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The next generation of axion direct detection experiments may rule out or confirm axions as the
dominant source of dark matter. We develop a general likelihood-based framework for studying the
time-series data at such experiments, with a focus on the role of dark-matter astrophysics, to search
for signatures of the QCD axion or axion like particles. We illustrate how in the event of a detection
the likelihood framework may be used to extract measures of the local dark matter phase-space
distribution, accounting for effects such as annual modulation and gravitational focusing, which is
the perturbation to the dark matter phase-space distribution by the gravitational field of the Sun.
Moreover, we show how potential dark matter substructure, such as cold dark matter streams or
a thick dark disk, could impact the signal. For example, we find that when the bulk dark matter
halo is detected at 5σ global significance, the unique time-dependent features imprinted by the dark
matter component of the Sagittarius stream, even if only a few percent of the local dark matter
density, may be detectable at ∼2σ significance. A co-rotating dark disk, with lag speed ∼50 km/s,
that is ∼20% of the local DM density could dominate the signal, while colder but as-of-yet unknown
substructure may be even more important. Our likelihood formalism, and the results derived with
it, are generally applicable to any time-series based approach to axion direct detection.

I. INTRODUCTION

The local distribution of dark matter (DM) leaves a
unique fingerprint on an emerging signal at axion di-
rect detection experiments. While it has long been rec-
ognized that the local phase-space distribution of DM
may be partially uncovered with direct-detection exper-
iments searching for heavy DM candidates with masses
mDM

>∼ MeV (for a recent review, see [1]), the role of
the DM distribution at axion direct detection experi-
ments, where mDM

<∼ meV, remains less explored. In
this work, we develop a likelihood-function-based anal-
ysis framework for analyzing the output of axion DM
direct detection experiments. Using this framework, we
explore in detail the impact of the DM phase-space dis-
tribution on the experimental sensitivity to the axion; in
the presence of a signal, we show that many aspects of
the full time-dependent phase-space distribution can be
uncovered.

The need for understanding how the DM phase-space
distribution is manifest in axion direct detection ex-
periments has taken on a new sense of urgency re-
cently due to a multitude of new experimental efforts.
In addition to the long-running ADMX experiment [2–
4], there has been a raft of new ideas for directly
detecting axion DM, including ABRACADABRA [5],
CASPEr [6], CULTASK [7], DM Radio [8, 9], MAD-
MAX [10–13], HAYSTAC [14–16], nEDM [17, 18], OR-
GAN [19], QUAX [20–22], TASTE [23], and more [24–
46]. Our statistical framework allows us to better quan-
tify limits and detection thresholds for the proposed ex-
periments. Moreover, it also shows how various features
of the DM distribution, for example annual modulation,
gravitational focusing, and potential substructure such
as local DM streams, can affect the sensitivity of these
experiments and how they can be searched for in the
data.

The resurgence of effort towards detecting axion DM is
driven by a combination of factors, including the increas-
ing tension that heavier DM candidates are facing from
null searches, technological advancements that make ax-
ion searches more feasible, and new ideas for how to de-
tect axion DM in the laboratory. However, axion DM
is also a focus point due to its strong theoretical mo-
tivation. The quantum chromodynamics (QCD) axion
was originally invoked to solve the strong CP problem
of the neutron electric dipole moment [47–50]. It was
later realized that the QCD axion behaves like cold DM
for cosmological and astrophysical purposes [51–53]. The
axion interacts with the electromagnetic sector through
the following operator:

La = −1

4
gaγγaFµν F̃

µν , (1)

where Fµν is the electromagnetic field strength, a is
the axion field, and gaγγ is the coupling.1 We may
parametrize the coupling as gaγγ = gαEM/(2πfa), where
fa is the axion decay constant, αEM is the electromag-
netic fine structure constant, and g is a model depen-
dent parameter, which takes a value −1.95 (0.72) for
the KSVZ [54, 55] (DFSZ [56, 57]) QCD axion, although
the space of models covers an even broader range (see,
e.g., [58]). The axion decay constant determines the ax-
ion mass through the coupling of the axion to QCD:

ma ≈
fπmπ

fa
, (2)

which is given in terms of the pion mass and decay con-
stant, mπ and fπ, respectively. Depending on the de-
tailed cosmological scenario, the QCD axion may make

1 Throughout this work we will consider exclusively the elec-
tromagnetic coupling, but the framework we introduce can be
straightforwardly extended to nucleon couplings.
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up all of the DM for axion masses roughly in the range
∼ 10−12 eV to ∼ 10−5 eV (see [59] for a review). Lower
masses are disfavored by requiring the axion decay con-
stant, which is the scale of new physics that generates
the axion, to be sub-Planckian. At higher masses it be-
comes more difficult to generate the required abundance
of DM through the misalignment mechanism and the de-
cay of topological defects (see, e.g., [60]). In addition to
the QCD axion, it is also possible to have more general
axion-like DM particles that still couple to electromag-
netism, but not to QCD. The mass of these axion-like
particles is a free parameter, since there is no contri-
bution from QCD; however, axion-like particles do not
address the strong CP problem.

Most axion direct detection experiments exploit the
fact that axion DM may be described by a coherently-
oscillating classical field a that acts as a source of
Fµν F̃

µν . The oscillation frequency of a is set by its mass
ma, while the coherence of the oscillations is set by the
local DM velocity distribution. Locally, we expect the
velocity dispersion of the bulk DM halo to be ∼10−3 in
natural units, which leads to the expectation that the ax-
ion coherence time is τ ∼ 106 × (2π/ma). Consequently,
the axion sources a coherent signal that experiments can
repeatedly sample by taking time-series data sensitive
to the possible interactions of the axion. For example,
in ADMX, which is the only experiment so far to con-
strain part of the QCD axion parameter space,2 the co-
herent axion background sources electromagnetic modes
in a resonant cavity. The experiment tunes the resonant
frequency of the cavity to scan over different possible
masses. Most axion experiments make use of high-Q os-
cillators or cavities to build up the otherwise small signal.
However, some experiments, such as ABRACADABRA
and MADMAX, can operate in a broadband mode that
allows multiple masses to be searched for simultaneously,
albeit with slightly reduced sensitivity.

Resonant experiments, such as ADMX, typically ana-
lyze their data by comparing the power output from the
resonator, measured across the frequency bandwidth of
the signal as determined by the coherence time, to the ex-
pectation under the null hypothesis using, for example,
the Dicke radiometer equation [63], supplemented with
Monte Carlo simulations as described in [2, 64]. In this
work, we present a likelihood-function based approach to
analyzing the data at resonant and broadband axion ex-
periments that takes as input the Fourier components of
the time-series data, with frequency spacing potentially
much smaller than the bandwidth of the signal. We show
that the velocity distribution of the local halo is uniquely

2 This, of course, depends on the exact definition of what con-
stitutes a QCD axion. Recent studies have suggested the win-
dow could be broader than what we discuss in this work, see,
e.g., [61, 62]. Under such extended definitions, results from the
HAYSTAC experiment may already probe the QCD parameter
space [14].

encoded in the spectral shape of the Fourier components,
within the frequency range set by the coherence time, and
that it may be extracted from the data in the event of a
detection.

We present an analytic analysis of the likelihood func-
tion using the Asimov dataset [65], which also allows us
to calculate the sensitivity of axion experiments to DM
substructure such as cold DM streams and a co-rotating
dark disk. For example, we show that soon after the
discovery of axion DM from the bulk DM halo, the DM
component of the Sagittarius stream, which has been ex-
tensively discussed in the context of electroweak-scale di-
rect detection [66–69], should become visible in the data
through the likelihood analysis. Moreover, we may use
the formalism to accurately predict exclusion and discov-
ery regions analytically.

Most previous studies of axion direct detection have
not addressed the question of how to extract measures of
the local phase-space distribution from the data. In [70],
it was demonstrated that effects of the non-zero axion
velocity will need to be accounted for in future versions
of the MADMAX experiment. Ref. [71] recently per-
formed simulations to show how the sensitivity of ADMX
changes for different assumptions about the velocity dis-
tribution, such as the possibility of a co-rotating dark
disk or cold flows from late infall, using the analysis
method used by ADMX in previous searches (see, for
example, [72, 73]). In [74] (see also [75]) it was pointed
out that the width of the resonance should modulate an-
nually due to the motion of the Earth around the Sun,
which slightly shifts the DM velocity distribution. Re-
cently, [76] took an approach similar to that presented
in this work and considered a likelihood-based approach
to annual modulation and reconstructing the halo veloc-
ity distribution. We extend this approach to accurately
account for the statistics of the axion field, to include
previously-neglected but important phenomena such as
gravitational focusing [77] induced by the Sun’s gravi-
tational potential, and to analytically understand, using
the Asimov formalism [65], the effect of DM substructure.

We organize the remainder of this work as follows. To
begin with, in Sec. II we derive a likelihood for axion di-
rect detection. The result is derived for both broadband
and resonant experimental configurations. Section III
determines the expected limit and detection thresholds
from this likelihood. In Sec. IV we discuss our results in
the context of an axion population following a time inde-
pendent bulk halo. Finally, Sec. V extends the discussion
of the axion phase space to include annual modulation,
gravitational focusing, and the possibility of local DM
substructure such as cold streams. We note that the
analysis framework presented in this work is also pro-
vided in the form of publicly available code and can be
accessed at https://github.com/bsafdi/AxiScan.

https://github.com/bsafdi/AxiScan
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II. A LIKELIHOOD FOR AXION DIRECT
DETECTION

In this section we derive a likelihood that describes
how the statistics of the local DM velocity distribution
are transformed into signals at axion direct detection ex-
periments. The main result that will be used throughout
the rest of the paper is the likelihood presented in (29);
however, there will be several intermediate steps. In par-
ticular, in the first subsection we show how to write the
local axion field as a sum over Rayleigh-distributed ran-
dom variables, as specified in (10). In the following sub-
section we will show that when coupled to an experi-
ment sensitive to the axion, if data is taken in the form
of a power spectral density (PSD), it will be exponen-
tially distributed, as given in (24). In the main body
we will only derive the distribution of the signal, but in
App. A we will show that the background only, and sig-
nal plus background distributions, are both exponentially
distributed also. Combining these, we then arrive at a
form for the likelihood function.

In the initial derivation of the likelihood we will focus
on how our formalism applies to a broadband experiment.
However, the modification to a resonant framework is
straightforward and we present the details in the final
subsection.

A. The Statistics of the Local Axion Field

Our goal in this section is to build up the local axion
field from the underlying distribution of fields describing
individual axions. Thus as a starting point let us consider
an individual axion-like particle, which we think of as a
non-relativistic classical field.3 If we assume that there
are Na such particles locally that make up the local DM
density ρDM, then we can write down the field describing
an individual particle as

ai(v, t) =

√
2ρDM/Na
ma

cos

[
ma

(
1 +

v2
i

2

)
t+ φi

]
, (3)

where i ∈ 1, 2, . . . , Na is an index that identifies this spe-
cific axion particle, ma is the axion mass, vi is the ve-
locity of this axion, and φi ∈ [0, 2π) is a random phase.
The phase coherence of the full axion field constructed
from the sum each of these particles is dominated by the

3 Individual axion-like particles should technically be described as
quantum objects not classical fields. Nevertheless the local oc-
cupancy numbers of these quantum particles is enormous. For
example, taking axion dark matter with ma ∼ 10−10 eV, the
number of axions within a de Broglie volume is ∼1036. Accord-
ingly the distinction is unimportant since formally when we say
single particles we really mean a collection of particles in the
same state with high enough occupancy number such that the
ensemble is described by a classical wave. For simplicity, how-
ever, we refer to these classical building blocks as “particles.”

common mass they share and to a lesser extent by ve-
locity corrections which are drawn from a common DM
velocity distribution. Beyond this we take the fields to be
entirely uncorrelated, which is represented by the random
phase. Axion self interactions could induce additional co-
herence. However, given the feeble expected strength of
these interactions we assume such contributions are far
subdominant to those written.

From here to build up the full axion distribution we
need to sum (3) over all i. We proceed, though, through
an intermediate step that takes advantage of the fact
that there will be many particles with effectively indis-
tinguishable speeds. As such let us partition the full list
of Na particles into subsets Ωj , which contain the N j

a

particles with speeds between vj and vj + ∆v, where ∆v
is small enough that we can ignore the difference between
their speeds. In this way the contribution from all parti-
cles in subset Ωj is given by

aj(t) =
∑
i∈Ωj

√
2ρDM

ma

√
Na

cos

[
ma

(
1 +

v2
j

2

)
t+ φi

]
. (4)

Note that it is only the random phase that differs between
elements of the sum:∑

i∈Ωj

cos

[
ma

(
1 +

v2
j

2

)
t+ φi

]

=Re

exp

[
ima

(
1 +

v2
j

2

)
t

]∑
i∈Ωj

exp [iφi]

 .

(5)

To proceed further, we recognize that the sum over
phases is equivalent to a 2-dimensional random walk; this
allows us to write∑

i∈Ωj

exp [iφi] = αje
iφj , (6)

where φj ∈ [0, 2π) is again a random phase and αj is
a random number describing the root-mean-squared dis-
tance traversed in a 2-dimensional random walk of N j

a

steps. These distances are governed by the Rayleigh dis-
tribution, which takes the form

P [αj ] =
2αj

N j
a

e−α
2
j/N

j
a . (7)

For future convenience, we remove N j
a from the distribu-

tion by rescaling αj → αj

√
N j
a/2, so that we can com-

plete our result for this velocity component as follows:

aj(t) = αj

√
ρDM

ma

√
N j
a

Na
cos

[
ma

(
1 +

v2
j

2

)
t+ φj

]
,

P [αj ] = αje
−α2

j/2 . (8)

The final step to obtain the full local axion field is to
sum over all j. Before doing so, however, we note the
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important fact that the speeds, vj , are being drawn from
the local DM speed distribution, f(v). A simple ansatz
for f(v) is given by the standard halo model (SHM):4

fSHM(v|v0, vobs) =
v√

πv0vobs
e−(v+vobs)

2/v2
0

×
(
e4vvobs/v

2
0 − 1

)
,

(9)

where in conventional units v0 ≈ 220 km/s is the speed of
the local rotation curve, and vobs ≈ 232 km/s is the speed
of the Sun relative to the halo rest frame.5 As shown in
Sec. V, small variations on this simple model can induce
large changes to the expected experimental sensitivity,
but fSHM(v) is likely to approximately describe the bulk
of the local DM speed distribution and so gives a good
initial proxy for f(v). As a first use of f(v), we can
rewrite N j

a in terms of f(v), as from the definition of
j we have N j

a = Naf(vj)∆v. With this we arrive at
the main goal of this section, a form for the local axion
distribution:

a(t) =

√
ρDM

ma

∑
j

αj

√
f(vj)∆v

× cos

[
ma

(
1 +

v2
j

2

)
t+ φj

]
,

(10)

where note the sum over j is effectively a sum over veloc-
ities, and again we emphasize that each αj is a random
number drawn from the distribution given in (8).

B. Coupling the Axion to a Broadband Experiment

We now discuss how to quantify the coupling of the
DM axion field to an experiment sensitive to the cou-
pling in (1), using the form of the local axion field given
in (10). Then, we write down a likelihood function that
may be used to describe the experimental data. Here we
focus on determining the statistics of the signal alone;
combining the signal with background is straightforward
and described in more detail in App. A. To make the dis-
cussion concrete, we frame the problem in the context of
the recently proposed ABRACADABRA experiment [5],
operating in the broadband readout mode. We empha-
size, however, that the results we derive are much more
general and are applicable to any experiment which seeks
to measure time-series data based upon the local axion
field. An example of this generality is provided in the

4 We note in passing that data from the Gaia satellite is likely to
lead to updates to this simple model [78, 79]. Further, there is
also likely a cut-off at the Galactic escape velocity, ∼550 km/s,
though this will not play an important role in the analyses in
this work.

5 When manipulating the velocity distribution, we will often work
in natural units.

next section, where we extend the formalism to the res-
onant case.

Let us briefly review the operation of ABRA-
CADABRA, a 10-cm version of which is currently un-
der development [80]. This experiment exploits the fact
that the coupling between the axion and QED, given by
the operator in (1), induces the following modification to
Ampère’s circuital law

∇×B =
∂E

∂t
+ J− gaγγ

(
E×∇a−B

∂a

∂t

)
. (11)

The final term in this equation implies that in the pres-
ence of a magnetic field and axion DM, there is an ef-
fective current induced that follows the primary labo-
ratory magnetic field lines and oscillates at the axion
frequency. ABRACADABRA sources this effective cur-
rent via a toroidal magnet, which generates a large static
magnetic field. The axion then generates an oscillating
current parallel to the magnetic field lines, which in turn
sources an oscillating magnetic flux through the center
of the torus. By placing a pickup loop in the center of
the torus, this oscillating magnetic field will induce an
oscillating magnetic flux of the form

Φpickup(t) = gaγγBmaxVBmaa(t) , (12)

where Bmax is the magnetic field at the inner radius of the
torus, and VB is a factor that accounts for the geometry of
the toroidal magnet and pickup loop and has units of m3.
In the broadband configuration, the pickup loop, which
is taken to have inductance Lp, is inductively coupled to
a DC SQUID magnetometer of inductance L, which will
then see a magnetic flux of

ΦSQUID ≈
α

2

√
L

Lp
Φpickup , (13)

where α is an O(1) number characterizing how the
SQUID geometry impacts the mutual inductance of the
SQUID and pickup loop circuit. A typical value we will
use in calculations is α = 1/

√
2. The coupling will also

induce a frequency independent phase difference between
the pickup loop and magnetometer fluxes, but as we show
below such an overall phase will not contribute to the
measured PSD and so we do not keep track of it.

In this way, through repeated measurements of the
magnetic flux detected by the SQUID, ABRACADABRA
is able to build up a time series of data proportional to
the local axion field. If the experiment is sampling the
magnetic flux at a frequency f over a time period T , then
it will collect a total of N = f T data points separated by
a time spacing ∆t = 1/f . Storing all of the experimental
data may pose a challenge.6 In Sec. III we will introduce

6 To quantify this, if we take the realistic values of f = 100 MHz
and T = 1 year, this amounts to almost 13 PB of data.



5

a stacking procedure to cut down on the amount of stored
data while maintaining the same level of sensitivity, but
for now we will put this issue aside and assume that all
the data is stored and analyzed. Combining (10), (12),
and (13), we find that

Φn =
√
A
∑
j

αj

√
f(vj)∆v

× cos

[
ma

(
1 +

v2
j

2

)
n∆t+ φj

]
,

(14)

where n ∈ 0, 1, . . . , N − 1 indexes the measurement at
time t = n∆t, and for future convenience we have defined

A ≡ α2

4

L

Lp
g2
aγγB

2
maxV

2
BρDM . (15)

A is proportional to the terms that dictate the size of
the axion signal in the experiment, and the specific form
here is peculiar to ABRACADABRA. We note that A
caries the SI units of Wb2, which conveniently makes it
dimensionless in natural units.

To pick the axion signal out of this time-series data,
given the signal is oscillating almost at a specific fre-
quency ma plus small corrections coming from the veloc-
ity components, it is convenient to instead consider the
discrete Fourier transform of the data:

Φk =

N−1∑
n=0

Φne
−i2πkn/N , (16)

where now k ∈ 0, 1, . . . , N − 1. In practice it is more
useful to work with the PSD of the magnetic flux, given
by

SkΦΦ =
(∆t)

2

T
|Φk|2

=A
(∆t)

2

T

∣∣∣∣∣∣
N−1∑
n=0

∑
j

αj

√
f(vj)∆v

× cos [ωjn∆t+ φj ] e
−i2πkn/N

∣∣∣2 .
(17)

Note that in the second equality we defined ωj ≡
ma

(
1 + v2

j /2
)
. For the moment, it is helpful to rewrite

the PSD as a function of the angular frequency ω, which
we can do by noting that k = ωT/(2π) = ω∆tN/(2π),
giving

SΦΦ(ω) = A

∣∣∣∣∣∣
∑
j

αj

√
f(vj)∆v

T

× ∆t

N−1∑
n=0

cos [ωjn∆t+ φj ] e
−iωn∆t

∣∣∣∣∣
2

.

(18)

Our experimental resolution to frequency differences is
dictated by the time the experiment is run for, specifically

∆f = 1/T . Then, given the definition of ωj , for large
enough T we have approximately 1/T ≈ mavj∆v/(2π),
and so

SΦΦ(ω) = A

∣∣∣∣∣∣
∑
j

∆v αj

√
f(vj)mavj

2π

× ∆t

N−1∑
n=0

cos [ωjn∆t+ φj ] e
−iωn∆t

∣∣∣∣∣
2

.

(19)

In a realistic experimental run, T will usually be much
larger than any other time scale in the problem consid-
ered so far. Exceptions to this occur when there are
ultra-coherent features in the dark matter distribution,
which we discuss in detail in Sec. V. Putting the excep-
tions aside for now, we can approximate T → ∞, which
means we can also treat ∆v → dv, ∆t→ dt, and replace
the sum over j with an integral over v as follows:

SΦΦ(ω) ≈ A
∣∣∣∣∣
∫
dv αv

√
f(v)mav

2π

× dt

N−1∑
n=0

cos [ωvndt+ φv] e
−iωndt

∣∣∣∣∣
2

.

(20)

Note in the above result we have a subscript v on αv and
φv, indicating that for every value of v in the integral we
have a different random draw of these numbers.

At this point, to make further progress we focus specif-
ically on the sum over n in the second line above. In
detail,

dt

N−1∑
n=0

cos [ωvndt+ φv] e
−iωndt

=
dt

2

{
eiφv

1− exp [i (ωv − ω)T ]

1− exp [i (ωv − ω) dt]

+e−iφv
1− exp [−i (ωv + ω)T ]

1− exp [−i (ωv + ω) dt]

}
≈e

i(φv+(ωv−ω)T/2)

2

{
sin
[

1
2 (ωv − ω)T

]
1
2 (ωv − ω)

+e−i(2φv+ωvT ) sin
[

1
2 (ωv + ω)T

]
1
2 (ωv + ω)

}
,

(21)

where in the final step we expanded using (ωv±ω)dt� 1.
Then, taking the (ωv±ω)T →∞ limit we can use the re-
sult that limε→0 sin(x/ε)/x = πδ(x) to rewrite the terms
in angled brackets in terms of Dirac-δ functions which
we can use to perform the integral over speeds. There
are terms associated with both positive and negative fre-
quencies, but as we have ωv > 0 we only keep the positive
result, and so conclude:

dt

N−1∑
n=0

cos [ωvndt+ φv] e
−iωndt

≈ πei(φv+(ωv−ω)T/2)δ(ωv − ω) .

(22)
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Figure 1. (Left) A comparison between the mean of 500 Monte Carlo simulations of a signal only PSD dataset (blue) and
the analytic expectation given in (26) (black). The inset shows the distribution of the 500 simulated SΦΦ versus the predicted
exponential distribution, as in (24), at the frequency where the signal distribution is maximized, ω/ma ≈ 1.003. This example
was generated assuming the unphysical but illustrative parameters A = 1 Wb2, ma = 2π Hz, and v0 = vobs = 220,000 km/s.
Importantly the simulations were generated by constructing the full axion field starting from (3), and so the agreement between
theory and Monte Carlo is a non-trivial confirmation of the framework. (Right) As on the left, but with Gaussian distributed
white noise added into the time-series data with variance λB/∆t, and taking λB = 500 Wb2 Hz−1. Again we see the theory
prediction in good agreement with the average data, whilst at an individual frequency point the simulated data is exponentially
distributed. See text for details.

With the above arguments we may perform the velocity
integral in (20), obtaining

SΦΦ(ω) = A
πf(v)

2mav
α2

∣∣∣∣
v=
√

2ω/ma−2

. (23)

Note that ω ≈ ma, up to corrections that are O(v2);
where the distinction is not important, we write ma in-
stead of ω, as in the denominator above. Further, in (23)
we have dropped the subscript v from α, as it is just a
single Rayleigh distributed number as given in (8). Since
α2 is exponentially distributed, this then implies that the
PSD is also exponentially distributed:

P [SΦΦ(ω)] =
1

λ(ω)
e−SΦΦ(ω)/λ(ω) ,

λ(ω) ≡ 〈SΦΦ(ω)〉 = A
πf(v)

mav

∣∣∣∣
v=
√

2ω/ma−2

.
(24)

Recall that A, which is effectively dictating the strength
of the axion signal, has units of Wb2, so SΦΦ carries units
Wb2/Hz, or in natural units eV−1.

In any real experiment there will also be background
sources of noise in the dataset. For most sources we can
think of this as mean zero Gaussian distributed noise in
the time domain.7 For example, in ABRACADABRA
the main background sources are expected to be noise

7 If the mean of the background distribution is non-zero, then this

within the SQUID for the broadband configuration or
thermal noise in the resonant circuit [5]. Both of these
are well described by normally-distributed noise sources,
and so they fall under this class of backgrounds. In
ADMX the dominant background is also thermal noise,
and the Gaussian nature of this source has been discussed
in Refs. [81, 82]; indeed, in [82] they noted the power
due to thermal noise in the experiment should be expo-
nentially distributed. It is likely that most other noise
sources will also be normally distributed. However, it
may well be possible that certain axion direct detection
experiments do suffer from background sources that are
not well described by Gaussian noise. In such a case the
framework we present in this work will not go through
directly, but the same logic can be used to derive a new
likelihood that accounts for the specific background dis-
tribution. Restricting ourselves to the Gaussian approx-
imation, then, as demonstrated in App. A, if we have
a series of Gaussian distributed backgrounds of variance
λiB/∆t, where i indexes the various backgrounds, then
the PSD formed from the combinations of all these will
again be exponentially distributed with mean

〈Sbkg
ΦΦ (ω)〉 = λB ≡

∑
i

λiB . (25)

will only impact the k = 0 mode of the PSD. For reasons dis-
cussed in App. A, we will not include this mode in our likelihood,
and as such we are only sensitive to the variance of the distribu-
tions, and so can choose them to have mean zero without loss of
generality.
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It is important to note that in general λB will be a func-
tion of ω, reflecting an underlying time variation in the
backgrounds.

Given that the individual signal and background only
cases are exponentially distributed, it is perhaps not sur-
prising that the combined signal plus background is ex-
ponentially distributed also. This fact is demonstrated
in App. A, however we point out here that the correct
way to think about this is that the two are combined at
the level of the time-series data, not at the level of the
PSD. To highlight this, the sum of two exponential dis-
tributions is not another exponential. Taking this fact,
we arrive at the result that the full PSD will be exponen-
tially distributed, with mean

λ(ω) = A
πf(v)

mav

∣∣∣∣
v=
√

2ω/ma−2

+ λB . (26)

As noted above, in the broadband mode noise within
the SQUID magnetometer is expected to be the dominant
source of background for ABRACADABRA, making it
a useful example to keep in mind. At high frequencies
this noise source becomes frequency independent, with
magnitude: √

λB ∼ 10−6Φ0/
√

Hz , (27)

which is written in terms of the flux quantum, Φ0 =
h/(2e) ≈ 2.1 × 10−15 Wb. As such the typical value for
the background is

λB ≈ 4.4× 10−42 Wb2 Hz−1 = 1.6× 105 eV−1 . (28)

With this example in mind, we will often assume we have
a frequency independent background in our analysis to
simplify results, but the formalism can in general account
for an arbitrary dependence. Despite this we note that
in a real DC SQUID, there will also be a contribution
to the noise scaling as 1/f , that should dominate below
∼ 50 Hz. We refer to [5] for a more detailed discussion
of these backgrounds.

To demonstrate how mock datasets compare to the
theoretical expectations derived above, in Fig. 1 we show
the comparison directly, with (right) and without (left)
background noise. In both cases we show the PSD as
a function of frequency averaged over 500 realization of
the simulated data. In the main figures we see that the
frequency dependence of the mean of the signal only and
signal plus background distributions, constructed from
the simulations, are well described by the analytic rela-
tion in (26). The insets demonstrate that at a given fre-
quency the simulated data is exponentially distributed in
both cases, as predicted by (24). The agreement is a non-
trivial check of the validity of the framework. We empha-
size that the Monte Carlo simulations are constructed in
the time domain using (3) in the signal case and by draw-
ing mean zero Gaussian noise with variance λB/∆t for
the background at each time step. To generate these re-
sults we picked numerically convenient rather than phys-
ically realistic values. Specifically we used A = 1 Wb2,

ma = 2π Hz, λB = 500 Wb2 Hz−1, and we assumed the
signal was drawn from an SHM as given in (9), but with
v0 = vobs = 220,000 km/s instead of the physical values.
However, we emphasize that these values were chosen for
presentation purposes only and that we have explicitly
verified that the formalism above is also valid for more
realistic signal and background parameters.

Knowing how the data is distributed means we can
now write down a likelihood function to constrain a signal
and background modelM, with model parameters θ, for
a given dataset d. The dataset is given, in the case of
ABRACADABRA, by N measurements of the magnetic
flux in the SQUID at time intervals ∆t. This data is then
converted into a PSD distribution SkΦΦ, measured at N
frequencies given by ω = 2πk/T , for k ∈ 0, 1, . . . , N − 1.
The likelihood function for the model M then takes the
form8

L(d|M,θ) =

N−1∏
k=1

1

λk(θ)
e−S

k
ΦΦ/λk(θ) , (29)

where we have used an index k to denote quantities eval-
uated at a frequency ω = 2πk/T . Note that the θ
completely specify the model expectation given in (26).
Specifically, θ includes parameters controlling the back-
ground contribution in λB , the DM halo velocity distri-
bution f(v), and the axion coupling gaγγ that appears in
A. In the following section, we will show how to use this
likelihood to set a limit on or claim a discovery of the ax-
ion, as well as constrain properties of the axion velocity
distribution in the event of a detection. First, however,
we describe how the formalism above is modified for a
resonant readout.

C. Coupling to a Resonant Experiment

The discussion above was premised upon a broadband
experimental set up. The broadband circuit has the ad-
vantage of being able to search across a broad range of ax-
ion masses with the same dataset. A common alternative
is the resonant framework, where the resonant frequency
is tuned to the axion mass under consideration before
reading out the signal [83]. Resonant experiments pro-
vide increased sensitivity at the frequencies under consid-
eration. The resonators may include physical resonators,

8 The omission of k = 0 from the likelihood is deliberate. As de-
scribed in App. A, the background is in fact not exponentially
distributed for this value. In addition the signal cannot con-
tribute to the k = 0 mode, as this would correspond to probing
the velocity distribution at an imaginary value. As such the
k = 0 or DC mode is only probing a constant contribution to
the background, which we can always simply set to be zero and
neglected, implying that we lose no sensitivity by simply exclud-
ing this case. Moreover, in practice it is likely only necessary to
include k modes corresponding to frequencies in the vicinity of
the mass under question.
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such as that used by the ADMX experiment, or resonant
circuits as used, for example, in Ref. [28].

In this section we demonstrate how the framework
above is modified in these cases, and importantly will find
that the same likelihood function applies, with a simple
modification to the expected PSD given in (26). As a con-
sequence, this will show that the various applications of
the likelihood framework that we demonstrate through-
out the rest of this work are applicable to resonant ex-
periments, even though our examples will generally be
couched in the language of a broadband framework for
simplicity.

To avoid the discussion becoming too abstract, we
will again work with the concrete set up of ABRA-
CADABRA, this time in the resonant mode. We as-
sume, for simplicity, a simple resonant circuit, where the
pickup loop is connected to an RLC circuit that is induc-
tively coupled to the SQUID, though more complicated
circuits, such as feedback damping circuits [8, 84, 85],
may be preferable in practice [5]. However, the analysis
formalism described below should apply to any resonant
circuit where thermal noise is the dominant noise source.

Our starting point is the magnetic flux due to the ax-
ion through the pickup loop, Φpickup, as given in (12).
Instead of directly inductively coupling the pickup loop
to the SQUID, this time we run the pickup loop through
an RLC circuit with inductance Li, resonant frequency
ω0, and quality factor Q0. The strategy is to vary ω0

over time in order to probe a range of axion masses; we
will discuss a strategy for how to choose the time varia-
tion later in this work. Note that the quality factor also
determines the bandwidth of the circuit, and so choosing
a Q0 corresponding to the width of the signal or better
is preferable, though we leave a detailed optimization of
the resonant strategy to future work. If we inductively
couple this circuit directly to the SQUID, then the flux
received will be

ΦSQUID = αQ0

√
T (ma)

√
LLi
LT

Φpickup , (30)

where we ignore constant phase shifts. Note that we have
defined the total inductance of the pickup loop and the
RLC circuit as LT ≡ Li+Lp and also a transfer function
for the RLC circuit:

T (ω) ≡ 1

(1− ω2
0/ω

2)
2
Q2

0 + ω2
0/ω

2
. (31)

Following through the same steps as in the broadband
case, we find that now our expected signal PSD is

λres(ω) =AresQ2
0T (ω)

πf(v)

mav
,

Ares ≡α2LLi
L2
T

g2
aγγB

2
maxV

2
BρDM ,

(32)

where again velocities are evaluated at v =
√

2ω/ma − 2.
Comparing the expected resonant signal PSD, λres(ω),

with the expected broadband result, λ(ω) given in (24),
we see that other than the additional frequency depen-
dence in T (ω) the two only differ in experimental pref-
actors.

In the resonant case we also need to rethink what con-
stitutes the dominant background source. In particular,
the addition of a resistor in the RLC circuit will gen-
erate a new source of background: Johnson–Nyquist or
thermal noise. This background is again expected to be
normally distributed, with a variance λtherm

B /∆t and

λtherm
B (ω) = 2α2kbT

LLi
LT

ω0

ω2
Q0T (ω) , (33)

where T is in this context the temperature of the circuit.
At the resonance frequency, for typical values of the pa-
rameters of interest, it may be verified that thermal noise
dominates the intrinsic noise in the SQUID [5, 8]. Ac-
cordingly, we neglect the background from the SQUID
noise, and our full resonant model prediction is given
by:9

λres(ω) =

[
AresQ0

πf(v)

mav
+ λ̃therm

B (ω)

]
Q0T (ω) ,

λ̃therm
B (ω) ≡ 2α2kbT

LLi
LT

ω0

ω2
. (34)

As we will see below, the fact that the transfer function is
common to both the signal and background will mean its
dependence vanishes when computing our experimental
sensitivity. This point will be demonstrated in the next
section.

Finally we note in passing several limitations with the
simple configuration described above. Firstly above we
envisioned using a DC SQUID, which should be func-
tional for the frequency range 100 Hz to ∼10 MHz. At
higher frequencies, the SQUID noise may begin to dom-
inate over the thermal noise; moving to an AC SQUID
can stave off this transition to 1 GHz [8]. Beyond this
an entirely different set up would be required to read
out the flux through the pickup loop, one example be-
ing provided by a parametric amplifier. We refer to [8]
for a detailed discussion of each of these regimes. Im-
portantly, while more complicated circuits may lead to
more complicated transfer functions in (31), so long as
the frequency-dependent factors are common to both the
signal and the noise, the analysis formalism described be-
low goes through unchanged. Going forward, we assume
that whenever discussing the resonant readout technique
that we are in a thermal background dominated regime
so the form of the transfer function is irrelevant.

9 In practice, we can often approximate LT ≈ Li for a resonant
configuration.
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III. EXPERIMENTAL SENSITIVITY

Armed with the likelihood given in (29), we will now
determine the experimental sensitivity we can achieve.10

Below we will firstly define a series of useful statistics
that will be the basic tools in our analysis. After this we
will then use an Asimov based analysis, following [65],
to study the expected background and signal distribu-
tions. We then introduce a procedure for stacking the
data, which will reduce the computational demands as-
sociated with analyzing the enormous datasets axion di-
rect detection experiments could potentially collect. Fol-
lowing on from this, we will show how to use the Asimov
framework to estimate our expected upper limits and dis-
covery threshold, fully accounting for the look elsewhere
effect. Finally we will contrast our method to the simple
S/N = 1 approach commonly used in the literature. An
alternative analysis strategy to the one described in this
section is to instead consider the average power in some
frequency range near the expected signal location. Such
an approach is less sensitive to the one presented here,
and so we have relegated its discussion to App. B.

The starting point for our analysis is the likelihood
L(d|M,θ). To claim a discovery or set limits on the
axion, we need to know properties of the likelihood as
a function of the coupling strength, which is effectively
given by A, and the axion mass ma. As such we separate
out the parameters θ into those of interest, {A,ma}, and
those describing the background, θB : θ = {A,ma,θB}.
Note that for now we fix the halo velocity distribution,
though in the next two sections we generalize the model
parameters to include ones that describe the DM velocity
distribution. With this distinction, we can now set up our
basic frequentist tool for testing the axion model, based
on the profile likelihood:

Θ(ma, A) = 2[lnL(d|M, {A,ma, θ̂B})
− lnL(d|MB , θ̂B)] ,

(35)

where in each of these terms θ̂B denotes the values of the
background parameters that maximize the likelihood for
that dataset and model. Note in the second line we have
defined the background-only model MB that has A = 0
and model parameters θB .

In terms of this basic object we can now define two
useful quantities. The first of these is a test statistic
used for setting upper limits on A and hence gaγγ :

q(ma, A) =

{
Θ(ma, A)−Θ(ma, Â) A ≥ Â ,
0 A < Â ,

(36)

10 In this and subsequent sections, we will predominantly use a
frequentist statistical framework when applying the likelihood.
Nevertheless, we emphasize that our likelihood can be applied
equally well within a Bayesian setting. In particular, in Sec. V,
we will use the Bayesian posterior as a tool for analyzing data in
the presence of a putative signal.

where Â is the value of A that results in the maximum
value of Θ(ma, A) at fixed ma. The rationale for setting

this test statistic to zero for A < Â is that when setting
upper limits, the best we can hope to do is constrain a
parameter corresponding to one stronger than the best
fit value. Observe that when A ≥ Â, we have

q(ma, A > Â) = 2[lnL(d|M, {A,ma, θ̂B}
− lnL(d|M, {Â,ma, θ̂B}] ,

(37)

and so this corresponds to the degradation in the like-
lihood as we increase A beyond the best fit point. Ac-
cording to Wilks’ theorem, the statistic q, at fixed ma,
is asymptotically a half-chi-squared distributed with one
degree of freedom. It is a half and not full chi-squared
distribution, as from the definition in (36), q vanished by

definition for A < Â. This implies, in particular, that
for a given ma, the 95% limit on A will be set when
q(ma, A95%) ≈ −2.71. Note also that when setting limits
we allow A to float negative.

The second object of interest is a test statistic for
discovery, denoted TS, which quantifies by how much a
model with an axion of a given mass provides a better fit
to the data than one without it. This is defined as:

TS(ma) = Θ(ma, Â) . (38)

Below we will use the TS to quantify the 3 and 5σ dis-
covery thresholds, giving an accounting for the look else-
where effect. But the intuition is that the larger the TS
the more preferred the axion.

Importantly both q and TS are defined in terms of Θ,
implying that through an understanding of this object we
can determine everything about our two test statistics.
As this will be the central object of interest, we will write
out its form explicitly. Combining (35) with our form of
the likelihood in (29), we arrive at:

Θ(ma, A) = 2

N−1∑
k=1

[
SkΦΦ

(
1

λB
− 1

λk

)
− ln

λk
λB

]
. (39)

Recall that here SkΦΦ represents the data, whilst λk and
λB represent the signal plus background and background
only contributions respectively. We also reiterate that
only λk is a function of ma and A, and further that λB
can also be k dependent if the background varies with
frequency. Moreover, we stress that all k modes need
not be included in (39) in practice, but rather only the
k modes corresponding to frequencies in the vicinity of
ma.

A. Asymptotic Distribution of the Test Statistics

The object defined in (35) can be used immediately to
quantify the preference for an axion signal in an exper-
imental dataset, through the two test statistics defined
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above. Before looking at any data, however, it is of-
ten useful to know what the expected sensitivity is of an
experiment using these statistics. Traditionally this is
obtained via Monte Carlo simulations of the experiment,
and through many realizations the expected distribution
of q and TS can be constructed. The problem is also
analytically tractable, however, using the method of the
Asimov dataset [65], which allows us to determine the
asymptotic properties of the test statistics over many re-
alization of the data. In this subsection we will exploit
the Asimov approach to derive the asymptotic distribu-
tion of Θ, and then in subsequent sections we use this
formalism to determine the expected limit and discovery
potential of a prospective experiment.

The key step in the Asimov approach for our purposes
is to take the dataset to be equal to the mean predic-
tions of the model under question, neglecting statistical
fluctuations. Consider the case where we have a dataset
that contains a signal of the axion with signal strength
At, where the subscript t indicates this is the true value.
In this case, the Asimov dataset is given by:

Sk,Asimov
ΦΦ ≡ λtk = At

πf(v)

mav
+ λB , (40)

which is just (26) with A→ At. Note that this expression

should be evaluated at v =
√

4πk/(maT )− 2, but here
and below we leave the relation between v and k implicit.
Now using this Asimov dataset, Θ becomes (suppressing
the dependence on ma):

Θ̃(A) = 2

N−1∑
k=1

[
λtk

(
1

λB
− 1

λk

)
− ln

λk
λB

]
, (41)

where Θ̃ denotes the asymptotic form of Θ. Importantly,
one can check that this object is maximized exactly at
A = At; in detail,

max
A

Θ̃(A) = Θ̃(At) . (42)

Now if we assume that the experiment has been run
long enough that the width of frequency bins is much
smaller than the range over which λk or λB varies,11 then
we can approximate the sum over k modes as an integral
over velocity, just as we did in Sec. II:

Θ̃(A) =
Tma

π

∫
dv v

[(
At
πf(v)

mav
+ λB

)
×
(

1

λB
− 1

Aπf(v)/(mav) + λB

)
− ln

(
1 +A

πf(v)

mavλB

)]
.

(43)

11 Note that in general we would expect the signal to at least have a
spread set by the velocity dispersion of the SHM, although in the
presence of substructure the dispersion could be much smaller.

To further simplify the expression above, we note
a signal will likely be much smaller than the back-
ground in any individual bin, such that Aπf(v)/(mav),
Atπf(v)/(mav)� λB . Expanding to leading order in A
and At, we then find

Θ̃(A) ≈ ATπ

ma

(
At −

A

2

)∫
dv

v

f(v)2

λ2
B

, (44)

where we have left λB in the integral, as in general it
will depend on frequency and hence velocity according
to ω = ma(1 + v2/2).

The form of the integral over velocity as it appears
in (44) is worth commenting on, as it already implies in-
teresting results for axion direct detection. If we assume
that the background is frequency independent, then this
result tells us that the experimental sensitivity to the
axion coupling g2

aγγ scales as

g2
aγγ ∼

1√∫∞
0
dv f(v)2

v

(Field) , (45)

with the DM velocity distribution. This should be con-
trasted with the rate at WIMP12 direct detection exper-
iments, which scales with the mean inverse speed (see,
for example, [86]). In particular, the limit on the DM
cross-section σDD to scatter off ordinary matter, which
generically scales with the coupling g to ordinary matter
as g2, scales with the velocity distribution as

σDD ∼
1∫∞

vmin
dv f(v)

v

(Particle) , (46)

where vmin is the minimum speed required to cause the
target nucleus in the detector to recoil at a given recoil
energy. This cut off scales with the inverse reduced mass
of the WIMP nucleon system, vmin ∝ 1/µ, so that for
lighter DM particles the rate is particularly sensitive to
the upper end of the speed profile. In the axion case, the
significance of an axion signal depends on an integral over
the full speed profile. Importantly, the quadratic scaling
of the integrand with the speed distribution implies that
axion direct detection experiments are particularly sen-
sitive to small scale structures in the speed profile, such
as those that can be induced by local DM substructure.
This stands in contrast to WIMP direct detection, where
substructure is generally thought to only have a minimal
impact, see, e.g., [87].

We will explore the sensitivity of axion direct detection
experiments to DM substructure in Sec. V, but for now
we illustrate the difference between axion and WIMP ex-
periments noted above with a simple example. Suppose

12 Here, we use weakly interacting massive particle (WIMP) direct
detection to simply refer to the direct detection of massive DM
particles at the ∼MeV scale and above, even if the particle mod-
els are not directly related to the WIMP paradigm.
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that there is a contribution to the local DM velocity dis-
tribution that can be modeled as a cold stream, with
fstr(v) = 1/δv for vstr < v < vstr + δv and zero other-
wise. We assume that the stream width δv � vstr, where
vstr is the stream boost speed in the Earth frame. Then,
then in the WIMP case we find σDD ∼ vstr, where we
have assumed vstr > vmin. However, in the axion case
there is an extra enhancement for small stream widths
such that g2

aγγ ∼
√
vstrδv. Note that this implies that

as δv decreases we can probe smaller values of gaγγ in
the axion case, while conversely decreasing δv does not
improve our sensitivity to σDD in the WIMP case.

Finally we note that if we repeated the analysis lead-
ing to (44) for the resonant case, we would instead have
arrived at

Θ̃res(Ares) =
Q2

0A
resTπ

ma

(
Ares
t −

Ares

2

)
×
∫
dv

v

f(v)2

(λ̃therm
B )2

,

(47)

which is essentially the same result but with the broad-
band quantities replaced with their appropriate reso-
nant counterparts. Importantly, note that the transfer
function and its associated frequency dependence has
dropped out of this result because it involved a ratio of
the signal to the background, both of which are linear
in T (ω). This justifies the claim that going forward our
estimates for the resonant case can be obtained straight-
forwardly from the broadband results provided we make
the substitutions:

A→ Q0A
res ,

λB → λ̃therm
B .

(48)

B. A Procedure for Stacking the Data

We would like a method to reduce the number of PSD
components that need to be stored, without sacrificing
sensitivity, given that if we are sampling at a high rate,
for example ∼100 MHz or higher, over an extended time,
the amount of data to be stored and analyzed could be-
come substantial. As we will now show, stacking the PSD
data provides exactly such a method.13

The central idea is to break the data up into NT subin-
tervals of duration ∆T = T/NT , each with ∆N = N/NT
PSD components.14 In each of these subintervals we cal-

culate the PSD Sk,`ΦΦ, where now k only indexes the in-
tegers from 0 to ∆N − 1, and we have the new index

13 We thank Jon Ouellet for conversations related to this point.
14 The choice of notation here is used to emphasize that for NT � 1

we have ∆T � T and ∆N � N , but of course neither quantity
should ever be thought of as infinitesimal.

` = 0, 1, . . . , NT − 1 that identifies the relevant subinter-
val. Using this data, our likelihood takes the form

L(d|θ) =

NT−1∏
`=0

∆N−1∏
k=1

1

λk(θ)
e−S

k,`
ΦΦ/λk(θ) . (49)

Importantly, we assume that the model prediction in
each subinterval is identical, which we comment on more
below. With this assumption, it is natural to define a
stacked PSD

SkΦΦ ≡
1

NT

NT−1∑
`=1

Sk,`ΦΦ . (50)

The averaged PSD components will be distributed as the
average of a sum of exponentially distributed random
variables with mean λk, which is given by the Erlang
distribution:

P [SkΦΦ] =
NNT

T

(NT − 1)!

(
SkΦΦ

)NT−1

λNT

k

e−NTS
k
ΦΦ/λk . (51)

Using this stacked data, we can simplify (49) by re-
moving the sum over `:

L(d|θ) =

∆N−1∏
k=1

1

λk(θ)NT
e−NTS

k
ΦΦ/λk(θ) , (52)

where in this result we can already see the reduction in
computational requirements as it only involves a product
over ∆N � N numbers, since the SkΦΦ can be precom-
puted and updated as more data comes in.

Our next task is to determine how this choice will
impact our sensitivity, using the test statistics defined
in the previous subsections. It is sufficient to consider
Θ(ma, A), defined in (35) and from which the other
statistics of interest can be derived. Doing so, we can
repeat the Asimov analysis from the previous subsection
to determine the asymptotic form of the stacked Θ, given
by

Θ̃stacked(A) =
ANT∆Tπ

ma

(
At −

A

2

)∫
dv

v

f(v)2

λ2
B

. (53)

Yet as NT∆T = T , the stacked and unstacked form of Θ̃
are identical. This implies that our stacking procedure,
which forNT � 1 dramatically reduces the required com-
putation, has no impact on our sensitivity to an axion
signal.

There is, however, a catch. Stacking implies that we
are only sensitive to frequency shifts of size ∆f = 1/∆T ,
which can be much larger than the shifts we were sen-
sitive to in the full dataset, where ∆f = 1/T � 1/∆T .
This could mean, depending on the size of the frequency
spacings, that ultra-cold local DM substructure is no
longer resolved, and therefore the enhancement it would
have given to the integral over velocity discussed above
is lost. In this sense stacking can lead to a degradation
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in sensitivity, and so choosing a stacking strategy should
be done with careful consideration of the features being
searched for. To provide some intuition, if we are search-
ing for an axion at a mass corresponding to a frequency
f and drawn from a velocity distribution with disper-
sion v0, then the coherence time is ∼ 1/(fv2

0). To be
able to fully resolve the axion signal we would then want
∆T � 1/(fv2

0). For the SHM, and scanning in frequen-
cies from 100 MHz down to 100 Hz, the coherence time
varies from 20 ms up to 5 hours. In such a scenario, if
data were collected for a year, many stacking procedures
would be feasible. On the other hand if searching for the
signal from a cold stream with a dispersion of v0 = 1
km/s, then over the same frequency range the coherence
time varies from 15 minutes up to 30 years. For the low-
est frequencies in this case, any stacking procedure would
be sacrificing sensitivity to such cold substructure. On
the other hand, at the lowest frequencies high sampling
rates are not necessary. Thus, a hybrid approach may
be preferable in practice, where the data is stacked in
Fourier space at high frequencies while at low frequen-
cies the data is stacked in time (i.e. down-sampled) in
order to reduce the data size without sacrificing the sen-
sitivity to cold substructure at any possible axion mass.

Another relevant consideration is that due to the
Earth’s acceleration, lab-frame frequencies may shift
throughout the day and year, which would invalidate our
assumption that the model predictions are identical be-
tween subintervals. The rotational speed of the Earth’s
surface about its axis is roughly 0.46 cos(δ) km/s, where
δ is the latitude. This value is small enough that it can
safely neglected for any cold flow with a velocity disper-
sion greater than this. The rotation of the Earth about
the Sun, however, occurs at roughly 30 km/s and is thus
harder to ignore when searching for cold substructure, as
we discuss later in this work. Annual and daily modula-
tion can lead to striking additional signatures, which we
explore in detail in Sec. V.

C. Expected Upper Limit

We are now in a position to write down the expected
95% limit on A. In the case of a limit, the appropriate
Asimov dataset to use is a background only distribution,
so that At = 0. Then by combining our definition of the
likelihood profile in (36) with our Asimov result in (44),
we arrive at the 95% limit where q(ma, A95%) = −2.71,
given by

Ã95% =

√
2.71

[
Tπ

2ma

∫
dv

v

f(v)2

λ2
B

]−1

. (54)

Note that again the tilde indicates this is an Asimov,
or median, quantity. Of course what we actually want,
however, is a limit on gaγγ , and so for the particular
example of ABRACADABRA we can insert the form of

A given in (15), yielding

g̃95%
aγγ =

2.711/4
√
Lp/L

αBmaxVB
√
ρDM

×
[
Tπ

32ma

∫
dv

v

f(v)2

λ2
B

]−1/4

.

(55)

One of the real powers of the Asimov analysis is that
not only can we determine the median expected limit,
we can also derive analytically the expected size of fluc-
tuations away from the central value, without having to
revert to Monte Carlo simulations. The details of this
statistical procedure are discussed in [65]. As we are
constructing power-constrained 95% one-sided limits, we
obtain confidence intervals via

q(ma, A95%±Nσ) = −
(
Φ−1 [0.95]±N

)2
, (56)

where Φ is the cumulative distribution function of the
standard normal distribution (zero mean and unit vari-
ance), and Φ−1 is the inverse of this (so Φ−1 [0.95] ≈
1.64). Note that if we take N = 0, then the above just
reduces to q(ma, A95%) = −2.71, but this more general
result contains the information about the error bands in
the expected limit. In this way, by replacing the 2.71
that appears in (55) with the appropriate value for the
Nσ uncertainty band on the 95% limit, we can construct
the median and uncertainty bands on g̃95%

aγγ analytically.
For completeness, in App. C we verify that the bands
constructed in this manner agree with those generated
using Monte Carlo simulations. Finally, to be conserva-
tive we use power-constrained limits [88], which in prac-
tice means we do not allow ourself to set a limit below
our 1σ uncertainty band on the upper limit.

D. Expected Discovery Reach

In order to find evidence for a signal, we need to un-
derstand the expected distribution of the TS under the
null hypothesis. The reason is that this distribution de-
termines how likely the background is to produce a given
TS value, and hence what threshold TSthresh we should
set to establish the existence of a signal at a given confi-
dence level. Once we have such a threshold test statistic,
applying our Asimov results above to the case of discov-
ery, we find we would be sensitive to discover a signal
with the following strength

g̃thresh
aγγ =

TS
1/4
thresh

√
Lp/L

αBmaxVB
√
ρDM

×
[
Tπ

32ma

∫
dv

v

f(v)2

λ2
B

]−1/4

.

(57)

Locally, the significance in favor of the axion model
is expected to be approximated by

√
TS [65]; that is, a

value TS = 25 corresponds to approximately 5σ local
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significance. However, when scanning over multiple in-
dependent mass points, the look elsewhere effect must
be accounted for in quoting values for the global rather
than local significance. The look elsewhere effect may be
determined through Monte Carlo simulations. However,
in this section we will derive an analytic approximation
to TSthresh, which accounts for the look elsewhere effect,
and as we will show provides an accurate representation
to the output from such Monte Carlo studies. The re-
sult will be a mapping between the desired global signifi-
cance threshold and the value of TSthresh that should be
taken, depending on the mass range scanned. We note
that there are also other proposals in the literature for
approaching this problem; for a recent one see, e.g., [89].

Our starting point is to note that the asymptotic form
of the survival function for the local TS under the null
hypothesis is given by

S[TSthresh] = 1− Φ
(√

TSthresh

)
, (58)

where S[TSthresh] is the probability that the TS, under
the null hypothesis, takes a value greater than TSthresh.
This is derived explicitly in App. D starting from the
likelihood function, and it is equivalent to the statement
that the asymptotic local significance is given by

√
TS.

However in any realistic experiment, we will look in a
number of independent frequency windows correspond-
ing to different axion masses. To account for this we
need to note that in any of these windows there could be
an upward fluctuation. To do so let us say that we look
at Nma

independent mass points, and we want to set the
threshold test statistic, TSthresh, such that the probabil-
ity that the background will not fake the signal in any
bin is 1− p. To relate these two quantities, if we assume
that p is small enough, we can write the probability that
at least one of the TSs, from the set over all mass points,
is greater than TSthresh as

p = 1− (1− S[TSthresh])
Nma

≈ NmaS[TSthresh] .
(59)

From here we can then substitute the survival function
from (58), and expanding this out gives

TSthresh =

[
Φ−1

(
1− p

Nma

)]2

. (60)

Using this result, as soon as we know Nma we can de-
termine TSthresh as it should be used in our formula for
g̃thresh
aγγ in (57). To give some intuition, in the case where

we ignore the look elsewhere effect and set Nma
= 1,

then the 3σ requirement is that p ≈ 1.35 × 10−3, yield-
ing TSthresh = 9, as expected. Importantly, note that
the p values here correspond to that for 1-sided fluctua-
tions [65].

In any realistic experiment, we expect Nma
� 1. How-

ever, estimating the correct value for Nma
is complicated

by the fact that we may scan over a continuum of differ-
ent possible mass points in practice, though not all of the

mass points have independent data. We expect a mass
point as frequency ma to extend over a frequency band-
width ∼mav

2
0 , for the SHM. Thus, we expect to be able

to characterize a set of independent mass point by the
relation

m(i)
a = m(0)

a

(
1 + αv2

0

)i
, (61)

where m
(0)
a is the first mass point, i = 0, . . . , Nma−1, and

α is a number order unity that should be tuned to Monte
Carlo simulations. Given the parameterization in (61),
we may estimate the number of mass points by relating

m0
a with the minimum frequency fmin andm

(Nma−1)
a with

the highest frequency fmax; solving for Nma
in the limit

Nma
� 1 then gives

Nma
≈ 1

α v2
0

ln
fmax

fmin
. (62)

In Fig. 2 we compare the analytic prediction in (60),
combined with (62), with the result of 2.5 million Monte
Carlo simulations. From the ensemble of simulations,
we are able to compute the value of p for each value
of TSthresh. Note that in each simulation we scan for
axion DM over a frequency range fmax/fmin ≈ 1.0007;
setting v0 = 220 km/s then gives, through (62), Nma

≈
1.3× 103/α. The analytic results are found to agree well
with the simulations for α ≈ 3/4; this value may also be
understood by thinking more carefully about the extent
of the SHM. Note that the real power of the analytic
formalism is that once we have tuned the relations in (60)
and (62) to Monte Carlo, in order to find the appropriate
value of α, we may extrapolate to smaller values of p,
where the number of Monte Carlo simulations required
to directly determine TSthresh would be intractable.

To give some more realistic examples, if we assume
the experiments scans from 100 Hz to 100 MHz, using
the SHM values we obtain Nma ∼ 3 × 107. This then
increases the 3σ (5σ) threshold TS to 40.9 (57.5). To
contrast if instead our significance was dominated by a
stream with dispersion roughly 20 km/s, then instead we
would find Nma

∼ 4×109, and the 3σ (5σ) threshold TS
becomes 50.3 (67.0).

E. Comparison with S/N = 1

In the absence of a full likelihood framework, a com-
mon method employed for estimating sensitivity is ob-
tained by setting the signal equal to the expected back-
ground, or S/N = 1. For example, this approach was
used in the original ABRACADABRA proposal [5] and
also for the proposed CASPEr experiment [6]. In this
section we want to contrast this simple estimate to the
output from our full likelihood machinery.

Now, following these earlier references, in our notation
the signal-to-noise ratio can be written as

S/N = |ΦSQUID| (Tτ)1/4/
√
|λB | , (63)
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Figure 2. A comparison between the look elsewhere ef-
fect improved survival function approximate result derived
between (60) and (62), and the equivalent values derived di-
rectly from Monte Carlo simulations. The good agreement
between the two, especially at large TSthresh demonstrates
that our approximate result is useful for estimating how of-
ten the background can fluctuate to fake the signal at a given
confidence level. Note the values plotted here correspond to
signals varying from 0 to 4σ, for derived values of λB given
in (28) and 2.5 million Monte Carlo simulations. We do not
extend the plot up to the 5σ value relevant for discovery, as
this would require roughly 100 times as many simulations.
This statement in itself already demonstrated the utility of
our approximate analytic result.

where τ is the signal coherence time. This S/N ∝ T 1/4

scaling occurs when the collection time is longer than
the coherence time. If T < τ , instead the significance
grows as S/N ∝ T 1/2, as demonstrated in [6]. In App. E
we demonstrate that this same scaling can also be seen
directly from our likelihood.

In order to make a concrete comparison, we consider
ABRACADABRA with the axion following only the bulk
velocity distribution. In this case, the coherence of the
bulk halo, as discussed above, will effectively ensure we
always have T � τ , implying the signal grows as T 1/4.
To simplify (63), firstly consider |ΦSQUID|. Combin-
ing (13) and (12), we have:

|ΦSQUID| =
α

2

√
L

Lp
gaγγBmaxVBma |a(t)| . (64)

For the purposes of determining the average axion field
over a time T � τ , we can simply consider the axion
field in the zero velocity limit, where

|a(t)| =
√

2ρDM

ma
|cos(mat)| =

√
ρDM

ma
. (65)

Note that since it is the PSD that is measured in prac-
tice, we calculate the average as

√
|cos2(mat)| = 1/

√
2.

The coherence time is determined by the kinetic energy

1
2mav

2, which perturbs the axion frequency. Once the
phase shift from this correction equals π, the field will be
fully out of phase, so we take

τ =
2π

mav2
0

, (66)

where again with the bulk halo in mind, we approximated
the speed as being the SHM v0. Finally, we assume that
we have a frequency independent background PSD λB .
Combining these results with the threshold S/N = 1, we
obtain a sensitivity estimate of

gaγγ =
2
√
λB
√
Lp/L

αBmaxVB
√
ρDM

(
mav

2
0

2πT

)1/4

. (67)

We want to contrast this estimate with the exact value
we obtain from the analysis method outlined in this sec-
tion. For this purpose we take our result, but evaluated
at some TSreq which is schematic—it can be 2.71 for the
case of a 95% limit, or ∼58 for a 5σ discovery accounting
for the look elsewhere effect. If we assume f(v) follows
the SHM and further take vobs = v0, then the equivalent
result is:

gaγγ =

(
64 TSreq

√
2π

erf
[√

2
] )1/4

×
√
λB
√
Lp/L

αBmaxVB
√
ρDM

(
mav

2
0

2πT

)1/4

.

(68)

Note that the formula above is equivalent to the state-
ment that

S/N ≈ 1.8 TS1/4
req . (69)

For example, the 95% expected upper limit would require
S/N = 2.31, whilst a 5σ discovery accounting for the look
elsewhere effect assuming the SHM, requires S/N = 4.97.
We will see in the next section that the comparisons are
similar for a resonant experiment also. In general the var-
ious thresholds are achieved with a larger signal than the
naive S/N = 1 suggests. Nonetheless, the standard esti-
mate is not a terrible approximation to the true results,
especially considering that S ∼ g2

aγγ . We emphasize,
however, that there is a lot more that can be extracted
from having the full likelihood framework, which we turn
to in the subsequent sections.

IV. APPLICATION TO THE BULK HALO

In this section we apply the formalism developed so
far to ABRACADABRA and ADMX. For this purpose
we take a simple concrete example, where f(v) describes
only the bulk halo, which we further assume follows the
SHM as defined in (9). Additionally we assume that over
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the frequency band of the signal,15 the mean of the back-
ground distribution in frequency space is approximately
frequency independent. These assumptions imply that
the integral appearing in (55) and (57) can be evaluated
exactly: ∫

dv

v

f(v)2

λ2
B

=
erf
[√

2vobs/v0

]
√

2πv0vobsλ2
B

, (70)

with
√
λB ≈ 10−6Φ0/

√
Hz as given in (27). In the fol-

lowing subsections, we will demonstrate explicitly how to
construct projected limits and detection sensitivities, un-
der the assumption of the SHM velocity distribution, and
we will show in the event of a detection the parameters of
the SHM may be determined using the likelihood frame-
work. We will extend this framework to more realistic
f(v), including DM substructure, in the next section.

A. Sensitivity

In Fig. 3 we illustrate the formalism introduced in
Sec. III for hypothetical future versions of the ABRA-
CADABRA and ADMX experiments. To be specific,
for ABRACADABRA we assumed that the radius of the
pickup loop is identical to the inner radius of the torus,
R, and also equal to the width of the torus, so that the
total radius out to the outer edge of the toroid is 2R. For
concreteness, we took R = 0.85 m and then set the height
of the torus to be h = 4R. For the remaining parame-
ters we generally follow [5], taking α2 = 0.5, pickup-loop
inductance Lp = πR2/h, SQUID inductance L = 1 nH,
and local DM density ρDM = 0.4 GeV/cm3. In the broad-
band mode we assume a flat spectrum of SQUID noise
of
√
λB = 10−6Φ0/

√
Hz. In the resonant mode, we take

a temperature of 100 mK and Q0 = 106 for the RLC
circuit. Note that we cut off our projections when the
Compton wavelength of the axion is equal to the inner
radius of the detector. The reason for this is that at high
frequencies the magnetoquasistatic approximation used
in the original analysis of [5], which we follow, breaks
down. ABRACADABRA is still expected to set limits in
this regime, albeit weaker, however in the absence of a
detailed treatment we leave this region out.16

For ADMX, we use the projected values recently pre-
sented in [90], which updated the earlier projections
from [3, 91]. We take the volume V = 500 L, quality
factor Q = 105, magnetic field B = 7 T, and system
temperature Ts = 148 mK. So far, we have not described
how our analysis framework is modified for the case of

15 By the frequency band we simply mean the range of frequencies
over which the signal will be significant, which for the SHM is
approximately [ma,ma(1 + v2

0)].
16 Preliminary simulations indicate that good sensitivity is likely

maintained to somewhat higher frequency values. We thank
Kevin Zhou for these preliminary results.

ADMX. Nevertheless, it is again a simple modification
of the framework presented in Sec. II. Starting from the
power the axion field and thermal noise sources generate
in the ADMX cavity, which is described in detail in a
number of references, see e.g., [32, 38, 76, 81, 92, 93], we
find

AADMX =g2
aγγ

ρDM

ma
QB2V C010 ,

λADMX
B =kBTs ,

(71)

where C010 ≈ 0.692 is the cavity form factor for the
TM010 mode, which dominates for the ADMX config-
uration. In terms of these quantities, the mean PSD is
given by

λADMX(ω) =

(
AADMX πf(v)

mav

∣∣∣∣
v=
√

2ω/ma−2

+ λADMX
B

)
×T ADMX(ω) , (72)

where T ADMX(ω) is the transfer function for the ADMX
resonant cavity. The transfer function has support over
a frequency interval of width ∼ω0Q

−1, where ω0 is the
resonant frequency, in analogy to (31). However, the
exact form of this transfer function is not important for
our purposes, since it is common to the noise and signal
contributions. In addition to computing the sensitivity
of ADMX using our likelihood framework, we also derive
an S/N = 1 estimate for the sensitivity from the Dicke
radiometer equation [63].

In Fig. 3, the dashed curves represents the sensitiv-
ity for a 5σ discovery, using the formalism derived in
Sec. III D, including the look elsewhere effect.17 We also
show the median expected 95% limit, as well as the 1
and 2σ bands on the expectations for these quantities,
derived using the procedure described in Sec. III C. We
reiterate that we present power-constrained limits [88], so
that we do not allow ourselves to set limits stronger than
the expected 1σ downward fluctuation. In addition we
have also added the naive S/N = 1 estimated sensitivity
line for the broadband mode, as given in (67). As shown
in Sec. III E, the 95% limit and detection threshold differ
only from the naive estimate by factors of order unity.
The figure also includes the theoretically motivated re-
gion for the QCD axion in orange.

For the resonant results shown in Fig. 3, we adjusted
the scanning strategy such that the mean limit under the
null hypothesis is parallel to the QCD line in the gaγγ −

17 We caution that in the resonant case, looking for upwards fluctu-
ations in excess of the 5σ look elsewhere effect enhanced detection
thresholds is unlikely to be the optimal discovery strategy. In-
stead, one could, for example, further interrogate masses where
a 2σ upward fluctuation is observed. For example, ADMX im-
plements exactly such a strategy, as described in [2]. We make
no attempt to determine the ideal resonant discovery strategy in
this work.
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Figure 3. (Left) A comparison of the projected sensitivities for a hypothetical version of the ABRACADABRA (ABRA)
experiment [5], with inner toroidal radius R = 0.85 m, an outer toroidal radius double this value, and a height h = 4R. A
maximum magnetic field of 10 T is assumed, along with an interrogation time of 1 year. (Right) An equivalent comparison
of projections for a future ADMX experiment. Here we take a total run time of 5 years, a volume of 500 L, quality factor of
105, magnetic field of 7 T, and a system temperature of 148 mK. In both panels the exact sensitivities are contrasted with an
estimate obtained from the signal-to-noise ratio, S/N = 1.

ma plane. For ABRACADABRA, we chose a minimum
mass ma = 2.8 × 10−8 eV and a maximum mass ma =
2.3×10−7 eV, and the total number of bins scanned in the
resonant search was 1.3×106. A total scanning time of 1
year was used. The lowest-frequency bin was scanned for
T = 704 s, while the highest-frequency bin was scanned
for T = 0.0175 s; the amount of time spent at the ith mass
scales as T ∝ (mi

a)−5. Note that we have not considered
the possibility of incorporating an additional broadband
readout in the resonant scan to increase the sensitivity,
though such an approach may be feasible. For ADMX,
we instead scanned between masses of 1.0 × 10−6 and
20.1×10−6 eV, using a total of 1.8×106 mass bins. Here
a total scanning time of 5 years was broken up as follows:
the smallest and largest masses were scanned for 268 and
13.5 s, and now the time spent at the ith mass scales as
T ∝ (mi

a)−1.

To simulate what an actual limit would look like as
derived from real data, we generate Monte Carlo data
for the mock broadband ABRACADABRA experimental
setup under the assumption that the axion explains all of
DM with ma = 10−8 eV and gaγγ = 2.21×10−16 GeV−1.
Fig. 4 shows the resulting limit in the vicinity of the
true mass; the region has been magnified so that the bin
to bin fluctuations can be seen. The figure shows that
in general the limit moves around between the expected
bands, however right at the center, at the location of the
true mass, the limit weakens considerably.
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Figure 4. An actual limit obtained from a single Monte Carlo
simulation, with the broadband readout, compared to the
various expectations for the broadband ABRACADABRA
framework used in Fig. 3. The data was simulated with
an injected signal corresponding to ma = 10−8 eV and
gaγγ = 2.21× 10−16 GeV−1, and indeed we can see that right
near the frequency corresponding to the axion mass, we are
unable to exclude the corresponding signal strength.

B. Parameter Estimation

In this section, we show how to estimate the DM cou-
pling to photons and aspects of the DM phase-space dis-
tribution in the event of a detection or a detection can-
didate. This is done in practice by scanning over the
likelihood function with the relevant degrees of freedom
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given to the parameters of interest. In this section, we
show how to anticipate the uncertainties on the parame-
ter estimates using the Asimov framework. We proceed
in an analogous fashion to previous sections, where we
studied the asymptotic form of the background only dis-
tribution; in this section, we study the asymptotic form
of the likelihood in the presence of a signal.

As a starting point, consider estimating the signal
strength A from a dataset drawn from a distribution
where the true value is At. Note that we use A rather
than gaγγ only to simplify the expressions; the extension
to the actual parameter of interest is straightforward.
Recall we have actually already shown in the previous
section that the asymptotic form of Θ given in (44) has
the key property that it is maximized at the correct value
of the signal strength, At.

18 We can determine the un-
certainty on the estimated A from the curvature around
the maximum. In detail,

σ−2
A = −1

2
∂2
AΘ̃(A)|A=At

=
Tπ

2ma

∫
dv

v

f(v)2

λ2
B

, (73)

where σA is the expected uncertainty on the measure-
ment. Using the SHM velocity distribution, this simpli-
fies to

σA =

√
2
√

2ma λ2
B v0vobs

T
√
π erf

[√
2vobs/v0

] =
At√
TS

. (74)

From this we can see that, as expected, the uncertainty
on the signal strength increases with the background, de-
creases with a longer experimental run time, and scales
inversely proportional to the square root of the TS for de-
tection. The last point is important because it says that
the central value At is

√
TS standard deviations away

from zero, which matches our interpretation of
√

TS as
the significance.

We can readily extend this strategy to the estimation
of other signal parameters. For example, we can use this
to estimate the best fit SHM parameters, v0 and vobs, and
their associated uncertainties. Let us denote by ft(v) =
fSHM(v|vt0, vtobs) the speed distribution given by the true
SHM parameters, and then f(v) = fSHM(v|v0, v

t
obs) rep-

resents the distribution for some arbitrary value of v0.
To repeat the Asimov analysis, we now use the dataset
and model predictions given by

Sk,Asimov
ΦΦ ≡ λtk =At

πft(v)

mav
+ λB ,

λk =At
πf(v)

mav
+ λB ,

(75)

respectively. Then, through the same process as above
we arrive at

Θ̃(v0) =
A2
tTπ

ma

∫
dv

v

f(v)

λ2
B

(
ft(v)− f(v)

2

)
. (76)

18 Recall we assumed A(t)πf(v)/(mav) � λB in deriving that ex-
pression.

Again this asymptotic expression satisfies the central Asi-
mov requirement that

max
v0

Θ̃(v0) = Θ̃(vt0) . (77)

Beyond this, however, we can again estimate the uncer-
tainty on the best fit velocity dispersion:

σ−2
v0

=− 1

2
∂2
v0

Θ̃(v0)|v0=vt0

=
A2
tTπ

2ma

∫
dv

v

(
∂v0

f(v)|v0=vt0

)2

λ2
B

,

(78)

so that if we assume λB is independent of frequency, we
have

σv0 =
vt0√
TS

(
3

4
+
vtobs

(
9vt20 − 4vt2obs

)
e−2vt2obs/v

t2
0

√
2πvt30 erf

[√
2vtobs/v

t
0

] )−1/2

≈1.02
vt0√
TS

. (79)

Above, we have taken the SHM values for the approx-
imate result. Applying the same strategy for vobs, we
would find the maximum is again obtained at the true
value, with the uncertainty now given by

σvobs
=

vt0√
TS

(
1− 4vtobse

−2vt2obs/v
t2
0

√
2πvt0 erf

[√
2vtobs/v

t
0

])−1/2

≈1.11
vt0√
TS

. (80)

From these three results for parameter estimation us-
ing our likelihood we can see that in general if we are
estimating a parameter αt, the estimated mean value
will be µα = αt, and the uncertainty tends to scale as

σα ∼ TS−1/2. Thus exactly as expected, the more sig-
nificant the detection of axion, or specifically the larger
the TS, the greater precision with which we can estimate
parameters.

V. IMPACT OF A REALISTIC AND
TIME-VARYING DM DISTRIBUTION

In the previous sections, we have developed a frame-
work for the analysis of a signal sourced by axion DM
drawn from the SHM distribution fSHM(v|v0, vobs). How-
ever, this neglects a number of effects that modify the
DM speed distribution; in particular: annual modula-
tion, gravitational focusing, and the possible presence
of local velocity substructure. As we have verified by
Monte Carlo simulations, the exclusion of these features
from our analysis has a negligible effect on our ability
to successfully constrain or discover an axion signal in
our data, even when features excluded from the analysis
are included in the data sets. Consequently, the frame-
work of Sec. IV is sufficient for the first stage of the data
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analysis. Nonetheless, since we do expect these effects
to be manifest in a hypothetically discovered signal, they
present opportunities to gain sharper insight on the local
DM distribution. Moreover, because annual modulation
and gravitational focusing result in distinct signatures
expected to be present only in the presence of a genuine
axion signal, the identification of these features would
further strengthen any candidate detection. In addition,
if we are within a cold stream or debris flow, a significant
enhancement to the signal is possible. In this section, we
specify the details of annual modulation, gravitational
focusing, and velocity substructure and their inclusion in
the DM speed distribution.

Because the signatures of annual modulation, gravita-
tional focusing, and velocity substructure are necessarily
time-dependent, we are forced to promote our likelihood
to incorporate variation in time.19 To do so, we will make
use of the stacking procedure described in Sec. III. We
assume that the full dataset is broken into NT subinter-
vals of duration ∆T = T/NT containing ∆N = N/NT
PSD measurements. Now, however, we will assume that
∆T is sufficiently small that the speed distribution does
not change appreciably within a given interval. As the
distribution will change over the full collection time T ,
we have a different model prediction in each time interval
given by:

λk,` = A
πf(v, t`)

mav
+ λB , (81)

which leads to the following modified likelihood

L(d|θ) =

NT−1∏
`=0

∆N−1∏
k=1

1

λk,`(θ)
e−S

k,`
ΦΦ/λk,`(θ) . (82)

This is the form of the likelihood we will use throughout
this section. Note that the ` dependence on the model
prediction invalidates the stacking analysis performed in
Sec. III, though the data may still be stacked over time
intervals that are sufficiently smaller than a year (day)
for annual (daily) modulation.

A. Halo Annual Modulation

Before studying how annual modulation impacts the
expected axion signal, we first review how it modifies the
DM speed distribution.20 Our starting point for this is
the SHM distribution given in (9). Throughout the year
the detector’s speed in the Galactic halo frame, vobs, is
expected to oscillate as the Earth orbits the Sun. In the
lab frame, this results in an effectively time-dependent

19 Cold velocity substructure is more subject to annual and daily
modulation, which is why these effects are time-dependent in the
Earth frame even if they are not in the Solar frame.

20 We refer to [94] for a comprehensive review of these details.

halo distribution fSHM(v, t). All of the time dependence,
neglecting that from gravitational focusing, which will be
dealt with separately, can be accounted for by upgrad-
ing the relative detector-halo speed to a time-dependent
parameter vobs(t). To determine this speed, first note
that vobs(t) = v� + v⊕(t), where v� and v⊕(t) are the
velocity of the Sun with respect to the Galactic frame
and the velocity of the Earth with respect to the Sun,
respectively. These are specified by21

v� = v�(0.0473, 0.9984, 0.0301) ,

v⊕(t) ≈ v⊕ (cos [ω(t− t1)] ε̂1 + sin [ω(t− t1)] ε̂2) ,
(83)

where the magnitudes are given by v� ≈ 232.37 km/s
and v⊕ ≈ 29.79 km/s. We have further introduced
ω ≈ 2π/(365 days) as the period of the Earth’s revolu-
tion, t1 as the time of the vernal equinox (which occurred
on March 20 in 2017), and the unit vectors ε̂1 and ε̂2

specifying the ecliptic plane. These vectors are given in
Galactic coordinates by

ε̂1 ≈ (0.9940, 0.1095, 0.0031) ,

ε̂2 ≈ (−0.0517, 0.4945,−0.8677) .
(84)

We may then find the time-varying Galactic-frame speed

vobs(t) =
√
v2
� + v2

⊕ + 2v�v⊕α cos [ω(t− t̄)] , (85)

given in terms of the parameters

α ≡
√

(v̂� · ε̂1)2 + (v̂� · ε̂2)2 ≈ 0.491 ,

t̄ ≡ t1 +
1

ω
arctan

(
v̂� · ε̂2

v̂� · ε̂1

)
≈ t1 + 72.5 days .

(86)

Whilst we have given the accepted values for the var-
ious parameters above, if a definitive axion signal was
detected we could then take for example v�, α, and t̄
as unknown parameters to be estimated from the likeli-
hood. Their agreement with the accepted values would
be a highly non-trivial test of the signal. We will show
an example of this below, but before doing so we use the
Asimov formalism to estimate how significant a signal we
would need to detect annual modulation from the bulk
halo.

Ignoring annual modulation, the detection significance
of a SHM signal scales with the parameters of interest as

TS =
A2Tπ

2maλ2
B

erf
[√

2vobs/v0

]
√

2πv0vobs

, (87)

where here and throughout this section we assume the
background is frequency independent over the width of
the signal. The relevant question is, on average, at what

21 Corrections to v⊕(t) are suppressed by the eccentricity of the
Earth’s orbit, given by e ≈ 0.016722, and so can safely be ne-
glected.
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Figure 5. The posterior distribution for a model with annual modulation where the signal strength is at the threshold of
annual modulation detection at 5σ. The true parameter values are indicated in blue, with the 1σ confidence intervals on the
parameter estimations indicated by the dashed black lines in the one parameter posteriors. The two parameter posteriors show
the 1 and 2σ contours. The axion mass, ma, was also scanned over, and is recovered accurately but not shown here. Note that
this example uses the Asimov dataset. All times are measured in days and velocities in km/s, while the units of A are arbitrary.

value of TS do we detect annual modulation at a given
significance? To estimate this, we calculate the test
statistics between models with and without annual mod-
ulation included; in order to discover annual modulation
we can think of the model without it included as the null
hypothesis. We denote this test statistic by TSa.m.. We
can estimate the median value for TSa.m. as a function
of the model parameters using the asymptotic form of
Θ and the Asimov formalism; in this case, the Asimov
dataset includes annual modulation. Specifically, we find

TSa.m. =
A2Tπ

maλ2
B

∫
dv

v

[
ft(v)2

−f(v)

(
ft(v)− f(v)

2

)]
.

(88)

Above, ft features annual modulation while f does not.
In order to simplify the calculation, we define an expan-

sion parameter:

ε ≡ v�v⊕
v2
� + v2

⊕
≈ 0.126 , (89)

in terms of which we can write:

vobs(t) ≈ vobs (1 + εα cos [ω(t− t̄)]) , (90)

with vobs ≈ 232 km/s. Using this and averaging all time
dependence over one period in the final result, we calcu-
late the ratio of TSa.m. to TS in the SHM as

TSa.m.

TS
=
α2ε2v2

obs

2v2
0

(
1− 4vobse

−2v2
obs/v

2
0

√
2πv0erf

[√
2vobs/v0

])
≈ 0.00173 . (91)

From the discussion above, we see that if it took a
time T to detect the axion at a given significance, it
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Figure 6. As in Fig. 5, but this time the data includes gravitational focusing and the model only includes the parameters A, α
and t̄. (Left) Gravitational focusing, while present in the Asimov data, is excluded from the model template. The estimations
of A and t̄ are off at the ∼2σ and ∼1σ levels, respectively. (Right) As in the left panel but including gravitational focusing in
the model template. As expected, the parameter estimation is quite accurate in this case.

would take a time 580T to detect annual modulation at
the same significance. Alternatively, as the test statistic
scales like g4

αγγ , the coupling for the threshold of discov-
ery for annual modulation will be ∼5 times larger, on
average, than the coupling for the threshold of discovery
of a signal. On the other hand, in the resonant setup
large increases in the TS are readily obtainable since af-
ter the axion mass is known we can stay at the correct
frequency for an extended period instead of scanning over
multiple frequencies.

In Fig. 5 we show the posterior distribution generated
in a Bayesian framework from an analysis of the Asimov
dataset with gaγγ at the threshold for detection of an-
nual modulation at 5σ. Note that we float A, ma, v0,
v�, α, and t̄ as model parameters with linear-flat priors
in the fit. All model parameters are seen to be well con-
verged, including ma which is not shown in the figure.
This analysis was performed using Multinest [95, 96]
with 500 live points. The Asimov results are consistent
with those found from an ensemble of simulated datasets,
as expected.

B. Halo Gravitational Focusing

An additional source of annual modulation in the ax-
ion signal is sourced by the focusing of the axion flux by
the Sun’s gravitational potential. This effect is already
known to have a significant impact on annual modula-
tion in the context of WIMP direct detection, as pointed
out in [77]. The intuition behind gravitational focusing

is that in the frame of the Sun the DM velocity distri-
bution appears as a wind. The gravitational field of the
Sun focuses the DM “down-wind” of the Sun, leading to
an enhanced rate when the Earth is “down-wind” rela-
tive to when the Earth is “up-wind.” Here we investigate
the impact of gravitational focusing on the corresponding
axion signal.

In [77] an exact closed-form expression was used to
model the perturbation to the DM phase-space distribu-
tion from the Sun’s potential. The perturbed phase-space
distribution is derived using Liouville’s theorem and ex-
actly solving for the trajectories of the DM particles in
the gravitational field. However, in this work we take
advantage of a perturbative result (to leading order in
Newton’s constant), valid when the DM speeds are much
larger than the Solar escape velocity, that allows us to
write [97]

f(v, t) = fhalo(v, t) + fGF(v, t) , (92)

where fhalo(v, t) is the unperturbed velocity distribution
in the Earth frame, and where the perturbation by grav-
itational focusing fGF is given by

fGF(v, t) ≡ −2GM�
x⊕(t)

∫
v2dΩ

π
3
2 v5

0

e−(v+v⊕(t)+v�)2/v2
0

v
(93)

×
(v + v⊕(t) + v�) ·

(
x̂⊕(t)− v+v⊕(t)

|v+v⊕(t)|

)
1− x̂⊕(t) ·

(
v+v⊕(t)
|v+v⊕(t)|

) .

Note that in this equation, v2dΩ is written out explicitly
to account for the measure. Here, x⊕(t) denotes the po-
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sition of the Earth in the Solar frame; an explicit form for
this in Galactic coordinates can be found in [94]. Note
that f(v, t) is no longer normalized to integrate to unity,
but rather the change in

∫
dvf(v, t) throughout the year

indicates the fractional change in the DM density do to
gravitational focusing. We have explicitly verified that
the perturbative formalism for gravitational focusing is a
good approximation to the exact formalism used in [77]
for the SHM.

To determine the impact of gravitational focusing, we
perform two analyses using the Asimov dataset at the
5σ detection threshold for annual modulation but this
time including gravitational focusing. We analyze the
Asimov data in the Bayesian framework including with
two models; the first model does not account for gravi-
tational focusing, while the second one does. The results
of these analyses are shown in Fig. 6. The use of a lim-
ited number of live points is the most likely source of the
residual disagreement between the injected and median
value of t̄ in the right panel. Note that in these analy-
ses we only float A, α, and t̄ for simplicity. Neglecting
gravitational focusing in the model (left panel) only leads
to a approximately 2σ overestimate in the value of the
A parameter, while the central value of t̄ is on average
off by ∼10 days. On the other hand, when gravitational
focusing is included in the model (right panel), the halo
parameters and the normalization are correctly inferred.

C. Local DM Substructure

So far, we have only considered an axion signal sourced
by dark matter contained within the bulk halo, but there
additionally exist a number of well-motivated classes of
velocity substructure that have the potential to leave
dramatic signatures in the direct detection data. One
large class of substructure relates to the DM subhalos
that are expected to be present in the Milky Way [98].
DM subhalos are believe to persist down to very small
mass scales, potentially ∼10−6 M� and below, due to the
nearly scale-invariant spectrum of density perturbations
generated during inflation. Low-mass DM subhalos have
low velocity dispersions, and so if we happen to be sitting
in a DM subhalo, even if it only makes up a small frac-
tion of the local DM density, it could show up as a narrow
spike in velocity space over the bulk SHM contribution.
Even if we are not directly in a bound DM subhalo, we
could still be affected by the tidally stripped debris that
in-falling subhalos leave throughout the Galaxy. There
are two types of tidally-stripped substructure, in veloc-
ity space, that are important for direct detection (for a
review of the importance of tidal debris at WIMP exper-
iments, see [86]): DM streams and debris flows.

As an in-falling subhalo descends through the poten-
tial of the Milky Way, the outer regions of the DM sub-
halo are expected to become tidally stripped and form an
ultra-cold trailing stream [87, 98]. Such streams should
trail from DM subhalos of all sizes, with smaller subha-
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Figure 7. The enhancement expected in the TS in the pres-
ence of a coherent DM stream, as given in (95). The TS is
shown as a ratio with respect to the case where only the bulk
halo is present and as a function of the fraction of the local
DM within the substructure.

los having colder streams. Eventually, the tidal debris
dragged away from in-falling subhalos will become fully
virialized. However, before that occurs the debris be-
comes homogeneously distributed in position space but
remains coherent in velocity space, forming the substruc-
ture known as debris flow [99]. While it is unlikely that
a DM substructure from in-falling subhalos dominates
the local DM density [87, 98], as we show in this sub-
section, even if the substructure only makes up a small
fraction of the local DM density, due to the coherence in
velocity space the signature of substructure at axion ex-
periments can be substantial and even dominate over the
SHM contribution. This can be contrasted to the case in
WIMP direct detection experiments, where substructure
is expected to play an important role in annual modula-
tion studies but not necessarily have a significant impact
on the total rate [86, 94, 100]. DM streams were recently
considered in the context of axion direct detection in [76].

One DM stream in particular has received a signifi-
cant amount of attention with regards to WIMP direct
detection and that is the potential DM component of the
Sagittarius stream. The Sagittarius stream consists of
a winding stream of stars wrapping through the Milky
Way that is thought to have formed from tidal strip-
ping of the Sagittarius dwarf galaxy. It is possible that
the DM component of the Sagittarius stream contributes
at the few percent level to the local DM density (see,
e.g., [87, 98]). We follow [66, 68, 69] and model the
stream as a boosted Maxwellian distribution with a nar-
row velocity dispersion of v0 = 10 km/s and a stream
velocity of vstr = (0, 93.2,−388) km/s, in Galactic coor-
dinates. Further we assume that the Sagittarius stream
constitutes 5% of the local DM. We will show that even
though the stream may only be a small component of
the local DM density, it can still leave an important sig-
nature in axion direct detection experiments, due to its
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Figure 8. The axion contribution to the PSD as a function of frequency in the presence of DM substructure. (Left) We show
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small velocity dispersion.
Another possible source of DM substructure that has

low velocity dispersion is a dark disk. Co-rotating thick
dark disks are found to form in certain N -body simu-
lations with baryons [101–104] due to the disruption of
merging satellites galaxies that are pulled into the disk.
In the simulations, the dark disks are found to be co-
rotating with lag speeds and velocity dispersions both
∼50 km/s. They may even dominate the local DM den-
sity [101, 103]; however, as we will see, even if the dark
disk is only a small fraction of the local DM density, it
can still leave a significant signature in the direct detec-
tion data due to the small velocity dispersion and lag
speed.

To develop some intuition for how important substruc-

ture could be, let us take the oversimplified scenario
in which the substructure of interest makes up a frac-
tion x of the local DM distribution and also follows the
Maxwellian distribution with the same vobs as in the
SHM, but with a much smaller dispersion parameter vstr

0 .
Then we can write

f(v) =(1− x)fSHM(v|v0, vobs)

+xfSHM(v|vstr
0 , vobs) .

(94)

Using this we can explicitly calculate the expected test
statistic (in favor of the model of the SHM plus the
stream over the null hypothesis of no DM) of a signal
with a frequency independent background as:

TS =
A2Tπ

2maλ2
B

(1− x)2 erf
[√

2vobs/v0

]
√

2πv0vobs

+ x2 erf
[√

2vobs/v
str
0

]
√

2πvstr
0 vobs

+
2x(1− x)

√
π
(
v2

0 + vstr
0

2
)3/2

vobs

×

(vstr
0

2
+ v2

0) erf

vobs

√
v2

0 + vstr
0

2

v0vstr
0

+ (vstr
0

2 − v2
0) erf

 vobs(v
2
0 − vstr

0
2
)

v0vstr
0

√
v2

0 + vstr
0

2

 exp

[
− 4v2

obs

v2
0 + vstr

0
2

] .
(95)

In Fig. 7 we show this TS plotted as a function of the
fraction of the DM in the stream x for various values of

vstr
0 , normalized to the TS when no stream is present.

The figure makes it clear that if the detector is within an
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Figure 9. A Monte Carlo parameter estimation for the bulk halo parameters at the threshold of detection for annual modulation
in the presence of a Sagittarius-like stream containing 5% of the DM and with a narrow velocity dispersion of 10 km/s. The
accuracy of the parameter scan is worsened by the failure to account for the substructure in the analysis.

ultra-cold DM stream the impact on the expected axion
signal can be significant, even if the stream only makes
up a small fraction of the DM. For example, if 5% of
the local DM is in a stream with vstr

0 ≈ 0.1 km/s, then
the TS in favor of the model with DM is nearly 10 times
larger when the stream is modeled versus when it is not.
This emphasizes the importance of searching for cold DM
substructure in addition to the SHM component.

Even though velocity substructures are not intrinsi-
cally time-dependent features, annual modulation is con-
siderably more important for the detection of substruc-
ture, which is typically characterized by a speed disper-
sion less than the peak-to-peak variation of the Earth’s
velocity with respect to a given substructure frame. The
result is an observational signature of a given substruc-
ture feature poorly localized in frequency data collected
over a year. Therefore we need a more careful treat-
ment than the one above, as we can only search for these
features in a model framework which accounts for time-
varying signals.

Under the assumption that velocity substructure can
still be reasonably modeled by a boosted Maxwellian dis-
tribution, it is easily accommodated within our time-

dependent model template.22 The direction of the stream
in the ecliptic plane is specified through the parameters
αsub and t̄sub, which are defined in analogy to (86) but
where vsub

� = vsub
� v̂sub

� is the stream boost velocity in
the Solar frame. The generalized velocity distribution,
including gravitational focusing, for both the SHM and
the substructure components is then given by

f =(1− x)fSHM(v|v�, α, t̄, v0)

+xf sub(v|vsub
� , αsub, t̄sub, vsub

0 ) ,
(96)

where the superscripts “sub” and “SHM” denote the
generalized substructure and SHM velocity distributions,
respectively, after gravitational focusing has been ac-
counted for. The generalization to multiple substructure
components is straightforward.

The importance of annual modulation for cold sub-
structure is illustrated in Fig. 8, where we show, in

22 Even if the velocity distribution is not Maxwellian, the relevant
signal template is a straightforward generalization of that pre-
sented here for a Maxwellian.
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Figure 10. A simultaneous Monte Carlo parameter estimation for a signal containing a bulk halo and a Sagittarius-like stream
with 5% of the DM using identical seed parameters as Fig. 9. Scanning for the bulk halo and substructure simultaneously
allows us to accurately recover the signal parameters. Left, the bulk parameter scan results, right, the stream parameter scan
results.

the left panel, the mean PSD assuming the Sagittarius
stream parameters taken at two different times through-
out the year. We have chosen the dates where the TS in
favor of the stream is maximized, June 5, and minimized,
November 23, both for 2017. Since the stream is narrow
in frequency space, the sharp peaks at these two differ-
ent times of year are almost completely non-overlapping.
On the contrary, at frequencies where the stream does
not contribute appreciably, annual modulation does not
significantly affect the contribution from the SHM.

Just as we performed parameter estimations for the
bulk halo component, we can also estimate the param-
eters defining the contribution of velocity substructure
to the speed distribution. It should be noted that the
parameter estimation for the bulk halo component can
be substantially affected by the presence of velocity sub-
structure if the substructure is not properly accounted
for. An example of this can be seen in Fig. 9, where we
have included a stream with Sagittarius-like parameters
in the data, as given earlier, and used the Asimov dataset.
However, we have not accounted for the stream in the
model that is fit to the data. Note that the TS in favor
of DM in this case is ∼104. Our estimates for the SHM
parameters v0 and v� are significantly affected by the
presence of the stream and disagree with the true values
by multiple standard deviations. In contrast, in Fig. 10
we display the posterior distribution for a fit including a
Maxwellian stream. Note that while both the SHM and
the stream parameters are floated at the same time, we
display the posteriors for the SHM and stream model pa-
rameters separately. In this case both the stream and the

SHM model parameters are accurately estimated. Com-
paring the model that included the stream to that with-
out, we find a TS value ∼400 in favor of the model with
the stream over that without.23

Note that for our fiducial set of model parameters for
the Sagittarius stream, we find that when the SHM is
detected at 5σ significance (TS ∼ 58), including the look
elsewhere effect, the stream may barely start to become
visible at ∼1.6σ significance. We stress, however, that is
possible that other, colder DM streams would contribute
more substantially even if they are a smaller fraction of
the local DM density. While we illustrated the stream
example for simplicity, the effects of the other types of
velocity substructure may be worked out similarly. For
example, we find that with our fiducial choice of param-
eters for the dark disk lag speed and velocity dispersion,
the dark disk would be detectable at the same significance
as the SHM even if the dark disk only makes up ∼20%
of the local DM density. Moreover, the dark disk should
be more affected by annual modulation and gravitational
focusing than the SHM component, since the DM in the

23 To simplify the analysis, we have neglected gravitational focusing
in considering this Sagittarius-like stream. Gravitational focus-
ing is more important at lower speeds, and therefore is generally
less relevant for such a stream than it would be in considering,
for example, a dark disk. We note, however, that if the stream
is well-aligned with the ecliptic plane, it is possible to get large
enhancements to the rate over short periods of time during the
year [105–107], although such a configuration is not present for
the Sagittarius stream.
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dark disk is on average slower moving in the Solar frame.
The PSD template is illustrated, assuming the dark disk
makes up 20% of the local DM density, in the right panel
of Fig. 8. The dark disk leads to a significant increase in
the PSD at low velocities, corresponding to frequencies
near the axion mass. As in the stream case, we show
the PSD at two different times of year, corresponding to
the date of maximal TS, November 18, and minimal TS,
June 5.

VI. CONCLUSION

The QCD axion, and axion like particles more gener-
ally, is a well motivated class of DM candidates, and if it
constitutes the DM of our universe, then the burgeoning
experimental program searching for such DM could be on
the verge of a discovery. With such possibilities it is im-
portant to be able to clearly and accurately quantify any
emerging signal and set limits in their absence. The like-
lihood framework we have introduced allows for exactly
this. In addition, through the use of the Asimov dataset,
we have derived a number of analytic results that make
quantifying these thresholds possible without recourse to
Monte Carlo simulations.

In the event of an emerging signal, one would al-
ways worry about the possibility of unanticipated back-
grounds. Nevertheless DM provides its own way of ad-
dressing this concern through unique fingerprints in the
frequency and time domains. For example, we showed
the form the local DM velocity distribution uniquely de-
termines the frequency dependence of the PSD data, and
that by exploiting this knowledge one is able to, through
the likelihood framework, constrain properties of the lo-
cal velocity distribution. Since the bulk of the DM halo
is expected, locally, to follow a Maxwellian distribution
with velocity dispersion set by the local rotation speed,
correctly measuring the Maxwellian parameters will pro-
vide a non-trivial check of the nature of the signal. In the
time domain, any true signal should undergo annual mod-
ulation, including the subtle effect of gravitational focus-
ing, and we quantified how this may be verified using the
likelihood formalism. Further, the likelihood is sensitive
to the presence of local DM substructure such as cold
streams, which can enhance the expected signal through
an associated increase in the axion coherence time. For
example, we showed that the Sagittarius stream could
leave a unique signature in the PSD data. Nevertheless
there are a great many possible types of DM substruc-
ture, beyond those considered here, that could be present
at the position of the Earth, and we leave a careful study
of these to future work.

Taken together the results of this work provide a set of
tools that will prove useful in moving towards a possible
DM axion detection, and, if we should be so lucky, into
the era of axion astronomy that would follow. Towards
that end, we have provided an open-source code pack-
age at https://github.com/bsafdi/AxiScan for per-

forming all the likelihood analyses discussed in this work
and also simulating data at axion direct detection exper-
iments for different background and signal models.
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Appendix A: Distribution of the Combined Signal
and Background Model

In Sec. II of the main text we demonstrated that the
signal only distribution is exponentially distributed, as
given in (24). However, we simply asserted that the back-
ground only and signal plus background distributions
were also exponentially distributed. In this appendix
we demonstrate both of these results. We reiterate at
the outset that in all cases the correct starting point for
determining these distributions is the time-series data,
which is where the different contributions are combined.
We cannot straightforwardly think about combining dis-
tributions at the level of the PSD. To emphasize this,
even though the PSD in the background and signal only
cases are individually exponentially distributed, the sum
of two exponentially distributed numbers is not itself ex-
ponentially distributed, and yet the PSD formed from
the sum of the background and signal is.

Consider firstly the background only distribution.
Imagine we have time-series data collected in the pres-
ence of nB independent background sources, each Gaus-
sian distributed random variables with mean zero and
variance λiB/∆t, where i indexes the different back-
grounds and the inclusion of ∆t in the variance is for
later convenience. Note that we can choose the back-
grounds to have zero mean without loss of generality,
because the mean will only impact the k = 0 mode of
the PSD, which for reasons described below we will not
include in our likelihood. In the presence of this noise,

https://github.com/bsafdi/AxiScan
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the time-series data will take the form

Φn =

nB∑
j=1

xjn , (A1)

where n = 0, 1, . . . , N − 1 indexes the times at which the
measurements were taken and the xin satisfy

〈xin〉 = 0 , 〈xjnxlm〉 = δnmδjl
λjB
∆t

. (A2)

The second relation here follows as we assume our back-
grounds are independent, and for a given background the
values measured at different times are independent and
identically distributed. Moving towards the PSD, con-
sider the discrete Fourier transform of this data:

Φk =

N−1∑
n=0

Φne
−i2πkn/N =

N−1∑
n=0

nB∑
j=1

xjne
−i2πkn/N . (A3)

It is convenient to expand the exponential and analyze
the real and imaginary parts of this separately. In detail:

Φk =

N−1∑
n=0

nB∑
j=1

xjn cos

(
2πkn

N

)

−i
N−1∑
n=0

nB∑
j=1

xjn sin

(
2πkn

N

)
≡Rk + iIk .

(A4)

The real and imaginary parts, Rk and Ik respec-
tively, are both Gaussian distributed since they are sums
of Gaussian distributed random variables. Accordingly
they are completely specified by their means and vari-
ances, which we can determine using (A2). Consider the
real part first, as the argument for the imaginary part
proceeds in exactly the same fashion. For the mean we
have

〈Rk〉 =

〈
N−1∑
n=0

nB∑
j=1

xjn cos

(
2πkn

N

)〉

=

N−1∑
n=0

nB∑
j=1

〈xjn〉 cos

(
2πkn

N

)
=0 .

(A5)

Similarly

〈R2
k〉 =

nB∑
j=1

λjB
∆t

N−1∑
n=0

cos2

(
2πkn

N

)

=
λB
∆t

N−1∑
n=0

cos2

(
2πkn

N

)
.

(A6)

where we used λB ≡
∑
j λ

j
B following (25). We can eval-

uate the remaining sum using24

N−1∑
n=0

cos2

(
2πkn

N

)
=

{
N k = 0
N/2 0 < k < N

. (A7)

Putting these together, we conclude the real part has a
variance given by

〈R2
k〉 =

{
λBN
∆t k = 0
λBN
2∆t 0 < k < N

. (A8)

The argument for the imaginary part is almost identical,
and we find again that 〈Ik〉 = 0, whilst

〈I2
k〉 =

{
0 k = 0
λBN
2∆t 0 < k < N

. (A9)

Knowing how contributions to the Fourier transform
are distributed, we now move to the PSD, which will
again be a random variable given by:

SkΦΦ =
(∆t)

2

T
|Φk|2 =

∆t

N

(
R2
k + I2

k

)
. (A10)

There are many ways to determine the probability den-
sity function (pdf) obeyed by SkΦΦ. A particularly
straightforward one in this case is to start by determining
the cumulative distribution function (cdf), F [SkΦΦ]. We
will do this for N > k > 0 first, and return to the k = 0
case afterwards. To obtain the cdf, we simply integrate
the distributions for Rk and Ik over all values up to some
SkΦΦ. In detail,

F [SkΦΦ] =

∫ Sk
ΦΦ

dRkdIk
∆t

πλBN

× exp

[
− ∆t

λBN

(
R2
k + I2

k

)]
.

(A11)

To perform this integral it is convenient to change to
polar coordinates, u2 = R2

k + I2
k and θ, so that

F [SkΦΦ] =

∫ √NSk
ΦΦ/∆t

0

du
2∆tu

λBN
exp

[
−∆tu2

λBN

]
=1− e−Sk

ΦΦ/λB .

(A12)

The pdf is just the derivative of this, so we find

P [SkΦΦ] =
1

λB
e−S

k
ΦΦ/λB , (A13)

demonstrating that for 0 < k < N the background is
exponentially distributed as claimed in the main body.

24 Note that if N is even, then for the k = N/2 mode the sum
evaluates to the k = 0 result. This extends to (A8) and (A9), and
indeed when propagated through to the likelihood, implies that
this mode will also be gamma and not exponentially distributed.
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Consider next the case for k = 0. Utilizing an identical
approach, we find firstly that

F [S0
ΦΦ] =

∫ √NSk
ΦΦ/∆t

−
√
NSk

ΦΦ/∆t

√
∆t

πλBN
exp

[
− ∆t

λBN
R2

0

]
= erf

[√
S0

ΦΦ/λB

]
, (A14)

implying

P [S0
ΦΦ] =

1√
πλBS0

ΦΦ

e−S
0
ΦΦ/λB . (A15)

Clearly the k = 0 mode is not exponentially distributed:
it is in fact gamma distributed with shape parameter 1/2
and scale parameter λB . In practice, however, this mode
does not contribute to the likelihood function in (29)
since all of the axions we search for have finite mass and
thus finite oscillation frequency. Moreover, the k = 0
mode is degenerate with the mean background values
that we have chosen to neglect.

Finally we want to show that the combined signal and
background dataset is also exponentially distributed for
0 < k < N − 1. We will show this in a somewhat in-
direct manner. Firstly, given that the signal is expo-
nentially distributed, as shown in the main text, we will
show that the real and imaginary parts of the discrete
Fourier transform of such a dataset must be normally
distributed. Then we can combine the signal in as if it
was just another background in the argument presented
above, and it will follow immediately that the full distri-
bution must be exponential. Our starting point is (24),
where we showed the signal only PSD is exponentially
distributed. We repeat this result here for convenience:

P [SkΦΦ] =
1

λk
e−S

k
ΦΦ/λk ,

λ ≡ A πf(v)

mav

∣∣∣∣
v=
√

4πk/(maT )−2

.
(A16)

As an intermediate step, consider SkΦΦ = x+y, where x =
(∆t/N)R2

k and y = (∆t/N)I2
k . As the real and imaginary

parts are independent and identically distributed for the
signal dataset, then so too are x and y, and we denote
their pdf by g. Given that x, y ≥ 0, we can relate their
distributions to that of the signal PSD via

P [SkΦΦ] =

∫ ∞
0

dxdy g[x]g[y]δ(SkΦΦ − x− y)

=

∫ Sk
ΦΦ

0

dx g[x]g[SkΦΦ − x] .

(A17)

To solve this equation for g we take the Laplace trans-
form, denoting transformed quantities with a tilde. This
yields

g̃[x̃] =
1√

1 + x̃λk
, (A18)

which when inverted becomes

g[x] =
1√
πλkx

e−x/λk . (A19)

From here, to derive the pdf for Rk we can change vari-
ables using x = (∆t/N)R2

k. In doing so we need to
account for the Jacobian and also the fact that whilst
x ∈ [0,∞), this is only half the domain of possible Rk
values. Doing so we find

P [Rk] =
1√

πNλk/∆t
exp

[
− R2

k

Nλk/∆t

]
, (A20)

which is exactly a normal distribution with mean zero
and variance Nλk/(2∆t). The distribution for Ik will be
identical, and thus we find the signal is distributed just
like a single background but with λjB → λk. If we then
repeat the background only argument shown at the start
of this appendix with the signal contribution added, we
will find the full PSD is again exponentially distributed
with mean λk + λB , completing the required derivation.

Appendix B: Comparison to a Bandwidth Average

An alternative analysis strategy to that presented in
the main text is to take the average PSD (or power) mea-
sured across a given bandwidth range and compare that
directly to the average model prediction. This should be
contrasted with taking the product of exponential likeli-
hoods across k modes as we introduced in (29), and at
face value it should have less discriminating power as the
information regarding how the axion signal is distributed
within the bandwidth has been lost. In this section we
quantify this statement by deriving the expected sensi-
tivity of such an approach. As a side point we will also
demonstrate how to derive the optimum bandwidth range
in performing a bandwidth averaged search.

To begin with, we note that in each frequency bin the
PSD formed from the data will still be exponentially dis-
tributed. Then, if we are searching in some bandwidth
range Ωω, which contains nω frequency bins, the mean
PSD can be formed from a sum of these exponentials and
will thus be Erlang distributed. In detail, the likelihood
will have the form

L(d|θ) =
nnω
ω

(nω − 1)!

(
S̄ΦΦ

)nω−1

λ̄nω
e−nωS̄ΦΦ/λ̄ , (B1)

where we have defined:

S̄ΦΦ =
1

nf

∑
k∈Ωω

SkΦΦ , (B2)

similarly to what we had when discussing the stacked
data procedure in Sec. III B. In the above equation we
also introduced the mean model prediction, which assum-
ing we have a frequency independent background will be
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given by

λ̄ =λ̄S + λB ,

λ̄S ≡
1

nω

∑
k∈Ωω

A
πf(v)

mav
.

(B3)

Consider the average signal prediction. This average is
taken over some frequency range, or bandwidth, which we
denote by ∆ω, and is equivalent to a range in velocities,
v ∈ [0, vmax].25 Consequently we have

∆ω =
1

2
mav

2
max . (B4)

The bandwidth can also be written as ∆ω = nωdω, where
dω is the width of an individual frequency bin. Assuming
sufficient run time, as dω = 2π/T , then we can also write

∆ω = nωmavdv . (B5)

Taken together, these show that

∆ω

∆ω
=

2nω
v2

max

vdv . (B6)

Substituting this into (B3), we can rewrite the signal
prediction as

λ̄S =
2Aπ

mav2
max

∫ vmax

0

dv f(v) . (B7)

To estimate the sensitivity it is most convenient to re-
turn to Θ as introduced in (39). This is modified for the
averaged PSD likelihood given in (B1) to

Θ(A) = 2nωS̄ΦΦ

[
1

λB
− 1

λ̄

]
− 2nω ln

λ̄

λB
, (B8)

where as in Sec. III, we suppress the axion mass depen-
dence. As in the main body, to analytically estimate
the sensitivity we can use the Asimov dataset. Here we
denote this by λ̄tS + λB , where λ̄tS is identical to (B7),
but with the signal strength replaced by its true value:
A→ At. To simplify the resulting form of Θ̃, we again as-
sume that we are in the limit where the true and modeled
average signal strength are subdominant to the average
background, such that we obtain

Θ̃(A) =
2ATπ

maλ2
B

(
At −

A

2

)(∫ vmax

0

dv
f(v)

vmax

)2

. (B9)

To compare this directly to results obtained from the
analysis in the main body, we need to determine a value
for vmax. A procedure for doing so is to choose the vmax

25 In principle the lower velocity could be vmin rather than 0, and
this value can also be optimized for. Nevertheless as the signal
distribution rises sharply from v = 0, approximating vmin = 0 is
sufficient for the argument in this appendix.

that maximizes the significance of any emerging signal,
or in detail one that maximizes the test statistic of dis-
covery. Using TS as defined in (38), for the present case
we have

T̃S =
A2
tTπ

maλ2
B

(∫ vmax

0

dv
f(v)

vmax

)2

, (B10)

which we want to maximize as a function of vmax. The
value that does so depends critically on the form of f(v),
and so needs to be re-evaluated for each assumption. For
example, if we take the simple SHM ansatz as per (9),
then we find vmax ≈ 453 km/s. Using this value we
can then construct the ratio between the TS using our
default bin-by-bin approach, denoted TSfull, to that ob-
tained here, denoted TSav., which is explicitly:

T̃S
full

T̃S
av. =

(
1

2

∫
dv
f(v)2

v

)(∫ vmax

0

dv
f(v)

vmax

)−2

≈1.14 , (B11)

where in the final step we again assumed a default SHM
form for the speed distribution. Thus as claimed at the
outset, even when optimized, this averaging procedure is
not as sensitive as our full construction. The optimiza-
tion is important; if we had instead taken vmax = 300
(600) km/s, we would have obtained a ratio of 1.87 (1.43)
above. Further in the presence of substructure, the aver-
aging approach suffers even further. As a simple estimate
of this if we took Maxwellian substructure, with the much
smaller velocity dispersion v0 = 10 km/s but the same
boost velocity as the SHM, then even at the maximum
the ratio is 5.42.

Using this maximum we can also determine the impact
on limits. Recalling the definition of the test statistic for
upper limits in (36), we find the condition for a 95% limit
is determined when

Ã95% = At+

√
2.71

maλ2
B

Tπ

(∫ vmax

0

dv
f(v)

vmax

)−1

. (B12)

To compare this to case discussed in the main body, we
take the simplifying values of At = 0 and again the de-
fault SHM speed distribution. Doing so we find

Ãfull
95%

Ãav.
95%

=

(∫ vmax

0

dv
f(v)

vmax

)(
1

2

∫
dv

f(v)2

v

)−1/2

≈0.94 , (B13)

which corresponds to a ratio of the axion electromagnetic
couplings of 0.97 (A ∝ g2

aγγ). This value shows that the
full framework sets similar, but slightly stronger, con-
straints.

Accordingly, in all cases the framework described in the
main body outperforms the averaged-power technique
described in this appendix. For the case of the SHM,
when that technique is optimized the improvements are
marginal. Nevertheless in the presence of substructure,
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or if the optimal signal window is not chosen, then the
gain from resolving the individual frequency bins can
be much more substantial. Moreover, it is very difficult
to constrain aspects of the DM phase-space distribution
with the power-averaged technique, since the frequency
dependence of the signal is not resolved.

Appendix C: Verifying the Asimov Derivation of
Upper Limit Bands

Using the Asimov dataset analysis, in Sec. III C we
were able to calculate the expected 95% limit on the sig-
nal strength A at a given ma. We were also able to calcu-
late the 1 and 2σ containment bands around the expected
95% limit without recourse to Monte Carlo simulations.
In this appendix we confirm that these results, presented
in (54) and (56), match those derived using Monte Carlo
methods.

For this procedure, we generate 1000 background-only
datasets over frequencies in a 22Hz window centered at
550kHz and then scan these PSDs for a bulk SHM model.
According to our estimate in (62), we expect there to be
approximately 55 independent mass points for which we
can scan contained within this frequency data. However,
for the sake of precision, we will arbitrarily increase our
resolution to scan over 150 mass points, between which
there may be some degeneracy. At each mass point, we
scan over A values between −5σA and 10σA calculated
according to (73). We emphasize again that it is nec-
essary that we allow A to take on negative values de-
spite that, by its definition, A must be nonnegative. In
practice, this is resolved by imposing a power-constrained
limit such that constraints on A are placed no lower than
1σ below the expected constraint as calculated by (56).
In Fig. 11 we show the median 95% upper limit as well
as the 1 (shaded green) and 2σ (shaded yellow) contain-
ment intervals constructed from the ensemble of Monte
Carlo simulations. Note that we only show the upper 2σ
region, since we anticipate neglecting fluctuations below
1σ with the power-constrained method. Additionally, we
indicate the same quantities predicted by our Asimov
analysis with dashed lines. As the figure demonstrates,
the Monte Carlo and Asimov results are generally in good
agreement.26

Appendix D: Asymptotic Distribution for the
Discovery Test Statistic

In this appendix we will explicitly calculate, from our
likelihood, the survival function for the local TS under

26 While there may be a small systematic offset, as visible in Fig. 11,
the agreement is likely satisfactory for use at direct detection ex-
periments. However, if required the containment intervals could
be further tuned to agree with Monte Carlo simulations like those
presented here.
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Figure 11. A comparison between the variation in the 95%
upper limit found in Monte Carlo (MC) simulations to that
derived analytically with the Asimov dataset. As shown the
two are in good agreement.

the null hypothesis. We will then show that asymp-
totically the TS is χ2-distributed, and therefore there
is a simple connection with the significance, Z, given
by Z =

√
TS. Doing so will verify (58), presented in

Sec. III D. Note that this appendix is in many ways an
explicit illustration of Wilks’ theorem.

To begin with, the situation to keep in mind is that we
have a dataset that is drawn from the background only
distribution, where in some frequency range there is an
upward fluctuation that can be well described by a model
including the signal. From this picture, in order to derive
our result we will make two simplifying assumptions:

1. that the signal model we use is only non-zero in a
set of nS frequency bins, the set of which we denote
ΩS , and outside this λk = λB ; and

2. that in these nS bins the background and model
predictions are both frequency independent, so to
avoid confusion we denote our signal prediction in
this range as the k-independent λS .

Taken together these assumptions imply we are approxi-
mating our model for this upward fluctuation in the back-
ground as a step function, similar to what is shown in
Fig. 12. In that figure, which is intended to be schematic,
we have shown a flat background model, and added on
top of this the signal distribution as expected from (24),
and also shown the shape of the full model approximation
we will use. Note that nothing in our first approxima-
tion or the derivation below requires nS � N , however
for this approximation to be realistic this will usually be
the case.

Our aim now is to determine how the discovery test
statistic is distributed under these assumptions. Combin-
ing these assumptions with the form of Θ given in (39),
and then choosing the A that maximizes this quantity,
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Figure 12. Schematic depiction of the approximation made
to the model used to derive TSthresh. Specifically we assume
that the signal model is non-zero only within a finite frequency
range, and equal to the background outside this, and within
this range the combined signal and background is flat.

we arrive at:

T̃S =

{
2nS

[
SΦΦ

λB
− 1− ln SΦΦ

λB

]
SΦΦ > λB ,

0 SΦΦ ≤ λB ,
(D1)

where we have defined the average data PSD in this
range:

SΦΦ ≡
1

nS

∑
k∈ΩS

SkΦΦ . (D2)

Note that this should be distinguished from the subin-
terval averaged PSD in (50). Note also as written this
result is independent of ma, so we have suppressed the
dependence on the mass.

Now recall that as each of our PSD measurements are
exponentially distributed, the average PSD, SΦΦ, will fol-
low an Erlang distribution. In detail, we have

P [SΦΦ] =
nnS

S

(nS − 1)!

(
SΦΦ

)nS−1

λnS

B

e−nSSΦΦ/λB . (D3)

We emphasize again that we are taking the data to follow
the background distribution, as in calculating TSthresh

we are interested in the distribution of the discovery test
statistic under the null hypothesis. This explains why
the mean in the above distribution is simply λB .

Now we want to use this to derive the distribution
for T̃S. Before doing so, we need to take a brief aside.
Observe that the distribution for the average PSD given
in (D3) is correctly normalized for SΦΦ ∈ [0,∞). Nev-
ertheless, from (D1), we see that we only get a non-zero
test statistic for SΦΦ > λB , thus in the probability dis-

tribution for T̃S there will be a pileup of probability at
zero accounting for the fact that any time the average

PSD is less than the background value, the maximum
discovery test statistic will be zero. We can determine
the probability of that occurring as:∫ λB

0

dSΦΦ P [SΦΦ] = 1− Γ(nS , nS)

(nS − 1)!
, (D4)

where Γ(nS , nS) is the upper incomplete gamma func-
tion. Keeping this additional probability in mind, we

determine the distribution for T̃S from our distribution
for SΦΦ via a change of variables. As an intermediate
step, observe that we can invert that equation for SΦΦ

in terms of TS using

SΦΦ = −λBW−1

(
− exp

[
−1− T̃S

2nS

])
, (D5)

where W−1 is the lower branch of the Lambert W func-
tion. This function provides an inverse to equations of
the form y = xex, such that x = W (y). As W is multi-
valued, we choose the lower branch W−1, where W < −1,
which implies that SΦΦ ≥ λB . This shows that the
change of variables will not cover the situation where
the average PSD is less than the background, which we
account for using the result of (D4). Using this change
of variables, we then arrive at

P [T̃S] =
nnS

S

2nS !

wnSe−nSw

w − 1
+

[
1− Γ(nS , nS)

(nS − 1)!

]
δ(T̃S) ,

w ≡ −W−1

(
− exp

[
−1− T̃S

2nS

])
. (D6)

At this stage we can move to the asymptotic form of
this result. To invoke Wilk’s theorem, we need to take
the large sample size limit. Here this is controlled by nS ,
and so we take nS → ∞, and in particular nS � TS.
Taking these limits and keeping just the leading term,
we obtain

P [T̃S] =
e−T̃S/2√

8π T̃S
+

1

2
δ(T̃S) . (D7)

This equation represents the asymptotic form of the
discovery test statistic distribution under the background
only hypothesis. We can now directly integrate this dis-
tribution to get the survival function, in detail to find
the probability of a background fluctuation yielding a
test statistic greater than some value:

S[T̃S] ≡
∫ ∞

T̃S

dT̃S
′
P [T̃S

′
] =

1

2
erfc

√ T̃S

2


=1− Φ

(√
T̃S
)
,

(D8)

where erfc is the complementary error function and again
Φ is a zero mean, unit variance Gaussian. This result
verifies (58).
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Appendix E: Sensitivity Scaling for T < τ

The main results from the Asimov dataset analysis per-
formed in Sec. III demonstrated that our sensitivity in-
creased with collection time as T 1/4, which is manifest
in both (55) and (57). Nevertheless in deriving both of
these results, we assumed that T was large enough that
frequency bins fully resolved variations in the signal; ex-
plicitly, we assumed that T � τ , where τ represents the
coherence time of the signal. This assumption was used
in (43) so that we could rewrite the sum over frequency
modes as an integral. As commented in Sec. III E, we
would expect that for T < τ the sensitivity should in-
stead scale as T 1/2 [6]. In this appendix we repeat our
analysis, now assuming the collection time is less than the
coherence time, and demonstrate we recover this scaling
also.

To do so, we start with Θ, from which we can de-
rive 95% limits and the TS of an excess, as described in
Sec. III. In particular, we begin with (41) which is the
furthest we advanced in the Asimov analysis of Θ before
invoking the assumption of T � τ . Repeating that result
for convenience, we have

Θ̃(A) = 2

N−1∑
k=1

[
λtk

(
1

λB
− 1

λk

)
− ln

λk
λB

]
, (E1)

where again λtk is the expected signal plus background,
but with the signal set to its true value.

In the case where T < τ , where we cannot resolve the
signal, we can approximate it as being confined to a single
k mode, say k = kS . We are effectively approximating
T � τ here, much as we did T � τ in the main body,

simply to expose the scaling. This allows us to rewrite
the above as

Θ̃(A) = 2

[
λtkS

(
1

λB
− 1

λkS

)
− ln

λkS
λB

]
, (E2)

as for all other modes λtk = λk = λB , and so the contri-
butions vanish. As in the main body, if we again consider
the case of an emerging signal, then we can assume that
Aπf(v)/(mav) ∼ Atπf(v)/(mav)� λB , which to lowest
order simplifies our result as

Θ̃(A) = 2A(At −A)

(
πf(v)

mavλB

)2

. (E3)

Note the velocity appearing in this result is fixed by the
value of kS .

By relating the collection time to the width of our
frequency bins and hence velocity, we have again that
1/T = mav∆v/(2π), where recall ∆v is the width with
which we can probe in velocity space. Accordingly we
arrive at

Θ̃(A) =
1

2
T 2A(At −A)

(
f(v)∆v

λB

)2

. (E4)

Importantly, note that as f(v) is a normalized pdf and
∆v is roughly the range over which it varies, we have
f(v)∆v ∼ O(1). The exact numerical value is irrelevant:
the key observation is that the combination is no longer
dependent on T . As such we see in this limit Θ̃ ∝ T 2,
which should be contrasted with (44), where Θ̃ ∝ T . As

A ∝ g2
aγγ , when we use Θ̃ to derive the TS or 95% limit

as we did in the main body we will find they both scale
as T−1/2, as expected.
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