relative velocity. In Sec. III, we revisit, explore and
extend the limits on DM-baryon scattering from CMB
anisotropies. In Sec. IV we discuss the implications of
these constraints for cooling of the inter-galactic medium
(IGM) by DM-baryon scattering during the cosmic dark
ages, and also review limits from changes to the IGM
temperature after reionization. In Sec. V we discuss spec-
tral distortions to the CMB from DM-baryon scattering,
and extend previous constraints to the case of σ ∝ v−4

and models where a small fraction of DM carries electric
millicharge. We conclude the paper in Sec. VI.

II. FORMALISM

We briefly review the effects of DM-baryon scattering
on temperature and perturbation evolution in this section
(for further details see Ref. [2]). For each Fourier mode
with wavenumber k, we solve the evolution equations
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for the DM (denoted χ) and baryon (denoted b) den-
sity fluctuations (δχ and δb) and velocity divergences (θχ
and θb). We work in synchronous gauge, but introduce
the velocity divergence θχ that represents a nonzero pe-
culiar velocity for DM, arising from the interaction with
baryons. We must also take into account the evolution of
the DM and baryon temperatures, denoted Tχ and Tb re-
spectively; when the DM is light and the self-interaction
cross section is substantial then Tχ can be non-negligible.

The CMB power spectra in the presence of DM-baryon
interactions are governed by the following sets of equa-
tions [21]:

δ̇χ = −θχ −
ḣ

2
,

δ̇b = −θb −
ḣ

2
,

θ̇χ = − ȧ
a
θχ + c2χk

2δχ +Rχ (θb − θχ) ,

θ̇b = − ȧ
a
θb + c2bk

2δb +Rγ (θγ − θb)

+
ρχ
ρb
Rχ (θχ − θb) ,

θ̇γ = k2

(
1

4
δγ − σγ

)
− 1

τc
(θγ − θb). (1)

where cχ and cb are the sound speeds (for DM/baryons
respectively) defined by:

c2b =
kBTb
µb

(
1− 1

3

d lnTb
d ln a

)
,

c2χ =
kBTχ
mχ

(
1− 1

3

d lnTχ
d ln a

)
, (2)

In these equations, h is the trace of the metric per-
turbation, σγ describes the shear stress, τ−1

c = aneσT ,
Rγ is the Compton collision rate given by Rγ =
(4/3)(ργ/ρb)aneσT , and Rχ is the DM-baryon momen-
tum exchange rate. ne is the free electron density and
σT is the Thomson cross section, and ρX (TX) for some
species X denotes its energy density (temperature).

Suppose the scattering cross section has a power-law
dependence on redshift:

σ = σ0v
n. (3)

Then if we neglect for the moment any bulk relative ve-
locity between the DM and baryon fluids, which is a good
approximation for redshifts z > 104, and considering only
scattering on hydrogen and helium, Rχ can be written as
[5]:

Rχ =
acnρbσ0

mχ +mH

(
Tb
mH

+
Tχ
mχ

)n+1
2

FHe, (4)

where the numerical prefactor cn is given by:

cn =
2
n+5
2 Γ

(
3 +

n

2

)
3
√
π

. (5)

Here mH is the mass of hydrogen, and FHe parameterizes
the correction to the cross section due to scattering on
helium; if there is no DM-helium scattering, then FHe =
1 − YHe ≈ 0.76, where YHe ≈ 0.24 is the helium mass
fraction.

The temperature evolution for the two populations is
governed by the equations [2, 21]:

Ṫχ = −2
ȧ

a
Tχ +

2mχ

mχ +mH
Rχ (Tb − Tχ) ,

Ṫb = −2
ȧ

a
Tb + 2

µb
me

Rγ (Tγ − Tb)

+
2µb

mχ +mH

ρχ
ρb
Rχ (Tχ − Tb) . (6)

Here µb is the mean molecular weight for the baryons,
µb = mH(nH + 4nHe)/(nH + nHe + ne).

The evolution of DM temperature, and the time at
which the DM temperature deviates from the baryon
temperature, depends on n. For larger n, DM and
baryons are coupled with each other early on, but after
the scattering rate becomes smaller than the Hubble rate,
the DM cools adiabatically with the expansion of the uni-
verse. For example, for n = 0, the DM-baryon scattering
time scale tDB ≡ (a/Rχ) (mχ +mH)/mχ sets the decou-
pling temperature. For this case, we will approximate
the DM temperature to be the baryon temperature when
HtDB > 1, and assume the DM is non-relativistic and so
cools adiabatically with v ∝ 1 + z after decoupling.

For n = −4, this approach fails because the scatter-
ing timescale is always longer than the Hubble time at
high redshifts (at least within the redshift range we con-
sider). As a calibration point, we can consider the DM
temperature at late times if the DM also possesses an an-
nihilation channel which yields the correct thermal relic
density; in this case, the decoupling redshift is set by
the thermal freezeout condition, H(z) = (ρχ/mχ)〈σv〉,
where 〈σv〉 ∼ 10−26cm3/s. For the DM mass range
we consider, this condition leads to extremely low DM
temperatures at z < 106, until the DM recouples to the
baryons via the scattering interaction. Therefore we will
set the DM temperature Tχ to be 0 K initially, and solve
the Boltzmann equations with that initial condition.

Throughout this work, unless specifically noted oth-
erwise, we will neglect scattering on helium and take
FHe = 0.76. If helium-DM scattering were to be included,
we would need to make the following modifications:

• FHe would be given by [2]:

FHe = 1− YHe + YHe×

σHe

σH

mH +mχ

4mH +mχ

(
Tbmχ + TχmH

Tbmχ + 4TχmH

)(n+1)/2

. (7)

For example, for spin-independent, isospin-
independent scattering we expect σHe/σH ≈
2µ2

χHe/µ
2
χH [5], and so σHe/σH ≈ 2 for mχ � mH .
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• In the temperature-evolution equations, Rχ should
be replaced by [2]:

R′χ ≡ Rχ
[
1 +

3mH

mχ + 4mH

(
1− YHe

FHe
− 1

)]
(8)

Since FHe > 1−YHe, including helium always reduces the
effective DM-baryon interaction coefficient in the tem-
perature evolution equations, compared to the coefficient
relevant for the evolution of the perturbations; we thus
expect models with DM-helium scattering to give rise to
a lower temperature distortion for a given modification
to the CMB anisotropy spectra.

When the baryon-photon fluid is tightly coupled at
early times, the perturbation equations can be expanded
in powers of τc [5, 21], yielding:

θ̇b =
1

1 +R+ βR

(
− ȧ

a
θb + c2bk

2δb +Rk2

(
1

4
δγ − σγ

)
+RṠbγ +Rβ

(
ȧ

a
− τ̇χ
τχ

)
(θχ − θb)

+
S

τχ
(θχ − θb) +Rβθ̇χ

)
,

θ̇γ = − 1

R

(
θ̇b +

ȧ

a
θb − c2bk2δ2

b

)
+ k2

(
1

4
δγ − σγ

)
+

S

Rτχ
(θχ − θb) , (9)

where

R =
4ργ
3ρb

,

S =
ρχ
ρb
,

β =
S

1 +R

τχ
τb

(10)

and τχ = R−1
χ , and Sγb = θγ − θb describes the standard

photon-baryon slip.
In order to numerically compute the change in the

CMB anisotropy spectra, we modify the public code
CLASS [22] to take into account DM-baryon scattering,
via the equations of this section.

In principle one could also expand the temperature
evolution in τ−1

c in the presence of DM-baryon scatter-
ing to track the separate evolution of Tb and Tγ in the
early universe. We do not modify the standard CLASS
treatment which sets the two temperatures equal well
before recombination; we expect this approximation to
have negligible effect.

III. CONSTRAINTS FROM ANISOTROPIES OF
THE COSMIC MICROWAVE BACKGROUND

The CMB anisotropy spectrum can be used to set
stringent constraints on interactions between DM and

the known particles. For example, DM annihilation (e.g.
[23–27]) or decay [28–31] to SM particles can inject en-
ergy into the photon-baryon fluid between recombination
and reionization, heating and ionizing the hydrogen gas
and changing the CMB anisotropy spectrum accordingly.

The primary effect of DM-baryon scattering is differ-
ent; if the DM has non-negligible interactions with the
photon-baryon plasma during some epoch, then the pres-
sure from the plasma will reduce the growth of DM over-
densities at that redshift. Modes that are within the
horizon and growing during this epoch will experience a
suppression in their growth relative to the standard cal-
culation, while longer-wavelength modes that enter the
horizon later will be less affected. This leads to a suppres-
sion of small-scale power in the matter power spectrum
and modifications to the CMB temperature and polariza-
tion anisotropies, which can be tested against data and
constrained.

The effects of DM-baryon scattering on the CMB
have been worked out by several authors, for example
Refs. [2–5, 21, 32]. Most recently, Ref. [3] has computed
the limit on velocity-independent scattering from Planck
2015 data [33] for keV – TeV DM, with Refs. [3–5] study-
ing velocity-independent and velocity-suppressed (n > 0)
scattering cross sections for DM masses in the keV-TeV
range, and scattering cross sections enhanced at low ve-
locities (n = −4,−2) in the MeV-GeV range. Since the
effect on the CMB is dominated by small scales, we will
investigate the impact of including ACT/SPT data to ex-
tend the analysis up to `max = 5000, in particular for the
n = −4 case where limits from Lyman-alpha have been
found to be subdominant to the CMB bounds [5] .

One assumption we made when deriving the CMB per-
turbations in Sec. II is that the DM-baryon relative bulk
velocity Vrms is small compared with the thermal veloc-
ity, so that the scattering coefficient Rχ is approximately
independent of the velocity divergences θb and θχ. The
rms value of this relative velocity is given by [34]:

V 2
rms =

∫
dk

k
∆ζ

(
θb − θχ
k

)2

. (11)

where ∆ζ is the primordial curvature perturbation ∼
2.4 × 10−9 per log k. Thus a full treatment of this ef-
fect would require accounting for the presence in Rχ of
the θ functions for different k-modes, leading to coupled
evolution between modes with different k.

In order to avoid the necessity of treating coupled k-
modes in the low-redshift regime where Vrms is important,
we follow Ref. [2], which made the replacement:

Rχ →
acnρbσ0

mχ +mH

(
Tb
mH

+
Tχ
mχ

+
V 2

rms

3

)n+1
2

FHe, (12)

where Vrms is estimated as:

V 2
rms ≈

{
10−8 z > 103

10−8
(

1+z
103

)2
z ≤ 103.

(13)
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Ref. [2], argues that this “mean-field” approach is valid
for z > 104, so can be used for scattering models where
the signal is dominated by z > 104. For models that are
strongly enhanced at low velocities, n < −2, the signal
may peak at low redshifts, but in that case this treat-
ment should be conservative, in the sense that a more
detailed treatment would be likely to yield even stronger
constraints. We will later discuss alternative treatments
of the DM-baryon relative velocity in the context of late-
time cooling of the baryons through scattering.

A. Results with and without ACT/SPT data

The limits on scattering from Planck 2015 data for
n = 0 and n = −4 are shown in Fig. 1. These limits were
computed using the MCMC code MontePython [35] and
the full Planck 2015 likelihood (TT + TE + EE, low-`
and high-`, using lensed C`’s and the lensing likelihood)
[36], floating all six standard cosmological parameters in
addition to the scattering cross section. We do not con-
sider here constraints from Lyman-α data, but previous
studies have found that these constraints are important
for the n = 0 case, but subdominant for n = −4 scat-
tering [5]. In the n = −4 case we compare our MCMC
results to a simple mass-scaling relationship suggested by
[5], with the limiting cross-section σ0 ∝ 1+mχ/mH , and
find good agreement.

To include ACT/SPT high-` data, covering the range
from ` ∼ 1500 − 5000, we employ the 2013 ACT/SPT
likelihoods [37–39] as implemented in MontePython, in
addition to the Planck TTTEEE likelihood.

We find that adding these data improves the limit by
about 10% for the n = −4 case (and about a factor of
2 for n = 0, albeit the Lyman-alpha constraints [5] are
still stronger in this case), in a largely mass-independent
way. In Fig. 2 we plot the modifications to the CMB tem-
perature anisotropies (holding cosmological parameters
constant at their ΛCDM best-fit values for this demon-
stration; they are floated in the likelihood scan) for the
maximum cross section allowed by Planck.

B. Testing linearity

In the case of exotic energy injections, the effect on the
CMB anisotropies is approximately linear in the energy
injection [40]. Therefore, the effect of a general energy
deposition history can be described in terms of a lin-
ear combination of basis energy deposition histories, and
we can use Fisher forecasting and principal component
methods to accurately estimate the effects of arbitrary
energy injection histories. In this section, we demon-
strate that a similar statement can be made for the ef-
fects of scattering (in particular n = −4 scattering) on
the CMB anisotropies.

One simple test of linearity is the degree to which the
change in the anisotropy power spectrum, δC`, is linear
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FIG. 1: 95% confidence upper limits on the DM-baryon scat-
tering cross section σ = σ0v

n, computed using MontePython,
for (upper panel) n = 0 and (lower panel) n = −4. For black,
solid lines labeled “Planck” the Planck 2015 TTTEEE likeli-
hood is employed; for blue, dashed lines labeled “ACT/SPT”
the 2013 ACT and SPT likelihoods are added. Dots indicate
MCMC results. In the upper panel, these dots are joined
by straight lines; in the lower panel, the line follows the
σ0 ∝ 1 +mχ/mH scaling suggested in Ref. [5].

with respect to the DM-baryon scattering cross section.
At sufficiently large cross sections linearity will necessar-
ily break down, but we find that it is a good approxi-
mation for cross sections that are not excluded by the
CMB constraints discussed in the previous section. The
δC` changes as a function of cross section are shown in
Fig. 3, for several sample multipoles. The degree of non-
linearity is smaller than 10% up to a cross section of
σ0 ≈ 10−40 cm2, for low-mass DM (below 1 GeV). An-
other test is whether the effect of scattering at two dif-
ferent redshifts is the same as the sum of the effects of
scattering at the two redshifts individually; we test this
in Fig. 4. We find good agreement, indicating that for
these cross sections and for n = −4 velocity scaling, it is
reasonable to consider the effect of scattering over a wide
redshift range as a linear combination of the individual
effects of scattering over smaller redshift ranges.

We note that linearity would be expected to break
down if the Tχ/mχ term appearing in the scattering co-
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FIG. 2: The change in the temperature power spectrum up
to ` = 5000, assuming DM mass to be 0.1 GeV, with a cross
section given by the “Planck” upper limit in Fig. 1.
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FIG. 3: Change of the CMB temperature power spectrum at
` = 100, 1500, 3000 as a function of the DM-baryon scatter-
ing cross section, for a DM mass of 0.1 GeV; cosmological
parameters are held fixed at the ΛCDM values.

efficient Rχ (Eq. 12) becomes non-negligible compared to
the Tb/mH and V 2

rms/3 contributions, in the case that the
DM temperature Tχ is itself a function of the scattering
cross section. For the case with n = −4, this is not a
concern for cold dark matter within our formalism and
the range of masses we consider; the DM-baryon scat-
tering is never coupled in the early universe, the initial
DM temperature is assumed to be very small, and conse-
quently the Tχ/mχ term is always subdominant (as also
discussed in [5]). In contrast, for n ≥ −2 the DM was
initially coupled to the baryons through scattering and
subsequently decoupled, and for sufficiently light DM, it
is possible for the Tχ/mχ term to dominate during the
redshifts relevant to the CMB. Since the DM temperature
is always less than or equal to the baryon temperature
within our framework, this behavior occurs only for DM
masses below 1 GeV.

As an example, for 10 MeV DM with a scattering cross
section of 10−25 cm2, comparable to the Planck limit for
n = 0 scattering shown in Fig. 1, the decoupling redshift
is z ∼ 5×105. We will argue in the next section that the
CMB constraints are dominated by scattering occurring
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{ HmultipoleL

∆
C

{T
T

H%
L

n = -4

z=103&104

Sum

z=104

z=103

FIG. 4: The effect on the CMB temperature power spectrum
of turning on DM-baryon scattering in a narrow redshift range
about 103 (green line), 104 (red line), and at both redshifts
(black dashed line). The cross section is set to σ0 = 2 ×
10−41

(
cm2

)
for z = 103 and σ0 = 10−41

(
cm2

)
for z = 104,

and in both cases σ = σ0v
−4 scaling is assumed. The sum

of the red and green lines is shown as the blue line; to the
degree that the problem is linear, the blue line should overlap
the black dashed line.

in the redshift range z ∼ 103 − 104. After decoupling,
the DM cools faster than the CMB by a factor of (1 + z),
so at z ∼ 103 − 104, the DM is 50-500× cooler than the
baryons. Since the DM is roughly 100× lighter than mH ,
over this epoch, the Tχ/mχ term is comparable to the
Tb/mH term (being larger initially and smaller at late
times). Both terms are also comparable to the V 2

rms/3
term.

For lighter DM, the effect of the Tχ/mχ term will be
more pronounced. The redshift factor between decou-
pling and the CMB epoch, and hence the ratio of the
CMB temperature to the DM temperature over the time

of interest, scales as m
−1/3
χ for mχ � mH ; thus the ratio

(Tχ/mχ)/(Tb/mH) scales as m
−2/3
χ . For heavier DM, the

effect will be small.

This effect is responsible for the change in the shape
of the constraints on σ as a function of mχ between the
n = 0 and n = −4 cases visible in Fig. 1. We observe that
for n = 0, the constraints continue to strengthen as the
DM mass drops further below 1 GeV, whereas for n = −4
they asymptote to a constant value. The reason is that in
the n = 0 case, when the DM temperature becomes im-
portant it increases the relative velocity between DM and
baryons, and this corresponds to an increased scattering
rate and a correspondingly lower allowed cross-section.
From the argument above, we anticipate that the devia-
tion from the naive scaling should begin to be appreciable
around mχ ∼ 10 MeV; we will confirm and quantify this
shortly.
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C. Characterizing the redshift of interest for the
CMB constraints

As discussed previously, the mechanism for distorting
the CMB through baryon-DM scattering is that trans-
fer of energy from the baryons to the DM modifies the
growth of matter perturbations, which in turn is im-
printed onto the CMB. After recombination, the decou-
pling of the photon and baryon fluids reduces or elimi-
nates the imprint of subsequent scattering on the CMB.
To see explicitly which redshifts dominate the CMB sig-
nal, we can consider turning on DM-baryon scattering
for short periods prior to recombination, and studying
the impact on the CMB; given the linearity results of
the previous section, the final signal can be estimated as
the sum of these localized-in-redshift scattering histories.
This is intended only as a means to explore the varying
effects of scattering at different redshifts – most physi-
cal models for DM-baryon scattering will have scattering
over a wide range of redshifts – but it can be quite a
good approximation to models where the scattering rate
rises steeply at low redshifts, before the signal is cut off
by recombination. In principle, velocity- or temperature-
dependent resonance effects could also enhance scattering
at particular redshifts.

As noted previously, this approach cannot always be
applied to light sub-GeV DM where the DM has previ-
ously been more strongly coupled to the baryons (as is
the case for a n ≥ −2 power-law dependence on velocity);
in this case the Tχ/mχ term in Rχ can become important
if the DM is sufficiently light, and the thermal history of
the dark matter – which in general will have been affected
by previous epochs of scattering – must be specified in
order to compute the effect on the CMB perturbations.

We consider a scattering history σ(z) starting with
σ = σ0v

−n, but then modulate this history by a redshift-

dependent Gaussian function, Gi(z) ∝ e−(z−zi)2/(2∆z2i ),
peaked at a central redshift zi and with a width param-
eter ∆zi. We choose the zi values to be linearly spaced
between z = 102 and z = 5 × 104. We choose ∆zi to
be the spacing between adjacent zi, and normalize the
Gaussians such that

∫
dzGi (z) = ∆zi (i.e. they have

the same normalization as a step function that is 1 in
the range zi ± (∆zi)/2). Thus summing together all
these modulated scattering histories approximately re-
covers the original scattering history.

We calculate the perturbation to the CMB anisotropy
spectra for each choice of zi as discussed earlier. Note
that for the n = 0 case, we must make a decision as to
what initial conditions to impose on the DM tempera-
ture for each modulated scattering history. Two simple
options are (1) set the initial DM temperature Tχ = 0 (as
in the n = −4 case), (2) assume that there was an earlier
period of n = 0 scattering that coupled the DM tem-
perature to the baryon temperature until the scattering
timescale became comparable to the Hubble time.

The latter prescription ensures that the DM tempera-
ture in each of the modulated scattering histories is sim-

ilar to the DM temperature at the same redshift in the
combined history. This is appropriate when decompos-
ing a full n = 0 history into individual redshift slices,
but it means that a general redshift-dependent scatter-
ing history (which could lead to a very different thermal
history) cannot generally be decomposed into a linear
combination of these modulated histories. Likewise, for
n = 0 and light DM, where the problem is not expected
to be linear, the relative effects of scattering at different
redshifts will in general depend on the assumed cross sec-
tion for the baseline scattering history (since this sets the
time of decoupling), if the second approach is taken. The
first prescription tends to ensure a very low DM temper-
ature at all times, preserving linearity of the problem,
but it may not be self-consistent if the overall scattering
history is sufficient to appreciably heat the dark matter.

These prescriptions give equivalent results, and a gen-
eral redshift-dependent scattering history can be built up
by taking linear combinations of the modulated scatter-
ing histories, if the DM temperature remains low enough
that the scattering rate is approximately independent of
the DM temperature. As discussed previously, we find
this is generically the case for 0.1 GeV and heavier DM,
or for cases where the initial DM temperature is very low
and the DM has not been strongly coupled to baryons
early in the universe.

Thus for this analysis, for the n = −4 case we test three
DM masses, 10 keV, 100 MeV and 1 TeV, to demonstrate
the level of variation in redshift dependence with DM
mass; we will subsequently test the effects of varying the
DM mass for fixed redshift dependence. For the n = 0
case, we restrict our attention to the 100 MeV and 1
TeV cases, where the prescriptions above give equivalent
results.

In the case of n = 0 scattering with 10 keV (or sim-
ilarly low-mass) DM, the problem becomes much more
complicated, as the redshift-dependence of the signal is
now a function of the decoupling temperature and hence
of the scattering cross section. Since the n = 0 case is
not the main focus of this paper, we leave further study
of this case to future work.

To estimate the significance of such a perturbation as
a function of zi, we use a Fisher-matrix-based approach,
following standard methodology (see e.g. Ref. [40] for
details beyond those presented here).

Let αi be a coefficient modulating Gi(z), and let us

write ∂C`
∂αi

=
{
∂CTT`
∂αi

,
∂CEE`
∂αi

,
∂CTE`
∂αi

}
. We use the covari-
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ance matrix for the C`’s (e.g. [41–43]):2

Σ` =
2

2l + 1
× (CTT` )2 (CTE` )2 CTT` CTE`

(CTE` )2 (CEE` )2 CEE` CTE`

CTT` CTE` CEE` CTE`
1

2

[
(CTE` )2 + CTT` CEE`

]
 .

(14)

To account for noise, in these expressions we replace

CTT,EE` → CTT,EE` +NTT,EE
` , where NTT,EE

` = (∆T ×
FWHM)2el(l+1)θ2 , θ and FWHM describe the beam

width (FWHM = θ
√

8 ln 2), and ∆T describes the instru-
ment sensitivity. To account for fractional sky coverage,
we also divide Σ` by fsky. To describe a Planck -like mis-
sion, we take FWHM = 7.1 arcmin, ∆T/T = 2.2× 10−6

for temperature and 4.2 × 10−6 for polarization, and
fsky = 0.65.

The (pre-marginalization) Fisher matrix is then ob-

tained by (Fe)ij =
∑
`

(
∂C`
∂αi

)T
Σ−1
`

(
∂C`
∂αj

)
. Marginaliza-

tion over the cosmological parameters is performed as in
Ref. [40], by computing the derivatives (about the best-
fit CDM point) of the C`’s with respect to variations in
the cosmological parameters, building and inverting an
expanded Fisher matrix that includes the cosmological
parameters, and extracting the marginalized Fisher ma-
trix for the αi parameters.

Armed with this marginalized Fisher matrix, we can
first estimate the relative significance of independent
scattering at different redshifts by plotting the Fii terms
as a function of zi. The results are shown in Fig. 5. We
find that for n = 0 scattering, i.e. where the scattering
cross-section σ is constant with respect to velocity, the
significance is broadly peaked around redshifts of several
thousand; for n = −4 scattering, since the relative sig-
nificance of perturbations at lower redshifts is enhanced
by the velocity dependence, the peak of significance is
sharper and at somewhat lower redshift, at z ∼ 2× 103,
and very little signal is produced prior to z ∼ 104. These
general statements hold for both light and heavy DM
masses, provided that linearity holds.

We note that for z > 103, the significance curve for
n = −4 scattering is reasonably well approximated by
the n = 0 curve (for high DM masses where linearity is
expected to hold) multiplied by v−4, where v ≡ (Tχ/mχ+

Tb/mH + V 2
rms/3)1/2, as one would expect from linearity

considerations.
That the most important redshift range for CMB con-

straints is z ∼ 103−few ×104 is not surprising; the modes
corresponding to the ` range best-measured by the CMB,
up to `’s of a few thousand, cross the horizon during

2 Note that there is a typo in the corresponding expression in
Ref. [40], which has been corrected here. We thank Tongyan
Lin for drawing our attention to this issue.
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FIG. 5: Relative significance of isolated scattering at different
redshifts, estimated using the Fisher-matrix analysis detailed
in the text, for DM masses 10 keV (solid black line, lower
panel only), 0.1 GeV (dashed blue line) and 1 TeV (dotted red
line), for n = 0 (upper panel) and n = −4 (lower panel).

this epoch. Modifications to the perturbations at earlier
times will primarily affect smaller scales, which may be
probed by measurements of the matter power spectrum,
but not by the CMB.

We note that this justifies the extension of our con-
straints down to masses below the MeV scale; Ref. [5]
argued that for sub-MeV masses, relativistic dynamics
would need to be included at high redshift z ∼ 109. How-
ever, since the signal appears to be almost entirely set
by redshifts below z ∼ 2× 104 (corresponding to a CMB
temperature ∼ 10 eV), there should be little error in the
constraints provided the DM is cold and non-relativistic
during this epoch. This should hold true for keV and
heavier DM, since the DM temperature never exceeds the
CMB temperature as a result of DM-baryon scattering.

We can also diagonalize this marginalized Fisher ma-
trix to obtain principal components. This analysis
decomposes the space of perturbations to the CMB
anisotropy spectrum due to scattering at different red-
shifts into a set of orthogonal basis vectors; to the degree
that the problem is approximately linear, the impact of
an arbitrary redshift-dependent scattering history on the
CMB can be obtained by decomposing that scattering
history σ(z) into a linear combination of the principal
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components.
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FIG. 6: Principal components (first = {thick, blue}, second =
{medium, red}, third = {thin, green}) for 0.1 GeV DM with
redshift-dependent scattering, for n = 0 and n = −4, overlaid
with the significance curves of Fig. 5.

We display the principal components for 0.1 GeV DM
in Fig. 6; we expect the results to be near-identical for
heavier DM masses (or for all DM masses in a n = −4-
like case where the DM temperature remains very small).
Consistent with our significance analysis, we find that
the first three principal components have support pri-
marily in the redshift range 103 < z < 104. However,
in contrast to the cases of DM annihilation [26] or decay
[30], where the first principal component dominates and
the space of perturbations to the CMB is approximately
one-dimensional, in both these cases the first principal
component only accounts for about 40% of the variance.
Thus the space of perturbations to the CMB from scat-
tering is genuinely multidimensional. The reason is that
scattering at a given redshift modifies the perturbations
at scales that are inside the horizon at that redshift, so
scattering at two different redshifts modifies the power
spectrum over two different ranges of `, leading to differ-
ent characteristic patterns of modifications of the C`’s.

The first four parameters account for roughly 90−95%
of the variance (the first two account for roughly 75% of
the total in the n = 0 case and 65% of the total in the
n = −4 case); thus if O(10%) uncertainties are accept-
able, the space of scattering histories may approximately

be described in terms of four parameters.3 To facilitate
studies of modified scattering histories, we provide the
first four principal components for both cases (n = 0
and n = −4) and a summary of the method for estimat-
ing constraints on arbitrary scattering histories in Ap-
pendix A.

D. Characterizing mass dependence in the CMB
constraints

Instead of fixing the DM mass and varying the redshift
at which scattering is turned on, we can hold the redshift-
dependence of the scattering cross section constant and
perform a principal component analysis to study the ef-
fects of varying the DM mass between 1 keV and 1 TeV.
In this case we find that for n = −4, the first principal
component describes over 99.9% of the variance, whereas
in the n = 0 case the ratio is 97%. Thus (within the lim-
itations of this linear analysis) varying the DM mass is
predicted to have very little effect on the shape of the per-
turbations to the CMB anisotropy spectra, and the main
effect is simply to change the overall normalization.

We plot the first principal component as a function of
DM mass in Fig. 7. In agreement with Ref. [5], we find
that for n = −4 the shape of this curve is well described
by µ/mχ = mH/(mχ + mH), i.e. to a good approxima-
tion the signal scales as the momentum transfer per scat-
tering (proportional to µ) multiplied by the DM number
density (proportional to 1/mχ, since the mass density is
known but the number density is not). For mχ � mH ,
the signal is nearly independent of the DM mass (to the
percent level).

For the n = 0 case, the situation is different because
of the dependence on the DM scattering rate on the DM
temperature. For masses below about 100 MeV, making
the DM lighter increases the DM-baryon relative velocity
and hence the scattering rate, causing a divergence from
the simple scaling above that becomes increasingly pro-
nounced at lower DM masses. When this effect becomes
large, the linearity of the problem also breaks down, in-
validating the PCA approach.

Using the Fisher-matrix formalism, we can estimate
the predicted sensitivity of Planck for arbitrary DM
masses, once the velocity dependence of σ is specified.
In Fig. 8 we show the results of this method and com-
pare with the results of a full MCMC analysis; the agree-
ment is good (within about 15%) across the mass range
we test, except for DM masses below 10 MeV for n = 0
(where the estimate breaks down due to the nonlineari-
ties we have discussed). We also show a Fisher forecast
for an experiment with fsky comparable to Planck that
is cosmic variance limited (CVL) up to `max = 5000;

3 It may still be possible to characterize this space with a smaller
number of parameters; we defer this investigation to future work.
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FIG. 7: First principal component (arbitrary normalization)
as a function of the DM mass, for n = 0 scattering (solid
black line) and n = −4 scattering (dashed blue line). We also
overplot the simple mass scaling suggested in Ref. [5].

we see that we are currently within a factor of three of
this limit for n = −4 scattering. Finally, for the n = −4
case, we show the Fisher-forecast sensitivity for a Planck -
like experiment when Vrms is set to zero, thus increas-
ing the scattering cross section. As previously discussed,
our treatment of Vrms is expected to yield conservative
constraints; improvements in the modeling of the DM-
baryon relative velocity could potentially push the true
bound on the cross-section closer to this (maximally con-
straining) limit.

Because of the simple mass scaling, we can write the
constraint on the scattering cross section for n = −4 to
be:

σ0 .

(
1 +

mχ

mH

)
9.1× 10−42cm2 , Planck

8.1× 10−42cm2 , Planck + ACT/SPT

3.2× 10−42cm2 , CVL

(15)

IV. MODIFYING THE THERMAL HISTORY
AT LATE TIMES

A. Gas cooling in the cosmic dark ages and 21cm
observations

During reionization (z ∼ 6− 10) and at the end of the
cosmic dark ages (z ∼ 10−200), an important observable
is the redshifted hydrogen hyperfine transition at 21cm
wavelength (see Ref. [44] for a review). Measurements of
21cm radiation from the cosmic dark ages could poten-
tially provide input to a number of important questions
in cosmology, and can also be used to set constraints on
DM-baryon scattering.

The size of the 21cm signal is controlled by the hy-
drogen spin temperature and the CMB temperature; if
the former is smaller than the latter, the signal will be
in absorption, whereas if the spin temperature exceeds
the CMB temperature, an emission signal is expected.
The spin temperature is expected to fall between the
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FIG. 8: Comparison between the MCMC-based constraints
(solid black line; calculated with the Planck likelihoods, and
dashed blue line; calculated with ACT/SPT) on the scatter-
ing cross section as a function of DM mass, for two differ-
ent choices of the velocity dependence of scattering, with the
forecast sensitivity from a Fisher analysis for a Planck -like
experiment (dot-dashed red line). We also show the predicted
sensitivity of a future idealized experiment that is cosmic-
variance limited (CVL) up to `max = 5000 (dotted green line).
For n = −4 we also also show the Fisher-forecast sensitivity
for a Planck -like experiment under the assumption Vrms = 0
(dot-dashed purple line), labeled by PCA0.

CMB temperature and the gas temperature; thus a mea-
surement of an absorption trough sets an upper limit on
the gas temperature, assuming the CMB temperature is
known. (Conversely, measuring an emission peak would
set a lower limit on the gas temperature, again assuming
the CMB temperature was known.)

DM scattering with baryons could cool the hydrogen
gas after the baryons decouple from the CMB radiation
bath, thus lowering the gas temperature, enhancing 21cm
absorption, and modifying the 21cm power spectrum [45].
Ref. [46] showed that DM-baryon scattering can also heat
both fluids under the right circumstances, from friction
due to their relative velocity; this effect is more important
for heavier DM, above 1 GeV in mass.

Since any 21cm signal is expected to be sourced after
the decoupling of the baryons and photons at z ∼ 150 (at
higher redshifts, the CMB and gas temperatures are iden-
tical, and no 21cm emission or absorption is expected),
the relative velocity of DM and baryons is smaller than
the velocities relevant for the CMB anisotropy con-
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straints discussed above (which arise from the epoch prior
to recombination). Thus we expect 21cm experiments
to become increasingly sensitive, compared to the CMB
anisotropy limits, for scattering that is enhanced at low
velocity, and in particular for the n = −4 case.

Assuming no initial DM-baryon relative bulk velocity
at z = 106, and using the mean-field approach for in-
clusion of the DM-baryon relative velocity (as for the
anisotropy limits), an example of the evolution of the
DM and baryon temperature is given in Fig. 9.
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FIG. 9: Example temperature evolution for baryons (blue)
and DM (red) with (dashed) and without (solid) n = −4 DM-
baryon scattering. The DM mass is taken to be 0.1 GeV, and
the cross section is chosen to saturate the CMB-anisotropy
limit derived in Sec. III.

Focusing on low redshift, the maximum change in the
baryon temperature with redshift, for different velocity
scalings for the DM-baryon cross section, is shown in
Fig. 10. For n = 0, the change in the baryon temper-
ature is very tiny (below 10−3 K at z . 20) assuming
the maximum cross section consistent with the CMB-
anisotropy limit (from Planck + ACT/SPT) discussed
above; only scattering enhanced at low velocities gives
appreciable changes to the gas temperature at low red-
shift. The recent measurement of the Experiment to De-
tect the Reionization Step (EDGES) collaboration is also
shown; this measurement indicates (assuming the only
radiation background is the CMB) that baryons have a
temperature of Tb ≤ 5.1 K at z = 17.2, which is lower
than the standard cosmological model Tb ∼ 7 K. The 21-
cm signal T21 in unit of mK is related to spin temperature
Ts by

T21 = 26.8xHI
ρg
ρg

(
1 + z

10

)(
Ts − TCMB

Ts

)
mK, (16)

where xHI is the mean mass fraction of neutral hydrogen,
and ρg and ρg respectively denote the gas density and its
mean value. The error bar assumes no reionization, and
saturated coupling such that xHI = 1 and Ts = Tgas.
We see that if 100% of the DM is scattering, with a
DM-baryon scattering cross section proportional to v−4,
then this process is just sufficient to match the best-fit

EDGES result while remaining consistent with the CMB-
anisotropy bounds, provided the DM is not much heavier
than 1 GeV. We also show the band of ∆Tgas obtained
for sub-GeV DM by assuming Vrms = 0 throughout (en-
hancing scattering at low velocities), for cross sections
saturating the estimated constraint for Vrms = 0 from
Fig. 8. The resulting band is slightly lower than for the
case with Vrms = 0 switched on, due to the strengthening
of the cross section constraints, but still compatible with
EDGES.

In Fig. 11, we show the maximum baryon temperature
change at z = 17 as a function of n, using the PCA
method to forecast the CMB constraint on the scattering
cross section for other values of n. As seen from the plot,
among models with power-law velocity dependence, only
scattering with n < −3 can cool the baryons sufficiently
to explain the EDGES result.
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FIG. 10: Maximum allowed change in baryon temperature
due to DM-baryon scattering with n = 0 (blue) and n = −4
(red), scanning over keV-TeV DM masses. For each mass, the
cross section is taken to saturate the CMB anisotropy limit
derived in Sec. III (using both Planck and ACT/SPT data).
The dark red band shows the range of maximum tempera-
ture modifications for sub-GeV DM masses, whereas the light
red band covers the mass range up to 1 TeV. The black re-
gion shows the minimum gas temperature change, relative to
the ΛCDM baseline, preferred by the recent measurement of
EDGES (95% confidence region) [7]. The purple region la-
beled by n0 = −4 corresponds to the temperature shift from
scattering of sub-GeV DM with the assumption Vrms = 0, as-
suming the cross section saturates the limit labeled by PCA0

in Fig. 8.

Given the proximity of our constraints to the cross
sections needed to cool the baryons appreciably, one
might worry about the effects of the imperfect modeling
of the DM-baryon relative velocity. Going beyond the
mean field approach in temperature evolution, Ref. [46]
points out that the drag force between the DM and
baryons could also heat up the baryons, and accounting
for the evolution of the relative velocity between DM and
baryons is important. The initial relative velocity Vχb,0

at kinematic decoupling at z ≈ 1010 follows a Gaussian
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sections saturating Fisher estimates of current bounds from
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temperature modification needed to match the central value
of the recent EDGES measurement of 21cm absorption.

distribution,

P (Vχb,0) =
e−3V2

χb,0/(2V 2
rms)(

2π

3
V 2
rms

)3/2
, (17)

where Vrms ≈ 29km/s [47]. The evolution equations of
temperature and relative velocity are given in [46].

Focusing on n = −4 scattering, we show in Fig. 12
the resulting gas temperature evolution in the previous
mean-field approach and with two initial conditions for
Vχb,0, corresponding to Vχb,0 = 0, Vrms. We see that the
mean-field estimate interpolates between the two other
cases, and in all three cases, few-K temperature changes
can be achieved at z ∼ 17 with the allowed cross sections.
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FIG. 12: Change of baryon temperature with redshift for n =
−4, for three different calculations of the DM-baryon relative
velocity evolution: the mean-field approach (black solid), and
evolving Vχ,b with two initial conditions for Vχb,0 (blue dashed
and red dotted). The DM mass is set to be 0.1 GeV, and the
cross section saturates the CMB-anisotropy limit.

B. Constraints on late-time heating from the
Lyman-alpha forest

One might ask whether there is an additional lever arm
on the DM-baryon scattering cross section from lower-
redshift measurements of the gas temperature. In this
section we review constraints on heating of the IGM after
reionization, first calculated by Ref. [48].

After reionization, for redshifts z . 7, the processes
that affect the temperature of the intergalactic medium
(IGM) are described by [49, 50]:

Ṫb = Qadia +QCMB +Qph +Qcooling. (18)

Here Qadia describes the temperature change due to ex-
pansion of universe, QCMB describes the cooling/heating
rate due to scattering on the CMB, Qph is the photoheat-
ing rate of ionized hydrogen, and Qcooling includes recom-
bination cooling, free-free cooling, and collisional cooling,
etc. During 4 < z < 7, the gas temperature is roughly
determined by the equilibrium between Qph, Qadia and
QCMB. At late times, when z < 4, He II is ionized by X-
ray emission from quasars, which can then raise the gas
temperature; the presence of this He II process adds more
uncertainty to the modeling of photoheating. Even for
z > 4, photoheating of the intergalactic medium depends
on the distribution of ionizing sources.

As discussed above, DM-baryon scattering can poten-
tially cool the IGM, and so measurements of the IGM
temperature at late times (in addition to the 21cm con-
straints discussed earlier) could provide a bound on the
cross section [48]. Ref. [48] found by numerical calcu-
lation that there is a roughly constant (with respect to
redshift) shift in the gas temperature when 4 < z < 12 in
the presence of DM-baryon scattering, so the constraints
can be estimated as:

∆Tb =
2

3

∫
dtΓb,χ (Tχ − Tb) . (19)

Assuming ∆Tb/Tb < 0.1, which is around the current
sensitivity of Lyman-α forest data [51, 52], our calculated
limit is shown in Fig. 13. For the n = 0 and n = −4 cases,
our results agree well with Ref. [48].

To further disentangle assumptions on the degree of
photoheating vs the DM signal, we would need a deeper
understanding of photoheating – for example, the red-
shift dependence of photoheating. At present, these late-
time heating constraints do not place a constraint on the
scattering interpretation of the EDGES result.

V. SPECTRAL DISTORTION

In addition to modifying the anisotropies of the CMB,
DM-baryon scattering can also affect the overall black-
body spectrum. For z < 2 × 106, photon-number-
changing processes become inefficient, and injection of
additional energy into (or from) the CMB will generi-
cally give rise to a distortion of the thermal blackbody
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FIG. 13: IGM limit for different velocity-dependent cross sec-
tion assuming current sensitivity of Lyman-α forest data.

spectrum [53]. For z & 5× 104, Compton scattering effi-
ciently redistributes photons in frequency, and the spec-
tral distortion has the form of a chemical potential (de-
scribed as a µ-type distortion). At lower redshifts, the
spectral shape of the distortion is modified; if the bath
of electrons with which the CMB interacts is heated or
cooled, this gives rise to a Compton-y type distortion.
Searches for µ- and y-type distortions have been used to
constrain energy injections from DM annihilations and
decays [54, 55], and the effects of DM-baryon scattering
in Ref. [6].

At low redshift, processes like the thermal Sunyaev-
Zeldovich (SZ) effect and Compton scattering by free
electrons in clusters are expected to produce a y-
distortion comparable in size to the sensitivity of fu-
ture experiments such as the proposed Primordial Infla-
tion Explorer (PIXIE) [56]. Given these non-trivial low-
redshift backgrounds, we will focus on µ-type distortions
from early redshifts.

The fractional spectral distortion ∆ can be estimated
by the rate at which CMB photons change in energy due
to Compton scattering, ∆ = ∆ργ/ργ , with the evolution
equation for this quantity being:

ργ
d∆

dt
=

3

2
nb

2µb
me

Rγ (Tb − Tγ) . (20)

The baryon temperature is related to the DM-baryon
scattering rate by Eq. 6, and assuming Tb ≈ Tγ at early
times relevant for spectral distortions, we obtain:

ργ
d∆

dt
= −3

2

(
Nb +

2ρχ
mχ +mb

Rχ (Tb − Tχ)

HTb

)
HTγ .

(21)
The authors of Ref. [6] forecast constraints from a PIXIE-
like experiment on DM with mass in the keV-GeV range,
using a simple analytic form for the spectral distortion
from scattering.

∆ ≈ −0.56

(
nb
nγ

log

(
10−4

5× 10−7

)
+
nχ
nγ

log

(
aDB

5× 10−7

))
,

(22)

where nγ is the number density of CMB photons, and
aDB is a scale factor characterizing the time at which
DM-baryon scattering decouples, with a cutoff for µ-type
distortion:

aDB = max
{

10−4, min
{

5× 10−7,

2

3

2mχ

mχ +mb

Rχ (Tb − Tχ)

HTb

}}
.(23)

However, this analytic form is not a good approximation
for n < −2, and consequently Ref. [6] did not present
results for this case. For n = −4, for example, we instead
need to solve for the spectral distortion numerically.4

We evolve Eq. 21 numerically from z = 107 to z = 104,
using our previous results for the evolution of the DM and
baryon temperatures, and then integrate over the range
z = 104−2×106 to obtain ∆. The Far-Infrared Absolute
Spectrophotometer (FIRAS) has excluded ∆ & 5× 10−5

[57], whereas a future PIXIE-like experiment [58] could
have sensitivity to ∆ ∼ 10−8 . The constraint from
FIRAS and sensitivity estimate for a next-generation
PIXIE-like experiment are shown in Fig. 14. These re-
sults are in good agreement with a previous sensitivity
estimate for the n = −4 case, in the case where 100% of
DM scatters on protons [59]. We see that with FIRAS
data the constraint cuts off quickly for DM mass scales
above 100 keV – 1 MeV, while PIXIE or a similar exper-
iment could set stringent constraints up to 1 GeV DM
masses.

This motivates us to consider the constraints on mod-
els where DM with a small electric millicharge constitutes
some subdominant fraction of the total DM abundance,
as suggested to explain the EDGES 21cm observation
by Refs. [9–11]. If the interacting DM fraction is below
∼ 1%, the effect on CMB anisotropies is small [60], as the
behavior of the DM perturbations is governed primarily
by the dominant non-interacting component. However,
at high redshift, the interacting component of DM can
scatter with charged particles (mostly protons, electrons
and fully ionized helium) and still yield a non-negligible
spectral distortion. The formalism for scattering with
different targets is similar to that laid out in Sec. II, but
replacing the reduced mass µχ,H with the reduced mass
µχ,t, where “t” denotes the scattering target and can rep-
resent either protons or electrons; scattering with helium
is included as a modification to the proton-scattering
term, as in Eq. 7. The scattering cross section for a DM
component with charge ε is [32]:

σ =
2πα2ε2ξ

µ2
χ,tv

4
(24)

4 Note that we still treat the DM velocity distribution as being
approximately Maxwellian for purposes of this estimate; a more
detailed calculation would involve solving for the full evolution
of the distribution.
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FIG. 14: Estimated cross section limit from spectral distor-
tion constraints for n = 0 and n = −4 scattering, assuming
FIRAS (solid line) or PIXIE (dashed line) sensitivity, using
the analytic solution in [6] (black), and the numerical results
of this work (blue).

where α is the fine structure constant and ξ is the Debye
logarithm, which can be approximated as:

ξ ≈ 68− 2 log
( ε

10−6

)
. (25)

More explicitly, when scattering on multiple species is
present, we can generalize Eq. 6 to write (for the n = −4
case):

Ṫχ = −2
ȧ

a
Tχ + 2mχac−4 (Tb − Tχ)

∑
t

ρtσ0,t

(mχ +mt)2

1

u3
t

,

Ṫb = −2
ȧ

a
Tb + 2

µb
me

Rγ (Tγ − Tb)

+
2ac−4ρχ

nH(1 + fHe + xe)
(Tχ − Tb)

∑
t

ρtσ0,t

(mχ +mt)2

1

u3
t

,

(26)

where the sum over t describes different interacting
species with mass mt and mass density ρt, σ0,t is the
cross section σ0 for the interactions of species t with the
baryons, and ut = (Tb/mt +Tχ/mχ +V 2

rms/3)1/2 (within
the mean-field approach). Here ρχ should be taken to
be the density of the DM that scatters with the baryons,
and we assume there are no interactions between this
component and the remainder of the DM.

We add together the contributions from electron-DM,
proton-DM scattering and helium-DM scattering, assum-

ing full ionization (as is valid for z > 104). The resulting
constraint on the millicharge is shown in Fig. 15. As
shown, a future experiment with sensitivity to spectral
distortions at the O(10−8) level is capable of reaching
this parameter space.

VI. CONCLUSION

In this work, we have studied constraints on DM-
baryon scattering with a velocity-dependent cross sec-
tion, σ = σ0v

n for n ≤ 0, from CMB anisotropies,
CMB spectral distortion, and the IGM temperature, and
discussed implications for the global 21cm signal. We
have shown that inclusion of ACT/SPT high-` data im-
proves the limit from the CMB anisotropies by about
20% compared to Planck -only results for scattering with
σ ∝ v−4, but the recent measurement of 21-cm absorp-
tion by EDGES remains just consistent with the hypoth-
esis that 100% of the DM scatters on baryons with a
cross section proportional to v−4 (before accounting for
model-specific considerations; there are independent con-
straints on the possibility that e.g. 100% of the DM is
millicharged, or interacts through a new low-mass dark
photon). We have mapped out the redshifts that domi-
nate the CMB anisotropy constraints, and demonstrated
quantitatively that for n = −4 scattering (a) the problem
is approximately linear, and (b) the mass dependence of
the forecast limit can be captured by a single simple pa-
rameter, in agreement with observations in the literature.
We have provided a principal component basis for esti-
mating constraints on modified scattering histories. We
have discussed the equivalent results for n = 0 scattering,
where a similar formalism can be applied for DM with
mass 100 MeV and greater, but the problem becomes in-
creasingly non-linear (due to interplay between the DM

104 105 106 107 108 109 101010-9
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FIG. 15: Preferred parameters for millicharged DM to explain
the EDGES 21cm absorption detection [9] (black line) with
1% of the DM being millicharged, and the estimated sensitiv-
ity of experiments to measure spectral distortion, calculated
in this work. The dashed blue line reflects current constraints
(FIRAS) whereas the dotted red line corresponds to a future
PIXIE-like experiment with sensitivity to 10−8 distortions.
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temperature and scattering cross section) for lighter DM
masses.

We have demonstrated that future measurements of
CMB spectral distortion have the potential to strongly
constrain scattering with σ ∝ v−4, for DM masses be-
low 1 GeV, even if the interacting component is only a
small fraction of the total DM abundance. We estimate
that a future PIXIE-like experiment has the potential to
test the hypothesis that the EDGES absorption signal
results from scattering by a subdominant component of
millicharged DM.
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Appendix A: Estimating CMB constraints on
arbitrary redshift-dependent scattering histories

As discussed in Sec. III C, when we perform a principal
component analysis using a basis of histories where scat-
tering occurs only for a short time, the first four prin-
cipal components account for roughly 90% of the vari-
ance, for both the n = 0 and n = −4 cases. Thus for
scattering histories broadly resembling either the n = 0
or n = −4 cases, we can estimate the likely constraint
on DM-baryon scattering from the CMB (provided, as
discussed in Sec. III B, that the DM does not become
hot enough that its thermal velocity dominates the DM-
baryon relative velocity).

We provide in supplementary data files (pca n=-4.dat
and pca n=0.dat) the list of coefficients αij such that the

ith modulation function Gi(z) =
∑N
j=1 αijPj(z), where

Pj(z) is the jth principal component and N is the num-
ber of unit-normalized Gaussian basis functions. In the
files, the first column gives the redshift zi; the next four
columns provide αi1, αi2, αi3, αi4 respectively.

Given a redshift-dependent cross section σ(z), we can
approximate:

σ(z) ≈
∑
i

σ(zi)Gi(z) ≈
σ(zi)

σ0v(zi)−n
σ0v(z)nGi(z), (A1)

since Gi(z) approximates a narrow step function covering
the range zi ± (∆zi)/2.

Here σ = σ0v
n is the “baseline” scattering history

which multiplies the Gi(z) modulation factors, in calcu-
lating the Fisher matrix and the principal components.

n = 0 n = −4

σ0 (cm2) 10−26 10−42

λ1 × 100 9.8 7.8

λ2 × 100 7.4 6.4

λ3 × 100 2.1 3.2

λ4 × 100 1.6 1.8

TABLE I: Fisher-matrix eigenvalues λi for the first four prin-
cipal components, ranked in order of eigenvalue, calculated
with a baseline scattering history given by σ = σ0 (middle
column) and σ = σ0v

−4 (right column), for 0.1 GeV DM.
Values of the baseline cross section σ0 are given in the second
row. These results are for a Planck -like experiment.

It can be translated into a redshift-dependent scattering
history by approximating Tb ≈ TCMB(z) = (1+z)TCMB,0

and writing:

vn → cn

(
Tb
mH

+
V 2

rms

3

)(n+1)/2

= cn

(
TCMB,0(1 + z)

mH
+
V 2

rms

3

)(n+1)/2

. (A2)

The normalizations σ0 and the corresponding eigenvalues
of the first four principal components are given in Table I.

Thus in terms of the αij coefficients, we can write:

σ(z) ≈
∑
j

[
Pj(z)σ0cn

(
TCMB,0(1 + z)

mH
+
V 2

rms

3

)(n+1)/2
]

×
∑
i

αij
σ(zi)

σ0cn

(
TCMB,0(1+zi)

mH
+

V 2
rms

3

)(n+1)/2
. (A3)

The term in square brackets describes the physical scat-
tering history corresponding to the jth principal compo-
nent; by construction, these histories have approximately
orthogonal effects on the CMB after marginalization over
the cosmological parameters, and so the significances of
the corresponding signals add in quadrature. The signif-
icance (in sigma) of the ith such orthogonal perturbation
can be estimated as

√
λi, where λi is the Fisher-matrix

eigenvalue corresponding to the ith principal component.
Thus the number of sigma at which the σ(z) history could
be detected (in this case, by a Planck -like experiment)
can be estimated as:√√√√√√∑

j

λj

∑
i

αij
σ(zi)

σ0cn

(
TCMB,0(1+z)

mH
+

V 2
rms

3

)(n+1)/2


2

.

(A4)

A constraint can then be placed on the normalization
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of the scattering history σ(z) by requiring that e.g.√√√√√√∑
j

λj

∑
i

αij
σ(zi)

cn

(
TCMB,0(1+z)

mH
+

V 2
rms

3

)(n+1)/2


2

< 2.

(A5)
corresponding to the requirement that the level of the
signal in Planck data would be less than 2 sigma.

The approximation of a truncated principal component
analysis is to only include the first few terms in the sum
over j, justified if λj decreases rapidly with increasing
j. This approximation can break down if the coefficients
of λj also vary strongly with j, and e.g. are suppressed
for small j / enhanced for large j. This is most likely to
occur if σ(zi) is very different from the baseline scatter-
ing history, where the ratio σ(zi)/(σ0v(zi)

n) can become
very large; accordingly, we provide the λj and αij coeffi-
cients for both the n = 0 and n = −4 baselines, so that
whichever is more similar to the desired scattering sce-
nario can be used. In general, this Fisher-matrix-based
approach may also break down due to non-Gaussianity of
the likelihood, or a breakdown of the assumption of lin-
earity (i.e. that the effect of a sum of scattering histories
on the CMB is the same as the sum of their individual
effects on the CMB). Note that while truncating the se-
ries at a smaller number of principal components always

decreases the calculated significance, this is not true for
these other sources of error, and they can lead to a too-
strong apparent limit.

As a simple example, we can test the case σ =
σ−2,0v

−2. Using the first four PCs associated with ei-
ther the n = 0 or n = −4 basis, our estimated 2-sigma
constraint on σ−2,0 becomes:

σ−2,0 <
2σ0cn/c−2√∑4

j=1 λj

(∑
i αij

(
TCMB,0(1+zi)

mH
+

V 2
rms

3

)−1−n/2
)2

(A6)

For n = −4, we obtain σ−2,0 . 1.3× 10−33 cm2. This
agrees well with the results of a Fisher-matrix analysis,
and with the results of [5]. For n = 0, we obtain a some-
what weaker constraint, σ−2,0 . 3.3× 10−33 cm2 (likely
due to the first few n = 0 PCs not adequately capturing
the increase in the scattering rate at smaller z).

The results given in this section and the supplemen-
tal material are for 0.1 GeV DM, but as discussed in
Sec. III D, for other masses the limiting cross section can
simply be rescaled by a factor (1 + mχ/mH), to a good
approximation, provided the DM temperature does not
grow sufficiently large to influence the DM-baryon rela-
tive velocity.
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