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In theories of gravity that include a scalar field, a compact object’s scalar charge is a crucial
quantity since it controls dipole radiation, which can be strongly constrained by pulsar timing and
gravitational wave observations. However in most such theories, computing the scalar charge requires
simultaneously solving the coupled, nonlinear metric and scalar field equations of motion. In this
article we prove that in linearly-coupled Einstein-dilaton-Gauss-Bonnet gravity, a black hole’s scalar
charge is completely determined by the horizon surface gravity times the Euler characteristic of
the bifurcation surface, without solving any equations of motion. Within this theory, black holes
announce their horizon topology and surface gravity to the rest of the universe through the dilaton
field. In our proof, a 4-dimensional topological density descends to a 2-dimensional topological
density on the bifurcation surface of a Killing horizon. We also comment on how our proof can be
generalized to other topological densities on general G-bundles, and to theories where the dilaton is
non-linearly coupled to the Euler density.

1. INTRODUCTION

Despite the theoretical beauty and continued consis-
tency with observations [1] of general relativity (GR),
there are strong motivations for studying theories of grav-
ity beyond GR. These range from attempts at quantum
theories of gravity [2, 3], to trying to explain some phe-
nomenon or fix some problem (inflation [4, 5], dark mat-
ter [6, 7], dark energy [7, 8], black hole information [9, 10])
by changing the gravity theory, or exploring the theory
space to better understand gravity theories.
Almost all beyond-GR theories include additional de-

grees of freedom and a large number of proposed beyond-
GR theories include one or more massless or very light
scalar fields [11]. With a long-ranged scalar field in
the theory, compact objects (e.g. black holes or neu-
tron stars) may acquire a scalar charge: the spherically-
symmetric, 1/r component of the scalar field sourced by
a body. Scalar charges are crucial in the dynamics of a
compact-object binary system, as they control the pres-
ence or absence of scalar dipole radiation. The presence
of dipole radiation would dominate over the otherwise-
leading quadrupolar emission of gravitational waves, a
so-called “pre-Newtonian” correction. Such an effect can
be strongly constrained by both pulsar timing and the
direct detection of gravitational waves [12].
In most theories with scalar fields, computing a black

hole’s scalar charge requires solving the coupled set of
metric and scalar field equations in the nonlinear gravity
regime. On occasion, this can be accomplished analyti-
cally with symmetry reduction [13, 14], and/or simplifying
assumptions such as a perturbative treatment away from
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GR [15]. However, the general case requires numerics for
fully nonlinear partial differential equations [16].
A dramatic simplification occurs in linearly-coupled

Einstein-dilaton-Gauss-Bonnet gravity (EdGB). Already
in [17, 18], the authors had found through explicit cal-
culations, perturbative in α, a coupling parameter, that
the dilaton charge q on the Kerr background is (in our
conventions)

q = α
a2 −M2 +M

√
M2 − a2

2Ma2 +O(α2) . (1.1)

However it was not noticed that this particular combina-
tion of mass and spin is equal to the Kerr surface gravity
(Eq. 12.5.4 of [19]), so that in fact q = ακKerr +O(α2).

We prove (Theorem 1) that in this theory the dilaton
scalar charge is given by the rather simple expression

q = 1
2ακEuler(B) , (1.2)

where κ is the surface gravity of a Killing horizon, and
Euler(B) is the Euler characteristic of the bifurcation
surface. Our proof is valid to all orders in α, and moreover
does not require explicitly solving any field equations. In
fact the metric does not need to satisfy any equations
of motion; the proof is valid on any asymptotically flat,
stationary-axisymmetric black hole spacetime. Thus in
linearly-coupled EdGB, the horizon topology and surface
gravity of black holes are known at spatial infinity by
looking at the asymptotic falloff of the dilaton.
We present the proof of our main result in § 2, which

relies on a certain divergence identity (Eq. 2.8) for a
massless scalar field linearly coupled to a topological form
and the Killing symmetry of the black hole spacetime.
Combining these ingredients allows the 4-dimensional
Euler (or Gauss-Bonnet) topological density to descend to
the 2-dimensional Euler characteristic on the bifurcation
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surface. In § 3, we discuss the implications of this proof,
and how it can be generalised to theories where the dilaton
is nonlinearly-coupled to the Euler density. We also show
how to extend our proof to higher dimensions and other
invariants, such as Chern characters of complex G-bundles.
We demonstrate this with an example of an axion coupled
to electromagnetism, wherein the axion charge measures
the electromagnetic potential of the horizon times the
magnetic monopole charge of the black hole.

NOTATION AND CONVENTIONS

We follow the factor and sign conventions in [19]. Ten-
sor fields on spacetime will be denoted by abstract indices
µ, ν, λ, . . . from the lowercase Greek alphabet, and we
use lowercase letters from the beginning of the Latin al-
phabet a, b, c, . . . to denote tensors on the orthonormal
frame bundle, summarized in Appendix A. When using an
index-free notation for differential forms and vector fields
we denote differential forms by a bold-face symbol. When
translating differential forms to and from an index nota-
tion, we use the symbol ≡ to denote such a translation,
for example, for a p-form A we have (A)µ1...µp ≡ Aµ1...µp .
Our conventions for the volume form ε4, the Hodge dual
∗ and the interior product are as follows

ε4 ≡ εµ1...µ4 (1.3a)
εµ1...µkµk+1...µ4εµ1...µkνk+1...ν4 = −(4− k)!k!δ[µk+1

νk+1
· · · δµ4]

ν4

(1.3b)
(∗A)µ1...µ4−p ≡ 1

p!ε
ν1...νp

µ1...µ4−pAν1...νp

(1.3c)
(X ·A)µ1...µp−1 ≡ XνAνµ1...µp−1 (1.3d)

where A is a p-form and Xµ is some vector field.

2. LAGRANGIAN AND THE DILATON
CHARGE

We consider a theory with gravity on a 4-dimensional
spacetime M with a Lorentzian metric gµν and a scalar
dilaton field ϑ. The dynamics of the theory is given by
the Lagrangian 4-form

L = Lgravity + Lϑ (2.1)

where Lgravity is some gravitational Lagrangian which is
independent of the dilaton ϑ.
There are several theories in the literature which are

referred to as Einstein-dilaton-Gauss-Bonnet, commonly
with an exponential coupling [20, 21] between a dilaton
and the Euler density (defined below). For our main
result we will consider a linear coupling (which admits
a shift symmetry ϑ→ ϑ+ const.), and comment on the
extension to more general couplings in § 3. We take the

dilaton-Gauss-Bonnet Lagrangian Lϑ to be

Lϑ = 1
2 (∗dϑ) ∧ dϑ+ α

8 ϑE
= ε4

(
− 1

2∇µϑ∇
µϑ+ α

8 ϑE
) (2.2)

where the 4-form E corresponds to the 4-dimensional
Euler density as

E = ε4 E
with E = −(∗R∗)µνλρRµνλρ

= RµνλρR
µνλρ − 4RµνRµν +R2 ,

(2.3)

and the double dual of the Riemann tensor is defined as

(∗R∗)µνλρ := 1
4ε
µνστRστγδε

γδλρ . (2.4)

While our final result can be presented in terms of tensor
fields on spacetime, it will be, instead, convenient to use
orthonormal tetrads ea and a connection ωa

b. It is more
natural in the following analysis to treat ea and ωa

b as
globally well-defined fields on a principal bundle, following
the treatment in [22] (see also [23])—we summarise the
essential points in Appendix A. Readers unfamiliar with
the bundle formalism can skip to Eq. 2.12 where we
present the tensorial form of the charge used in our main
result Theorem 1.
In terms of the connection ωa

b, we can write E as an
exact form [22, 24, 25]

E = εabcdR
ab ∧Rcd = dΥ

with Υ = εabcdω
ab ∧

(
Rcd − 1

3ωc
e ∧ ωed

)
,

(2.5)

where Ra
b is the curvature 2-form of the connection (see

Eq. A.6). We emphasise that the 3-form Υ cannot be
represented as a covariant tensor on spacetime—even if
one writes Υ in some local coordinate system it necessarily
involves undifferentiated Christoffel symbols which are not
covariant tensors. In the language of principal bundles,
while Υ is globally well-defined, it is not a horizontal form
on the bundle.
Varying the Lagrangian with the dilaton ϑ gives the

dilaton equation of motion

0 = Eϑ = d ∗ dϑ+ α
8 E = ε4

(
�ϑ+ α

8 E
)

(2.6)

where � := ∇µ∇µ is the wave operator. Note that we do
not impose the gravitational equations of motion obtained
by varying the metric gµν , that is the metric can be
considered as a “background field”.
Using Eq. 2.5 the dilaton equation of motion can be

written as an exact form, and one could attempt to inte-
grate this over some region of spacetime bounded by two
Cauchy surfaces to get the scalar charge. However, since
Υ is not covariant (as explained above), the result would
depend on the choice of coordinate system, or equivalently
on the choice of orthonormal tetrads.
To avoid using non-covariant quantities, we proceed
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instead as follows. Using Eq. A.9b we have, for any vector
field Xµ

εabcdR
ab ∧£Xωcd = εabcdR

ab ∧D(X · ωcd) + 1
2X · E

= d
[
εabcdR

ab(X · ωcd)
]

+ 1
2X · E

(2.7)

Using this in Eq. 2.6, we get the divergence identity

JX = dQX +X ·Eϑ

= £X(∗dϑ) + α
4 εabcdR

ab ∧£Xωcd
(2.8a)

where QX = X · (∗dϑ) + α
4 εabcdR

ab(X · ωcd) (2.8b)

The current JX is conserved for any vector field Xµ,
i.e., dJX = 0, on solutions to the dilaton equation of
motion. Further, JX = 0 whenever Xµ is a symmetry
i.e. £Xgµν = £Xϑ = 0. JX vanishes on symmetries
because it is related to the Lie derivative of the Noether
current for the shift symmetry ϑ → ϑ + const. In this
case, the expression for the charge can be simplified using
Eq. A.10 to get

QX = X · (∗dϑ)− α
4 εabcdR

ab(ecµedν∇µXν) . (2.9)

We also provide a tensorial expression as follows. Define
QµνX from QX by

(QX)µν ≡ QλρX ελρµν (2.10)

so that the current vector J µX is given by

(JX)µνλ ≡ J ρXερµνλ
with J µX = ∇νQµνX +Xµ(�ϑ+ α

8 E) .
(2.11)

For a symmetry Xµ we can compute (using Eq. 2.9)

QµνX = −2X [µ∇ν]ϑ+ α
2 (∗R∗)µνλρ∇λXρ . (2.12)

It can be checked that J µX = 0, using the identities
∇µ(∗R∗)µνλρ = 0 (which follows from the Bianchi identity
Eq. A.8), ∇µ∇νXλ = Rλνµ

ρXρ for a Killing field Xµ (see
Eq. C.3.6 [19]), and CµλρσCνλρσ = 1

4δ
µ
νC

τλρσCτλρσ for
the Weyl tensor Cµνλρ in 4-dimensions [26]. The result
of Theorem 1 can be obtained by evaluating the integral
0 =

∫
Σ uµJ

µ
K where, Kµ is the horizon Killing field and uµ

is the future-pointing unit time-like normal to a Cauchy
surface Σ, as described below.

* * *

We now consider an asymptotically flat, stationary-
axisymmetric black hole spacetime (M, gµν) shown in
Fig. 1, with a stationary-axisymmetric dilaton field ϑ sat-
isfying the equation of motion Eq. 2.6 (we take all fields to
be smooth (C∞) throughout M). We assume the space-
time has a bifurcate Killing horizon H := H + ∪H −,
with a bifurcation surface B := H + ∩H −. We assume
that B is compact but do not assume other restrictions

B ∞

H −

H +

Σ

M

FIG. 1. Schematic diagram for black hole spacetime. Note
this should not be considered as a Carter-Penrose diagram,
in particular we make no assumptions about the existence of
null infinity.

on its topology.1 Let the Killing field generating H be
Kµ = tµ + ΩH φµ where tµ denotes the time transla-
tion Killing field and φµ denotes the axial Killing field
associated with the horizon rotation parameter ΩH . Let
Σ denote a Cauchy surface for the black hole exterior.
We assume that Σ has one asymptotically flat end (with
asymptotic conditions given by Eq. 2.14 below), and a
boundary at B.
The asymptotic flatness conditions on our spacetime

are as follows. There exist asymptotically Minkowskian
coordinates xµ = (t, x, y, z) such that the global Killing
fields asymptote to the Minkowski ones at the rates

tµ = (∂t)µ+O(1/r) , φµ = (∂φ)µ
(
1 +O(1/r)

)
, (2.13)

the metric and dilaton asymptote at the rates

gµν = g̊µν +O(1/r) , ϑ = ϑ∞(θ) + q(θ)
r

+O(1/r2)
(2.14)

where g̊µνdx
µdxν ≡ −dt2 + dx2 + dy2 + dz2 is the

Minkowskian flat metric in these coordinates, and (r, θ, φ)
are defined in terms of (x, y, z) in the standard way. In
addition, all nth derivatives of the above quantities (with
respect to these coordinates) are required to fall off faster
by an additional factor of 1/rn.2

For such spacetimes, we define the scalar charge to
be the spherically-symmetric part of the asymptotic 1/r

1We need not assume that B is connected but, for notational conve-
nience, we will assume that this is the case.

2Since we do not impose the gravitational equations of motion we do
not need to ensure that such asymptotically flat spacetimes exist as
solutions.
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falloff (see also [13, 27])

q := − 1
4π

∫
∞

ε2∂rϑ = 1
4π

∫
∞

ε2
q(θ)
r2 . (2.15)

Here, and henceforth,
∫
∞ means that the integral is evalu-

ated over an asymptotic 2-sphere Sr of radius r and then
one takes the limit r → ∞, and ε2 is the induced area
element on Sr.3

Now, we use Eq. 2.8 to prove our main result.

Theorem 1. On any asymptotically flat, stationary-
axisymmetric black hole spacetime (as defined above) the
scalar charge Eq. 2.15 is given by

q = 1
2ακEuler(B) , (2.16)

where κ is the surface gravity of the black hole and
Euler(B) is the Euler characteristic of the bifurcation
surface B.

Proof. For Xµ = Kµ, the horizon Killing field, integrate
0 = JK = dQK on the Cauchy surface Σ to get∫

∞
QK =

∫
B

QK (2.17)

where we have assumed that the induced orientations
in both integrals are outward-pointing i.e. the space-like
normals in Σ point towards ∞. We now evaluate each
side of the above expression using Eq. 2.9.
To compute the contribution to the charge at infinity,

let e̊a = (dt, dx, dy, dz) be an asymptotic tetrad adapted
to the asymptotically Minkowskian coordinates. From
Eq. 2.14, we have near infinity

ea = e̊a +O(1/r) , ωab = O(1/r2) , Rab = O(1/r3) .
(2.18)

Then, using Eq. 2.15, we find∫
∞

QK =
∫
∞
K · (∗dϑ) = −

∫
∞

ε2∂rϑ

= 4πq ,
(2.19)

where the curvature terms do not contribute due to the
falloffs in Eq. 2.18, and the contribution from the φµ-
part of Kµ vanishes since φµ is tangent to the spheres at
infinity.
On B, we have Kµ|B = 0 and ∇µKν |B = κε̃µν where

ε̃µν is the binormal to the bifurcation surface (see § 12.5
[19]). It can be shown that κ is a constant over any
bifurcate Killing horizon H [28]. Using this in Eq. 2.9,
and noting that (ε2)µν = − 1

2ε
λρ
µν ε̃λρ is the intrinsic area

3The induced area element ε2 grows as r2 and Eq. 2.15 converges in
the limit as r → ∞.

element to B, we get∫
B

QK = α
2 κ

∫
B

εabR
ab = α

2 κ

∫
B

ε2R2

= 2πακEuler(B) ,
(2.20)

where εab is the tetrad component of ε2, R2 is the intrinsic
Ricci scalar of B, and the last line uses the 2-dimensional
Gauss-Bonnet theorem [29].

Combining Eqs. 2.17, 2.19 and 2.20, we have our result
Eq. 2.16.

We note here that the contribution to the scalar charge
from B (Eq. 2.20) can be written as∫

B

QK = −α8 κ
∫
B

ε2
δE

δRµνλρ
ε̃µν ε̃λρ (2.21)

in analogy with the Wald entropy formula [30, 31]. This
relation arises due to the second term in Eq. 2.8b.

3. DISCUSSION AND EXTENSION

A concise interpretation of this result is that black holes
communicate their horizon topology and surface gravity
to spatial infinity, by encoding this information in the
asymptotic falloff of the dilaton.

When the bifurcation surfaceB is a topological 2-sphere,
as is the case for a Kerr spacetime (or any continuous
deformation of Kerr), we have q = ακ, consistent with
Eq. 1.1. However our result is valid to all orders in α,
not just the decoupling limit, and at no point have we
imposed the metric equations of motion. Our proof also
generalises to stationary stars as long as the matter fields
do not couple to ϑ (the matter Lagrangian is independent
of ϑ). In this case there is no interior boundary and
we get q = 0 (see [27] for an earlier approach based on
the generalised-Gauss-Bonnet-Chern theorem; the main
advantage of our proof is that it is based on local and
covariant quantities).
Our proof can also be adapted to any theory (in any

number of spacetime dimensions) where the dilaton field is
linearly coupled to a topological density T which depends
on the curvature with suitable modifications of Eq. 2.8
with terms of the form δT /δRµνλρ. We can also consider
theories where a scalar field is linearly-coupled to a topo-
logical density of any G-bundle where G is some, possibly
non-abelian, group. In this case, the charge contribution
takes a form similar to Eq. 2.21 with the Riemann tensor
replaced by the curvature in the G-bundle (see [22]). As
an example we consider briefly a massless axion field ϕ
coupled with strength g to electromagnetism through the
second Chern character [29], via the Lagrangian

Lϕ = 1
2(∗dϕ) ∧ dϕ+ g

2ϕ F ∧ F (3.1)

= 1
2(∗dϕ) ∧ dϕ+ g

2ϕ d(F ∧A) ,
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where A is the electromagnetic vector potential, i.e. a
U(1)-connection, and F := dA is the field strength. For
the analogue of Eq. 2.8, we then have

J (ϕ)
X = £X(∗dϕ) + gF ∧£XA (3.2a)

Q(ϕ)
X = X · (∗dϕ) + gF (X ·A) . (3.2b)

Following through the proof of Theorem 1 under the
assumption that A = O(1/r) at spatial infinity, the axion
scalar charge for a black hole is given by

q(ϕ) = gVH Qm where Qm := 1
4π

∫
B

F , (3.3)

and VH := K · A|B is the horizon potential, which is
constant on H (see [32] and Theorem 1 [22]). Here Qm
is the black hole’s magnetic charge, proportional to the
first Chern number of the U(1)-bundle over B [29].

A number of recent investigations [33–35] focused on a
non-linear coupling between the dilaton and Euler density,
replacing ϑE → f(ϑ)E in the Lagrangian Eq. 2.2 (with
a nonlinear function f(ϑ), the theory no longer has the
shift symmetry ϑ→ ϑ+ const.). These authors pointed
out that when f ′(ϑ) vanishes at some value ϑ0, such a
theory admits standard (“no hair”) GR solutions with a
constant dilaton field ϑ = ϑ0. However, if f ′′(ϑ0) > 0,
these solutions can be unstable, and revert to a stable
branch of black hole solutions with dilaton hair.

Analyzing this coupling, we again have Eq. 2.8a with

Eϑ = d ∗ dϑ+ α
8 f
′(ϑ)E

QX = X · dϑ+ α
4 f
′(ϑ)εabcdRab(X · ωcd)

JX = £X(∗dϑ) + α
4 f
′(ϑ)εabcdRab ∧£Xωcd

+ α
4 f
′′(ϑ)εabcdRab ∧ dϑ (X · ωcd) .

(3.4)

Note that in the nonlinear case, JX is still conserved,
but JX 6= 0 even for a symmetry Xµ of the solution,
because there is no more symmetry under the shift ϑ→
ϑ+ const. Therefore, a bulk integral term will remain in
the computation of the charge. A repetition of our proof
gives the dilaton charge

q = α
8πκ

∫
B

ε2f
′(ϑ)R2

− α
8π

∫
Σ

ε3f
′′(ϑ)uµ(∗R∗)µνλρ∇νϑ∇λKρ ,

(3.5)

where ε3 is the induced volume element and uµ is the
unit timelike normal to the Cauchy surface Σ.

In Eq. 3.5, we can easily see the difference between the
linearly coupled case and the non-linear case. Because of
the lack of shift symmetry in the nonlinear case, the bulk
term remains (i.e. f ′′(ϑ) 6= 0), and thus the dilaton charge
depends on the metric and dilaton solutions throughout
the entire spacetime. We no longer get a relation between
quantities evaluated purely on the boundaries. However,

if the dilaton field has a small variation throughout space-
time, it may be possible to expand the theory [27] around
some typical value ϑ1 6= ϑ0, where f ′(ϑ1) 6= 0. Then if we
expand the coupling function to linear order around ϑ1,
we recover the shift-symmetric, linearly-coupled theory.
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Appendix A: Short primer on tetrads and spin
connection

In this appendix we give a short introduction to tetrads
and connections. We will use the language of principal
bundles, for the details of which we refer the reader to
the classic treatment4 of [39–41] (see also the appendix
of [22]).

On spacetime, the oriented orthonormal tetrads (ea)µ ≡
eaµ are defined by

gµν = ηabe
a
µe
b
ν , εµνλρ = εabcde

a
µe
b
νe
c
λe
d
ρ , (A.1)

where ηab = diag(−1, 1, 1, 1) and εabcd are the metric and
orientation in R4 with ε0123 = 1. The “inverse” tetrads
eµa satisfy

eµae
a
ν = δµν , eµb e

a
µ = δab . (A.2)

The torsion-free spin connection ωa
b is given by

(ωa
b)µ = eaν∇µeνb . (A.3)

Given a metric gµν , the tetrads and the spin connection
are only determined up to a local Lorentz transformation
Λab(x) which depends on the the point x in spacetime

ea 7→ Λabeb , ωa
b 7→ Λacωc

d(Λ−1)db + Λacd(Λ−1)cb .
(A.4)

We note that the connection transforms non-covariantly.
Due to this “internal gauge freedom” it is more natural to
treat these as fields on a principal bundle with structure
group given by the Lorentz group.

4Note that these references may use different conventions when
converting differential forms to an index notation.
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Differential forms on spacetime which are covariant un-
der Lorentz transformations are represented by horizontal
differential forms on the bundle. The connection is repre-
sented by a Lie algebra-valued 1-form (which by definition
is not horizontal). The connection is then determined
uniquely by the torsion-free condition

0 = Dea = dea + ωa
b ∧ eb , (A.5)

where D is the covariant exterior derivative defined by
ωa

b. The curvature 2-form is defined by the horizontal
form

Ra
b := Dωa

b = dωa
b + ωa

c ∧ ωc
b , (A.6)

Since the curvature is horizontal it represents a covariant
form on spacetime related to the Riemann tensor as

(Ra
b)µν ≡ Rλρµνeaλe

ρ
b , (A.7)

and the Bianchi identity reads

DRab = 0 =⇒ ∇[σR
λρ
µν] = 0 . (A.8)

The Lie derivative of the tetrads and connection with
respect to vector fields on the bundle is

£Xea = D(X · ea)− (X · ωa
b)eb (A.9a)

£Xωa
b = X ·Ra

b +D(X · ωa
b) (A.9b)

From the spacetime point of view, this encodes the fact
that Lie derivatives of the tetrads and connection are only
defined up to a local Lorentz transformation (encoded in
the vertical part of the bundle vector field).

It can be shown (see Lemma A.2 [22]) that a bundle vec-
tor field which preserves the tetrads, £Xea = 0, projects
to a Killing field Xµ of the metric on spacetime, and
further satisfies

X · ωab = −eaµebν∇µXν , (A.10)

where the left-hand-side is computed as a function on the
bundle.
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