

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Deuteron and antideuteron production simulation in cosmic-ray interactions

Diego-Mauricio Gomez-Coral, Arturo Menchaca Rocha, Varlen Grabski, Amaresh Datta, Philip von Doetinchem, and Anirvan Shukla Phys. Rev. D **98**, 023012 — Published 12 July 2018

DOI: 10.1103/PhysRevD.98.023012

7

8

q

10 11

12

1

Deuteron and Antideuteron Production Simulation in Cosmic-ray Interactions

Diego-Mauricio Gomez-Coral,* Arturo Menchaca Rocha, and Varlen Grabski

Instituto de Física, Universidad Nacional Autónoma de México

Circuito de la Investigación Científica,

Ciudad de México, México

Amaresh Datta, Philip von Doetinchem, and Anirvan Shukla Department of Physics and Astronomy, University of Hawaii at Manoa 2505 Correa Rd, Honolulu, HI 96822, USA

(Dated: May 11, 2018)

The study of the cosmic-ray deuteron and antideuteron flux receives an increasing interest in current astrophysics investigations. For both cases an important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter. In this work, deuteron and antideuteron production from 20 to 2.6×10^7 GeV beam energy in p+p and p+A collisions were simulated using EPOS-LHC and Geant4's FTFP-BERT Monte Carlo models by adding an event-by-event coalescence model afterburner. These estimates depend on a single parameter (p_0) obtained from a fit to the data. The p_0 for deuterons in this wide energy range was evaluated for the first time. It was found that p_0 for antideuteron production cross section can be at least 20 times smaller in the low collision energy region, than earlier estimations.

13

I. INTRODUCTION

Deuteron abundance measurements in cosmic rays 14 (CRs) [1, 2] have shown that cosmic deuteron forma-15 tion is understood as the result of the nuclear interac-16 tions of primary CRs, mainly protons and helium, with 17 ¹⁸ the interstellar media (ISM) also composed mostly of H ¹⁹ and He. This cosmic deuteron source, known as sec-20 ondary production, is dominated by two contributions: 21 fragmentation of CRs nuclei $({}^{3}\text{He}, \text{ and } {}^{4}\text{He})$ with the hy-22 drogen and helium from the ISM, and the resonant reaction $p + p \rightarrow d + \pi^+$, in which deuterons are produced in 23 a narrow energy distribution (FWHM $\approx 320 \,\text{MeV}$) with 24 the maximum around $\sim 600 \,\mathrm{MeV}$ [3]. This last reaction 25 is only significant for energies below 1 GeV meanwhile 26 fragmentation is the main origin for deuterons at higher 27 energies. As a consequence, the cosmic deuteron flux 28 provides important information about CRs propagation 29 ³⁰ in the Galaxy, such as the mean amount of ISM that primary CRs encounter as they travel from their sources to 31 32 the Earth.

Besides the two processes described above, accelerator experiments revealed a third deuteron production mechanism, explained within the framework of the so-called coalescence model [4–7]. This applies to free nucleons resulting from CRs-ISM interactions, in which residual protons and neutrons lie sufficiently close in phase space to form deuterons. Such free nucleons may be the result of p+nuclei fragmentation interactions. At sufficiently high energies, p+p and p+nuclei interactions can also create ⁴² multiple nucleon-antinucleon pairs, generating conditions
⁴³ for the formation of deuterons through the coalescence
⁴⁴ mechanism, not incorporated yet in the standard calcu⁴⁵ lation of the secondary deuteron CRs flux.

46 Note that, of the three deuteron-producing mecha-47 nisms described above, coalescence is the only one that 48 also allows the formation of secondary antideuterons. $_{49}$ The secondary antideuteron flux is predicted to have a ⁵⁰ maximum at a kinetic energy per nucleon $T \approx 4 \,\text{GeV/n}$, ⁵¹ and to fall sharply at lower T values [8–10]. This is inter-⁵² esting because a number of dark matter models suggest 53 an antideuteron flux from dark matter annihilation or de-54 cays to be about two orders of magnitude higher than the ⁵⁵ secondary background at energies of about 1 GeV/n [11]. ⁵⁶ Hence, the predicted low energy secondary antideuteron-57 suppressed window has generated great interest in dark ⁵⁸ matter research [12–18], stimulating the experimental ex-⁵⁹ ploration for cosmic antideuterons. Currently the Alpha 60 Magnetic Spectrometer experiment (AMS-02) on board 61 of the International Space Station is searching for cosmic 62 antideuterons, and in the near future the balloon borne General Antiparticle Spectrometer (GAPS) will join in 63 that quest. As detectors sensitivity increases and ob-64 65 servational limits are set, a precise calculation of the 66 secondary antideuteron flux is more important, includ-⁶⁷ ing additional antideuteron background sources like those 68 represented by the detection instruments and the atmo-⁶⁹ sphere above them.

The aim of this study is to benefit from the continr1 uous improvement of Monte Carlo (MC) particle interr2 action simulators as well as the development of an af-

^{*} diegomez@estudiantes.fisica.unam.mx

⁷³ terburner¹ for (anti)deuteron coalescence. This tool al- ¹¹² parameter called the coalescence momentum, represent-76 77 ⁷⁹ tion. In section III the available proton and antiproton ⁸⁰ data from accelerator experiments are compared to MC ⁸¹ models with the aim to define which generator provides ⁸² the best results over the energy range of interest. In section IV, the implementation of the afterburner to pro-83 duce d and d in an event-by-event approach is described. 84 Deuteron and antideuteron measurements are fitted with 85 simulations using the afterburner to determine the best 86 coalescence momentum parameter. Conclusions are pre-87 sented in Section V. 88

II. COALESCENCE MODEL 89

To describe (anti)deuteron formation we use the co-90 ⁹¹ alescence model [4–6]. This postulates that proton-⁹² neutron (pn) or antiproton-antineutron pairs $(\bar{p}\bar{n})$ that ⁹³ are close enough in phase space could result in the formation of deuterons (d) or antideuterons (d), respectively. 94 ⁹⁵ In the remaining of this section the antinucleon notation ⁹⁶ will be used, although the equations are equally valid 97 for nucleons. This formation occurs with a probability ⁹⁸ $C(\sqrt{s}, \vec{k}_{\bar{p}}, \vec{k}_{\bar{n}})$, known as the coalescence function. C de-⁹⁹ pends on the momentum difference $2\Delta \vec{k} = \vec{k}_{\bar{p}} - \vec{k}_{\bar{n}}$ and 100 on the total energy available (\sqrt{s}) . Following the deriva-¹⁰¹ tion presented in [12, 15], the momentum distribution of ¹⁰² antideuterons produced in the coalescence scheme can be 103 expressed as:

$$\begin{pmatrix} \frac{dN_{\bar{d}}}{d\vec{k}_{\bar{d}}^{3}} \end{pmatrix} (\sqrt{s}, \vec{k}_{\bar{d}}) = \int d^{3}\vec{k}_{\bar{p}}d^{3}\vec{k}_{\bar{n}} \times \\ \begin{pmatrix} \frac{dN_{\bar{p}\bar{n}}}{d\vec{k}_{\bar{p}}^{3}d\vec{k}_{\bar{n}}^{3}} (\sqrt{s}, \vec{k}_{\bar{p}}, \vec{k}_{\bar{n}}) \end{pmatrix} C(\sqrt{s}, \vec{k}_{\bar{p}}, \vec{k}_{\bar{n}}) \delta(\vec{k}_{\bar{d}} - \vec{k}_{\bar{p}} - \vec{k}_{\bar{n}})$$

$$(1)$$

 $^{106} d^6 \sigma_{\bar{p}\bar{n}} / \sigma_{tot}$ the number of pairs ($\bar{p}\bar{n}$) produced in the col- 146 in reference [38], where the authors showed that MC 107 lision.

108 $_{109}$ alescence function does not depend on collision energy, $_{149}$ sured \bar{p} spectra, while they demonstrate that advanced ¹¹⁰ resulting in $C(\sqrt{s}, \Delta \vec{k}) = C(\Delta \vec{k})$. Next, C is approxi-¹⁵⁰ high energy MC generators like EPOS-LHC [39] predict ¹¹¹ mated by a step function $\Theta(\Delta k^2 - p_0^2)$ where p_0 is a free ¹⁵¹ reliably the antiproton yield. Furthermore, these gener-

⁷⁴ lows to perform predictions about the deuteron and an-¹¹³ ing the magnitude of the maximal radius in momentum 75 tideuteron production, consistent with available accelera- 114 space that allows antideuteron formation. Under this tor data from a wide energy range. Section II reviews the 115 approximation, the probability changes from zero when coalescence model, as well as the approximations used $|\Delta \vec{k}| > p_0$ to one if $|\Delta \vec{k}| < p_0$. After a convenient vari-⁷⁸ by previous authors to predict (anti)deuteron produc- 117 able transformation, and considering that $|\Delta \vec{k}| \ll |\vec{k}_{\vec{d}}|$, $_{118}$ Eq. (1) becomes:

$$\gamma_{\bar{d}} \left(\frac{dN_{\bar{d}}}{d\vec{k}_{\bar{d}}^3} \right) (\sqrt{s}, \vec{k}_{\bar{d}}) \simeq \left[\frac{4\pi p_0^3}{3} \right] \\ \times \gamma_{\bar{p}} \gamma_{\bar{n}} \left(\frac{dN_{\bar{p}\bar{n}}}{d\vec{k}_{\bar{p}}^3 d\vec{k}_{\bar{n}}^3} (\sqrt{s}, \vec{k}_{\bar{p}} = \vec{k}_{\bar{d}}/2, \vec{k}_{\bar{n}} = \vec{k}_{\bar{d}}/2) \right) \quad (2)$$

Where the γ factor was introduced to show the re-119 $_{120}$ sult in a Lorentz-invariant form. Eq. (2) indicates that 121 antiproton and antineutron momentum distributions as well as the coalescence momentum are necessary to es-123 timate the antideuteron cross section. Assumptions of 124 independent (uncorrelated) production of antiprotons 125 and antineutrons have been used in analytical calcula-¹²⁶ tions [8], to express the momentum distribution of the ¹²⁷ pair $(dN_{\bar{p}\bar{n}}/d\vec{k}_{\bar{p}}^3 d\vec{k}_{\bar{n}}^3)$ as the product of two independent ¹²⁸ isotropic distributions $(dN_{\bar{p}}/d\vec{k}_{\bar{n}}^3 \times dN_{\bar{n}}/d\vec{k}_{\bar{n}}^3)$. This is 129 known as the analytical coalescence model. This as-¹³⁰ sumption, however, is overly simplistic [10, 14, 21] since ¹³¹ correlations have an important effect on deuteron and 132 antideuteron formation. MC generators take into ac-133 count the correlations involved in the production with $_{134}$ the caveat that there can be uncertainties in the descrip-135 tion of correlation effects. Such effects may be related ¹³⁶ to phase space availability, spin alignments, energy con-137 servation, antiproton-antineutron production asymmetry 138 etc. These possible effects are absorbed in the coalescence 139 momentum p_0 .

III. p AND p PRODUCTION SIMULATION 140

To produce (anti)deuterons using MC generators, it is 141 ¹⁴² necessary to have a correct prediction of the (anti)proton ¹⁴³ production. In the present study high energy MC gener-Where $dN_{\bar{d}} = d^3\sigma_{\bar{d}}/\sigma_{tot}$, with σ_{tot} and $d^3\sigma_{\bar{d}}$ being 144 ators have been preferred over their counterparts at low 105 the total and differential cross sections and $dN_{\bar{p}\bar{n}} = 145$ energy. Our choice is based on the conclusions presented ¹⁴⁷ models used in low energy nuclear physics have strong As a first approximation, it is assumed that the co- 148 deviations (up to an order of magnitude) from the mea-152 ators have been tuned to experimental results in a wide ¹⁵³ energy range, and they are extensively and consistently ¹⁵⁴ used in simulating CRs interactions.

Here, several MC models were tested and compared the particle distribution produced by the generator according to 156 to (anti)proton data. An example is shown in Fig. 1, ¹⁵⁷ where the Cosmic Ray Monte Carlo package (CRMC)

¹ Name given to routines commonly used in MC codes to modify ¹⁵⁵ a model.

FIG. 1. (Color online) Invariant differential cross sections as function of rapidity (y) are calculated with different MC models for protons **a**), and antiprotons **b**) in p+p collisions at 158 GeV/c. Results for two bins of transverse momentum (p_T) are compared with data from experiments NA49 [19] and NA61 [20].

Experiment or	Reference	Collision	Final states	p_{lab}	\sqrt{s}	Phase Space
Laboratory	[2.2]			(GeV/c)	(GeV)	
ITEP ^a	[22]	p+Be	\mathbf{p}	10.1	4.5	$1 \le p \le 7.5 \mathrm{GeV}/c; \theta = 3.5 \mathrm{deg}$
CERN ^a	[23, 24]	$_{\rm p+p}$	$\mathrm{p}, \mathrm{ar{p}}$	19.2	6.1	$2 \le p \le 19 \mathrm{GeV}/c;$
		$_{\rm p+Be}$	$\mathbf{p}, \bar{\mathbf{p}}$			$0.72 \le \theta \le 6.6 \deg$
CERN ^a	[24]	$_{\rm p+p}$	р	24	6.8	$2 \le p \le 9 \mathrm{GeV}/c; \theta = 6.6 \mathrm{deg}$
NA61/SHINE	[25]	p+C	р	31	7.7	$0 \le p \le 25 \mathrm{GeV}/c; \ 0 \le \theta \le 20.6 \mathrm{deg}$
	[20]	$_{\rm p+p}$	$\mathbf{p}, \bar{\mathbf{p}}$			$p_T \le 1.5 \text{GeV}/c; \ 0.1 \le y \le 2.0$
NA61/SHINE	[20]	$_{\rm p+p}$	$\mathbf{p}, \bar{\mathbf{p}}$	40	8.8	$p_T \le 1.5 \text{GeV}/c; \ 0.1 \le y \le 2.0$
Serpukhov ^a	[26, 27]	$_{\rm p+p}$	$\mathbf{p}, \bar{\mathbf{p}}$	70	11.5	$0.48 \le p_T \le 4.22 \text{GeV}/c; \theta_{lab} = 9.2 \text{deg}$
	[28]	$_{\rm p+Be}$	$\mathbf{p}, \mathbf{\bar{p}}$			
	[29]	p+Al	$\mathbf{p}, \mathbf{\bar{p}}$			
NA61/SHINE	[20]	$_{\rm p+p}$	$\mathbf{p}, \mathbf{\bar{p}}$	80	12.3	$p_T \le 1.5 \text{GeV}/c; \ 0.1 \le y \le 2.0$
CERN-NA49	[19]	$_{\rm p+p}$	$\mathbf{p}, \bar{\mathbf{p}}$	158	17.5	$p_T \le 1.9 \text{GeV}/c; x_F \le 1.0$
	[30]	p+C	$\mathbf{p}, \bar{\mathbf{p}}$			
CERN-NA61	[20]	$_{\rm p+p}$	$\mathbf{p}, \bar{\mathbf{p}}$			$p_T \le 1.5 \text{GeV}/c; 0.1 \le y \le 2.0$
CERN-SPS ^a	[31, 32]	$_{\rm p+Be}$	$\mathbf{p}, \bar{\mathbf{p}}$	200	19.4	$23 \le p \le 197 \text{GeV}/c$
		p+Al	$\mathbf{p}, \bar{\mathbf{p}}$			$\theta_{lab} = 3.6 \text{ mr}, \theta_{lab} = 0$
Fermilab ^a	[33, 34]	p+p	p, \bar{p}	300	23.8	$0.77 \le p_T \le 6.91 \text{GeV}/c;$
		p + Be	$\mathbf{p}, \bar{\mathbf{p}}$			$\theta_{lab} = 4.4 \text{ deg}, \ \theta_{cm} = 90 \text{ deg}$
Fermilab ^a	[33, 34]	p+p	p, \bar{p}	400	27.4	$0.77 \le p_T \le 6.91 \text{GeV}/c; \theta_{lab} = 4.4 \text{deg}$
	. , ,	p + Be	$\mathbf{p}, \mathbf{\bar{p}}$			
CERN-ISR	[35]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$	1078	45.0	$0.1 < p_T < 4.8 \text{GeV}/c; \ 0.0 \le y \le 1.0$
CERN-ISR	[35]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$	1498	53.0	$0.1 < p_T < 4.8 \text{GeV}/c; \ 0.0 \le y \le 1.0$
CERN-LHCb	[36]	p+He	ā	6.5×10^{3}	110	$0.0 < p_T < 4.0 \text{GeV}/c; 12 < p < 110$
CERN-ALICE	37	p+p	p, p	4.3×10^{5}	900	$0.0 \le p_T \le 2.0 \text{ GeV}/c; -0.5 \le y \le 0.5$
CERN-ALICE	[37]	p+p	$\mathbf{p}, \bar{\mathbf{p}}$	2.6×10^{7}	7000	$0.0 \le p_T \le 2.0 \text{GeV}/c; -0.5 \le y \le 0.5$

^a No feed-down correction

TABLE I. List of experimental data on proton and antiproton production in p+p and p+A collisions considered in this work to compare with simulations.

¹⁵⁸ [40] was used to estimate invariant differential cross sec- ¹⁵⁹ tions as a function of rapidity (y) using EPOS-LHC [39],

160 QGSJETII-04 [41], and SIBYLL2.1 [42]. The figure also 189 all baryonic decay products to be included in the mea-162 163 tation [45] with the Bertini intra-nuclear cascade model) ¹⁹³ data sets, as indicated in Table I. ¹⁶⁵ and QGSP-BERT (quark-gluon string based model [46] ¹⁹⁴ ¹⁶⁶ with the Bertini intra-nuclear cascade model).

FIG. 2. (Color online) Distributions of the difference between measurements and the MC generators divided by the error (see Eq. 3) for proton production in p+p and p+A collisions.

In Table I a list of the experimental data considered 167 168 in this work is shown along with their collision characteristics. The selection of these experimental data was 169 170 based on their relevance to the most abundant cosmic ray ¹⁷¹ species, as well as to the energy range in which deuterons ¹⁷² and antideuterons are produced in CRs collisions. Since part of the available experimental data is old enough 173 to lack the precision tracking and vertex determination 174 techniques available today, this might have introduced in-175 herent systematic uncertainties. For example, feed-down 176 177 contribution to protons and antiprotons (from decays of 178 heavier baryons) were not handled well in some of these 179 data, contributing to the mismatch between data and 180 MC production. The detected fraction of protons and ¹⁸¹ antiprotons produced by this mechanism depends on the 182 energy boost generated by the parent hyperons decay, as well as the details of the detector. This makes it difficult 183 to estimate, a *posteriori*, the proper correction [47–49]. 184 For the case of experiments at CERN-ISR, where p+p185 $_{186}$ collisions with center of mass energy from 23 to 53 GeV $_{209}$ ¹⁸⁷ were studied, a correction was possible. According to ²¹⁰ p+A collisions is in general better described by EPOS-188 [19], the detector design of this experiment allowed nearly 211 LHC. Yet, the corresponding distribution shows a

161 includes the predictions of PYTHIA-8.205 [43] and two 190 sured cross section. Thus, here the corresponding correc-Geant4 (version:10.02.p02) [44] hadronic models: FTFP- ¹⁹¹ tion factors were extracted from simulations and applied BERT (based on the Fritiof description of string fragmen- 192 to this group of data. This was not the case for other

> To determine which MC is describing (anti)proton ¹⁹⁵ measurements most reliably in the energy range con-¹⁹⁶ sidered, a quantitative comparison between MC models, ¹⁹⁷ parametrizations and data is made with the help of Eq. 3.

$$\frac{\Delta}{\epsilon_{\Delta}} = \frac{\left(E\frac{d^3\sigma}{dp^3}^{sim} - E\frac{d^3\sigma}{dp^3}^{data}\right)}{\sqrt{(\epsilon_{sim})^2 + (\epsilon_{data})^2}} \tag{3}$$

This equation allows to calculate the difference (Δ) between measurement and simulated differential cross sec-200 tions $(Ed^3\sigma/dp^3)$. Then Δ is divided by the total error $_{201}$ (ϵ_{Δ}). The resulting quantity (Δ/ϵ_{Δ}) is evaluated for ev-202 erv data set listed in Table I, and their distributions for 203 a choice of models are illustrated in Figs. 2 and 3 for protons and antiprotons, respectively. The rest of the 204 models are compared in appendix A (Figs. 7 and 8). Ide-205 ally, these distributions should be centered at zero with 206 the RMS value close to 1 when the measurement and the 207 theoretical value are compatible on an absolute scale.

FIG. 3. (Color online) Distributions of the difference between measurements and the MC generators divided by the error (see Eq. 3) for antiproton production in p+p and p+A collisions.

Fig. 2 illustrates how proton production in p+p and

Experiment or	Reference	Collision	p_{lab}	\sqrt{s}	No.	of points	Phase Space
Laboratory			(GeV/c)	(GeV)	d	dbar	
CERN	[24]	p+p	19	6.15	6	0	$0 \le p \le 9 \text{ GeV}; \theta = 6.6 \text{ deg}$
CERN	[24]	$_{\rm p+p}$	24	6.8	4	0	$0 \le p \le 9 \text{GeV}; \theta = 6.6 \text{deg}$
Serpukhov	[28]	$_{\rm p+p}$	70	11.5	7	2	$0.48 \le p_T \le 2.4 \text{GeV}; \theta_{lab} = 9.2 \text{deg}$
		p+Be			6	3	
CERN-SPS	[31, 50]	$_{\rm p+Be}$	200	19.4	3	5	$15 \le p_{lab} \le 40 \text{GeV}; \theta_{lab} = 0 \text{deg}$
		p+Al			3	3	
Fermilab	[34]	p+Be	300	23.8	4	1	$0.77 \le p_T \le 6.91 \text{GeV}; \theta_{lab} = 4.4 \text{deg}$
CERN-ISR	[51 - 53]	p+p	1497.8	53	3	8	$0.0 \le p_T \le 1.0$; $\theta_{cm} = 90 \deg$
CERN-ALICE	[54, 55]	p+p	4.3×10^{5}	900	3	3	$0.0 \le p_T \le 2.0$; $-0.5 \le y \le 0.5$
CERN-ALICE	[54-56]	$\mathbf{p} + \mathbf{p}$	2.6×10^7	7000	21	20	$0.0 \le p_T \le 2.0$; $-0.5 \le y \le 0.5$

TABLE II. List of experimental data on deuteron and antideuteron production in p+p and p+A collisions considered in this work to compare with simulations.

²¹² positive-value tail. The origin of these deviations as func-²⁴⁸ the stack, while the corresponding nucleons were deleted ²¹³ tion of the collision momenta are described also in ap-²⁴⁹ from it. (Anti)protons and (anti)neutrons from weak dependix A. A similar analysis for antiprotons is presented 250 cays were excluded from the simulations. ²¹⁵ in Fig. 3, but in this case we added the parameterization ²¹⁶ of Duperray et al. [57] and the parametrization presented ²¹⁷ by Winkler [48] which was updated by Korsmeier *et al.* ²¹⁸ [58] to the latest NA61 and LHCb data. As in the case ²¹⁹ of protons, the antiproton prediction from EPOS-LHC ²²⁰ provides better results than other MC models, while be-²²¹ ing comparable to the parametrizations. The dependence ²²² of the positive and negative value tail of EPOS-LHC in ²²³ Fig. 3 with the collision momenta are described in ap-224 pendix A.

From the results shown above, the EPOS-LHC esti-225 mates for proton and antiproton production would be 226 227 the natural choice. Yet, because the Geant4 framework 228 is broadly used in simulations of particle interactions with ²²⁹ detectors, here the Geant4 hadronic model FTFP-BERT 230 predictions are also included. Note however, the use of this MC model is limited to a kinetic energy collision 231 T < 10 TeV.232

d AND d PRODUCTION SIMULATION IV. 233

Estimation of Coalescence Momentum Α. 234

To generate (anti)deuterons emulating the coalescence 235 ²³⁶ process, an afterburner [54] was created to be coupled to ²³⁷ the MC generators EPOS-LHC and FTFP-BERT. The ²³⁸ afterburner performed an iterative operation for every 239 event, by identifying all proton-neutron and antiproton-240 antineutron pairs from the stack of particles created ²⁴¹ by the generator and calculating the difference in mo-²⁵¹ $_{242}$ menta of each pair in their center-of-mass frame. Half $_{252}$ 5 MeV/c, and the (anti)deuteron spectra corresponding 243 of the magnitude of this difference $(\Delta k = |\vec{k}_{\bar{p}} - \vec{k}_{\bar{n}}|/2)$ 253 to each of these values were compared with the experiwas compared to the coalescence momentum p_0 . If $_{254}$ mental data in Table II. The p_0 that produced the low- $_{245} \Delta k$ was lower than p_0 , (an)a (anti)deuteron with mo- $_{255} \exp \chi^2$ fit was thus selected. As an example of the re-²⁴⁵ $\Delta \vec{k}$ was lower than p_0 , (an) (anti)denteron with model is $cov \chi$ in the shape spectrum $The antiple of the period <math>r_{10}$ in the spectrum $\vec{k}_d = \vec{k}_p + \vec{k}_n$ (or $\vec{k}_{\bar{d}} = \vec{k}_{\bar{p}} + \vec{k}_{\bar{n}}$) and energy ²⁴⁷ $E_d = \sqrt{\vec{k}_d^2 + m_d^2}$ (or $E_{\bar{d}} = \sqrt{\vec{k}_d^2 + m_d^2}$) was included in ²⁵⁶ sults from this analysis, in Fig. 4 the p+p at 70 GeV/c ²⁵⁷ case is presented. As observed, the best values of p_0 ²⁵⁸ at this particular energy were 25 MeV/c for EPOS-LHC

FIG. 4. (Color online) Antiproton and antideuteron invariant differential cross sections in p+p collisions at $70 \,\text{GeV}/c$ as function of transverse momentum (p_T) calculated with EPOS-LHC, FTFP-BERT and parametrizations [57, 58]. The results are compared to data [26–28] (see text for details).

The coalescence momentum was varied in steps of

FIG. 5. (Color online) Extracted coalescence momentum p_0 (symbols) for deuterons (a) and antideuterons (b) as function of the collision kinetic energy (T). Fit functions [Eqs. (4) and (5)] for EPOS-LHC (long-dashed red line) and FTFP-BERT (dashed blue line) are shown. Additionally, the p_0 values obtained from the analytic coalescence model and the parametrization of Korsmeier et al. are included (dashed cyan line and dots). Also, the constant value of $p_0 = 79 \,\mathrm{MeV}/c$ estimated by Duperray et al. is plotted (solid magenta line).

 $_{259}$ and $50 \,\mathrm{MeV}/c$ for FTFP-BERT. In the Korsmeier et al. $_{287}$ symmetric production, hence treating the p_0 difference $_{260}$ parametrization case, p_0 was evaluated using the analyt- $_{288}$ as due to antiproton mismatch. The details and results ²⁶¹ ical expression in Eq. 2 assuming antiproton-antineutron ²⁸⁹ of this process are shown in appendix C. As shown in the ²⁶² independence and symmetry (i.e., the analytical coales-²⁹⁰ next section this factorization however, has no effect on 263 cence model), which was fitted to data resulting in a 291 the deuteron and antideuteron cross section calculations. 264 265 266

267 $_{266}$ sulting p_0 values for EPOS-LHC, FTFP-BERT, as well $_{296}$ deuteron production cross section is larger at T \approx 19-269 271 comparison to data are shown in Fig. 5 (a) for deuterons 299 inelastic channels, not related to coalescence. However, 272 and in Fig. 5 (b) for antideuterons, as function of the 300 this increase is reproduced in the simulation through the $_{273}$ collision kinetic energy (T) in the laboratory system. Al- $_{301}$ rise in p_0 near that particular energy region. $_{274}$ though the trend of the p_0 values obtained with different $_{302}$ Below 19 GeV no further comparisons in deuteron pro-275 MC models as a function of T is similar, their magni- 303 duction were made, due to limitations of the MC models $_{276}$ tude differ from one simulator to the other and also with $_{304}$ used. Down at 1-3 GeV, the coalescence model is no 277 respect to the parametrizations. Differences between 305 longer valid. In this low energy region deuteron produc-278 MC models and parametrizations result from the corre-279 280 281 ities in the corresponding MC model assumptions, lead 309 for example $p + p \rightarrow p + n + \pi^+$) [59]. 282 $_{283}$ ucleon production, causing differences in the extracted $_{311}$ production threshold (T $\approx 17 \,\text{GeV}$) until it saturates at $_{284}$ p_0 among MC generators. To compare the coalescence $_{312}$ high energies (see Fig. 5 (b)). Keep in mind that this ²⁸⁵ momentum among MC models it is useful to factorize ³¹³ energy dependence appears in the MC simulations, as ²⁸⁶ the (anti)nucleon mismatch assuming uncorrelated and ³¹⁴ well as in the Korsmeier *et al.* parametrization shown in

 $p_0 = 32 \,\mathrm{MeV}/c$ (cyan broken line in Fig. 4). Duperray 292 Note that in the low collision-energy region (T < et al. proposed a constant $p_0 = 79 \,\mathrm{MeV}/c$ over the whole 293 100 GeV) shown in Fig. 5 (a) the p_0 for deuterons deenergy range, also shown in Fig. 4 (magenta solid line). 294 creases reaching a saturation value for T > 100 GeV. The differential cross sections computed with the re- 295 The measurements reported in Table II show that the as the parameterizations [57, 58] are compared with the 297 24 GeV than for higher energies. The increase in producdata in appendix B. The values of p_0 extracted from the ²⁹⁸ tion seems to be induced by the contribution of opening

lations (or anticorrelations) in the antinucleon pairs only $_{307}$ initial state as $p + p \rightarrow d + \pi^+$, and is independent of simpresent in the MC generators [10, 14, 15, 21]. Dispar- 308 ilar processes where protons and neutrons are created (as

to deviations of their predictions for nucleon and antin- $_{310}$ In the case of antideuterons, p_0 increases beyond the

FIG. 6. (Color online) Deuteron (a) and antideuteron (b) total production cross section in p+p collisions. Deuteron (c) and antideuteron (d) total production cross section in p+He collisions. The expected antideuteron cross section from Duperray's parametrization has been added. In the lower panels Duperray to MC predictions in antideuteron are compared. Vertical broken lines represent antideuteron production threshold.

³¹⁵ Fig. 5, because they reflect best fits to the characteristic $_{316}$ trend of the data. However, a gradual growth of p_0 be-317 youd the antideuteron production threshold is expected due to phase space [10, 60]. 318

To generate an energy-dependent p_0 parameterization 319 $_{320}$ that can be used with MC codes, the p_0 points shown in Fig.5, have been fitted using Eq.4 for deuterons, 321 322 and Eq.5 for antideuterons. The resulting parameters $_{323}$ are given in Table III. Since in Fig. 5 the p_0 obtained at certain energy shows no significant differences among 324 p+p, p+Be and p+Al, we used Eq.4 and Eq.5 to pro-325 duce a common (target independent) parameterization 327 for deuterons and antideuterons respectively.

Fit function for deuterons: 328

$$p_0 = A \left[1 + \exp\left(B - \frac{\ln(\mathrm{T/GeV})}{C}\right) \right]$$
(4)

Fit function for antideuterons: 329

$$p_0 = \frac{A}{1 + \exp(B - \ln(\mathrm{T/GeV})/C)}$$
(5)

Total d and d Production Cross Section В. 330

331

Model	$\mathbf{A} \; (\mathrm{MeV}/c)$	В	\mathbf{C}					
Deuterons								
EPOS-LHC	80.6 ± 2.39	4.02 ± 0.62	0.71 ± 0.11					
FTFP-BERT	118.1 ± 2.42	5.53 ± 2.28	0.43 ± 0.14					
Antideuterons								
EPOS-LHC	89.6 ± 3.0	6.6 ± 0.88	0.73 ± 0.10					
FTFP-BERT	170.2 ± 10.5	5.8 ± 0.47	0.85 ± 0.08					
Korsmeier <i>et al.</i> ^b	153.6 ± 3.7	4.5 ± 0.36	1.47 ± 0.14					

^b Used with the analytical coalescence model

TABLE III. Values of the parameters for the fitting functions 4 and 5.

) 333 sections $(\sigma_{d,\bar{d}} = \sigma_{p+p(p+A)} \times n_{d,\bar{d}}/N_{evt})$ were estimated 334 using the MC simulations to extract the total inelastic ³³⁵ cross section ($\sigma_{p+p(p+A)}$), as well as the number of events ³³⁶ with at least one d or \overline{d} $(n_{d,\overline{d}})$, for a given total number $_{337}$ of events (N_{evt}) . In the Korsmeier *et al.* parametrization 338 case, Eq. 2 (with antiproton-antineutron independence ³³⁹ and symmetry) was integrated using Eq. 5 and parame-³⁴⁰ ters in Table III. The results in p+p and p+He collisions ³⁴¹ as a function of the collision kinetic energy are plotted in ³⁴² Fig. 6, together with available measurements.

The left panels of Fig. 6 show the results in p+p colli-343 Based on the coalescence momentum parametrizations ³⁴⁴ sions. The data extracted from Meyer, J. P. [3] show the $_{332}$ of Eq. 4 and 5, the total deuteron and antideuteron cross $_{345}$ reaction $p+p \rightarrow d+\pi^+$, while the other data [59] and the

 $_{346}$ simulations represent the inclusive reaction $p+p \rightarrow d+X$. $_{401}$ in the p_0 values between p+p and p+Be collisions. ³⁴⁷ Fig. 6 (a) shows how deuteron cross section starts to de-348 crease with energy, until it reaches the point-of-inflection 403 veloped and used in tandem with EPOS-LHC and 349 of about 100 GeV which marks the change of slope in the 404 FTFP-BERT. Such parameterizations allow us to esti- $_{350}$ p_0 parametrization. From this point, thanks to the con- $_{405}$ mate the differential and total production cross section $_{406}$ for deuterons and antideuterons in p+p and p+A colli-352 The antideuteron cross section on the other hand (Fig. 6 407 sions (assuming A to be a light nuclei). As an example 353 354 rapidly until it changes of slope around T~1000 GeV, 409 production cross section of deuterons and antideuterons where the coalescence momentum changes to a constant $_{410}$ in p+p and p+He is presented in Fig. 6. 355 356 finally meet the deuteron one at a very high energy. 357

358 359 360 362 363 tions. However the MC estimation is not far from Meyer 419 et al. in the low-T region. ₃₆₅ extrapolation. The cross section for antideuterons has a ₄₂₀ applications where a negative power-law describes the ³⁶⁶ similar behavior in p+He as for p+p collisions (see Fig. 6 ⁴²¹ energy spectra of the colliding protons, the low-T region 367 collisions. 368

369 370 371 372 373 can be observed, the estimations from this work are sig- 428 group. $_{374}$ nificantly lower at T<100 GeV than the prediction from $_{429}$ ³⁷⁵ Duperray *et al.* This is a direct consequence of the be- $_{376}$ havior of p_0 in this energy region, where instead of having $_{\rm 377}$ a constant value the coalescence momentum grows grad- $^{\rm 430}$ 378 ually.

379

CONCLUSIONS V.

For the purpose of improving the coalescence formation 380 381 modeling of light nuclei, deuteron and antideuteron production in p+p and p+Be collisions with energies in the 382 laboratory system from 20 to 2.6×10^7 GeV were reeval-383 uated. As no commonly used hadronic MC generator de-384 scribes (anti)deuteron production, the goal was to create 385 an afterburner based on experimental data to generate d 386 and d in p+p and p+A interactions in a reliable way. 387

After an event-by-event analysis using two of the 388 389 most relevant MC generators (EPOS-LHC and Geant4's FTFP-BERT), it was found that the coalescence momen-390 ³⁹¹ tum p_0 depends on the collision energy (see Fig. 5) and is not constant over the entire energy range as previous 392 works suggested. For deuterons, p_0 drops with energy 393 ³⁹⁴ until it reaches a constant value, and for antideuterons $_{395}$ p_0 starts to grow after the production threshold and then ³⁹⁶ reaches a constant value. The behavior of p_0 seems to be ³⁹⁷ related with the increase in the available phase space as function of energy [10, 60], however more data in this ³⁹⁹ energy region is necessary to verify this dependence. In 400 addition, it was found there is no substantial difference

Based on these results parameterizations were de-(b)), emerges from the production threshold and grows 408 of the power of this tool, an estimation of the total This new value. The total antideuteron cross section increases to 411 estimation predicts an antideuteron cross section in $_{412}$ p+p collisions that can be at least 20 times smaller On the right side of Fig. 6 the results for p+He colli- 413 than the value expected from the parametrization of sions are plotted along with data at lower energy from 414 Duperray et al. [9, 57] in the low kinetic energy (T) Meyer, J. P. [3]. This data only include the reactions: 415 region 20-100 GeV, while at high energies (~1000 GeV) $p + He^4 \rightarrow He^3 + d$ and $p + He^4 \rightarrow d + n + 2p$ (see Fig. 6 (c)). 416 the cross section is 2.4 times larger. A similar result is The simulations have higher values, because they include 417 obtained in p+He collisions, where this work estimates the coalescence contribution and the fragmentation reac- 418 a cross section at least 6 times smaller than Duperray Thus, for cosmic-ray (d)), because antinucleons are formed in nucleon-nucleon 422 is the one that contributes most to the CRs secondary ⁴²³ flux, and differences in this area become very important In the lower panels of Figs. 6 (b) and (d), the ratios of 424 to antideuteron CRs-flux calculations. The detailed the antideuteron cross section between the Duperray et 425 quantitative impact of the estimated deuteron and al. parametrization and the results from EPOS-LHC, 426 antideuteron production cross sections on the cosmic ray FTFP-BERT and Korsmeier et al. were plotted. As 427 spectra is the subject of an ongoing investigation by our

ACKNOWLEDGMENTS VI.

The authors would like to thank the scientific com-431 ⁴³² putation department of the Institute of Physics, UNAM ⁴³³ and to T. Pierog, C. Baus, and R. Ulrich for providing ⁴³⁴ the Cosmic Ray Monte Carlo package. DMGC, AMR 435 and VG would like to thank CONACyT and PAPIIT-DGAPA: IN109617 for the financial support. AD, PVD, 436 437 and AS would like to thank the National Science Foun-438 dation (Award No. 1551980).

- ⁴⁴⁰ [2] N. Tomassetti and J. Feng, The Astrophysical Journal Letters 835, L26 (2017).
- 441 [3] J. P. Meyer, Astronomy and Astrophysics Supplement 7, 417 (1972).
- ⁴⁴² [4] L. Csernai and J. I. Kapusta, Physics Reports **131**, 223 (1986).
- ⁴⁴³ [5] S. T. Butler and C. A. Pearson, Phys. Rev. **129**, 836 (1963).
- [6] A. Baltz, C. Dover, S. Kahana, Y. Pang, T. Schlagel, and E. Schnedermann, Physics Letters B 325, 7 (1994).
- 445 [7] A. Schwarzschild and Č. Zupančič, Phys. Rev. 129, 854 (1963).
- ⁴⁴⁶ [8] P. Chardonnet, J. Orloff, and P. Salati, Phys. Lett. B409, 313 (1997), arXiv:astro-ph/9705110 [astro-ph].
- ⁴⁴⁷ [9] R. Duperray, B. Baret, D. Maurin, G. Boudoul, A. Barrau, L. Derome, K. Protasov, and M. Buénerd, ⁴⁴⁸ Physical Review D **71**, 083013 (2005).
- ⁴⁴⁹ [10] A. Ibarra and S. Wild, Phys. Rev. **D88**, 023014 (2013), arXiv:1301.3820 [astro-ph.HE].
- ⁴⁵⁰ [11] T. Aramaki *et al.*, Phys. Rept. **618**, 1 (2016), arXiv:1505.07785 [hep-ph].
- 451 [12] F. Donato, N. Fornengo, and P. Salati, Phys. Rev. D62, 043003 (2000), arXiv:hep-ph/9904481 [hep-ph].
- 452 [13] F. Donato, N. Fornengo, and D. Maurin, Phys. Rev. D78, 043506 (2008), arXiv:0803.2640 [hep-ph].
- 453 [14] A. Ibarra and S. Wild, JCAP 2013, 021 (2013).
- ⁴⁵⁴ [15] N. Fornengo, L. Maccione, and A. Vittino, JCAP **2013**, 031 (2013).
- 455 [16] H. Baer and S. Profumo, JCAP 2005, 008 (2005).
- 456 [17] S. Profumo and P. Ullio, JCAP 2004, 006 (2004).
- 457 [18] Barrau, A., Boudoul, G., Donato, F., Maurin, D., Salati, P., Stéfanon, I., and Taillet, R., A&A 398, 403 (2003).
- 458 [19] T. Anticic et al. (NA49), Eur. Phys. J. C65, 9 (2010), arXiv:0904.2708 [hep-ex].
- ⁴⁵⁹ [20] A. Aduszkiewicz *et al.* (NA61/SHINE), Eur. Phys. J. C **77**, 671 (2017).
- ⁴⁶⁰ [21] M. Kadastik, M. Raidal, and A. Strumia, Physics Letters B **683**, 248 (2010).
- ⁴⁶¹ [22] I. A. Vorontsov, V. A. Ergakov, G. A. Safronov, A. A. Sibirtsev, G. N. Smirnov, N. V. Stepanov, and Yu. V. Trebukhovsky,
 ⁴⁶² ITEP-83-085, ITEP-85-1983 (1983).
- 463 [23] J. V. Allaby, F. G. Binon, A. N. Diddens, P. Duteil, A. Klovning, and R. Meunier, CERN-70-12 (1970).
- ⁴⁶⁴ [24] A. N. Diddens, W. Galbraith, E. Lillethun, G. Manning, A. G. Parham, A. E. Taylor, T. G. Walker, and A. M. Wetherell,
 ⁴⁶⁵ Il Nuovo Cimento (1955-1965) **31**, 961 (2008).
- 466 [25] N. Abgrall et al., Eur. Phys. J. C 76, 84 (2016).
- 467 [26] V. V. Abramov et al., Yad. Fiz **31:4**, 937 (1980).
- ⁴⁶⁸ [27] V. V. Abramov *et al.*, Yad. Fiz. **41:3**, 700 (1985).
- 469 [28] V. V. Abramov *et al.*, Yad. Fiz. **45:5**, 1362 (1987).
- ⁴⁷⁰ [29] V. V. Abramov *et al.*, Z. Phys. **C24**, 205 (1984), [Yad. Fiz. **41**, 357 (1985)].
- 471 [30] B. Baatar et al. (NA49), Eur. Phys. J. C73, 2364 (2013), arXiv:1207.6520 [hep-ex].
- 472 [31] W. Bozzoli, A. Bussière, G. Giacomelli, E. Lesquoy, R. Meunier, L. Moscoso, A. Muller, F. Rimondi, and S. Zylberajch,
 473 Nuclear Physics B 144, 317 (1978).
- 474 [32] W. F. Baker et al., Phys. Lett. B51, 303 (1974).
- 475 [33] D. Antreasyan, J. W. Cronin, H. J. Frisch, M. J. Shochet, L. Kluberg, P. A. Piroué, and R. L. Sumner,
 476 Phys. Rev. D 19, 764 (1979).
- 477 [34] J. W. Cronin, H. J. Frisch, M. J. Shochet, J. P. Boymond, P. A. Piroué, and R. L. Sumner, Phys. Rev. D 11, 3105 (1975).
- ⁴⁷⁸ [35] B. Alper *et al.*, Nuclear Physics B **100**, 237 (1975).
- [36] G. Graziani (LHCb), Proceedings, 4th Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics
 (STARS2017): Havana, Cuba, May 7-13, 2017, Astron. Nachr. 338, 1113 (2017).
- 481 [37] K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 71, 1 (2011).
- 482 [38] M. Kachelriess, I. V. Moskalenko, and S. S. Ostapchenko, The Astrophysical Journal 803, 54 (2015).
- ⁴⁸³ [39] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, Phys. Rev. C92, 034906 (2015),
 ⁴⁸⁴ arXiv:1306.0121 [hep-ph].
- 485 [40] T. Pierog, C. Baus, and R. Ulrich, "Cosmic Ray Monte Carlo (CRMC) website," 486 https://web.ikp.kit.edu/rulrich/crmc.html.
- [41] S. Ostapchenko, Proceedings, 13th International Symposium on Very High-Energy Cosmic Ray Interactions (ISVHECRI 2004), Nucl. Phys. Proc. Suppl. 151, 147 (2006), arXiv:astro-ph/0412591 [astro-ph].
- 489 [42] E. J. Ahn, R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D80, 094003 (2009), arXiv:0906.4113 [hep-ph].
- 490 [43] T. Sjöstrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008), arXiv:0710.3820 [hep-ph].
- ⁴⁹¹ [44] S. Agostinelli *et al.*, Nucl. Instr. Meth. Phys. Res. A **506**, 250 (2003).
- 492 [45] B. Andersson, G. Gustafson, and B. Nilsson-Almqvist, Nuclear Physics B 281, 289 (1987).
- ⁴⁹³ [46] N. S. Amelin, K. K. Gudima, and V. D. Toneev, Sov. J. Nucl. Phys. **51**, 327 (1990), [Yad. Fiz. **51**, 512 (1990)].
- ⁴⁹⁴ [47] R. Kappl and M. W. Winkler, JCAP **2014**, 051 (2014).
- ⁴⁹⁵ [48] M. W. Winkler, JCAP **2017**, 048 (2017).
- ⁴⁹⁶ [49] A. Reinert and M. W. Winkler, JCAP **2018**, 055 (2018).
- ⁴⁹⁷ [50] A. Bussiere, G. Giacomelli, E. Lesquoy, R. Meunier, L. Moscoso, A. Muller, F. Rimondi, S. Zucchelli, and S. Zylberajch,
 ⁴⁹⁸ Nuclear Physics B **174**, 1 (1980).
- ⁴⁹⁹ [51] B. Alper *et al.*, Physics Letters B **46**, 265 (1973).

- 500 [52] W. M. Gibson et al. (British-Scandinavian-MIT Collaboration), Lettere al Nuovo Cimento (1971-1985) 21, 189 (2008).
- ⁵⁰¹ [53] M. Albrow *et al.*, Nuclear Physics B **97**, 189 (1975).
- 502 [54] E. Serradilla, Producción de núcleos de deuterio y antideuterio en el experimento ALICE del LHC (In Spanish),
 503 Ph.D. thesis, Universidad Complutense de Madrid, Madrid, España (2014).
- ⁵⁰⁴ [55] S. Acharya *et al.* (ALICE Collaboration), Phys. Rev. C **97**, 024615 (2018).
- ⁵⁰⁵ [56] J. Adam et al. (ALICE Collaboration), Phys. Rev. C 93, 024917 (2016).
- 506 [57] R. P. Duperray, C.-Y. Huang, K. V. Protasov, and M. Buénerd, Phys. Rev. D 68, 094017 (2003).
- ⁵⁰⁷ [58] M. Korsmeier, F. Donato, and M. Di Mauro, (2018), arXiv:1802.03030 [astro-ph.HE].
- 508 [59] D. E. Pellett, Deuteron Production in Proton-Proton Collisions from 1.5 GeV to 3 GeV, Ph.D. thesis, Michigan U. (1966).
- 509 [60] R. Duperray, K. Protasov, and A. Voronin, Eur. Phys. J. A Hadrons and Nuclei 16, 27 (2003).

FIG. 7. (Color online) Distributions of the difference between measurements and the MC generators divided by the error (see Eq. 3) for proton production in p+p and p+A collisions.

Appendix A: Comparison of simulations to accelerator data (p and \bar{p})

Distributions obtained by applying Eq. 3 to QGSJETII-04 and SIBYLL2.1 are presented and compared with those of EPOS-LHC in Fig. 7 for protons and Fig. 8 for antiprotons. Fig. 8 also includes the parametrization of Korsmeier of *et al.*

The momenta dependence corresponding to the EPOS-LHC simulation of Fig. 2 and Fig. 3 are shown in Fig. 9 for ⁵¹⁵ protons and Fig. 10 for antiprotons. In these plots the distribution was divided in two momentum regions, low (from ⁵¹⁶ 10 to 100 GeV/c) and high (> 100 GeV/c). For protons (Fig. 9), the low momentum distribution (solid red line) is ⁵¹⁷ shifted to positive values, accounting for the positive value tail in Fig. 2. In the high momentum region (dashed red ⁵¹⁸ line) the distribution is more symmetric but broader. For antiprotons, the resulting distributions from Korsmeier ⁵¹⁹ *et al.* parametrization have also been included in Fig. 10. As can be observed the low momentum distribution of ⁵²⁰ EPOS-LHC is shifted to positive values indicating an overestimation of antiprotons. However, it also shows a lower ⁵²¹ RMS value compared to the parametrization. The high energy distribution for EPOS-LHC under-predicts antiproton ⁵²² production, revealing that both distributions contribute to the positive and negative value tails in Fig. 3.

523

510

Appendix B: Comparison of simulations to accelerator data (p, \bar{p} , d and d)

This appendix is a collection of all comparisons made between accelerator data and MC models. The three MC models studied are plotted in each figure with the same marker and color convention: EPOS-LHC (red circle \bullet); FTFP-BERT (blue square \blacksquare); and QGSP-BERT (green triangle \checkmark). Data are presented as black dots or black straight squares. The comparisons are shown for either the differential cross sections or invariant differential cross sections as a function of laboratory or transverse momentum per nucleon. When possible, (anti)protons and (anti)deuterons are shown in the same figure.

FIG. 8. (Color online) Distributions of the difference between measurements and the MC generators divided by the error (see Eq. 3) for antiproton production in p+p and p+A collisions.

FIG. 9. (Color online) Distributions in two different energy regions of the difference between measurements and EPOS-LHC divided by the error (see Eq. 3) for proton production in p+p and p+A collisions.

FIG. 10. (Color online) Distributions in two different energy regions of the difference between measurements and EPOS-LHC divided by the error (see Eq. 3) for antiproton production in p+p and p+A collisions.

FIG. 11. Double differential cross sections from MC models compared to data of protons and deuterons produced in p+p collisions at 19 GeV/c [24].

FIG. 12. Double differential cross sections from MC models and Duperray's parametrization (pink line) compared to data of antiprotons produced in p+Be collisions at 19.2 GeV/c [23].

530

1. p+p and p+Be at $p_{lab} = 19.2 \text{ GeV}/c$

Results from [23] show p and \bar{p} production in p+p, p+Be and p+Al collisions. The nucleons produced cover a laboratory momentum range from 2 to 19 GeV and an angular region from 12.5 to 70 mrad. Another experiment [24] at nearly the same energy (19 GeV/c) reported p, \bar{p} and d production in p+p collisions for $\theta = 116$ mrad.

In Fig. 11, proton and deuteron production in p+p are shown in comparison to data of [24]. Values of $p_0 = 535 155 \text{ MeV}/c$ and $p_0 = 150 \text{ MeV}/c$ were determined from the fit to deuteron data with EPOS-LHC and FTFP-BERT, respectively. In Fig. 12, antiproton production in p+Be collisions is shown for three different angles, alongside with parameterization of Duperray [57] (magenta continuous line).

2. p+p at $p_{lab} = 24 \text{ GeV/c}$

The same group that measured p, \bar{p} and d production in p+p collisions at 19 GeV also reported results at 24 GeV [24]. The results are compared with the MC models in Fig. 13. Best fit values of the coalescence momentum for the deuterons are $p_0 = 145 \text{ MeV}/c$ and $p_0 = 145 \text{ MeV}/c$ for EPOS-LHC and FTFP-BERT.

542

538

3. p+C at $p_{lab} = 31 \text{ GeV}/c$

The NA61/SHINE collaboration reported the production of mesons and baryons in p+C collisions at an incoming momentum of 31 GeV/c in 2016 [25]. In Fig. 14 data at three different angles is plotted in comparison with MC models.

546

4. p+p, p+Be and p+Al at $p_{lab} = 70 \text{ GeV/c}$

⁵⁴⁷ A series of experiments performed in the Russian Institute for High Energy Physics at Serpukhov measured the ⁵⁴⁸ production of p, \bar{p} , d and \bar{d} in p+p, p+Be and p+Al collisions at 70 GeV/c [26–29]. Protons and antiprotons were ⁵⁴⁹ detected in a transverse momentum region from 0.48 to 4.22 GeV/c and deuterons and antideuterons were evaluated

FIG. 13. Double differential cross sections from MC models compared to data of protons and deuterons produced in p+p collisions at 24 GeV/c [24].

FIG. 14. Double differential momentum distribution from MC models compared to data of protons produced in p+C collisions at 31 GeV/c [25].

⁵⁵⁰ until $p_T \approx 3.8 \,\text{GeV}/c$. Both hadrons and nuclei were measured at an angle of $\theta = 160 \,\text{mrad}$ or 90° in the center-of-mass ⁵⁵¹ frame. Figs. 15, 4, 16 and 17 present this set of data in comparison with MC generators. The best fit values for p_0 are ⁵⁵² shown in the figures. Despite the fact that some authors like Duperray *et al.* [9, 57] excluded these data from their ⁵⁵³ analysis, the authors of this study did not find a reason to reject them. Besides, this is the lowest energy at which

FIG. 15. Invariant differential cross section for protons and deuterons produced in p+p collisions at 70 GeV/c. Data taken from [26–28].

 $_{\rm 554}$ the spectrum of the invariant antideuteron cross section was measured so far.

FIG. 16. Invariant differential cross section for protons and deuteron produced in p+Be collisions at 70 GeV/c. Data taken from [28].

FIG. 17. Invariant differential cross section for antiprotons and antideuterons produced in p+Be collisions at 70 GeV/c. Data taken from [28].

555

5. p+p, p+C at $p_{lab} = 158 \text{ GeV/c}$

⁵⁵⁶ NA49 experiment published results on the production of protons, deuterons and antiprotons in p+p and p+C ⁵⁵⁷ collisions at 158 GeV/c in 2009 and 2012 [19, 30]. These modern data sets are important since they are achieved ⁵⁵⁸ with up-to-date techniques in hardware and data analysis and have low systematic errors. Figs. 18 and 19 show the ⁵⁵⁹ invariant differential cross sections as function of p_T for different values of Feynman x_F calculated with MC and ⁵⁶⁰ compared with data. Only protons from p+p collisions (Fig. 18) and antiprotons from p+C collisions (Fig. 19) are ⁵⁶¹ displayed, however, the analysis also includes antiprotons from p+p and protons from p+C.

562

6. p+Be, p+Al at $p_{lab} = 200 \text{ GeV/c}$

⁵⁶³ Protons, antiprotons, deuterons, and antideuterons produced in p+Be and p+Al collisions using the CERN-SPS ⁵⁶⁴ accelerator were measured by [31, 50]. Proton and antiproton production was also measured at the Fermi National ⁵⁶⁵ Accelerator Laboratory between 23 GeV/c and 200 GeV/c in p+Be collisions at 3.6 mrad [32]. Data from CERN ⁵⁶⁶ were reported as ratios of differential cross section with respect to pions. Following the procedure used by [57], the ⁵⁶⁷ differential cross sections were calculated from the measured ratios. Results in p+Be for protons and deuterons are ⁵⁶⁸ presented in Fig. 20 while results for antiprotons and antideuterons are shown in Fig. 21.

569

7. p+p, p+Be at $p_{lab} = 300$ and 400 GeV/c

A large group of measurements were conducted at the Fermilab synchrotron with incident momenta of 200, 300 ⁵⁷¹ and 400 GeV/c using various targets, such as p, D₂, Be, Ti and W. Protons and antiprotons were measured for ⁵⁷² every type of collision, but deuterons and antideuterons were only extracted at 300 GeV/c and measured at large ⁵⁷³ transverse momentum p_T /nucleon > 1 GeV/c. All the particles emitted from collisions were computed at 77 mrad ⁵⁷⁴ which corresponds to an angle of $\approx 90^{\circ}$ in the center-of-mass system [33, 34]. The specific case of p+Be at 300 GeV/c ⁵⁷⁵ compared to MC models is shown in Figs. 22 and 23.

FIG. 18. Invariant differential cross section for protons produced in p+p collisions at 158 GeV/c. Data taken from [19].

FIG. 19. Invariant differential cross section for antiprotons produced in p+C collisions at 158 GeV/c. Data taken from [30].

8. p+p at $\sqrt{s} = 45$ and 53 GeV

576

The production of pions, kaons, nucleons and antinucleons was measured at the CERN Intersecting Storage Ring 578 in p+p collisions at a variety of energies in the center-of-mass frame with $\sqrt{s} = 23, 31, 45, 53, 63 \text{ GeV}$ [35]. Deuterons 579 and antideuterons were only reported for 45 and 53 GeV [51–53]. Following the analysis of proton and antiproton 580 production by the NA49 collaboration, a feed down excess of 25% was estimated from simulations and it was applied

FIG. 20. Invariant differential cross section for protons and deuteron produced in p+Be collisions at 200 GeV/c. Data taken from [31, 50].

FIG. 21. Invariant differential cross section for antiprotons and antideuterons produced in p+Be collisions at 200 GeV/c. Data taken from [31, 50].

⁵⁸¹ to the whole sample. This correction significantly reduces the proton production, but leaves antiprotons essentially ⁵⁸² unchanged because of systematic errors in the nuclear absorption correction of about 30%. Results are shown in ⁵⁸³ Figs. 24 and 25.

FIG. 22. Invariant differential cross section for protons and deuterons produced in p+Be collisions at 300 GeV/c. Data taken from [33, 34].

FIG. 23. Invariant differential cross section for antiprotons and antideuterons produced in p+Be collisions at 300 GeV/c. Data taken from [33, 34].

9. p+He at $\sqrt{s_{NN}} = 110 \text{ GeV}$

Antiprotons produced in p+He collisions with a 6.5 TeV proton beam were measured recently by the LHCb experiment at CERN. The antiproton momentum range covered was from 12 to 110 GeV/c. The antiprotons collected

584

FIG. 24. Invariant differential cross section for protons and deuteron produced in p+p collisions at $\sqrt{s} = 53$ GeV. Data taken from [35, 53].

FIG. 25. Invariant differential cross section for antiprotons and antideuterons produced in p+p collisions at $\sqrt{s} = 53$ GeV. Data taken from [35, 51, 52].

⁵⁸⁷ were produced only by direct collisions or from resonances decaying via strong interaction. In Fig. 26 the data is ⁵⁸⁸ compared with the MC models EPOS-LHC, FTFP-BERT, and QGSP-BERT. The parametrizations from Duperray ⁵⁸⁹ and Korsmeier are also included.

FIG. 26. Differential cross section for antiprotons produced in p+He collisions at $\sqrt{s_{NN}} = 110$ GeV. Data taken from [36].

10. p+p at $\sqrt{s} = 900$ and 7000 GeV

At the LHC, protons and antiprotons as well as deuterons and antideuterons are produced in p+p and Pb+Pb collisions at very high energies. ALICE reported results at 0.9, 2.76 and 7 TeV in the central rapidity region -0.5 < y <so 0.5 for a wide range of transverse momentum ($p_T < 5 \text{ GeV}/c$) [37, 54–56]. The data are compared with EPOS-LHC and the Duperray parameterization in Figs. 27 and 28. FTFP and QGSP were not included, since Geant4 models have an energy limit of $\sqrt{s} \approx 430 \text{ GeV}$.

Appendix C: (Anti)proton mismatch factorization for EPOS-LHC and FTFP-BERT

⁵⁹⁷ Assuming (anti)proton-(anti)neutron independence and symmetry, Eq. 2 can be rewritten as:

$$\gamma_{\bar{d}} \frac{dN_{\bar{d}}}{d\vec{k}_{\bar{d}}^3}^{sim}(\vec{k}_{\bar{d}}) = \frac{4\pi p_0^3}{3} \left(\gamma_{\bar{p}} \frac{dN_{\bar{p}}}{d\vec{k}_{\bar{p}}^3}^{sim}(\vec{k}_{\bar{p}})\right)^2 \tag{C1}$$

⁵⁹⁸ The proton or antiproton mismatch can be represented by the energy-dependent ratio.

$$r(\mathbf{T}) = \left(\frac{\gamma_{\bar{d}} \frac{dN_{\bar{p}}}{d\bar{k}_{\bar{p}}^3}}{\gamma_{\bar{p}} \frac{dN_{\bar{p}}}{d\bar{k}_{\bar{p}}^3}}\right).$$
(C2)

Inserting the r(T) factor in Eq. C1, the final result is:

$$\gamma_{\bar{d}} \frac{dN_{\bar{d}}}{d\vec{k}_{\bar{d}}^3}^{sim} (\vec{k}_{\bar{d}}) = \frac{4\pi}{3} (p_0')^3 \left(\gamma_{\bar{p}} \frac{dN_{\bar{p}}}{d\vec{k}_{\bar{p}}^3}^{data} (\vec{k}_{\bar{p}}) \right)^2 \tag{C3}$$

Where $p'_0 = p_0 \cdot r(T)^{2/3}$, is the redefined coalescence momentum that is now more specific to the coalescence process rather than scaling the mismatch of the (anti)protons. The values of p'_0 for EPOS-LHC and FTFP-BERT are shown

590

596

FIG. 27. Invariant differential cross section for protons and deuteron produced in p+p collisions at $\sqrt{s} = 900$ GeV. Data taken from [37, 54, 55].

FIG. 28. Invariant differential momentum distribution for antiprotons and antideuterons produced in p+p collisions at $\sqrt{s} = 900$ GeV. Data taken from [37, 54, 55].

⁶⁰² in Fig. 29 as function of the collision kinetic energy (T). As observed, after factorizing the mismatch the p'_0 values ⁶⁰³ of FTFP-BERT are close to the values of EPOS-LHC, showing a similar energy dependence. This, justified the use ⁶⁰⁴ of Eqs. 4 and 5 to fit the extracted p_0 for both models. Differences in p'_0 for EPOS-LHC and FTFP-BERT after ⁶⁰⁵ the mismatch factorization, are related to the intrinsic effects of the models as for example (anti)nucleon production

FIG. 29. (Color online) Extracted coalescence momentum p'_0 (symbols) for deuterons (a) and antideuterons (b) as function of the collision kinetic energy (T). Fit functions [Eqs. (4) and (5)] for EPOS-LHC (long-dashed red line) and FTFP-BERT (dashed blue line) are shown.