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The self-force problem—which asks how self-interaction affects a body’s motion—has been poorly
studied for spacetime dimensions d 6= 4. We remedy this for all d ≥ 3 by nonperturbatively con-
structing momenta such that forces and torques acting on extended, self-interacting electromagnetic
charges have the same functional forms as their test body counterparts. The electromagnetic field
which appears in the resulting laws of motion is not however the physical one, but a certain ef-
fective surrogate which we derive. For even d ≥ 4, explicit momenta are identified such that this
surrogate field satisfies the source-free Maxwell equations; laws of motion in these cases can be
obtained similarly to those in the well-known four-dimensional Detweiler-Whiting prescription. For
odd d, no analog of the Detweiler-Whiting prescription exists. Nevertheless, we derive its replace-
ment. These general results are used to obtain explicit point-particle self-forces and self-torques
in Minkowski spacetimes with various dimensions. Among various characteristics of the resulting
equations, perhaps the most arresting is that an initially-stationary charge which is briefly kicked
in 2 + 1 dimensions asymptotically returns to rest.

I. INTRODUCTION

The motion of small bodies is central to some of the
most enduring problems in physics. If such a body is cou-
pled to an electromagnetic, gravitational, or other long-
range field, it may be subject to net forces exerted by its
own contributions to that field. This “self-force” strongly
influences, for example, charged particles circulating in
particle accelerators and the shrinking orbits of black
hole binaries due to the emission of gravitational radi-
ation. However, the apparent simplicity of the statement
of the self-force problem belies a number of physical and
mathematical subtleties. This has led to more than a
century of literature on the subject; see [1–10] for some
electromagnetic examples.

While motivations for working on the self-force prob-
lem have varied considerably over the years, the past
two decades have seen a concerted effort—motivated
largely by gravitational wave astronomy—to understand
the gravitational self-force problem in general relativity.
This has led to a number of theoretical and computa-
tional advances which considerably improve our under-
standing of classical self-interaction, in both the gravita-
tional and electromagnetic contexts [11–14]. Separately,
new aspects of the electromagnetic self-force are begin-
ning to be accessible to investigation via high-power laser
experiments [15, 16].

In this paper, we move beyond the existing literature,
which almost exclusively focuses on four spacetime di-
mensions, to rigorously study self-interaction in all di-
mensions d ≥ 3. There are several reasons for this:
First, considerations in different numbers of dimensions
refine our understanding of precisely what is important
and what is not; lessons learned in this way may signif-
icantly inform future considerations even in four dimen-
sions, particularly in more complicated theories which
have not yet been understood. Second, considerations

of theories in non-physical numbers of dimensions can,
via holographic dualities, be related to ordinary four-
dimensional systems; for example, the five-dimensional
self-force might be used to understand jet quenching in
four-dimensional quark-gluon plasmas [17]. Third, self-
forces in odd numbers of spacetime dimensions are qual-
itatively very different from those in even dimensions. In
particular, one crucial ingredient of the self-force frame-
work is the derivation of an appropriate map from the
physical field to an effective surrogate in which, e.g., the
Lorentz force law is preserved despite the possible pres-
ence of radiation reaction and similar effects; this map
had not been previously understood in odd dimensions
and differs considerably from its even-dimensional coun-
terpart. Despite these differences, a significant portion of
this paper is devoted to developing a unified formalism
which applies for any parity of dimension. Our results
subsume the Detweiler-Whiting scheme which was origi-
nally given in four dimensions [11, 12, 18].

Our final reason for considering different numbers of
dimensions is that the self-force in three spacetime di-
mensions may be proportionally stronger than in four di-
mensions, both in terms of instantaneous magnitude [19]
and—as argued below—in the particularly slow decay of
fields in this context. The latter property implies that
self-interaction encodes a strong “memory” of a system’s
past. Moreover, systems in which this is relevant may
be accessible to experiment. For example, “pilot wave
hydrodynamics” involves a number of striking phenom-
ena observed to be associated with oil droplets bouncing
on a vibrating bath [20]. Each bounce generates surface
waves on the bath, but these waves also affect the hori-
zontal motion of the droplet. This type of feedback with
a long-range field (the surface waves) is reminiscent of a
self-force problem in two spatial dimensions. There are
also a variety of condensed matter systems which act as
though they are confined to one or two spatial dimensions
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[21, 22], and some of our considerations may be relevant
there as well.

We do not consider any particular fluid or condensed
matter system in this paper, but instead explore a stan-
dard electromagnetic self-force problem in different num-
bers of dimensions. To the best of our knowledge, the
literature does not contain any rigorous derivations of
the self-force other than in four dimensions, except for
recent work restricted to static bodies [19] (see however
work on the radiation reaction component of the self-force
in effective field theory [23, 24]). The fully-dynamical
self-force considered here is considerably different and
more rich than its static counterpart. We choose to fo-
cus on the standard electromagnetic self-force problem
purely for clarity of exposition; our results generalize
to extended bodies coupled to Klein-Gordon fields and
to linearized gravitational fields satisfying the Einstein
equations. There are also no conceptual obstacles to con-
sidering non-trivial boundary conditions such as those
appropriate for describing analogs of the pilot-wave hy-
drodynamics experiments mentioned above.

A layout of the paper is as follows: In Section II,
we briefly review, and then apply and extend, a non-
perturbative formalism [10, 12, 25, 26] which provides a
general framework for the problem of motion of strongly
self-interacting extended bodies. Not all of the intricate
details of this formalism are required to absorb the essen-
tial points of this paper, although some of the most rele-
vant aspects are recounted here. We apply them to derive
equations of motion for an extended body coupled to an
electromagnetic field in arbitrary dimensions, including
all self-interaction effects. The resultant equations are
structurally identical to extended test-body equations,
except that the physical field in the test-body equations
is mapped to an effective field which encapsulates all self-
force and self-torque effects. The cost of this map is that
the stress-energy tensor of the body is renormalized as
it appears in the laws of motion. This renormalization
is well-controlled, however, being both finite and quasi-
local (in a sense we make precise later). Moreover, our
laws of motion admit well-defined point-particle limits.
In Section III, we discuss these point-particle limits with
retarded boundary conditions in Minkowski spacetimes
with various dimensions, obtaining explicit point-particle
self-forces and self-torques in these cases. In Section IV,
we discuss some interesting phenomenology that occurs
in odd numbers of spacetime dimensions. Some of the
issues that arise here remain open problems which we
hope will inspire further interest. We particularly fo-
cus on self-force phenomenology in d = 3, where self-
interaction effects can be relatively large and where there
is a very strong history dependence. One particularly
striking example of the latter shows up in the case of a
charge which is initially stationary and is then given a
kick by an externally-imposed force. Our analysis shows
that the slowly-decaying fields in this case cause such a
particle to return to rest at late times, a phenomenon
reminiscent of Aristotelian physics.

Throughout this paper, units are chosen in which G =
c = 1, the metric signature is positive, abstract indices
are denoted by a, b, . . . , spacetime coordinate indices by
µ, ν, . . . , and spatial coordinate indices by i, j, . . . .

II. EXTENDED BODIES AND
NON-PERTURBATIVE LAWS OF MOTION

Our strategy is not to obtain a “point particle self-
force” as any kind of fundamental concept, but instead
to derive laws of motion first for extended charge distri-
butions and then to evaluate point-particle limits of those
laws. Although we focus for concreteness on the electro-
magnetic self-force problem, analogous results are easily
obtained for the scalar and (at least the first order) grav-
itational self-force. The approach adopted here is based
on a nonperturbative formalism developed by one of us
[10, 12, 25, 26], which provides a rigorous framework with
which to analyze problems of motion in a wide variety of
contexts. Crucially, most of this framework is agnostic
to the number of spacetime dimensions.

A. Preliminaries

In the electromagnetic context, a finite extended body
in a d-dimensional spacetime (M, gab) is associated with a
nonsingular conserved current density Ja and a nonsingu-
lar stress-energy tensor T abB = T

(ab)
B . The support of T abB

may be identified with the body’s worldtube W ⊂ M ,
and that of Ja is assumed not to extend beyond W.
Furthermore, we suppose that the body’s worldtube is
spatially compact and that the electromagnetic field Fab
satisfies Maxwell’s equations

∇[aFbc] = 0, ∇bFab = ωd−1Ja, (1)

in a neighborhood of W, where

ωd−1 ≡
2π

1
2 (d−1)

Γ( 1
2 (d− 1))

(2)

is equal to the area of a unit sphere in Rd−1. The dy-
namical evolution of such an extended body may be un-
derstood, at least in part, via energy and momentum
exchanges between that body and the electromagnetic
field. Such exchanges are more precisely described by
the conservation of the system’s total stress-energy ten-
sor T ab = T (ab), in the sense that

∇bT ab = 0. (3)

Although various arguments can be made for how to
“most naturally” split T ab into electromagnetic and ma-
terial components inside of a body, particularly if that
body possesses nontrivial dielectric or related properties
[27], we pragmatically extend the vacuum expression

T abEM ≡
1

ωd−1

(
F acF

bc − 1

4
gabF cdFcd

)
(4)
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for the electromagnetic stress-energy tensor into the in-
terior of W: T ab = T abB + T abEM everywhere of interest.
This sum may in fact be viewed as a definition for T abB
in terms of T ab and Fab. Adopting it, (1) and (3) imply
that

∇bT abB = F abJ
b. (5)

Every portion of an extended charge is thus acted upon
by the Lorentz force density FabJb.

The question we now ask is how this force density
“integrates up” to affect a body’s overall motion. One
difficulty is that Maxwell’s equations imply that FabJb
depends nonlinearly and nonlocally on Ja, and can be
almost arbitrarily complicated. Despite this, experience
suggests that there are physically-interesting regimes in
which the (appropriately-defined) net force is not com-
plicated at all: Laws of motion arise in which net forces
involve a body’s internal structure only via its first non-
vanishing multipole moments. That these laws do not
depend on finer details of Ja lends them a certain degree
of “universality.” Deriving this universality and making
it precise is the essence of the self-force problem.

We emphasize that it is only certain “bulk” features
of an extended body which can be described as univer-
sal. Individual objects may develop internal oscillations,
turbulent flows, or other fine details which strongly de-
pend on material composition, thermodynamic effects,
and other characteristics which are difficult both to spec-
ify and to model. As in Newtonian celestial mechanics,
our goal here is to ignore as many of these details as possi-
ble, and to instead identify certain features of T abB and Ja
which i) describe a body’s behavior “as a whole,” and ii)
whose evolution is only weakly coupled to a body’s inter-
nal details. In Newtonian celestial mechanics, these two
properties are well-known to hold for the linear and angu-
lar momenta associated with each celestial body. We now
generalize the concept of momentum to describe relativis-
tic extended bodies coupled to electromagnetic fields in
d-dimensional spacetimes.

B. Momentum

Although there is a strong physical expectation that
some momentum-like quantity can be defined for ex-
tended, relativistic charge distributions, non-pathological
definitions are not so easily written down. The problem
is particularly acute for bodies with significant self-fields,
essentially because, i) those self-fields carry energy and
momentum, ii) they rearrange themselves to adjust to
any motions associated with W, and iii) self-fields may
extend far outside a body’s material boundaries. The
first and second of these points suggest that a body’s self-
field contributes, e.g., to its inertia—a fact already rec-
ognized by the end of the 19th century [1]. Indeed, four-
dimensional electromagnetic self-fields are now known to
contribute to (or “renormalize”) not only a body’s appar-
ent mass, but all of its stress-energy tensor [10, 12, 28].

While there must be some sense in which these ef-
fects generalize to any number of dimensions, they are
nontrivial to compute even when d = 4. Fundamen-
tally, this is because it is difficult to guess a suitable
definition for the momentum which treats a body’s ma-
terial and self-field components as one. Consider, for
example, a “renormalized body momentum” defined by
appropriately integrating T abB + T abself , where T abself is an
electromagnetic stress-energy tensor which is quadratic
in a suitably-defined self-field. Any “mass” associated
with such a definition would clearly depend on prop-
erties of the self-field at arbitrarily-large distances, and
hence on the state of system over arbitarily-long times.
It would not describe a body’s instantaneous resistance
to applied forces, and would thus be a poor definition of
mass. Indeed, the degree of nonlocality associated with
naive momentum definitions such as this renders them
physically unacceptable, at least in a non-perturbative
context. While the problem is considerably alleviated at
low orders in the perturbative expansions commonly as-
sociated with point-particle limits [9, 29], it is difficult to
extend the methods employed in those contexts to higher
orders in perturbation theory, or even to apply them at
low orders when Huygens’ principle is violated.

The nonperturbative formalism [12] employed here af-
fords a different approach, allowing us to derive—rather
than postulate—physically-acceptable definitions for the
linear and angular momenta of a charged extended body.
Our results do not depend on any limiting process, and
are nonlocal only in the sense that they depend on the
state of the system over spatial and temporal scales com-
parable to a suitably-defined diameter for W. No smaller
degree of nonlocality could reasonably be expected, even
for a body with no self-field whatsoever. Schematically,
we obtain this definition by first proposing a “bare mo-
mentum,” essentially a guess which need not take into
account any self-field effects, and then deriving a cor-
rection to that definition which maintains locality while
also decoupling forces and torques from a body’s internal
details.

Our momenta depend on a choice of origin, which we
take to be a timelike worldline parametrized by γ(τ).
Such origins are required even in Newtonian mechanics
at least to define the angular momentum, and it is only
the global parallelism of Euclidean space which prevents
them from also being necessary to define the Newtonian
linear momentum. Global parallelism cannot be assumed
here, so an origin is needed for both our linear and angu-
lar momenta. We additionally need to specify a family of
spacelike hypersurfaces Bτ 3 γ(τ) which foliate W, thus
fixing a notion of time inside a body’s worldtube. Specific
worldlines and specific hypersurfaces may be fixed using
spin supplementary and similar conditions; see Section
II E. At this stage, however, we assume only that some
prescription has been given. Its details do not matter.
Next, we define the bare “generalized momentum” Pτ [·]



4

at time τ via

Pτ [ξa] ≡
∫
Bτ

dSa

[
T abB (x)ξb(x) + Ja(x)

∫ 1

0

duu−1

×∇b′σ(y′(u), γ(τ))F b
′c′(y′(u))ξc′(y

′(u))

]
, (6)

where σ(x, x′) denotes Synge’s world function, defined to
equal one half of the squared geodesic distance between
its arguments, y′(u) is an affinely-parametrized geodesic
for which y′(0) = γ(τ) and y′(1) = x, and ξa(x) is any
vector field drawn from a certain finite-dimensional vec-
tor space referred to as the space of generalized Killing
fields (GKFs). The GKFs are defined more precisely
in [12, 30], and coincide with the space of all ordinary
Killing vector fields in maximally-symmetric spacetimes.
More generally, the GKFs always form a vector space
with dimension 1

2d(d + 1). The generalized momentum
at fixed time is a linear operator on this space, and may
therefore be viewed as a 1

2d(d+ 1)-dimensional vector in
the vector space dual to the space of GKFs. It simulta-
neously encodes both the linear and angular momentum
of an extended body. Just as electric and magnetic fields
are best thought of as two aspects of a single electro-
magnetic field, a body’s linear and angular momenta are
two aspects of a single more-fundamental structure: the
generalized momentum.

More precisely, a bare linear momentum pa(τ) and a
bare angular momentum Sab = S[ab](τ) may be implicitly
defined by combining (6) with

Pτ [ξa] ≡ pa(τ)ξa(γ(τ)) +
1

2
Sab(τ)∇aξb(γ(τ)). (7)

Pτ [ξa] thus returns a linear combination of the linear and
angular momenta. The particular choice of ξa controls
which linear combination is obtained. If ψa is, e.g., a
translational Killing field in flat spacetime, Pτ [ψa] re-
turns the component of linear momentum associated with
that translation. Regardless, varying over all possible
GKFs results in integral formulae for pa and Sab which
involve T abB , Ja, and Fab. These formulae coincide with
definitions originally proposed by Dixon [31–33], who
sought multipole moments for T abB in which stress-energy
conservation implies differential constraints only on the
monopole and dipole moments. That goal was achieved,
meaning that there is a sense in which ordinary differen-
tial equations with the form ṗa = (. . .) and Ṡab = (. . .)
are fully equivalent to the partial differential equation
(5). Regardless, these definitions for the momenta reduce
to textbook ones [34] in flat spacetime and with vanishing
electromagnetic fields. They also give rise, more gener-
ally, to simple conservation laws whenever there exists
a Killing vector field which is also a symmetry of Fab
[12, 32]. We note that this last property would fail to
hold if the (less familiar) electromagnetic terms in (6)
were omitted.

Now that a bare momentum has been proposed, its
evolution may be understood by differentiating (6) with

respect to τ while applying (5). The resulting rate of
change may be interpreted as encoding bare forces and
bare torques, which can again be written as integrals over
a body’s interior:

d

dτ
Pτ [ξa] = FG

τ [T abB ; ξc] + FEM
τ [Fab, Jc; ξd], (8)

where the gravitational generalized force is given by the
bilinear functional

FG
τ [T abB ; ξc] =

1

2

∫
Bτ

dST abB Lξgab, (9)

and the electromagnetic generalized force by the trilinear
functional

FEM
τ [Fab, Jc; ξd] =

∫
Bτ

dSJb
[
ξaFab +∇b

∫ 1

0

duu−1

×∇b′σ(y′(u), γ(τ))F b
′c′(y′(u))ξc′(y

′(u))

]
.

(10)

The ξa here again denote GKFs and the Lξ are Lie deriva-
tives. Any particular GKF which is substituted into these
equations may be viewed as selecting the corresponding
component of the generalized gravitational and electro-
magnetic force vectors.

If one has full knowledge of T abB and Fab, and hence
Ja = ω−1

d−1∇bFab, electromagnetic forces and torques
can be computed by directly evaluating the integral
FEM
τ [Fab, Jc; ξd] for all possible GKFs. However, there

is little point to such descriptions if the system is already
understood in full detail. Momenta and related concepts
are most valuable precisely when a system’s details are
only partially specified, or alternatively, if one would like
to understand a class of distinct systems which neverthe-
less share some bulk features.

With this context in mind, forces and torques associ-
ated with the definition (6) may be shown to have cer-
tain undesirable characteristics. First, unless self-fields
are negligible, the functionals FEM

τ [Fab, Jc; ξd] are diffi-
cult to approximate as-is. In particular, it is not clear
how to evaluate them if, e.g., only the first few multipole
moments of Ja are known. More precisely, it is the ac-
tual self-field which must be negligible in order to make
reasonable approximations, and not only some suitable
integral of that self-field. There are very few realistic
settings in which such an approximation can be justified,
particularly if smallness is also demanded for the deriva-
tives of a body’s self-field. In some cases, this difficulty is
merely a question of calculational practicality. In others,
it is essential: There are important examples in which
bare forces and torques may be directly shown to depend
on the detailed nature of Ja. When this occurs, the laws
of motion associated with pa and Sab cannot be deemed
universal. Nevertheless, we find closely-related momenta
which do obey universal laws of motion.

The formalism we employ accomplishes this by pro-
viding a set of tools which allow one to easily establish
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identities with the form

FEM
τ [Fab, Jc; ξd] = FEM

τ [F̂ab, Jc; ξd]−
d

dτ
δPτ [Ja; ξb]

+ FG
τ [δT abB [Jc]; ξd],

(11)

for a wide variety of nonlocal field transformations Fab 7→
F̂ab. The nature of this field transformation determines
specific forms for the functionals δT abB [Ja] and δPτ [Ja; ξb],
both of which are nonlinear in Ja. The point of (11) is
to describe how electromagnetic forces and torques ex-
erted on a charge distribution Ja by a field Fab can be
computed in terms of forces and torques exerted by a
potentially-simpler “effective field” F̂ab[Fcd]. Substitut-
ing (11) into (8) suggests the definition

P̂τ [ξa] ≡ Pτ [ξa] + δPτ [Ja; ξb] (12)

for the renormalized momentum, which is seen to satisfy

d

dτ
P̂τ [ξa] = FG

τ [T̂ abB ; ξc] + FEM
τ [F̂ab, Jc; ξd]. (13)

Here, T̂ abB ≡ T abB + δT abB and the dependence of P̂τ on
T abB and Ja has been suppressed. It follows that if the
map Fab 7→ F̂ab satisfies appropriate conditions—to be
discussed in more detail below—electromagnetic forces
and torques appear to be exerted not by the physical
field Fab, but by a particular surrogate F̂ab. The cost
for this replacement is effectively a renormalization of
the body’s apparent stress-energy tensor, which affects
its apparent momenta and the couplings which appear
in gravitational forces and torques. Both of these effects
can be physically interpreted as contributions due to the
body’s self-field. Note that although T abB is renormalized
here, Ja is not, essentially because Maxwell’s equations
are linear.

Eq. (13) has an advantage over (8) when F̂ab be-
haves more simply inside a body than Fab. More specif-
ically, there should be a wider variety of circumstances
in which a well-chosen F̂ab varies slowly throughout each
Bτ . Whenever this occurs, useful multipole expansions
may be found for FEM

τ [F̂ab, Jc; ξd], resulting in electro-
magnetic forces and torques which are identical in form
to standard test body expressions, but with all fields in
those expressions equal to F̂ab. Similarly, a multipole
expansion for FG

τ [T̂ abB ; ξd] results in standard expressions
for the gravitational forces and torques acting on an ex-
tended test body, but with stress-energy multipole mo-
ments which are somewhat different from those which
might have been computed using T abB alone. These gravi-
tational effects involve only quadrupole and higher order
moments, and vanish entirely in maximally-symmetric
spacetimes.

C. Effective test bodies and effective fields

Laws of motion which are structurally identical to
those satisfied by test bodies moving in an effective ficti-

tious field are used today to organize essentially all known
d = 4 self-force results—whether in electromagnetism,
scalar field theory, or general relativity [11, 12, 18]. Such
principles have also been employed to understand static
scalar and electromagnetic self-interaction for more gen-
eral values of d [19]. Indeed, we may view the motion of
a self-interacting body moving in a certain physical field
as “equivalent” to the motion of an “effective test body”
in an appropriate effective field.

It is instructive to note that a particularly simple prin-
ciple of this sort holds even in Newtonian gravity [12, 25],
where it provides the foundation for celestial mechanics.
Using standard definitions for the linear and angular mo-
menta of a Newtonian extended body with mass density
ρ coupled to a gravitational potential φ, the Newtonian
generalized force at time τ may be shown to be

d

dτ
PN
τ [ξa] = FN

τ [φ, ρ; ξa]

= −
∫
Bτ

ρ(x, τ)Lξφ(x, τ)d3x, (14)

where Bτ ⊂ R3 denotes the body’s location at time τ ,
ξa is any Euclidean Killing vector field, and Lξ again de-
notes the Lie derivative with respect to ξa. As in electro-
magnetism, this generalized force is a trilinear functional
of the potential, its source, and a vector field. Now, it is
straightforward to show that if G(x,x′) = G(x′,x) and
LξG(x,x′) = 0 for all Killing vector fields ξa, and if

φ̂(x, τ) ≡ φ(x, τ)−
∫
Bτ

ρ(x′, τ)G(x,x′)d3x′, (15)

forces and torques computed using φ must be identical
to those computed using φ̂:

FN
τ [φ, ρ; ξa] = FN

τ [φ̂, ρ; ξa]. (16)

This result is directly analogous to (11). Although the
language used here is unconventional, the conclusion is
not; it is standard to apply a result equivalent to (16) spe-
cialized so that G(x,x′) = −|x−x′|−1. In that context,
G(x,x′) is a Green function for the Laplace equation
and φ̂ satisfies the source-free field equation ∇2φ̂ = 0.
Indeed, the effective field here is just the external po-
tential. Given (15) and the Newtonian field equation
ρ = ∇2φ/4π, the external potential may be viewed as a
nonlocal linear functional of the physical potential φ.

The freedom to compute forces using φ̂ instead of φ is
essential for the development of useful approximations.
For example, if FN

τ [φ̂, ρ; ξa] is evaluated for a body in
which φ̂ does not vary too much throughout Bτ , it is
straightforward to recover the usual gravitational force
−m∇aφ̂ known to act on a massive body in Newtonian
mechanics. The superficially-similar expression −m∇aφ
would arise if φ varied slowly as well, although this is
rarely the case. Indeed, the former approximation for
the force is valid much more generally than the latter.
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This difference is most striking in a point-particle limit,
wherein −m∇aφ̂ remains a valid approximation while
−m∇aφ is not even computable. This type of improve-
ment persists also at higher multipole orders, and the
usual laws of motion in Newtonian celestial mechanics
are written as laws of motion associated with (possibly
extended) test bodies moving in the external potential,
not the physical one; even in Newtonian gravity, the ef-
fects of self-fields must be properly understood before
obtaining useful laws of motion.

Our goal here is to extend these ideas to fully-
dynamical electromagnetically-interacting systems in all
dimensions d ≥ 3. Much of the content of the general
principle that self-interacting bodies move like effective
test bodies is embedded in the precise specifications for
the renormalized momenta and the effective fields for
which the statement is true, so this perspective suggests
that the problem of motion can be solved by finding “ap-
propriate” momenta and effective fields. Doing so turns
out to be possible much more generally and simply than
the older, more-explicit approach to the self-force prob-
lem, where forces were directly computed using some spe-
cific definition for the momentum, some specific approxi-
mation scheme, specific boundary conditions, and so on.

We now search for a nonlocal transformation Fab 7→
F̂ab[Fcd] such that i) Eq. (11) holds, ii) all renormaliza-
tions implicit in that equation are physically acceptable,
and iii) the transformed field has an “external character”
similar to that of the Newtonian external field. We do so
by first using the Newtonian field transformation (15) as
a model and defining the effective electromagnetic field
via

F̂ab(x) ≡ Fab(x)− 2

∫
∇[aGa]a′(x, x

′)Ja
′
(x′)dV ′, (17)

in terms of some as-yet unspecified two-point “propaga-
tor” Gaa′(x, x′). This ansatz reduces our problem to the
search for a propagator whose properties imply our re-
quirements. We find that very different propagators arise
depending on the parity of d.

For later convenience, it will be convenient to denote
the integral portion of (17) as being generated, via F S

ab ≡
2∇[aA

S
b], by the vector potential

AS
a ≡

∫
Gaa′(x, x

′)Ja
′
(x′)dV ′. (18)

The “S” here has historically been short for “singular”
[18], as AS

a is indeed singular for pointlike sources, at
least when using the Detweiler-Whiting propagator de-
scribed below. Here, we are not considering point par-
ticle sources, so AS

a is not typically singular. It is more
appropriate to instead interpret this as a (propagator-
dependent) definition for the “bound portion” of a body’s
self-field. It generalizes what is sometimes referred to as
the “Coulomb portion” of the field.

D. Choosing a propagator

When d = 4, well-behaved effective fields are known
[10, 12] to be generated by a certain propagator GDW

aa′ ,
referred to as the Detweiler-Whiting Green function [18].
Setting Gaa′ = GDW

aa′ in (17) fixes a precise, physically-
reasonable definition for the momentum and its cor-
responding laws of motion—laws which admit a well-
defined point particle limit, well-controlled multipole ex-
pansions to all orders for the force and torque, and other
desirable properties. Although we discuss Detweiler-
Whiting Green functions more explicitly in Section IID 2
below, it is convenient at this stage to characterize them
implicitly, via three of their properties:

1. GDW
aa′ (x, x

′) = 0 for all timelike-separated x, x′,

2. GDW
aa′ (x, x

′) = GDW
a′a (x′, x),

3. GDW
aa′ (x, x

′) is a Green function for the Lorenz-gauge
vector potential Aa(x).

Although these are sometimes referred to as the
Detweiler-Whiting axioms, they were originally found by
Poisson [11]. Any propagator which satisfies them in-
duces a field transformation Fab 7→ F̂ab that can be shown
[10] to imply the identity (11). There is a precise sense in
which they imply laws of motion derivable from (13), im-
plying that self-interacting charges act like effective test
charges in the field F̂ab. Moreover, since GDW

ab is a Green
function, the associated effective field is source-free in
a neighborhood of W, just like the external Newtonian
potential φ̂.

It was noted in [19] that the arguments used to estab-
lish these results in four dimensions trivially generalize
to any number of dimensions, at least if a propagator
satisfying the above axioms does indeed exist. Such a
propagator does exist, at least in finite regions, for all
even d ≥ 4. However, existence appears to fail when d is
odd.

We resolve this by finding an appropriate generaliza-
tion of the above axioms—valid for all d ≥ 3, both
even and odd—and then constructing explicit propaga-
tors which satisfy those axioms. Note that throughout,
although we refer to certain statements as axioms, these
are to be understood merely as vehicles with which to
organize and interpret our results. They are not axioms
in the sense of being unproven assumptions. All of our
results are derived from first principles.

1. Generalizing the axioms

Of the three axioms stated above, it is the third which
is most easily modified. To be more precise, that axiom
requires that GDW

aa′ satisfy

∇b∇bGDW
aa′ −RabGDW

ba′ = −ωd−1gaa′δ(x, x
′), (19)
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where Rab(x) denotes the Ricci tensor and gaa′(x, x′) the
parallel propagator. The differential operator on the left-
hand of this equation is motivated by the Maxwell equa-
tion

∇b∇bAa −RabAb = −ωd−1Ja (20)

for a Lorenz-gauge vector potential. Demanding that
GDW
aa′ be a Green function in this sense is useful because

it may be shown to guarantee that under very general
conditions, F̂ab varies slowly inside each cross-section Bτ

of a body’s worldtube. It therefore ensures that the effec-
tive field generated by GDW

aa′ is not only associated with
the law of motion (13), but also that generalized forces in
that equation admit the well-controlled multipole expan-
sions which are so essential to practical computations.

Multipole expansions such as these can be maintained
by supposing that Gaa′ is not necessarily a Green func-
tion, but rather a more general type of parametrix [19].
The right-hand side of (19) would then be replaced by

− ωd−1[gaa′δ(x, x
′) + Saa′(x, x′)], (21)

where Saa′(x, x′) is sufficiently smooth and satisfies cer-
tain other constraints required to maintain the validity
of (11). Such generalizations can be useful because i)
parametrices are more easily computed than Green func-
tions, and ii) there may be topological obstructions to
constructing Green functions, even when d = 4. Never-
theless, allowing for a nonzero Saa′ is still not sufficient
to solve the odd-dimensional self-force problem; a further
generalization is needed.

The generalization we choose is motivated by a desire
to demand only what is directly needed, namely that F̂ab
“vary slowly” throughout each Bτ . Although this state-
ment is imprecise as it stands, we note that in the limit
that a body’s size becomes arbitrarily small, a continuous
field cannot vary significantly in any single cross-section.
Smoothness in a point-particle limit may thus be used as
a proxy for slow variation in more general contexts.

We now replace the three axioms described above by
demanding the existence of a propagator Gaa′(x, x′) with
the four properties:

1. Gaa′(x, x′) = 0 for all timelike-separated x, x′.

2. Gaa′(x, x′) = Ga′a(x′, x).

3. Gaa′(x, x′) is constructed only from the geometry
and depends only quasilocally on the metric, in a
sense defined below.

4. For any point charge moving on a smooth timelike
worldline, the source ω−1

d−1∇bF̂ab for the effective
field defined by (17) is itself smooth, at least in a
neighborhood of that worldline.

The first two of these axioms are unchanged from those
given by Poisson [11]. Axiom 3 is similar to one employed
in [19], while Axiom 4 is new. Axiom 3 demands more
precisely that for any vector field ψa, the Lie derivative

LψGaa′(x, x′) can be written as a functional which de-
pends only on the Lie derivative of the metric, and only
in a compact region determined by x and x′. If consid-
erations are restricted to a single flat spacetime, Axiom
3 may be simplified by demanding simply that Gaa′ be
Poincaré-invariant.

Physically, Axiom 2 describes a type of reciprocity in
the self-field definition associated with Gaa′ [12]. It is
essential to the establishment of (11), and thus to the
renormalized laws of motion encoded in (13). Axioms
1 and 3 guarantee that the renormalizations inherent in
those laws of motion involve only physically-acceptable
degrees of nonlocality.

As suggested above, our fourth axiom provides a sense
in which the renormalized laws of motion can admit
well-behaved multipole expansions. It suggests that the
FEM
τ [F̂ab, Jc; ξd] appearing in (13) is generally simpler

to evaluate than its bare counterpart FEM
τ [Fab, Jc; ξd].

Although Axiom 4 refers only to point particles, these
should be interpreted as “elementary currents” whose
effects can be summed over—as is common in kinetic
theory—to yield an overall field for a nonsingular ex-
tended charge distribution Ja. If the effective field associ-
ated with each elementary current is sufficiently smooth,
the short-distance behavior associated with any given Ja
is considerably suppressed by the appropriate convolu-
tion integral. Indeed, there is no obstruction to replacing
Axiom 4 by a statement which demands somewhat less
regularity. We note as well that there is a sense in which
Axiom 4 is “gauge-agnostic,” unlike the statement that
the Detweiler-Whiting Green function must satisfy the
gauge-fixed equation (19).

Now, any Gaa′ which satisfies our four axioms pro-
vides a useful definition for the generalized momentum
P̂τ associated with an extended body. Moreover, the
laws of motion associated with this momentum admit
well-behaved multipole expansions. Our next task is to
show that such propagators actually exist. It is easily
established that any Detweiler-Whiting Green function
GDW
aa′ satisfies our axioms, so that choice can be made

whenever such a Green function exists—i.e., when d is
even. The freedom to choose other propagators can nev-
ertheless be useful even in those cases. This freedom is
however essential when d is odd.

2. Even-dimensional propagators

If d ≥ 4 is even, the four axioms given in Sec-
tion IID 1 are satisfied by a Green function Gaa′ =
GDW
aa′ which directly generalizes the four-dimensional

Detweiler-Whiting Green function known from [11, 18].
These generalizations have the more-explicit form

GDW
aa′ =

1

2

[
Uaa′δ

(d/2−2)(σ) + Vaa′ Θ(σ)
]
, (22)

where Uaa′ and Vaa′ are smooth symmetric bitensors
which depend only quasilocally on the metric. Essen-
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tially the same bitensors also appear in the retarded and
advanced Green functions, although there they are to be
evaluated only when their arguments are timelike or null-
separated. A more direct specification for the bitensors
appearing in the Detweiler-Whiting Green function may
be found by substituting (22) into (19), which results in
the equations collected in Appendix A 1.

It is easily shown that if the spacetime is Minkowski,
∇a∇aσ = d. Substituting this into (A1), one finds that
the van Vleck determinant is everywhere constant: ∆ =
1. Moreover, ∇b∇b(∆1/2gaa′) = 0, implying that the
unique nonsingular solutions to the Hadamard transport
equations (A9) are U

{n}
aa′ = 0 for all n ≥ 1. Moreover,

(A10) implies that Vaa′ = 0 when its arguments are null-
separated. Combining this with (A4), (A6), and (A8), it
follows that

Uaa′ = αdgaa′ , Vaa′ = 0 (23)

everywhere in even-dimensional Minkowski spacetimes,
where the dimension-dependent constant αd is explicitly

αd ≡
(−1)d/22λd

√
π

Γ(1/2− λd)
(24)

in terms of

λd ≡ 1− d/2. (25)

Substitution of these results into (22) fully specifies
the flat-spacetime, even-dimensional Detweiler-Whiting
Green functions. They can also be characterized some-
what differently in this special case, in terms of the ad-
vanced and retarded solutions to (19): GDW

aa′ = 1
2 (Gret

aa′ +

Gadv
aa′ ). If Fab is taken to equal the body’s retarded field

F ret
ab , it follows from (17) that the effective field F̂ab which

determines how bodies move coincides with the so-called
radiative field 1

2 (F ret
ab − F adv

ab ).
Similar relations between Detweiler-Whiting and ad-

vanced and retarded Green functions do not generalize to
curved spacetimes, essentially because Huygens’ principle
is violated; the “tail” Vaa′ is typically nonzero. Although
few closed-form results for Uaa′ and Vaa′ are known in
curved spacetimes, Uaa′ = ∆1/2gaa′ whenever d = 4.
The bitensor Vaa′ is also known for d = 4 plane wave
spacetimes [35], although it is “pure gauge” in the sense
that ∇[aVb]b′ = 0. Expressions in maximally-symmetric
spacetimes with arbitrary d may also be extracted from
the results of [36]. More generally, numerical or pertur-
bative methods can be used to solve the equations in
Appendix A 1.

We have already alluded to our four axioms being more
general than the original Detweiler-Whiting axioms. This
generality is associated with a lack of uniqueness, mean-
ing that other propagators besides (22) are possible when
d is even. For example, it is acceptable to choose any
propagator with the form

Gaa′ = GDW
aa′ + Uaa′K(2σ/`2)Θ(σ), (26)

where K is some smooth function which vanishes in a
neighborhood of zero and ` > 0 is a constant lengthscale.
If K is fixed, each choice for ` defines a different propa-
gator, a different P̂τ , a different effective field F̂ab, and a
different generalized force Fτ . These differences do not,
however, signal any kind of contradiction. Physical con-
sistency is maintained by the fact that all of these quan-
tities vary simultaneously, and in very particular ways.
Differing forces arise, for example, because they describe
rates of change associated with slightly different aspects
of the same physical system. One might experimentally
associate a particular value of a coupling parameter—
such as a mass—with measurements which assume one
value of `, although the same experiments performed on
the same system would generically yield a different value
when inferred using a different choice of `; a particular
propagator must be fixed before even attempting to inter-
pret experimental data. Nevertheless, there is a sense in
which “true” observables do not depend on these choices.
Further discussion may be found in [19].

3. Odd-dimensional propagators

If d ≥ 3 is odd, no Detweiler-Whiting Green function
appears to exist. It is thus essential to exploit the free-
dom afforded by the four axioms listed above. Before
constructing an odd-dimensional propagator which sat-
isfies those axioms, note that the retarded Lorenz-gauge
Green function in this context has the form

Gret
aa′ = [(−2σ)λdUaa′Θ(−σ)]ret, (27)

where λd is again given by (25). The retarded Green
function here involves a bitensor Uaa′ which may be
shown to be symmetric and to depend only quasilocally
on the metric. Also note that the “ret” on the whole ex-
pression denotes that it has support only for x′ in the past
of x. As in the even-dimensional context, Uaa′ = αdgaa′
in Minkowski spacetime, although the odd-dimensional
constants here are given by

αd ≡
(−1)1/2+λdΓ(−λd)√

πΓ(1/2− λd)
(28)

instead of (24). In more general spacetimes, a prescrip-
tion to compute Uaa′ is described in Appendix A 2.

Whether in Minkowski spacetime or not, it is evi-
dent from (27) that Huygens’ principle is violated when
d is odd. Signals travel not only on null cones, but
also inside of them. Although Huygens’ principle is
similarly violated for Maxwell fields in curved even-
dimensional spacetimes, the odd-dimensional case is dif-
ferent in that Gret

aa′ is unbounded even when its argu-
ments are timelike-separated. Indeed, the tail here is
not even locally integrable in general. Eq. (27) is thus
closer to a schematic than a precise description for the
retarded Green function. The correct distributional so-
lution can more precisely be constructed by considering
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[(−2σ)λUaa′Θ(−σ)]ret for values of λ in which the sin-
gularity is integrable and then analytically continuing
the result to λ → λd. Another mathematical detail is
that [(−2σ)λΘ(−σ)]ret should be regarded as a single
symbol, not a product of singular distributions. These
and other details associated with the odd-dimensional re-
tarded Green functions are made precise in, e.g., [37, 38].

The propagators which allow us to solve the self-force
problem in odd numbers of dimensions can also defined
using analytic continuation. They are

Godd
aa′ ≡

(−1)
1
2−λd

2π
Uaa′ lim

λ→λd
`2λ

∂

∂λ

[
(2σ/`2)λΘ(σ)

]
,

(29)

where the overall prefactor has been chosen in order to
enforce Axiom 4. The Uaa′ appearing here is constructed
in the same way as for the retarded and advanced Green
functions. Performing the differentiation in (29) while
leaving the limit λ → λd implicit, our propagator can
alternatively be written as

Godd
aa′ =

(−1)
1
2 (d−1)

2π
(2σ)λdUaa′ ln(2σ/`2)Θ(σ). (30)

In either form, these expressions fix a 1-parameter fam-
ily of propagators which depend on an arbitrary length-
scale ` > 0. This lengthscale is introduced in order to
ensure that the quantity differentiated with respect to
λ is dimensionless in (29). Choosing different values
for ` would result in propagators which differ by mul-
tiples of Uaa′(2σ)λdΘ(σ), a propagator which generates
source-free solution to Maxwell’s equations. Although
variations in ` generically change effective fields and thus
forces, such shifts have no observable consequences. They
merely parametrize different ways to describe the same
physical system. The situation here is fully analogous to
that associated with the `-dependence of (26) and also
with the non-uniqueness of the static propagators dis-
cussed in [19].

We now verify that the propagator Godd
aa′ satisfies the

four axioms described in Section IID 1. That the first
of these holds is immediately clear from the presence of
the Θ-function in (30). The second and third axioms
are verified by noting that σ and Uaa′ are symmetric in
their arguments and depend quasilocally on the metric,
as elaborated in Appendix A.

Considerably more effort is required to show that our
propagator also satisfies Axiom 4. We do so using the
direct calculations summarized in Appendix D: Consider
a point particle with timelike worldline Γ and let Fab be
identified with that particle’s retarded field. Then the
F̂ab generated by Godd

aa′ is given by combining (D18) and
(D19). In those equations, the only position dependence
is via smooth functions, at least if the metric and the
worldline are themselves smooth. We thus conclude that
F̂ab, and hence its source ω−1

d−1∇bF̂ab, must be smooth in
the presence of retarded boundary conditions. Repeating
the problem with more general boundary or initial con-
ditions would merely change F̂ab by a homogeneous solu-
tion to Maxwell’s equations. The source is thus smooth in
general, verifying Axiom 4. As claimed, all axioms given
in Section IID 1 are satisfied by the propagator (29).

Although Godd
aa′ is not a Green function or more gen-

eral parametrix for Lorenz-gauge vector potentials, some
intuition for it may nevertheless be gained by noting
that the derivative with respect to λ which appears in
its definition (30) evinces a procedure which “infinitesi-
mally varies d.” This suggests that our map Fab 7→ F̂ab
may reduce to dimensional regularization in a point par-
ticle limit, and may provide an underlying physical and
mathematical origin for that procedure at least in the
present context. We are not aware of any other examples
in which dimensional regularization arises as the natu-
ral limit of a more-general nonsingular operation which
follows from first principles.

E. Laws of motion

To summarize our development at this point, we have
shown that for all d ≥ 3, two-point propagators Gaa′ may
be found which satisfy the four axioms given in Section
IID 1. If d is even, one possibility is to set Gaa′ = GDW

aa′ ,
where GDW

aa′ is given by (22). If d is odd, one may instead
use Gaa′ = Godd

aa′ , where Godd
aa′ satisfies (29). Regard-

less, any specific choice for Gaa′ which satisfies the given
axioms may be associated with a particular renormaliza-
tion P̂τ of the bare generalized momentum defined by
(6). More specifically, the methods reviewed in [12] may
be used to show that the appropriate relation between
these momenta is

P̂τ = Pτ +
1

2

(∫
B+
τ

dV JaLξ
∫
B−τ

dV ′Gaa′J
a′ −

∫
B−τ

dV JaLξ
∫
B+
τ

dV ′Gaa′J
a′
)

+

∫
Bτ

dSaJ
a

×
(∫

Bτ

dV ′ξbGbb′J
a′ −

∫ 1

0

duu−1∇b′σF b
′c′

S ξc′

)
, (31)

where B±τ denotes the portion of the body’s worldtube which lies to the future (+) or past (−) of Bτ , and the
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primes in the u-integral are associated with points on
the same geodesic y′(u) which appeared in (6). The im-
portant point here is that the renormalizing terms are
appropriately-local: The first of our axioms for Gaa′ im-
plies that the momentum at time τ can depend on T abB ,
Ja, and Fab only in the body’s worldtube, and only on
those portions of the worldtube which are spacelike or
null-separated from Bτ . This is in strong contrast to
any attempt which might be made to directly compute a
“self-momentum” associated with T abEM. Nevertheless, the
two procedures do coincide in simple cases where nonlo-
cality is not an issue; see [10] for the d = 4 discussion.

Continuing our summary, fixing an appropriate Gaa′
fixes a particular definition for P̂τ , and we have shown
that this momentum must satisfy the laws of motion (13).
These laws are instantaneously identical to those which
hold for an extended test body with stress-energy tensor
T̂ abB and current density Ja, coupled to a spacetime met-
ric gab and an electromagnetic field F̂ab. The effective
electromagnetic field here depends on Gaa′ and is given
more precisely by (17). The renormalized stress-energy
T̂ abB also depends on Gaa′ , and at least in static contexts,
it can be written in terms of functional derivatives of the
appropriate propagator [19].

Regardless, once a propagator has been fixed, the laws
of motion are fixed as well. The force on a body may
be found by computing F̂ab from Fab and substituting
the result into an appropriate test body equation. For
example, the lowest-order electromagnetic force acting
on a body with charge q is given by the usual Lorentz
expression

f̂a = qF̂abγ̇
b. (32)

Similarly, the lowest-order electromagnetic torque on a
body with electromagnetic dipole moment qab = q[ab] is

n̂ab = 2qc[aF̂ b]c. (33)

Although these expressions might appear superficially
similar to test-body expressions, they encode all leading-
order self-force and self-torque effects in general space-
times.

More generally, the full multipole expansion for the
electromagnetic generalized force can be shown to be

FEM
τ [F̂ab, Jc; ξd] = qF̂abξ

aγ̇b

+

∞∑
n=1

n

(n+ 1)!
qb1···bnaLξF̂ab1,b2···bn , (34)

where qb1···bna denotes the 2n-pole moment of Ja and
F̂ab,c1···cn the nth tensor extension of Fab. Letting
Îc1···cnab denote the 2n-pole moment of T̂ abB and gab,c1···cn
the nth tensor extension of gab, the gravitational gener-
alized force may be similarly expanded as

FG
τ [T̂ abB ; ξc] =

1

2

∞∑
n=2

1

n!
Îc1···cnabLξgab,c1···cn . (35)

Tensor extensions are discussed in more detail in [12, 33];
the first nontrivial ones are

gab,cd =
2

3
Ra(cd)b, Fab,c = ∇cFab. (36)

Regardless, the gravitational expression here involves
only quadrupole and higher moments, and the the tan-
gent γ̇a to the reference worldline appears explicitly only
in the Lorentz force (and not in the higher-order electro-
magnetic terms or in any gravitational terms).

Eqs. (34) and (35) may now be combined with (13) to
yield the full laws of motion. It is however more conven-
tional to split P̂τ into its linear and angular components
via a “hatted” analog of (7). Doing so, it is convenient to
define a renormalized force f̂a and a renormalized torque
n̂ab = n̂[ab] using the similar implicit equation

d

dτ
P̂τ [ξa] = f̂aξ

a +
1

2
n̂ab∇aξb. (37)

This definition provides forces and torques which mea-
sure the degree by which the Mathisson-Papapetrou
equations are violated:

D

dτ
p̂a =

1

2
Rbcd

aŜbcγ̇d + f̂a, (38)

D

dτ
Ŝab = 2p̂[aγ̇b] + n̂ab. (39)

That the first term on the right-hand side of the sec-
ond equation is not considered a torque is natural in
the sense that an analogous term exists even for the
angular momentum of an isolated system in Newtonian
physics. This is so essentially because a Euclidean rota-
tion about one origin can be decomposed into a rotation
about another origin plus a translation. If the origin
about which the angular momentum is defined is mov-
ing, it must “mix” over time with the linear momentum
conjugate to the translations generated by that motion.
The 1

2Rbcd
aŜbcγ̇d term on the right-hand side of (38) is

similarly interpreted as arising from the fact that in a
curved spacetime, pure translations at one point are not
necessarily pure translations at another point. Both this
term and the 2p̂[aγ̇b] in (39) are thus kinematic in origin,
an interpretation which persists even in the absence of
any true symmetries.

Now, explicit multipole expansions for our force and
torque may be derived by combining (13), (34), (35),
(38), and (39) while varying over all GKFs ξa. The result
is no different than it is when d = 4, and is given by Eqs.
(193) and (194) of [12]. The monopole truncation for the
resulting force is simply (32), while the dipole truncation
for the torque is (33). Gravitational effects do not enter
until quadrupole order. To all multipole orders, our ex-
pansions for f̂a and n̂ab are structurally identical to the
multipole expansions derived by Dixon for an extended
test body [33]. All differences are implicit in our hat no-
tation, which alters the definitions for the momenta, the
stress-energy moments, and the electromagnetic field in
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such a way that multipole expansions remain useful even
in the presence of strong self-interaction.

Thus far, all of our discussion has allowed for
essentially-arbitrary reference worldlines γ(τ) and foliat-
ing hypersurfaces Bτ . It is however conventional to iden-
tify the worldline with some kind of mass center and the
foliation with the instantaneous rest frames associated
with that center. The first of these demands is typically
accomplished by imposing a “spin supplementary condi-
tion” which asks that the mass dipole moment associated
with the body vanish in an appropriate reference frame.
There are different ways to make this precise. Although
it is not essential, here we do so by choosing γ(τ) such
that

Ŝabp̂b = 0. (40)

We can also fix the foliation by demanding that each
Bτ is constructed from the hyperplane formed by all
geodesics which pass through γ(τ) and are orthogonal
to p̂a(τ) at that point. These conditions may now be
used to relate p̂a to γ̇a; they are not necessarily paral-
lel. Differentiating (40) while using (38) and (39), the
momentum-velocity relation is found to be

m̂γ̇a =
1

m̂
(I−1)ab[(−p̂ · γ̇)p̂b − Ŝbcf̂◦c − n̂bcp̂c], (41)

where we have defined the renormalized mass by

m̂2 ≡ −p̂ap̂a, (42)

used the inverse of

Iab ≡ δab +
1

m̂2
Ŝac

(
1

2
Rbcdf Ŝ

df − qF̂bc
)
, (43)

and let f̂◦a ≡ f̂a − qF̂abγ̇
b be the non-Lorentz portion

of the force (which is relevant because the Lorentz force
is the only component which depends explicitly on γ̇a).
A more explicit momentum-velocity relation can be ob-
tained if the matrix rank of Ŝab is no greater than two
[12, 39], although such a condition can be guaranteed
only when d < 5. Eq. (41) may instead be applied when-
ever Iab is invertible. Components of p̂a which fail to
be parallel to γ̇a are referred to as hidden momentum
[40, 41]. Although the equations presented here are com-
plicated, they differ from their test-body counterparts
only via physically-ignorable renormalizations and the
nonlocal map Fab 7→ F̂ab. No simpler result could reason-
ably be expected, at least in the absence of a particular
approximation scheme.

III. POINT PARTICLES IN FLAT SPACETIMES

One useful class of approximations may be interpreted
as point particle limits. Certain limits of this type have
been discussed in detail in [9] when d = 4, while oth-
ers, valid for all d, were considered in [19]. Regardless of

details, one considers a 1-parameter family of extended
bodies whose sizes scale linearly with a control parameter
δ > 0 which is eventually taken to zero. Various physical
constraints require that other properties of the bodies—
such as their net charges—scale at rates which depend
on particular powers of δ, powers which depend both on
d and on the specific property being considered. Rea-
sonable motivations can be found for different approxi-
mations, although a general feature is that self-force ef-
fects can be “more important” in lower numbers of dimen-
sions; they generically compete in magnitude with test-
body effects associated with lower multipole orders. Con-
versely, leading-order self-force effects are strongly sup-
pressed relative to leading-order test-body effects when
d is large. Self-interaction should thus be understood
not in isolation, but in combination with test-body ef-
fects up to an appropriate multipole order. Nevertheless,
our discussion below focuses for simplicity mainly on the
computation of leading-order self-forces and self-torques.

We now apply the results derived in Section II to
perform these computations for “point particles” in
Minkowski spacetimes of various dimensions. Although
we have in mind a point particle limit, we do not discuss
details of the associated family of extended charges. In-
stead, we suppose that in this limit, the family of world-
tubes associated with the extended bodies used to con-
struct the point particle limit shrink to a timelike world-
line Γ = {γ(τ) : τ ∈ R}, where the parametrization has
been chosen such that γ̇aγ̇a = −1. We take Γ to be the
reference worldline for the constructions of the previous
section, and assume that it satisfies the spin supplemen-
tary condition (40). In the limit, the bodies’ net charges
typically tend to zero along with their diameters; a body
with too much charge for its size and mass cannot hold
itself together without exerting stresses which violate en-
ergy conditions. Regardless, it is convenient to consider
a point particle limit in which the current densities as-
sociated with members of the given family of extended
charge distributions approach an appropriate function of
δ multiplied by the point-particle current density

Japp(x) = q

∫
γ̇a(τ)δ(x, γ(τ))dτ. (44)

The q appearing here is a fixed parameter which rep-
resents a δ-dependent rescaling of the charges associated
with different members of the family in the limit δ → 0+.
Despite this, we refer to it as “the” charge for simplic-
ity. Leading-order self-forces and self-torques may now
be computed by evaluating the effective field F̂ab associ-
ated with Japp and then inserting the result into (32) and
(33). No regularization is required.

A. Even dimensions

In even-dimensional Minkowski spacetimes, the pre-
scription described in Section II implies that it is use-
ful to define a body’s renormalized momentum using the
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propagator Gaa′ = GDW
aa′ , where G

DW
aa′ is given by (22).

The S-field generated by this propagator and associated
with a current of the form (44) is found by substituting
(23) into (C2), which yields

AS
a =

qαd
2

∑
τ∈{τ±}

1

|σ̇|

(
− ∂

∂τ

1

σ̇

)d/2−2

gaa′ γ̇
a′ , (45)

where the advanced and retarded times τ±(x) are defined
in Appendix B and αd depends on the dimension via (24).
In the special case where the physical field Fab coincides
with the particle’s retarded field, a vector potential for
the effective field F̂ab can be written as in (C4). Special-
izing that equation to flat spacetime,

Âa =
qαd
2|σ̇|

(
− ∂

∂τ

1

σ̇

)d/2−2

gaa′ γ̇
a′

∣∣∣∣∣
τ=τ−

τ=τ+

. (46)

Leading-order self-forces and self-torques may now be
computed by evaluating F̂ab = 2∇[aÂb] on the particle’s
worldline and substituting the result into (32) and (33).

If d = 4, this procedure is reasonably straightforward
using the expansion techniques and limits collected in
Appendix B; carrying out the relevant calculations re-
sults in

F̂ab =
4

3
qγ̇[a

...
γ b] (47)

on the particle’s worldline. It follows that the leading-
order self-force with retarded boundary conditions in
four-dimensional Minkowski spacetime is

f̂a =
2

3
q2hab

...
γ b, (48)

where hab ≡ gab + γ̇aγ̇b denotes a projection opera-
tor associated with the particle’s rest frame. This may
be recognized as the standard Abraham-Lorentz-Dirac
radiation-reaction force; see, e.g., [4, 11]. The leading-
order four-dimensional self-torque follows immediately as
well:

n̂ab =
4

3
qqc[a(γ̇b]

...
γ c −

...
γ b]γ̇c). (49)

Although the fields for our particle have been obtained
without a dipole moment qab, including one would still
result in this self-torque at leading order. Also note that
n̂abγ̇b need not vanish in (49). Such components may be
seen from (41) to induce a hidden momentum in which
the direction of p̂a differs from that of γ̇a.

Deriving analogous results in higher numbers of even
dimensions is straightforward but tedious. For d = 6,

we find by expanding (46) that the effective field on a
particle’s worldline is

F̂ab =
2

9
q

(
4

5
γ

(5)
[a γ̇b] + γ

(4)
[a γ̈b] − 2|γ̈|2

...
γ [aγ̇b]

− 3

2

d|γ̈|2

dτ
γ̈[aγ̇b]

)
, (50)

implying that the leading-order flat-spacetime self-force
with retarded boundary conditions is

f̂a = −1

9
q2hab

(
4

5
γ

(5)
b − 2|γ̈|2

...
γ b − 3

d|γ̈|2

dτ
γ̈b

)
. (51)

This force agrees with expressions which have been ob-
tained elsewhere using different methods [23, 42–45]. Our
approach trivially allows a self-torque to be obtained as
well, by substituting (50) into (33), although we omit this
for brevity.

Continuing, the d = 8 effective field with retarded
boundary conditions may be computed by again expand-
ing (46) using the techniques of Appendix B. We omit the
full result, noting only that the leading-order self-force is

f̂a =
2q2

525
hab
[
γ

(7)
b − 7|γ̈|2γ(5)

b −
35

2

d|γ̈|2

dτ
γ

(4)
b

+
7

9

(
25|γ̈|4 + 7|

...
γ |2 − 24

d2|γ̈|2

dτ2

)
...
γ b

+
7

6

d

dτ

(
25|γ̈|4 + 7|

...
γ |2 − 9

d2|γ̈|2

dτ2

)
γ̈b

]
. (52)

Taking into account differing sign conventions and a ty-
pographical error in which u̇2ü should really be ü2ü, this
agrees with an expression found in [45].

Although our flat-spacetime self-forces agree with ex-
isting expressions in Minkowski spacetimes with even
numbers of dimensions, our odd-dimensional predictions
do not.

B. Odd dimensions

Self-forces and self-torques acting on point charges in
odd-dimensional Minkowski spacetimes may now be ob-
tained by fixing the definition for the renormalized mo-
mentum by identifying the propagator Gaa′ with the
Godd
aa′ given by (30). The constant lengthscale ` which

appears in the definition for Godd
aa′ is assumed to have

been fixed as well, although its precise value is irrele-
vant. With these choices, it is shown in Appendix D
that the S-field near the worldline of a point charge with
current density (44) may be expanded in powers of the
radar distance r associated with Γ:
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AS
a =

Γ(d2 − 1)

2π3/2Γ(d2 −
1
2 )

{ ∞∑
n= 1

2 (d−3)

Γ(n+ 1
2 )Γ(2− d

2 )

(2n)!Γ(n+ 1
2 (5− d))

[ (
Hn− 1

2 (d−3) −H1− d2
− 2 ln(r/`)

)
W {2n}a − ∂λW {2n}a

]

× r2n−(d−3) + (−1)
1
2 (d−3)

1
2 (d−5)∑
n=0

(−1)nΓ(n+ 1
2 )Γ(2− d

2 )Γ( 1
2 (d− 3)− n)

(2n)!

W
{2n}
a

r(d−3)−2n

}
. (53)

Here, the sum in the second line is understood to exist
only for d ≥ 5, r(x) is defined more precisely by (B3),
Hµ denotes the µth harmonic number, and the coeffi-
cients W {n}a (x;λ) are defined by (D7) in terms of the
flat-spacetime specialization

Wa(x, τ ;λ) = qgaa′(x, γ(τ))γ̇a
′
(τ)Σλ(x, τ) (54)

of (D5) and the “factorized world function” Σ(x, τ) de-
fined by (B1). All implicit instances of λ in (53) are to
be evaluated at λ = λd = 1 − d/2. Some results for the
first few W

{n}
a and their exterior derivatives on the par-

ticle’s worldline are collected in (B15) and (B16). Also
note that although we are focusing here on flat space-
times, the derivation in Appendix D2 shows that (53) is
actually valid in all odd-dimensional spacetimes, as long

as (54) is replaced by the more-general (D5).
Regardless, (53) is the odd-dimensional analog of (45).

It generically involves non-negative even powers of r,
non-negative even powers multiplied by ln r, and nega-
tive even powers down to r−(d−3). The self-force and
self-torque may be evaluated by subtracting this from a
physical vector potential and then using (17) to compute
F̂ab. The result is automatically finite, at least in the
absence of impulsive incoming waves or other singular
phenomena external to the body itself.

As in the even-dimensional context, it is interesting to
suppose that the true electromagnetic field Fab is equal to
the retarded field F ret

ab . Assuming this, the relevant sub-
traction with F S

ab is performed in Appendix D3, which
culminates in the effective field (D21). That result is
valid for general odd-dimensional spacetimes. Specializ-
ing it to the flat case by introducing Minkowski coordi-
nates xµ while using (27) and (28), we find that

F̂µν =
2(−1)

1
2 (d−3)Γ(d/2− 1)
√
πΓ( 1

2 (d− 1))

[
(d− 2)q

∫ τ−ε

−∞

X[µ(τ, τ ′)γ̇ν](τ
′)

[−X2(τ, τ ′)]d/2
dτ ′ −

d−4∑
n=0

(−1)n

n!

(∇[µW
{n}
ν]

d− 3− n
+

1

ε
γ̇[µW

{n}
ν]

)

× 1

εd−3−n −
1

(d− 3)!

(
1

ε
γ̇[µW

{d−3}
ν] −∇[µW

{d−3}
ν] ln(ε/`)− 1

2
∂λ∇[µW

{d−3}
ν] − 1

(d− 2)
γ̇[µW

{d−2}
ν]

)]
(55)

on Γ, where we have omitted an implicit limit ε → 0+

and definedXµ(τ, τ ′) ≡ γµ(τ)−γµ(τ ′). Although individ-
ual terms here involve negative powers of ε and also ln ε,
these cancel similarly-divergent terms in the integral; the
overall limit here is well-behaved. Also nmote that even
though Godd

aa′ is not a Green function and the effective
field here is not in general a solution to the source-free
Maxwell equations, it is source-free for inertially-moving
particles. Indeed, it vanishes in those cases.

Two qualitative differences may now be observed be-
tween our flat-spacetime effective fields in even and
odd numbers of dimensions. First, the odd-dimensional
F̂ab depends on the particle’s past history. Its even-
dimensional counterpart does not. Second, our odd-
dimensional field depends on the arbitrary parameter
` > 0 which appears in the definition for Godd

aa′ . Vary-
ing ` results in different propagators, different definitions

for a body’s momentum, and different forces. In prac-
tice, one can choose a convenient value and then use it
to infer masses and other parameters from available ex-
perimental data. Although those inferences would differ
somewhat with different choices for `, they would do so
in predictable ways which could be computed from the
expressions found in Section II.

Having now noted that the even and odd-dimensional
effective fields discussed here differ both in their history
dependence and their parameter dependence, we empha-
size that neither of these differences are essential. Pa-
rameter dependence can appear for even d if, e.g., one
constructs momenta using a family of propagators with
the form (26). Furthermore, history dependence generi-
cally occurs in even-dimensional effective fields whenever
the spacetime is curved. Indeed, it arises even in flat
even-dimensional spacetimes if a body is coupled to a
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massive field (as opposed to the massless Maxwell cou-
plings considered here).

1. Special cases

In the absence of closed-form expressions for the coef-
ficients W {n}µ and ∇[µW

{n}
ν] which appear in (55), it is

not possible to provide fully-explicit formulae for all odd-
dimensional self-forces. However, those coefficients can
be computed, for each n, using the methods of Appendix
B. Explicit self-forces may thus be obtained for any spe-
cific odd d. We now discuss three and five-dimensional
Minkowski spacetimes as special cases.

Assuming retarded boundary conditions, substitution
of (B15) and (B16) into (55) results in the d = 3 effective
field

F̂µν = 2q

[∫ τ−ε

−∞

(
X[µγ̇

′
ν]

(−X2)3/2

)
dτ ′ +

1

2
γ̈[µγ̇ν] ln(ε/e`)

]
(56)

on Γ, where e denotes the base of the natural logarithm
and the limit ε→ 0+ has again been left implicit. Com-
bining this with (32) immediately yields the leading-order
three-dimensional self-force

f̂µ = 2q2

[∫ τ−ε

−∞

(
X[µγ̇

′
ν]γ̇

ν

(−X2)3/2

)
dτ ′ − 1

4
ln(ε/e`)γ̈µ

]
.

(57)

Similarly, substituting (56) into (33) yields the leading-
order three-dimensional self-torque

n̂µν = 2qqρ[µ

[∫ τ−ε

−∞

(
Xν]γ̇′ρ − γ̇′ν]Xρ

(−X2)3/2

)
dτ ′

+
1

2
(γ̈ν]γ̇ρ − γ̇ν]γ̈ρ) ln(ε/e`)

]
, (58)

which depends both on a particle’s charge q and on its
electromagnetic dipole moment qµν . It is clear in this
context that varying ` changes the force only by con-
stant multiples of γ̈µ. Different values for ` thus provide
different renormalizations of a particle’s apparent mass,
at least to leading nontrivial order.

Additional insight into our d = 3 forces and torques
may be gained by evaluating them in a slow-motion ap-
proximation. Applying such an approximation while in-
tegrating (57) once by parts shows that the spatial 2-
vector components of the self-force are explicitly

f̂(τ) = −q
2

2

[ ∫ τ−ε

−∞
dτ ′
(
γ̈(τ ′)

τ − τ ′

)
+ γ̈(τ) ln

(
ε

e
1
2 `

)]
,

(59)

where it has been assumed that the acceleration falls off
according to

lim
τ ′→−∞

(τ − τ ′)γ̇(τ ′)− [γ(τ)− γ(τ ′)]

(τ − τ ′)2
= 0 (60)

in the distant past. If this falloff condition is indeed sat-
isfied, the three-dimensional self-force thus depends on
a weighted history of the charge’s past acceleration. Be-
yond noting that the relevant weighting factor decays like
1/τ , the ε→ 0+ limit makes it difficult to interpret (59)
directly. A manifestly-finite form for the self-force can be
obtained by integrating by parts once more. Assuming
that

lim
τ ′→−∞

γ̈(τ ′) ln(τ − τ ′) = 0, (61)

the d = 3 self-force may be seen to reduce to

f̂(τ) = −q
2

2

∫ τ

−∞

...
γ (τ ′) ln

(
τ − τ ′

e
1
2 `

)
dτ ′. (62)

This depends on a past history of the particle’s jerk, with
a weighting factor which increases logarithmically in the
increasingly-distant past.

Similar expressions may be obtained for the slow-
motion limit of the d = 3 self-torque (58). If the falloff
conditions (60) and (61) are assumed to hold and the
electric and magnetic components of the particle’s dipole
moment may be considered comparable, the time-space
components of the self-torque reduce to

n̂0i(τ) = qij(τ)f̂j(τ)/q, (63)

where i, j ∈ {1, 2}, the f̂j appearing here is given by (62),
and we have assumed that q 6= 0. Differences between p̂
and m̂γ̇ are thus controlled, in part, by the coupling of a
particle’s magnetic dipole moment to a logarithmically-
weighted history of its jerk.

The remaining space-space components of the nonrel-
ativistic d = 3 self-torque, which directly affect a body’s
spin evolution, are determined by

n̂ij(τ) = 2q0[i(τ)f̂ j](τ)/q. (64)

The spin, which has only one component in this case, is
thus affected by misalignments between a body’s electric
dipole moment and the same logarithmically-weighted
history of its jerk.

Analogous expressions are more complicated when d =
5. We give only the leading-order self-force, which is
again found by substituting (B15) and (B16) into (55),
and then substituting the effective field which results into
(32). The fully-relativistic force is thus

f̂µ = −q2

[∫ τ−ε

−∞

3X[µγ̇
′
ν]γ̇

ν

(−X2)3/2
dτ ′ + hµ

ν

(
3γ̈ν
8ε2
−

...
γ ν
2ε

− 3

16
(γ(4)
ν −

3

2
|γ̈|2γ̈ν) ln(ε/e

1
3 `)− |γ̈|

2γ̈ν
32

)]
. (65)

Changing ` is this context may be seen to shift more than
just the apparent mass; noting that

hµ
ν

(
γ(4)
ν −

3

2
|γ̈|2γ̈ν

)
=

d

dτ

(
...
γ µ −

3

2
|γ̈|2γ̇µ

)
, (66)
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it affects both the direction and magnitude of the renor-
malized 5-momentum.

We note also that in a slow-motion limit, the spatial
components of (65) reduce to

f̂(τ) =
3q2

16

∫ τ

−∞
γ(5)(τ ′) ln

(
τ − τ ′

e−
17
12 `

)
dτ ′, (67)

at least if derivatives of the particle’s position fall off
sufficiently rapidly in the distant past. This differs from
its d = 3 counterpart (62) mainly by an overall sign and
by the replacement of

...
γ with γ(5) in the integral.

2. Comparisons

We close this section by comparing with other odd-
dimensional self-force results which have appeared in the
literature. First, a five-dimensional force similar to (67)
has recently been obtained using the methods of effective
field theory [46]. In that context, ` appears as a free pa-
rameter in a dimensional regularization procedure. This
is not so different from our usage of ` as a free parameter
in the choice of propagator used to define a body’s mo-
mentum: Our propagator induces an `-dependent map
Fab 7→ F̂ab, and this turns into an `-dependent regu-
larization in the point particle limit. Nevertheless, we
note that our results differ conceptually in that we have
provided precise “microscopic” (or “UV-complete”) defini-
tions for the mass, mass center, other quantities appear-
ing in the laws of motion; we do not merely assert that
quantities satisfying such laws exist and that they have
physical interpretations consistent with their names.

Other odd-dimensional self-forces which have appeared
in the literature differ much more significantly from ours.
These have been obtained by the use of heuristic ar-
guments to directly regularize point-particle self-fields
[43, 47], expressions for the momenta associated with
those fields [48], or similar quantities. In at least one
case, the claimed force law is IR-divergent; see Eq. (4.4)
in [47]. Other proposals use counterterms which de-
pend on a particle’s entire past history [43, 48], implying
that a body’s momentum could not be computed without
knowledge of that history—a physically-unacceptable op-
tion. Another result predicts a time-varying mass even at
leading order [48]. While mass variations are normal and
expected when including effects due to a body’s higher
multipole moments [32], they should not arise when con-
sidering only monopole interactions with an electromag-
netic field. Indeed, it is clear from (32), (38), and (42)
that mass variations do not arise in our leading-order
expressions.

IV. PHENOMENOLOGY OF THE
ODD-DIMENSIONAL SELF-FORCE

Although the results of Section III B may be used to
evaluate odd-dimensional point-particle self-forces and

self-torques, the physical implications of those results
are not immediately apparent. We now elucidate some
of those implications, with a particular emphasis on
non-relativistic systems in flat, three-dimensional space-
times. This setting i) possesses features which are par-
ticularly distinct from the d = 4 case, and ii) may find
experimentally-accessible analogs in certain condensed-
matter or fluid systems. Nevertheless no attempt is made
here to provide a comprehensive discussion of d = 3 self-
force effects. Rather, we seek mainly to highlight some
of the subtleties and unusual features of these effects.

A. Approximations

We begin our discussion of odd-dimensional self-force
phenomenology by remarking on some of the relevant ap-
proximations. Although we have already noted that the
results of the previous section assume a type of point par-
ticle limit, the details of that limit were not fixed. Indeed,
a number of different point particle limits can be consis-
tently discussed, and without a specific physical system
in mind, it is difficult to settle on a particular approxi-
mation. Despite this, one generic constraint which can
be used is that physically-realisable bodies cannot exist
with arbitrary combinations of physical size, charge, and
mass. Energy conditions may be violated if the stresses
required to counteract a body’s internal electrostatic re-
pulsion become larger than its mass density. Letting L
characterize a charge’s linear dimension, those stresses
might be estimated to be order (q/Ld−2)2. Noting that
the mass density is approximately m/Ld−1, energy con-
ditions thus demand that

q2 . mLd−3, (68)

where we have used the bare mass m associated with the
bare momentum Pτ , which is defined by (6). The renor-
malized mass m̂ is however derived from P̂τ , which is
distinguished from Pτ via (31). The bare and renormal-
ized masses can differ from one another by terms of order
q2/Ld−3 and q2 ln(L/`)/Ld−3. If ` is held fixed, saturat-
ing the bound in (68) might then result in an “imaginary
m̂,” i.e., a spacelike p̂a. Other pathologies could arise as
well. Our formalism breaks down in such cases, which
we avoid by additionally requiring that

q2 .
mLd−3

| ln(L/`)|
. (69)

This is sufficient to imply that m and m̂ have similar
magnitudes.

If a charge moves in an externally-imposed electric
field, the self and external forces acting on it may now
be estimated to scale like

fself ∼ (q2/m̂)
fext

τd−3
∗

.
(L/τ∗)

d−3

| ln(L/`)|
fext, (70)
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where τ∗ is a characteristic timescale associated with the
external field. If L is sufficiently small and τ∗ is indepen-
dent of L, self-forces thus remain at least logarithmically-
suppressed in comparison with external forces, even for
objects which are “maximally charged” according to (69).
We note however, that this statement is not precise.
What meaning it does have is global, in the sense that
nontrivial tails imply that self-forces can be instanta-
neously significant even when external forces vanish.

It would be interesting to now write down and sys-
tematically analyze the consequences of a complete, self-
consistent approximation scheme which saturates the
given bounds. We do not do so, however. Instead,
we consider a simpler model problem in which only the
mass and charge monopoles are significant. In this case,
the momentum-velocity relation (41) reduces simply to
p̂a = m̂γ̇a and the force is given entirely by the Lorentz
term (32). With these assumptions, (62) implies that the
non-relativistic d = 3 equation of motion is given by the
integral equation

m̂γ̈(τ) = qEext(γ(τ))

− q2

2

∫ τ

−∞

...
γ (τ ′) ln

(
τ − τ ′

e
1
2 `

)
dτ ′, (71)

where Eext denotes the external electric field. Similarly,
(67) implies that with the same assumptions, the d = 5
equation of motion is

m̂γ̈(τ) = qEext(γ(τ))

+
3q2

16

∫ τ

−∞
γ(5)(τ ′) ln

(
τ − τ ′

e−
17
12 `

)
dτ ′. (72)

More systematic approximations would also include var-
ious test body effects involving the spin and higher-order
electromagnetic multipole moments.

B. Runaway solutions

The simplest applications for the equations of motion
(71) and (72) concern the behavior of free particles. Un-
accelerated trajectories are of course valid solutions when
Eext = 0, although they are not the only solutions. The
space of possible initial data for these integral equations
is infinite dimensional, and nontrivial choices for this data
generically lead to nontrivial trajectories. Physically, this
is as expected. However, there also exist solutions which
are not physically reasonable. These “runaway solutions”
accelerate exponentially and without bound: Letting a0

denote an arbitrary constant vector, suppose that

γ̈(τ) = a0 exp(τ/τrun). (73)

If d = 3, substitution of this expression into (71) shows
that it is a solution when

τrun = ` exp(γE + 1/2− 2m̂/q2), (74)

where γE denotes the Euler-Mascheroni constant. Note
that although τrun may appear to depend on the
arbitrarily-chosen lengthscale `, the implicit dependence
of m̂ on ln ` ensures that it does not.

More importantly, the existence of runaway solutions
suggests that a particle upon which no force has been ap-
plied might spontaneously and violently accelerate with-
out any apparent cause. One may hope that the runaway
solutions are artifacts of the initial data (or lack thereof),
in that solutions for which γ̈(τ) = 0 for all τ < τ0 might
behave more sensibly. Unfortunately, this is not so. The
three-dimensional equation of motion (71) may be solved
using Laplace transforms, and doing so shows that with
trivial initial data, almost any applied force excites a run-
away mode with growth timescale τrun.

The situation is somewhat better when d = 5. Substi-
tuting the ansatz (73) into (72), the runaway timescale
may be seen to satisfy

m̂

q2
=

1

64τ2
run

{17 + 12[ln(τrun/`)− γE]} . (75)

However, the right-hand side here has a maximum when
varying over all τrun > 0, implying that runaway solu-
tions can exist (with the given form) only when

q2/m̂ ≥ 32

3
`2 exp(2γE − 11/6). (76)

If this bound holds but is not saturated, there are in fact
two solutions to (75), and thus two runaway timescales. If
the bound is violated, solutions to our equation of motion
appear not to be unstable in five dimensions.

Although we are not aware of runaway solutions having
previously been discussed in odd-dimensional spacetimes,
they are well-known features of the d = 4 Abraham-
Lorentz-Dirac equation. One objection to them (be-
sides their manifest disagreement with observation) is
that their associated timescale is extremely short—of or-
der q2/m̂ when d = 4. However, (68) implies that a
well-defined four-dimensional point particle limit requires
that q2/m̂ be of order L or smaller. Additionally, stan-
dard derivations assume that all dynamical timescales
are much longer than L. Runaway solutions in four di-
mensions are thus solutions to an equation whose prop-
erties violate the conditions under which that equation
has been derived. In this sense, they are not genuine
predictions.

Similar conclusions may be reached also when d = 3
or d = 5; the runaway solutions discussed above cannot
be considered genuine predictions of the theory. This is
most easily seen in the five-dimensional case, for which
(69) implies that q2/m̂ → 0+ in a point particle limit.
The bound (76) is thus violated for sufficiently-small bod-
ies, which means that runaway solutions do not exist in
the relevant portion of parameter space. If d = 3, run-
away solutions do exist formally, although they violate
the conditions under which the equation of motion may
be expected to hold. A body which is maximally charged
according to (69) has a runaway timescale (74) which is
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short compared to its light-crossing time L, and parti-
cles with less charge have runaway timescales which are
even shorter. However, our derivation breaks down for
timescales of order L; runaway solutions are thus unphys-
ical also in three dimensions.

C. Reduction of order

Although runaway solutions are not true predictions of
our equations, it would be desirable to be able to system-
atically extract solutions which are physically and math-
ematically justified—well-behaved trajectories which are
sufficiently close to satisfying, e.g., (71) and for which all
significant timescales are much larger than L. By analogy
with the d = 4 case, we accomplish by “reducing order,”
which corresponds to supposing that the external force
alone generates a “zeroth order” trajectory determined by
γ̈ ≈ qEext/m̂, and that it is this trajectory which should
be substituted into the self-force integrals. If d = 3, such
a procedure results in

m̂γ̈(τ) = qEext(γ(τ))

− q3

2m̂

∫ τ

−∞
Ėext(γ(τ ′)) ln

(
τ − τ ′

e
1
2 `

)
dτ ′. (77)

When d = 5, one finds instead that

m̂γ̈(τ) = qEext(γ(τ))

+
3q3

16m̂

∫ τ

−∞

...
Eext(γ(τ ′)) ln

(
τ − τ ′

e−
17
12 `

)
dτ ′. (78)

These replacements do not change the order of the ap-
proximation as long as q2/m̂ is sufficiently small. More
to the point, they mollify the high-frequency character
of the Fourier transforms associated with the unmodi-
fied accelerations (as is made more clear in Section IVD
below). Regardless of justification, these equations no
longer admit runaways and there is a sense in which their
solutions nearly satisfy their parent equations as long as
the self-force is sufficiently small. However, as we shall
see below, the reduced-order equations can still be prob-
lematic when applied over very long times.

To briefly remark on our terminology, the reduction-of-
order procedure applied to the d = 4 Abraham-Lorentz-
Dirac equation yields what is sometimes referred to as
the Landau-Lifshitz equation. In that case, it has the
mathematical effect of reducing the order of the rele-
vant differential equation from three to two. Here, the
reduced-order terminology is retained even though we are
not changing the order of a differential equation.

We also note that the reduction-of-order procedure is
not as ad hoc as it might appear. It arises naturally when
constructing more careful point particle limits; see [9] at
least for the d = 4 case.

D. Exact and approximate solutions without
runaways

We next discuss how physically-acceptable exact and
approximate solutions—i.e., solutions which do not run
away—of the integro-differential equation of motion (71)
can be obtained when d = 3, how the reduced-order equa-
tion (77) arises in a certain limit, and how reduction of
order breaks down over very long timescales.

First note that our original equation (71), which as-
sumes that the acceleration vanishes in the distant past,
can be recast as

2

q
Eext(γ(τ)) =

∫ τ

−∞

...
γ (τ ′) ln

(
τ − τ ′

` exp( 1
2 −

2m̂
q2 )

)
dτ ′.

(79)
This may be viewed as a linear integral equation for
the particle’s jerk

...
γ in terms of the prescribed exter-

nal force qEext. In particular, it is a Volterra equation
of the first kind. Such equations are often solved using
Laplace transforms. If the initial data is trivial, solutions
obtained in this way generically display the runaway be-
havior mentioned above. However, there does exist non-
trivial initial data for which no such problems arise. This
data is selected automatically by using Fourier trans-
forms instead of Laplace transforms, as the former cannot
be used to represent exponentially-growing solutions. In-
deed, we view the solution obtained by Fourier transform
to be “the” physical one in a wide range of scenarios.

It is first convenient to define the body’s acceleration
as it would be in the absence of self-interaction:

aext ≡
q

m̂
Eext. (80)

Also defining the dimensionless time variable

s ≡ (τ/τrun)eγE (81)

and its primed equivalent in terms of the runaway time
(74) and the Euler-Mascheroni constant γE, the body’s
true acceleration a = γ̈ is found from Eq. (79) to satisfy

aext(s) =
q2

2m̂

∫ s

−∞

da

ds′
(s′) ln(s− s′)ds′. (82)

Since this equation is linear, a general solution can be
written as

a(s) =
2m̂

q2

∫ ∞
−∞

K(s− s′)aext(s
′)ds′ (83)

for some kernel K, where the factor 2m̂/q2 has been in-
cluded for later convenience.

To solve for K, we now assume that the Fourier trans-
form of the solution exists. As mentioned above, this as-
sumption excludes runaway solutions, and so yields only
a certain class of solutions of the original equation. Defin-
ing the Fourier transform of the kernel by

K̃(ω) =
1√
2π

∫
ds eiωsK(s), (84)
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and substituting into (82) and (83), we find that

K̃(ω) =
i

2π

1

ωG̃(ω)
, (85)

where G(s) ≡ Θ(s) ln(s). Evaluating the Fourier trans-
form of G(s) now yields

K̃(ω) = − 1√
2π

1

ln+(ωeγE)− iπ/2
, (86)

where ln+(ω) is the function obtained by analytically
continuing ln(ω) from the positive real axis into the up-
per half ω plane. In particular, for real ω, we have

ln+(ω) = ln |ω|+ iπΘ(−ω). (87)

One consequence is that∫ ∞
−∞

K(s)ds =
√

2πK̃(0) = 0. (88)

In combination with (83), it follows that with appropriate
falloff conditions on aext,

∆v ≡
∫ ∞
−∞

a(τ)dτ = 0. (89)

Initially-stationary particles thus return to rest at late
times, an effect which is discussed further in Section
IVE4 below.

A particle’s motion at finite times can be understood
by obtaining an expression for the kernel in the time do-
main, which of course follows from the inverse Fourier
transform of (86):

K(s) = − 1

2π

∫
e−iωsdω

ln+(ωeγE)− iπ/2
. (90)

We note that the Fourier transform G̃(ω) ∝ 1/K̃(ω) is
analytic in the upper half ω plane, which reflects the
causal nature of G(s):

G(s) = 0, s < 0. (91)

By contrast, taking the reciprocal of G̃(ω) to find K̃(ω)
results in a simple pole at

ω = ie−γE , (92)

indicating that the kernel K(s) does not vanish for s < 0.
The motion given by the solution (83) thus exhibits
a degree of “preacceleration,” just as for solutions of
the Abraham-Lorentz-Dirac equation in four dimensions.
Preacceleration arises in both of these cases when one im-
poses that the solution does not diverge at late times.
Although the three and four-dimensional equations of
motion are mathematically quite different, such an im-
position necessarily requires knowledge of the future—
violating causality. We now show that this violation is

confined to very small timescales which are effectively
negligible.

For s < 0, the inverse Fourier transform (90) can be
evaluated by completing the contour into a semicircle in
the upper half plane and evaluating the residue at the
pole (92), yielding

K(s) = e−γE exp(−e−γE |s|), s < 0. (93)

Although the kernel is acausal, its acausality is thus lim-
ited to a specific timescale over which s varies of or-
der eγE . Recalling (81), this corresponds to a physical
timescale equal to the runaway time τrun, given by (74).
As argued in Section IVB, this timescale is short com-
pared to the body’s size L; it is negligible.

If s > 0, one can instead complete the contour in (90)
into a semicircle in the lower half ω plane, with a detour
around branch cut at Arg(ω) = −π/2. This yields an ex-
pression for the kernel in the form of a Laplace transform

K(s) = −
∫ ∞

0

e−sσdσ

ln(σeγE )2 + π2
, s > 0. (94)

While we have been unable to find an explicit analytic
expression forK(s) for s positive, it follows that an upper
bound is

|K(s)| ≤ 1

π2s
(95)

for all s > 0. This indicates that the memory of an
external force on a body’s acceleration decays at least as
fast as 1/τ .

To summarize up to this point, we have found, for
generic external fields, exact, physically-acceptable solu-
tions to the d = 3 equation of motion (71). The accelera-
tions corresponding to these solutions are given by (83),
where aext is defined by (80), s is defined by (81), and
where K(s) satisfies (93) and (94).

The Laplace transform expression (94) for the kernel
K(s) for s > 0 is not very transparent. We now develop
a useful approximation to this kernel. We have in mind
two small quantities. First, the limiting process discussed
in Section IVA above requires that q2 � m̂. Second, we
define τ∗ to be a timescale over which the external electric
field varies, and define the dimensionless quantity ν by

ν2 ≡ τrun/τ∗. (96)

We assume ν to be small and throw away terms that are
suppressed by one or more powers of it.

An approximate expression for the kernel (94) at large
s can now be obtained as follows: Changing the variable
of integration from σ to u = sσ we first obtain

K(s) = −1

s

∫ ∞
0

e−udu

[ln(ueγE )− (ln s)2]2 + π2
. (97)
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Expanding the integrand here at large ln s gives

K(s) = − 1

s(ln s)2

∫ ∞
0

due−u

[
1 +

2 ln(ueγE)

ln s

+O

((
lnu

ln s

)2
)]

, (98)

which is an approximation that breaks down both at large
u and at small u. At large u, the errors in the inte-
grand become of order unity when u & s, but because of
the exponential suppression factor in the integrand, the
overall fractional corrections to the integral scale as e−s,
which we neglect. At small u, the errors in the integrand
are of order unity or larger for u . 1/s, and the cor-
responding overall fractional corrections to the integral
scale as the size of this region compared with the value
u = upeak ∼ 2/ ln s at which the integrand in (97) takes
its maximum value; they are of order

1/s

upeak
∼ ln s

s
.

Terms with this relative magnitude are also neglected
here. Evaluating the integral (98) thus gives

K(s) = − 1

s(ln s)2

[
1 +O

(
1

(ln s)2

)]
(99)

for s > 0.
We now argue that the asymptotic form (99) of the

kernel is sufficient for deriving a useful explicit approxi-
mation for the acceleration (83). We start by writing the
latter expression in the form

a(s) =
2m̂

q2

(∫ s̄

−∞
+

∫ ∞
s̄

)
ds′K(s′)aext(s− s′), (100)

for some parameter s̄. Although this parameter is clearly
arbitrary, we find it convenient to set

s̄ = 1/ν =
√
τ∗/τrun � 1. (101)

This accomplishes two goals. First, it allows us to use

aext(s− s′) = aext(s)[1 +O(ν)] (102)

for |s′| . s̄, at least if we are not too close to the bound-
ary of the support of aext. Second, if (99) is used to
approximate the kernel in the second integral in (100),
the relative error in doing so is bounded by ε2, where

ε−1 ≡ ln s0 =
m̂

q2
+ ln

√
τ∗

` exp( 1
2 + γE)

≈ m̂

q2
. (103)

The first integral in (100) can now be approximated
by substituting (102) when |s′| . s̄ and noting that con-
tributions from larger negative values of s′ are exponen-
tially suppressed due to (93). Combining this with (88)

and (99), it follows that

a(s) =
2m̂

q2

∫ ∞
s̄

ds′

s′(ln s′)2
[aext(s− s′)− aext(s)]

×
[
1 +O(ν, ε2)

]
. (104)

A somewhat simpler expression arises when integrating
by parts, which yields

a(s) =
2m̂

q2

∫ ∞
s̄

ds′

ln s′
daext(s− s′)

ds

[
1 +O(ν, ε2)

]
(105)

if it is assumed that aext(s)→ 0 as s→∞. Note that the
omission of the s′ = s̄ boundary term in this expression,
which is equal to

− 2m̂

q2

(
[aext(s− s̄)− aext(s)]

ln s̄

)
(106)

up to terms of relative order ν or ε2, results in errors of
order

daext

ds

ε−1s̄

ln s̄
∼ aext

(
τrun

τ∗

)
s̄ ∼ aextν. (107)

This is absorbed into the overall O(ν, ε2) relative error
in (105). Using (81), our approximation (105) can finally
be rewritten in terms of the physical time τ : Letting τ̄ ≡
e−γE s̄τrun = e−γE

√
τrunτ∗ [which is not to be confused

with the τ̄ defined by (B2)],

a(τ) =
q

m̂

∫ ∞
τ̄

dτ ′

(
Ėext(γ(τ − τ ′))

1 + (q2/2m̂) ln(τ ′/e
1
2 `)

)
×
[
1 +O(ν, ε2)

]
. (108)

This is our approximate solution to the d = 3 equation
of motion (71).

The reduced-order equation (77) can now be ob-
tained directly from (108) by assuming that Eext(γ(τ))
is nonzero only for a finite time, which we assume to be
short compared to the timescale

` exp(2m̂/q2)� `� L. (109)

If, furthermore, we evaluate a(τ) at times τ which are
small compared to this timescale, we can expand the de-
nominator in (108) in a Taylor series in q2/2m̂. This
yields

a(τ) =

{
aext(τ)− q2

2m̂

∫ τ

−∞
dτ ′ȧext(τ

′) ln

(
τ − τ ′

e
1
2 `

)

×
[
1 +O

(
q2

2m̂
ln
(τ
`

))]}[
1 +O(ν, ε2)

]
,

(110)

where we have used (102) and also the fact that the lower
limit of τ̄ in (108) can be replaced by a lower limit of
0 while incurring relative errors only of order ν. This
result coincides with the expression (77) obtained ear-
lier by reduction of order. At times large compared to
the timescale (109), the approximation (110) is no longer
valid, and one must instead use the original expression
(108).
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E. Special types of motion

Our equations of motion may now be used to answer
at least two types of questions:

1. How does a small charge move in response to a
given external field?

2. Which external field is required in order for a charge
to move on a given trajectory?

The first of these questions cannot generally be answered
using the exact equations of motion (71) and (72), since
their solutions generically involve unphysical instabilities
as discussed in Section IVB above. However, at least if
d = 3, one can instead use the reduced-order equation
(77) over short timescales, or more generally (108) over
all timescales. Either of these possibilities yield approxi-
mate solutions with no unphysical instabilities.

The second potential question we can address, con-
cerning the force required to hold a particle on a given
trajectory, can be computed using either (71) or (77)
when d = 3, although it is the former unmodified equa-
tion which is typically simpler for this purpose. Answers
will in any case be similar using either method, at least
if all timescales associated with the given trajectory are
sufficiently long and q2/m̂ is sufficiently small. We now
discuss some simple examples.

1. Exponential growth

Our first case is that of exponential motion: Consider
trajectories with the form (73), where τrun is now re-
placed by a generic positive constant τ∗. At least for-
mally, (71) predicts that if τ∗ = τrun, no external force is
required to effect such a trajectory when d = 3. A rather
different prediction follows, however, from the reduced-
order equation (77). If τ∗ � τrun, both equations pre-
dict similar results; the unmodified one gives the exactly-
exponential external force

qEext =

[
1 +

q2

2m̂

(
ln(τ∗/`)−

1

2
− γE

)]
m̂a0e

τ/τ∗

(111)
in three dimensions, while the reduced-order equation im-
plies that if this force is applied, the particle’s accelera-
tion will be

γ̈ =

{
1−

[
q2

2m̂

(
ln(τ∗/`)−

1

2
− γE

)]2
}
a0e

τ/τ∗ .

(112)
The relative difference between this and our starting
ansatz (73) is of order (q2/m̂)2, as expected when com-
paring equations in which order reduction has and has
not been applied.

2. Harmonic motion

A more interesting example which can be understood
analytically (and is mathematically similar) is that of
harmonic motion. Suppose that the trajectory is given
by

γ(τ) = <[γ0 exp(iωτ)], (113)

where ω is real and the constant vector γ0 may be com-
plex. Such an acceleration violates the falloff condition
(61) but not the weaker condition (60). We therefore sub-
stitute into (59) to find that the leading-order external
force required to maintain harmonic motion is

qEext =

[
1− q2

2m̂

(
ln |ω|`+

1

2
+ γE

)]
m̂γ̈

+
π

4
q2|ω|γ̇ (114)

when d = 3. The analogous d = 5 expression is very
similar except for an additional overall factor of ω2 in
the self-interaction terms. Regardless, if the motion is
confined to one spatial dimension, the self-force acts to
provide i) a damping force, and ii) a ln |ω|` shift to a
charge’s apparent inertia. If the motion is instead circu-
lar, similar interpretations apply, except that it is only
the component of the self-force which is proportional to
the velocity that performs work.

3. Power laws and analytic trajectories

Another example which is easily understood is one in
which the acceleration vanishes for all τ < τ0, while

γ̈(τ) = an[(τ − τ0)/τ∗]
n (115)

thereafter, where an, τ0, τ∗, and n are constants (the lat-
ter two of which are assumed to be positive). Substitut-
ing this into (71) shows that the external force required
to produce such an acceleration has a somewhat-different
time dependence than the acceleration itself: In terms of
the harmonic number Hn,

qEext =

{
1 +

q2

2m̂

[
ln

(
τ − τ0
e

1
2 `

)
−Hn

]}
m̂γ̈ (116)

when d = 3 and τ > τ0. The logarithm here implies that
even at late times, there remains a strong “memory” of
the “turn-on event” at τ = τ0.

This result allows us to understand which external
forces are needed to hold a charge on a more-general tra-
jectory which is analytic for all all τ > τ0. Suppose that
γ̈(τ) = 0 for τ < τ0 and

γ̈(τ) =

∞∑
n=1

an[(τ − τ0)/τ∗]
n (117)
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when τ ≥ τ0, where the an are constants. Combining
(115) and (116), the required external force is seen to be

qEext(γ(τ)) =

[
1 +

q2

2m̂
ln

(
τ − τ0
e

1
2 `

)]
m̂γ̈(τ)

− q2

2

∞∑
n=1

anHn[(τ − τ0)/τ∗]
n. (118)

4. Kicks

Our last—and most interesting—example is concerned
with a charge which is briefly “kicked” by some external
force. Focusing again on three dimensions, we initially
ask which external field must be imposed in order for
a particle to be only momentarily accelerated: Suppose
that a charge is initially stationary, is subjected to a brief
acceleration near τ = τ0, and moves inertially thereafter
with velocity γ̇(τ) = ∆v. Substituting this into (62)
shows that the self-force at late times must be balanced
by an external force satisfying

qEext(γ(τ)) =
q2

2

(
∆v

τ − τ0

)
, (119)

where we have neglected terms of order 1/(τ − τ0)2. The
self-force thus acts to push the particle back towards rest.
This effect persists indefinitely, suggesting that the par-
ticle’s initially-stationary state creates a “preferred rest
frame” to which it always attempts to return.

We now change perspective, asking not for the exter-
nal force required to maintain a briefly-accelerated tra-
jectory, but instead for the trajectory of a particle in
which the external force is only briefly nonzero. There
are potential physical issues associated with this sce-
nario, essentially because it is not clear if the strong
tails present in three dimensions preclude any possibility
of setting up a prescribed, confined electric field; there
may be unavoidable and significant remnants of the pro-
cess by which any experiment might be assembled. See,
e.g., [49] for some recent remarks—in a somewhat dif-
ferent context—on persistent memory effects in odd di-
mensions. Regardless, there is no mathematical difficulty
with assuming a prescribed external field and we proceed
without further comment.

The net force acting on a charge for which the ex-
ternal field has a Gaussian profile is plotted in Figure
1, assuming the reduced-order equation of motion (77).
Self-interaction is seen to slightly increase the peak mag-
nitude of the force in this case, and also to shift that peak
earlier in time. That the peak of the net force appears
to anticipate the peak of the applied force might initially
appear to violate causality, and to be reminiscent of the
preacceleration seen in the Abraham-Lorentz-Dirac equa-
tion (and in the d = 3 results discussed in Section IVD
above). Causality is not violated here, however. The re-
sult arises from the explicitly-causal integral in (77), and
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FIG. 1. Net force as a function of τ/τ∗ for a Gaussian external
field proportional to exp(− 1

2
(τ/τ∗)

2), as computed using the
reduced-order d = 3 equation of motion (77). Here, ` =
τ∗ > 0 and all results are normalized so that the maximum
external force is equal to unity. The solid line corresponds
to the external force, the dashed line to the net force when
q2/2m̂ = 1/10, and the dotted line to the net force when this
parameter is equal to 1/5.

appears because the self-force is sensitive to Ėext, which
decreases near the peak of the external force.

One can also see in the figure that the self-force even-
tually switches sign and only slowly returns to zero. A
charge thus continues to decelerate long after the external
field decays away. The late-time behavior of this process
does not depend on whether or not the external field is
Gaussian, and we now analyze more generally the asymp-
totic motion of a kicked charge.

Long after a briefly-nonzero external force has been
applied, the reduced-order equation (77) would suggest
that the acceleration decays like 1/(τ − τ0). However, an
acceleration which decays this slowly implies a velocity
which grows logarithmically at late times. Such growth is
unphysical. It may be traced back to a failure of the order
reduction procedure at late times; cf. the derivation of
(110) from (108).

A more careful analysis using the methods of Section
IVD shows that in fact, a particle asymptotically returns
to its initial “pre-kick” velocity; see (88). In essence,
this recovers the Aristotelian idea that perturbed masses
eventually return to rest when all perturbations are re-
moved. More precisely, (108) shows that the asymptotic
velocity of a particle which is initially at rest decays like

γ̇(τ) =
∆v

1 + (q2/2m̂) ln[(τ − τ0)/(e
1
2 `)]

(120)

at late times, where ∆v is the time integral of aext(τ) =
(q/m̂)Eext(γ(τ)).

V. DISCUSSION

We have developed a general formalism with which
to understand the motion of extended, self-interacting
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charges in all spacetime dimensions d ≥ 3. Before under-
standing how such objects move, it is first necessary to
fix precisely what should be meant by the concept of mo-
tion. We do so by giving precise definitions for a body’s
linear and angular momenta. One of the central proper-
ties of the momenta introduced here is that their laws of
motion are structurally identical to the laws of motion
satisfied by extended test bodies. This statement holds
to all multipole orders, and for both an object’s transla-
tional and rotational degrees of freedom. For example,
the lowest-order force is given by the usual Lorentz ex-
pression (32), and the lowest-order torque by (33). The
only difference between these results and their test body
counterparts is that the field F̂ab which appears in them
is a certain nonlocal linear transformation of the physi-
cal electromagnetic field Fab. It is in the details of this
field that the most visible effects of self-interaction may
be found. Note as well that it is the same effective field
which appears in expressions for both forces and torques,
and that the prescription for this field remains the same
at all multipole orders.

To be somewhat more precise, we do not find only
a single momentum definition which obeys laws of mo-
tion structurally identical to test-body laws, but rather
a class of such definitions. Different elements of this
class become distinct only when self-interaction is signifi-
cant, and they may be characterized by a certain 2-point
“propagator” Gaa′(x, x′); see (6), (7), and (31). Phys-
ically, this propagator fixes a sense in which a charge
element at x′ can source a field at x whose net effect
on the body’s motion may be removed by finite renor-
malization of its multipole moments. We show from first
principles that any propagator which satisfies the four
“axioms” given in Section IID 1 has this interpretation,
and that such propagators may be used to define mo-
menta with physically-desirable properties. Our axioms
generalize the three originally proposed by Poisson [11]
(in a somewhat different context) in order to characterize
the d = 4 propagators originally constructed by Detweiler
and Whiting [18].

The axioms we introduce are essential to understand-
ing the odd-dimensional self-force, and can be useful also
in certain even-dimensional scenarios. However, they
do not single out a unique propagator. Consequently,
we do not have a unique momentum, a unique effective
field, or even unique multipole moments associated with
a body’s stress-energy tensor. All of these quantities may
depend on the choice of propagator. Nevertheless, such
differences do not signal any kind of physical inconsis-
tency. They merely reflect that one can choose to focus
on slightly different aspects of the same physical system,
and there is no reason to expect that all such aspects
behave identically. A somewhat simpler “gauge freedom”
of this kind arises even in d = 4 discussions of extended
test bodies, wherein different spin supplementary condi-
tions may be applied to yield distinct centroids which
nevertheless describe different aspects of the same phys-
ical system [41].

Having established an appropriate class of propaga-
tors with which to construct physically-useful momenta,
it is essential to be able to find explicit examples in that
class. In even numbers of dimensions, a straightforward
generalization of the Detweiler-Whiting “S-type” Green
function satisfies our constraints, and may therefore be
used to generate suitable momenta for extended charge
distributions. Adopting such definitions, the laws of mo-
tion involve effective electromagnetic fields which locally
satisfy the source-free Maxwell equations. Extended self-
interacting charges in even numbers of dimensions may
thus be viewed as obeying laws of motion which are struc-
turally identical to those of extended test bodies, and
where the effective field appearing in those laws is source-
free. This is a relatively straightforward generalization
of existing d = 4 results on relativistic motion in generic
spacetimes [10]. It may also be viewed as a generalization
of the well-known statement that massive bodies inter-
acting via Newtonian gravity or electrostatics satisfy laws
of motion which involve only source-free external fields.

The odd-dimensional case is different. One of our main
results is the identification of an odd-dimensional prop-
agator, namely (29), which satisfies the four constraints
given in Section IID 1. This propagator is quite differ-
ent from its even-dimensional Detweiler-Whiting coun-
terpart; it is not a Green function or even a more gen-
eral parametrix for Maxwell’s equations. The effective
field which appears in the laws of motion may thus fail
to satisfy the source-free Maxwell equations when d is
odd. This difference is reasonably subtle at lower multi-
pole orders. However, it may be qualitatively important
when higher-order extended-body effects become signif-
icant: In that context, all components of a body’s mul-
tipole moments may affect its motion, rather than only
their (more familiar) trace-free components.

Another interesting feature of the odd-dimensional ef-
fective fields identified here is that in a point-particle
limit, the map which translates the physical field into the
effective field appears to turn into a kind of dimensional
regularization procedure. This procedure arises as the
limit of a map which is generically non-singular, makes
no symmetry assumptions, and applies in a single space-
time with fixed integer dimension. A better understand-
ing of this link may provide an improved understanding
of dimensional regularization more generally.

Regardless, whether in even numbers of dimensions or
odd, our formalism can be applied together with point
particle limits to generate explicit laws of motion. We do
so in Section III, restricting to flat spacetimes for simplic-
ity. Assuming retarded boundary conditions, we provide
the general prescription for all dimensions d ≥ 3, and
apply it in full to find leading-order point-particle self-
forces for d = 3, 4, 5, 6, 8, and leading-order self-torques
for d = 3, 4, 5. Our explicit self-forces agree with existing
results in the literature when d = 4, 6, 8, although for
d 6= 4, our approach is more systematic and includes mi-
croscopic definitions which were previously lacking. The
odd-dimensional cases are different, and we identify sig-
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nificant problems with most other proposals which have
been suggested in that context.

Finally, Section IV analyzes solutions to the nonrel-
ativistic limits of our d = 3 and d = 5 results. The
particularly-slow decay of odd-d fields—particularly in
three dimensions—results in a very strong dependence on
a charge’s past history: It follows from (62) that the self-
force acting on a particle in 2+1 dimensional Minkowski
spacetime depends on the past history of its jerk

...
γ (τ),

with a weighting factor which grows logarithmically in
the increasingly-distant past.

Some physical consequences of this can be illustrated
by considering a charge which is briefly kicked by an
externally-imposed electric field in a d = 3 Minkowski
spacetime. If this external field is Gaussian, one sees
from Figure 1 that self-interaction causes the peak of the
net force to arrive before the peak of the applied force.
Despite appearances, this effect is causal. Moreover, for
any external force—whether Gaussian or not—we show
that if a charge is stationary for all time before an ex-
ternal field is applied, the slowly-decaying remnant of
its self-field causes that charge to asymptotically return
to rest at late times. The slow decay of the self-field a
body produces while it is initially at rest in three space-
time dimensions thus provides a preferred, dynamically-
produced rest frame which persists and remains signifi-
cant even in the distant future.

We note that although this paper has focused on the
motion of bodies coupled to electromagnetic fields, our
analysis extends straightforwardly for other types of in-
teractions. For example, our odd-dimensional electro-
magnetic propagator (29) is replaced by

Godd =
(−1)

1
2−λdU

2π
lim
λ→λd

`2λ
∂

∂λ

[
(2σ/`2)λΘ(σ)

]
,

(121)
for a body coupled to a Klein-Gordon field in an odd-
dimensional spacetime, where U is a smooth biscalar
which also appears in the retarded Green function. Fur-
thermore, point-particle scalar fields can be obtained di-
rectly from our electromagnetic vector potentials by re-
placing the Wa(x, τ ;λ) given by (D5) with

W (x, τ ;λ) =
q(τ)

αd
U(x, γ(τ))Σλ(x, τ). (122)

We note as well that our methods generalize almost as
easily for bodies coupled to (at least the linearized) d-
dimensional Einstein equation.

As a simple application in the scalar setting, we note
that masses can vary here even at monopole order, and
that charges which source Klein-Gordon fields are not
necessarily conserved. If an initially-uncharged body
rapidly acquires a net charge q∞ around τ = τ0, our
equations show that the mass “evaporates” according to

m̂(τ)− m̂(τ ′) = q2
∞ ln

(
τ ′ − τ0
τ − τ0

)
(123)

for a stationary particle in a d = 3 Minkowski spacetime,
where τ, τ ′ � τ0. Accounting for differences in numerical
conventions, this matches an earlier result [50] obtained
using different methods. It is also conceptually similar
to the scalar charge evaporation found for freely-falling
charges in d = 4 de Sitter spacetimes [51].

Whether in electromagnetic or other contexts, there
are various directions in which the results presented
in this paper may be extended or applied. One pos-
sibility would be to relax our assumptions regarding
retarded boundary conditions and trivial topology.
Some discussion of motion in topologically-nontrivial
spacetimes has already been given [52], although mainly
in cases where the formally-divergent portion of the
point-particle self-field could be clearly seen not to
contribute to the self-force. The formalism developed
here lays the groundwork for extending these kinds of
results for generic types of motion: All of the formalism
developed in Section II holds regardless of boundary
or initial conditions, or topology, and the S-fields
given by (C2) and (53) are similarly-agnostic to these
features. If a physical field Fab can be computed in some
physical system—whether by numerical, perturbative,
or other methods—the S-fields given here can be used to
straightforwardly determine the force. One motivation
for such generalizations is the potential for connecting
this work with the behavior of certain lower-dimensional
condensed matter systems, systems which are often
characterized by nontrivial boundary conditions or
topology. Moreover, experimental work in pilot-wave
hydrodynamics [20] suggests—although the mathematics
applicable there is not precisely analogous to ours—that
self-interaction problems in two spatial dimensions can
have very rich and surprising behaviors in the presence
of nontrivial boundary conditions.
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Appendix A: Propagators and Hadamard series

This appendix explains how to determine the bitensors
which appear in the even-dimensional Detweiler-Whiting
Green functions GDW

aa′ with the form (22), and also in the
odd-dimensional propagatorsGodd

aa′ given by (29). In both
cases, it is convenient to introduce the van Vleck deter-
minant ∆(x, x′), which is a symmetric biscalar satisfying
[11, 19]

σa∇a ln ∆ = d−∇a∇aσ, (A1)

and also ∆(x, x) = 1. In general, σa ≡ ∇aσ(x, x′) lies
tangent to the geodesic which passes through x and x′,
so (A1) may be viewed as a first-order ordinary differen-
tial equation for ∆(x, x′) along that geodesic. If Synge’s
function is known, d−∇a∇aσ is easily computed and the
solution can be written as an explicit integral along that
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geodesic. Integral solutions for this and similar “trans-
port equations” may be found in, e.g., Appendix B of
[19].

1. Even-dimensional propagators

The even-dimensional Detweiler-Whiting Green func-
tion GDW

aa′ involves two bitensors, Uaa′ and Vaa′ . Sub-
stituting its form (22) into (19) shows that these must
satisfy

0 = [2σb∇bUaa′ + (∇b∇bσ − d)Uaa′ ]δ
(d/2−1)(σ)

+ [∇b∇bUaa′ −RabUba′ ]δ(d/2−2)(σ)

+ [2σb∇bVaa′ + (∇b∇bσ − 2)Vaa′ ]δ(σ)

+ [∇b∇bVaa′ −RabVba′ ]Θ(σ) (A2)

when x 6= x′, and also

lim
x′→x

Uab′(x, x
′) = αdgab, (A3)

where αd is given by (24). The first three lines restrict
Uaa′ and Vaa′ on the σ = 0 light cones, while the last re-
quires that Vaa′ satisfy the homogeneous Maxwell equa-
tion

∇b∇bVaa′ −RabVba′ = 0, (A4)

at least when σ > 0. We note that the bitensors deter-
mined by these equations also arise in the retarded and
advanced Green functions, via

Gret,adv
aa′ = [Uaa′δ

(d/2−2)(σ)− Vaa′Θ(−σ)]ret,adv, (A5)

although they may be evaluated at different locations
here than in GDW

aa′ .
In order to complete the solution to (A2), it is first

convenient to factor out the square root of the van Vleck
determinant and to expand in the Hadamard series

Uaa′ = ∆1/2

d/2−2∑
n=0

σn

n!
U
{n}
aa′ . (A6)

Note that this is not a Taylor expansion; the “coefficients”
U
{n}
aa′ may be nontrivial functions of x and x′. Regardless,

using (A1) and the identity

σnδ(p)(σ) =
(−1)np!

(p− n)!
δ(p−n)(σ), (A7)

while setting to zero explicitly-equal numbers of deriva-
tives of δ(σ), we find that

U
{0}
aa′ = αdgaa′ , (A8)

and that for all n ∈ {1, . . . , d/2− 2},

(σb∇b + n)U
{n}
aa′ =

n

d− 2− 2n

× [∆−1/2∇b∇b(∆1/2U
{n−1}
aa′ )−RabU{n−1}

ba′ ]. (A9)

These constitute a tower of transport equations for each
U
{n}
aa′ in terms of U{n−1}

aa′ . The lone nonsingular solutions
to these differential equations are the physical ones. They
guarantee that the first two lines of (A2) vanish.

The last line of that equation vanishes by (A4), while
the third can be eliminated by imposing the “boundary
condition”

[σb∇b + (d/2− 1)](∆−1/2Vaa′) =
(−1)d/2−1

2

× [∆−1/2∇b∇b(∆1/2U
{d/2−2}
aa′ )−RabU{d/2−2}

ba′ ]
(A10)

on Vaa′ when its arguments are null-separated. Eqs.
(A4), (A8), (A9), and (A10) together provide a complete
solution to (A2), and thus a complete determination of
Uaa′ and Vaa′ .

Note that unlike when finding these bitensors for the
retarded or advanced Green functions, solving (A4) with
boundary data (A10) constitutes a peculiar type of “ex-
terior” characteristic problem: Data is specified on the
past and future light cones and we seek a solution to the
wave equation outside of those light cones. Although the
general mathematical status of such problems is not par-
ticularly clear, a Hadamard-like series analogous to (A6)
can be developed for Vaa′ , resulting in an infinite tower of
transport equations for the Hadamard coefficients V

{n}
aa′ .

We assume Vaa′ to be specified in this sense, and that
the resulting series is well-behaved. In fact, it can be ac-
ceptable to use Detweiler-Whiting propagator in which
the Hadamard series for Vaa′ is truncated at some finite
order. Forces and torques due to the associated effec-
tive field would be slightly altered by this truncation,
although that would be due to them describing rates of
change of slightly different quantities; such propagators
still generate correct and useful laws of motion.

It is clear from this discussion that since each
Hadamard coefficient U

{n}
aa′ or V

{n}
aa′ can be written as a

line integral along the geodesic segment which connects
its arguments, it can depend on the geometry only on
that geodesic. This establishes that each coefficient is
quasilocal in the sense of Axiom 3 in Section IID 1. The
world function and the van Vleck determinant are sim-
ilarly quasilocal, so this description holds for GDW

aa′ as a
whole.

Note as well that each of the Hadamard coefficients is
symmetric, so

Uaa′(x, x
′) = Ua′a(x′, x), Vaa′(x, x

′) = Va′a(x′, x).
(A11)

This may be argued in various ways. Most simply, the
self-adjointness of the differential operator δba∇c∇c−Rba,
Stokes’ theorem, and the causal properties of the ad-
vanced and retarded Green functions imply that Gret

aa′ =
Gadv
a′a . Eq. (A5) thus implies (A11), at least for null and

timelike-separated points. Symmetry of the Detweiler-
Whiting Green function merely requires that this prop-
erty extend also to spacelike-separated points. Such an
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extension is argued to be valid in Section 6.4 of [37]; see
also [53].

2. Odd-dimensional propagators

The bitensor Uaa′ which appears in our odd-
dimensional propagator Godd

aa′ is the same as the one
which appears in the retarded and advanced Green func-
tions associated with (19). It may be found by factor-
ing out the van Vleck determinant and expanding in the
Hadamard series

Uaa′ = ∆1/2
∞∑
n=0

σn

n!
U
{n}
aa′ . (A12)

Unlike its even-dimensional analog (A6), the sum here
does not necessarily terminate at finite n. Nevertheless,
the zeroth term in the series is again given by (A8),
although the odd-dimensional αd is now computed us-
ing (28) instead of (24). Substituting this and (27)
into (19), the higher-order Hadamard coefficients U

{n}
aa′

may be shown to be the nonsingular solutions to the
same transport equations (A9) which determine the even-
dimensional Hadamard coefficients. The Uaa′ appear-
ing here is again symmetric and quasilocally dependent
on the metric, by the same arguments as in the even-
dimensional case.

Also note that again, there is no obstacle to work-
ing instead with a somewhat-different propagator whose
Hadamard series is truncated at finite n.

Appendix B: Expansion methods and coincidence
limits

We now collect various expansion methods and results
relevant to the point-particle fields computed in Appen-
dices C and D.

Many of these expansions involve σ(x, γ(τ)), Synge’s
world function specialized to cases in which one argument
is evaluated at a specific proper time on a given timelike
worldline Γ. This is assumed to be a smooth function of
x and τ , at least if gab and Γ are themselves smooth and
x and γ(τ) are sufficiently close. More precisely, we sup-
pose that these points always lie within a convex normal
neighborhood. Then, if τ is varied while x is held fixed
near (but not on) Γ, there exist exactly two “nearby” ze-
ros. We call the larger of these the advanced time τ+(x)
and the smaller the retarded time τ−(x). While it is pos-
sible to approximate these times in terms of some given
coordinate system, we have no need to do so. Instead,
we note that Synge’s function must factorize via

2σ(x, γ(τ)) = [τ+(x)− τ ] [τ − τ−(x)] Σ(x, τ), (B1)

where Σ(x, τ) is assumed to be positive and smooth in all
regions of interest. For an inertial worldline in flat space-
time, Σ(x, τ) = 1. More generally, everything we need is

encoded in the various derivatives of Σ(x, τ) evaluated
using coincidence limits in which x→ γ(τ).

It is convenient to also use the retarded and advanced
times to introduce the “radar time”

τ̄(x) ≡ 1

2
[τ+(x) + τ−(x)], (B2)

and the “radar distance”

r(x) ≡ 1

2
[τ+(x)− τ−(x)], (B3)

associated with points x near Γ. In terms of these func-
tions, (B1) may be rearranged to read 2σ/Σ = r2 − (τ −
τ̄)2, from which it follows that

τ̄ = τ +
∂

∂τ

( σ
Σ

)
, r2 =

2σ

Σ
+

[
∂

∂τ

( σ
Σ

)]2

. (B4)

These expressions imply that if σ/Σ is smooth, so are τ̄
and r2.

Now solve (B1) for Σ(x, τ) and consider the substitu-
tion x = γ(τ ′), in which case τ+ = τ− = τ ′:

Σ(γ(τ ′), τ) = −2σ(γ(τ ′), γ(τ))

(τ ′ − τ)2
. (B5)

Coincidence limits for the left-hand side or its derivatives
follow by evaluating the right-hand side or its derivatives
as τ ′ → τ , using well-known coincidence limits for the
derivatives of Synge’s function. For example, applying
L’Hôpital’s rule twice gives

Σ(γ(τ), τ) = − lim
τ ′→τ

γ̇a
′
γ̇b
′
∇a′∇b′σ. (B6)

where we have used the vanishing coincidence limits of σ
and ∇a′σ. Further applying

lim
x′→x

∇a′∇b′σ(x, x′) = gab, (B7)

it follows that

Σ(γ(τ), τ) = 1. (B8)

Supplementing (B7) by, e.g.,

lim
x′→x

∇a′∇bσ(x, x′) = −gab, (B9)

coincidence limits of τ -derivatives of Σ(x, τ) may be de-
rived similarly. If we specialize to flat spacetime, in which
third and higher derivatives of σ vanish, it may be shown
that

Σ̇ = 0, Σ̈ =
1

6
|γ̈|2,

...
Σ =

1

2
(γ̈ ·

...
γ ),

Σ(4) =
1

15

(
8|
...
γ |2 + 9γ̈ · γ(4)

)
,

Σ(5) =
1

3

(
2γ̈ · γ(5) + 5

...
γ · γ(4)

)
,

Σ(6) =
1

28

(
20γ̈ · γ(6) + 64

...
γ · γ(5) + 45|γ(4)|2

)
,

(B10)
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when x = γ(τ).
We also need coincidence limits for ∇aΣ(x, τ) and its

τ derivatives. First note that differentiating (B1) with
respect to x and rearranging using (B2) and (B3) implies
that

∇aΣ(x, τ ′) =
2∇aσ +∇a[(τ̄ − τ ′)2 − r2]Σ

(τ+ − τ ′)(τ ′ − τ−)
, (B11)

where we have added a prime to the second argument for
later convenience. Noting that

∇aτ̄(γ(τ)) = −γ̇a(τ), ∇ar2(γ(τ)) = 0, (B12)

substituting x = γ(τ) into (B11) gives

∇aΣ(γ(τ), τ ′) = − 2

(τ ′ − τ)2

[
∇aσ(γ(τ), γ(τ ′))

+ (τ ′ − τ)γ̇a(τ)Σ(γ(τ), τ ′)
]
. (B13)

Repeatedly applying L’Hôpital’s rule to this expression
again allows us to evaluate coincidence limits τ ′ → τ for
∇aΣ(γ(τ), τ ′) and its τ -derivatives. Specializing to flat
spacetime while using (B10), the first few such limits are

∇aΣ = γ̈a, ∇aΣ̇ =
1

6
(2
...
γ a − |γ̈|2γ̇a),

∇aΣ̈ =
1

6

[
γ(4)
a − 2(γ̈ ·

...
γ )γ̇a

]
,

∇a
...
Σ =

1

30

[
3γ(5)
a −

(
8|
...
γ |2 + 9γ̈ · γ(4)

)
γ̇a

]
,

∇aΣ(4) =
1

15

[
γ(6)
a − 2

(
2γ̈ · γ(5) + 5

...
γ · γ(4)

)
γ̇a

]
,

∇aΣ(5) =
1

84

[
4γ(7)
a −

(
20γ̈ · γ(6) + 64

...
γ · γ(5)

+ 45|γ(4)|2
)
γ̇a

]
.

(B14)
Point-particle electromagnetic fields in odd numbers of

dimensions are expressed below in terms of coincidence
limits ofW {n}a (x;λ) and its derivatives, functions defined
by (D5) and (D7). However, we specialize here to flat
spacetime, in which case the first of these equations is
replaced by (54). Recalling that ∇bgaa′ = ∇b′gaa′ = 0 in
Minkowski spacetimes, the W {n}a (x;λ) can depend only
on the particle’s worldline and on Σ(x, τ). Using (B10)
and (B14), the first coincidence limits in flat spacetime
may be shown to be

W {0}a = qγ̇a, W {1}a = qγ̈a,

W {2}a = q
(...
γ a +

λ

6
|γ̈|2γ̇a

)
,

W {3}a = q
[
γ(4)
a +

λ

2

(
|γ̈|2γ̈a + (γ̈ ·

...
γ )γ̇a

) ]
,

(B15)

and

∇[aW
{0}
b] = −q(1 + λ)γ̇[aγ̈b],

∇[aW
{1}
b] = −q(1 +

1

3
λ)γ̇[a

...
γ b],

∇[aW
{2}
b] =

1

6
q
[
2λγ̈[a

...
γ b] − λ(4 + λ)|γ̈|2γ̇[aγ̈b]

−(6 + λ)γ̇[aγ
(4)
b]

]
.

(B16)

Appendix C: Point-particle fields in even dimensions

This appendix computes various electromagnetic fields
associated with monopole point charges in potentially-
curved spacetimes for which d ≥ 4 is even. We start
by evaluating the vector potential (18) for the S-field
associated with the point-particle current (44). Identify-
ing Gaa′ with the Detweiler-Whiting Green function (22),
this is more explicitly

AS
a(x) =

q

2

∫ [
Uaa′(x, γ(τ))δ(d/2−2)(σ(x, γ(τ)))

+ Vaa′(x, γ(τ))Θ(−σ(x, γ(τ)))
]
γ̇a
′
(τ)dτ. (C1)

The range of τ values over which this integration is to
performed are to be understood as restricted to a normal
neighborhood of x, in which case the only relevant zeros
of σ(x, γ(τ)) are, for fixed x, at τ = τ±(x) [cf. (B1)].
Hence,

AS
a =

q

2

[ ∑
τ∈{τ±}

1

|σ̇|

(
− ∂

∂τ

1

σ̇

)d/2−2

Uaa′ γ̇
a′

+

∫ τ+

τ−

Vaa′ γ̇
a′dτ

]
, (C2)

where σ̇ = ∂σ(x, γ(τ))/∂τ and the sum denotes that one
is to substitute τ = τ+ and then add to that the same ex-
pression evaluated at τ = τ−. While other null geodesics
may exist between the particle’s worldline and x, it is
only the “closest two” which are included in this expres-
sion.

The retarded Green function may be shown to have to
have the form (A5) at least within a normal neighbor-
hood, so the retarded vector potential is

Aret
a = q

[
1

|σ̇|

(
− ∂

∂τ

1

σ̇

)d/2−2

Uaa′ γ̇
a′

∣∣∣∣∣
τ=τ−

+ lim
ε→0+

∫ τ−−ε

−∞
Gret
aa′ γ̇

a′dτ

]
. (C3)

The Green function in the second line here is left as-is to
allow for integrations beyond the normal neighborhood,
in which case the Hadamard form (A5) can fail to remain
valid.
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If the full electromagnetic field Fab is identified with
the retarded field F ret

ab = 2∇[aA
ret
b] , it follows from (17)

that F̂ab = 2∇[a(Aret
b] − A

S
b]). In Minkowski spacetime,

this is equivalent to what is often called the radiative
field, one-half of the retarded minus advanced fields. In
more general spacetimes, a vector potential for F̂ab with
retarded boundary conditions may be written as the dif-
ference between (C3) and (C2):

Âa = q

[
1

2|σ̇|

(
− ∂

∂τ

1

σ̇

)d/2−2

Uaa′ γ̇
a′

∣∣∣∣∣
τ=τ−

τ=τ+

− 1

2

∫ τ+

τ−

Vaa′ γ̇
a′dτ + lim

ε→0+

∫ τ−−ε

−∞
Gret
aa′ γ̇

a′dτ

]
.

(C4)

Although it is not obvious from this expression, the ef-
fective field is finite, and indeed smooth, even on the
worldline, essentially because it satisfies the source-free
Maxwell equations.

Appendix D: Point-particle fields in odd dimensions

We now compute point-particle fields in odd numbers
of dimensions. Section D1 starts by obtaining a vector
potential AS

a for the S-field F S
ab associated with the point-

particle current (44), identifying the propagator Gaa′ by
which these fields are defined with the Godd

aa′ given in (30).
The final result, summarized by (53), is a series involving
the radar distance r away from the particle’s worldline
Γ [as defined by (B3)]. This series involves positive and
negative powers of r, ln r, and coefficients which can de-
pend smoothly on x.

Next, the point-particle retarded field Aret
a (x) is com-

puted in Section D2, again as a series involving r. Both
the retarded and S fields diverge on Γ, although we show
in Section D3 that their difference is smooth. This last
result essentially constitutes our verification that Axiom
4 of Section IID 1 is satisfied by Godd

aa′ .

1. The S-field

The point-particle S-field vector potential may be
found by evaluating (18) withGaa′ = Godd

aa′ and J
a = Japp.

Given the form (29) for Godd
aa′ , it is useful to introduce the

auxiliary family of propagators

G̃aa′(x, x
′;λ) ≡ Uaa′(x, x′)[2σ(x, x′)]λΘ(σ(x, x′)), (D1)

and the associated point-particle fields

Ãa(x;λ) = q

∫ τ+(x)

τ−(x)

[2σ(x, γ(τ))]λUaa′(x, γ(τ))γ̇a
′
(τ)dτ.

(D2)

Once this potential is known, the point-particle S-field
follows from

AS
a =

(−1)
1
2−λd

2π
lim
λ→λd

`2λ
∂

∂λ
(`−2λÃa), (D3)

where ` > 0 is the arbitrary lengthscale used in the con-
struction of Godd

aa′ , the dimension-dependent number λd
is given by (25), and the limit implies an analytic con-
tinuation in λ.

A series expansion for Ãa may now be found by sub-
stituting the factorization (B1) for σ into (D2). Doing so
results in

Ãa(x;λ) = αd

∫ τ+(x)

τ−(x)

dτ [τ+(x)− τ ]λ[τ − τ−(x)]λ

×Wa(x, τ ;λ), (D4)

where αd is given by (28) and it convenient to define

Wa(x, τ ;λ) ≡ q

αd
Uaa′(x, γ(τ))γ̇a

′
(τ)Σλ(x, τ). (D5)

ExpandingWa(x, τ ;λ) about τ = τ̄(x) as defined in (B2),
we find that

Wa(x, τ ;λ) =

∞∑
n=0

1

n!
[τ − τ̄(x)]nW {n}a (x;λ), (D6)

in terms of the coefficients

W {n}a (x;λ) ≡ ∂n

∂τn
Wa(x, τ ;λ)

∣∣∣∣
τ=τ̄(x)

. (D7)

Substituting these expressions into (D4) now yields

Ãa = 2αd

∞∑
n=0

W
{2n}
a

(2n)!

∫ τ+

τ̄

dτ(τ − τ̄)2(n+λ)

×

[(
r

τ − τ̄

)2

− 1

]λ
. (D8)

If λ > −1, the integral on the right-hand side is well-
defined and

Ãa = αd

∞∑
n=0

Γ(n+ 1
2 )Γ(λ+ 1)

(2n)!Γ(n+ λ+ 3
2 )
W {2n}a r1+2(n+λ). (D9)

However, it follows from (25) that λd < −1 in five or
more dimensions. The analytic continuation associated
with the limit in (D3) nevertheless implies that the right-
hand side of (D9) remains valid as long as it may be
analytically continued to λ→ λd.

Carrying out this continuation, Γ(n+ λ+ 3
2 ) diverges

for all n ≤ 1
2 (d − 5). Such terms therefore go to zero in

the sum (D9) and

lim
λ→λd

Ãa(x;λ) = αd

∞∑
n= 1

2 (d−3)

Γ(n+ 1
2 )Γ(2− 1

2d)

(2n)!Γ(n+ 1
2 (5− d))

×W {2n}a (x;λd)r
2n−(d−3).

(D10)
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This depends only on non-negative even powers of r(x)

and on the smooth functions W {2n}a (x;λd); the overall
result is smooth near the particle’s worldline.

Computing AS
a requires not only Ãa continued to the

appropriate value of λ, but also a continuation for the
λ-derivative of that field. Differentiating (D9), one finds

that that is

∂λÃa = αd

∞∑
n=0

Γ(n+ 1
2 )Γ(λ+ 1)

(2n)!Γ(n+ λ+ 3
2 )
r1+2(n+λ)

[
∂λW

{2n}
a

+
(
Hλ −Hn+λ+ 1

2
+ 2 ln r

)
W {2n}a

]
(D11)

for general values of λ, where Hµ denotes the µth har-
monic number. Taking the λ → λd limit here requires
some care since the factor of Γ(n+λ+ 3

2 ) in the denomina-
tor and the harmonic number Hn+λ+ 1

2
in the numerator

both diverge in that limit, for all n ≤ 1
2 (d− 5). What is

important however is the limit of their ratio, which may
be shown to be

lim
λ→λd

Hn+λ+ 1
2

Γ(n+ λ+ 3
2 )

= (−1)
1
2 (d−3)−nΓ( 1

2 (d− 3)− n)

(D12)

for all n ≤ 1
2 (d− 5). Hence,

lim
λ→λd

∂λÃa = αd

{ ∞∑
n= 1

2 (d−3)

Γ(n+ 1
2 )Γ(2− d

2 )

(2n)!Γ(n+ 1
2 (5− d))

[ (
H1− d2

−Hn− 1
2 (d−3) + 2 ln r

)
W {2n}a + ∂λW

{2n}
a

]
r2n−(d−3)

− (−1)
1
2 (d−3)

1
2 (d−5)∑
n=0

(−1)nΓ(n+ 1
2 )Γ(2− d

2 )Γ( 1
2 (d− 3)− n)

(2n)!
W {2n}a r2n−(d−3)

}
. (D13)

The full S-field is found by substituting this equation and
(D10) into (D3). The result is (53) in the main text.

2. The retarded field

We now derive the retarded point-particle field, an ex-
pansion of which may be found using an integral analo-
gous to (D8). Unfortunately, the relevant integration is
no longer performed over the interval τ ∈ (τ−, τ+), but
instead runs over all τ < τ−. There are various reasons
for which it is undesirable to attempt expansions over this
infinite domain, so we initially consider integrals for the
retarded vector potential which are truncated at some
finite time T < τ−. We eventually find it convenient to
let T be only slightly less than τ−, although it may be
viewed more generally for now.

Convolving the odd-dimensional retarded Green func-
tion (27) with the point-particle current density (44)
while using the expansion coefficients defined by (D7),

the appropriate truncated field can be shown to be

ATa = αd

∞∑
n=0

(−1)n

n!
W {n}a

∫ τ−

T

dτ(τ̄ − τ)n+2λ

×

[
1−

(
r

τ̄ − τ

)2
]λ
, (D14)

where we have omitted the implicit limit λ → λd. From
this, the full retarded field strength follows via

F ret
ab = 2∇[aA

T
b] + 2q

∫ T

−∞
∇[aG

ret
b]b′ γ̇

b′dτ. (D15)

We choose to consider F ret
ab here instead of Aret

a in order
to avoid convergence problems when d = 3.

Now, the truncated vector potential may be evaluated
by applying the binomial theorem to expand the term in
square brackets in (D14), giving

ATa = αd

∞∑
n=0

∞∑
k=0

(−1)n+kΓ(1 + λ)

n!k!Γ(1 + λ− k)
W {n}a r2k

×
∫ τ̄−r

T

dτ(τ̄ − τ)n+2(λ−k). (D16)
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Evaluating the λ → λd limit of this expression requires some care. Omitting details, the result is that

ATa = αd

{ ∞∑
n=0

∞∑
k 6=kn

(−1)k+nΓ(2− d
2 )(τ̄ − T )n+3−d−2kW

{n}
a r2k

n!k!(n+ 3− d− 2k)Γ(2− d
2 − k)

+

1
2 (d−5)∑
n=0

Γ(2− d
2 )Γ( 1

2 (d− 3)− n)W
{2n}
a

2(2n)!Γ( 1
2 − n)r(d−3)−2n

−
∞∑

n= 1
2 (d−3)

(−1)n+ 1
2 (d−3)Γ(2− d

2 )r2n+3−d

2(2n)!Γ( 1
2 − n)Γ(n− 1

2 (d− 5))

[
H− 1

2−n
−Hn− 1

2 (d−3) + 2 ln

(
r

τ̄ − T

)]
W {2p}a

}
, (D17)

where kn ≡ 1
2 [n− (d− 3)]. This can be substituted into (D15) to obtain the full (non-truncated) retarded field for a

point particle in an odd-dimensional spacetime.

3. The effective field

Our final task in this appendix is to compute the point-particle effective field with retarded boundary conditions
in odd dimensions. Defining the effective cut-off potential by ÂTa ≡ ATa − ASa and comparing (D17) with (53), all
logarithms and negative powers of r exactly cancel, leaving

ÂTa = αd

{ ∞∑
n=0

∞∑
k 6=kn

(−1)k+nΓ(2− d
2 )(τ̄ − T )n+3−d−2kW

{n}
a r2k

n!k!(n+ 3− d− 2k)Γ(2− d
2 − k)

+

∞∑
n= 1

2 (d−3)

(−1)n+ 1
2 (d−5)Γ(2− d

2 )r2n−(d−3)

2(2n)!Γ( 1
2 − n)Γ(n− 1

2 (d− 5))

×
[(
H− 1

2−n
−H1− d2

− 2 ln ((τ̄ − T )/`)
)
W {2n}a − ∂λW {2n}a

]}
. (D18)

This depends on x only via non-negative even powers of r(x), the smooth coefficientsW {n}a (x;λd), and τ̄(x). Moreover,
it follows from (17) and (D15) that the full effective field strength with retarded boundary conditions is

F̂ab = 2∇[aÂ
T
b] + 2q

∫ T

−∞
∇[aG

ret
b]b′ γ̇

b′dτ. (D19)

As long as the series in (D18) converge, any number of derivatives of the effective field exist, even on Γ, because
τ̄(x)− T 6= 0 everywhere of interest and τ̄(x) and r2(x) are smooth; see Appendix B.

Evaluating the leading-order self-force and self-torque acting on a point particle requires that we evaluate F̂ab(x)
on the particle’s worldline, where r → 0. Discarding terms in the truncated potential (D18) which are O(r2), we find
that

ÂTa = αd


∞∑

n 6=d−3

(T − τ̄)n−(d−3)

n!(n+ 3− d)
W {n}a +

1

(d− 3)!

[
W {d−3}
a ln ((τ̄ − T )/`) +

1

2
∂λW

{d−3}
a

] . (D20)

Using this in (D19) and letting r → 0+, individual terms in the resulting expression for F̂ab(γ(τ)) depend on the
arbitrarily-chosen cutoff time T . Nevertheless, all such terms taken together cannot depend on T . We are therefore
free to choose T = τ − ε for some ε > 0, and then to take the limit ε → 0+. Doing so eliminates the infinite sum in
n, leaving only

F̂ab(γ(τ)) = 2 lim
ε→0+

{
q

∫ τ−ε

−∞
∇[aG

ret
b]b′ γ̇

b′dτ ′ − αd

[
d−4∑
n=0

(−1)n

n!

∇[aW
{n}
b]

d− 3− n
+

1

ε
γ̇[aW

{n}
b]

 1

εd−3−n

+
1

(d− 3)!

(
1

ε
γ̇[aW

{d−3}
b] −∇[aW

{d−3}
b] ln(ε/`)− 1

2
∂λ∇[aW

{d−3}
b] − 1

(d− 2)
γ̇[aW

{d−2}
b]

)]}
. (D21)

A version of this expression specialized to flat spacetime is given by (55) in the main text. In either form, the
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coefficients W {n}a (γ(τ);λ) and ∇[aW
{n}
b] (γ(τ);λ) which

appear here are to be evaluated in their coincidence lim-
its, and it is implicit that λ = λd = 1−d/2. The first four
undifferentiated and the first three differentiated coeffi-
cients of this kind are given explicitly in flat spacetime

by (B15) and (B16). These are sufficient to determine
F̂ab in full for d = 3 and d = 5. Higher-dimensional re-
sults follow by extending the limit calculations described
in Appendix B.
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