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Radiation-Reaction Force on a Small Charged Body to Second Order

Jordan Moxon, Éanna Flanagan
Department of Physics, Cornell University, Ithaca, NY 14853, USA

In classical electrodynamics, an accelerating charged body emits radiation and experiences a
corresponding radiation-reaction force, or self force. We extend to higher order in the total charge a
previous rigorous derivation of the electromagnetic self force in flat spacetime by Gralla, Harte, and
Wald. The method introduced by Gralla, Harte, and Wald computes the self force from the Maxwell
field equations and conservation of stress-energy in a limit where the charge, size, and mass of the
body go to zero, and does not require regularization of a singular self field. For our higher order
computation, an adjustment of the definition of the mass of the body is necessary to avoid including
self energy from the electromagnetic field sourced by the body in the distant past. We derive the
evolution equations for the mass, spin, and center-of-mass position of the body through second
order. We derive, for the first time, the second-order acceleration dependence of the evolution of
the spin (self torque), as well as a mixing between the extended body effects and the acceleration
dependent effects on the overall body motion.
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I. INTRODUCTION

A. Status of our understanding of self force effects

Classical electrodynamics dictates that an accelerating charge emits radiation. This electromagnetic radiation
carries energy and momentum, so conservation laws demand that the charge must experience a force. The force
arises from the charge interacting with its own field, and is known as the ‘radiation-reaction force’ or ‘self force’.
This phenomenon was first derived by Lorentz [1], and later confirmed by Abraham [2] followed by Dirac [3], each
expanding and generalizing the results of the prior work.

Computing expressions for self forces is notoriously complicated, and there is an enormous literature on this field.
The complexity arises in part because self forces describe back-reaction: as a charge accelerates, its radiation perturbs
its motion, in turn altering the details of the radiation. Analytic methods are tractable in the regime in which the
body is small compared to the characteristic lengthscales of the external fields. In this limit, the self force can be
expanded order by order in the charge of the body. In this paper, we use the common nomenclature of referring to
the Lorentz force as the leading order force, the leading correction to the Lorentz force as the ‘first order’ self force,
and so on. Our understanding of radiation reaction in flat spacetime has been developed over most of a century [4–7],
culminating in the rigorous treatment of Gralla, Harte, and Wald [8](henceforth GHW) who carefully analyzed a limit
in which the charge, size, and mass of a body go to zero. The modern focus of the self force community is that of
small masses in curved spacetime, for which Eric Possion’s review article offers a thorough introduction [9].

The self force is of great interest to modern astrophysics. Just as a charged particle interacts with its own field as it
radiates electromagnetic waves, gravitating systems experience self forces from the emission of gravitational radiation.
The gravitational waves produced by binary black hole inspirals and binary neutron star inspirals have been detected
by LIGO [10, 11], and similar binary inspirals are candidate signals for the future space-based detector LISA.

Making full use of the data from LISA will require an improved understanding of self force effects. The gravitational
self force to leading order in the mass of the small body is referred to as the MiSaTaQuWa self force, and was first
derived in [12, 13]. More recent computations have extended these results to second order [14–19], and applied the
self force to a gravitational inspiral, in order to compute the self force [20–22] or numerically evaluate the worldline
[23–25] and the resulting gravitational radiation [26–28]. The computational strategies for evaluating worldlines and
waveforms from gravitational self force are reviewed well in [29, 30]. The techniques for computing leading order, or
adiabatic, waveforms are now known. However, LISA data analysis will require post-adiabatic waveform predictions,
which in turn will also require the subleading self force. This motivates a detailed understanding of the subleading
self force.

Previous derivations of higher-order self forces for non-gravitational fields include those of Chad Galley [31] and
Abraham Harte [32]. Galley’s derivation [31] of the scalar self force uses an effective field technique to derive the
self force to high order for monopolar charges. Harte has derived exact expressions for the self force of an extended
charge distribution in an external field. The relation between Harte’s results and our work is somewhat involved and
is discussed in Sec. III below.

B. The Gralla-Harte-Wald derivation method and its extension

In this paper, we derive the subleading order electromagnetic and scalar self forces acting on a small charged body
moving in flat spacetime. The calculation is motivated by the importance of the gravitational self force, and is a model
for the more complicated computation in the gravitational case. Although subleading self forces have previously been
computed [33, 34], ours is the first to describe extended body effects to subleading order. In addition to providing a
model for the gravitational self force, our calculation may have direct application to systems with extremely strong
electromagnetic fields, as discussed further below.

GHW introduce a one-parameter family of bodies with the property that as the parameter approaches zero, the
mass, charge, and spatial extent of the body approach zero at the same rate. By considering various moments of
the stress-energy conservation and charge conservation equations, integrated over a small region containing the body,
they derive the first-order self force, mass evolution, and spin evolution equations.

Our calculation uses the GHW axioms with slight modifications, which are presented in full in section IV. However,
we found it necessary to modify and refine the definitions of body parameters. GHW defined parameters such as the
total mass-energy, angular momentum, and electromagnetic multipole moments in terms of integrals over a spacelike
hypersurface perpendicular to the center of mass worldline1. At second order, these definitions are problematic, and

1 As usual, there are ambiguities in the precise definition of center of mass worldline [32]. These ambiguities affect the form of the
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we replace them with body parameter definitions in terms of integrals over the future null cones of points on the center
of mass worldline. With these definitions, the body parameters at a given time depend only on the body’s stress-
energy and charge distribution at times within a light crossing time, not on the stress-energy or charge distribution
in the distant past. This is because, in flat spacetime, the field at every point depends only on sources on that point’s
past lightcone.

Our modifications of GHW’s approach are necessary in order to derive second order self force effects. They explicitly
avoid all infrared divergences in the definitions of body parameters associated with radiation emitted from the small
body in the distant past, as we discuss in more detail in Sec. below. Our definitions also allow a more direct
comparison to other interesting techniques, particularly to the non-perturbative equations of motion derived by [32].

C. Discussion of results - applications in physical systems

Our results for the second order evolution of the body’s worldline, mass, and spin are given in Eqs. (77) - (80). They
contain three types of terms: coupling of electromagnetic moments to the external field, self force terms that do not
depend on the higher electromagnetic moments, and terms which describe a mixing between self-field and extended
body effects. Our spin evolution equation contains a self-torque, which was not seen previously at lower orders. Our
results also satisfy a consistency check obtained by comparing with some non-perturbative results of Harte [32].

As an illustrative special case, consider a body with vanishing spin, electromagnetic dipole, and quadrupole, moving
in an external electromagnetic field F (ext)µν . The acceleration of the body can be written as [c.f. Eq. (83) below], in
units with c = 1,

aµ =κF (ext)µλuλ + q

{
2

3
κ2DτF

(ext)µλuλ +
2

3
κ3PµνF (ext)νλF (ext)

λσu
σ

}
+ q2

{
4

9
κ3Dτ

2F (ext)µλuλ +
8

9
κ4PµκF (ext)κλF (ext)

λσu
σ

+
4

9
κ4PµκF (ext)κλDτF

(ext)
λσ uσ +

4

9
κ5PµκF (ext)κρPρλF (ext)λσF (ext)

σωu
ω

}
+O(q3). (1)

Here uµ is the 4-velocity of the body, aµ the 4-acceleration, Dτ ≡ uµ∇µ, and Pµν = δµν + uµuν is the projection
tensor. Also, q is the charge, and κ = q/m is the charge to mass ratio. The right hand side consists of an expansion
in q at fixed κ. The first term is the Lorentz force law, the second term is the reduced-order (see Sec. V A below)
form of the Abraham-Lorentz-Dirac equation, and the third term is our new result.

We now turn to a discussion of the domain of validity of our results. Consider a charged body of mass m, and charge
q, moving in an external field that imparts a characteristic acceleration a, as measured in the body’s instantaneous
rest-frame. Suppose also that the field varies on some timescale or lengthscale τext, again as measured in the body’s
instantaneous rest-frame. Then there are a number of conditions that must be satisfied for our analysis to be valid:

• Small multipole couplings: If the condition

R � τext (2)

is satisfied, where R is the size of the small body, then the leading order couplings (dipole, quadrupole, and so
on) will dominate.

• Weak radiation reaction: The energy radiated in a dynamical time must be small compared to the change in
the body’s energy due to conservative effects. If this is violated then our derivation is no longer valid. In the
non-relativistic region aτext � 1 this requires

τ∗
τext
� 1 (3)

where τ∗ = q2/m. In the relativistic regime aτext � 1, the condition is instead

a2τextτ∗ � 1. (4)

equation of motion at subleading orders, and are associated with the choice of a spin supplementary condition. See Section II B below.
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FIG. 1. An illustration of the parameter space for radiation reaction for charged objects. The horizontal axis is the ratio
τext/τ∗, where τext is the timescale over which the external field is varying, as measured in the instantaneous rest frame of
the particle, and τ∗ = q2/m, where q is the charge and m the mass of the particle. The vertical axis is aτ∗, where a is the
acceleration due to the external field. The motion is relativistic in the region aτext � 1, in the upper right hand of the figure.
Radiation reaction effects are large in the hashed (red) regions where τ∗/τext & 1 or a2τextτ∗ & 1. These regions lie outside of
the domain of validity of our analysis, and the second order self force is negligible except near the boundaries of these regions.
In the dotted (red) region below and to the left of the dashed line, the radiation from the particle is not in a classical regime
and our analysis does not apply. We show using shaded figures the parameters of protons in the Large Hadron Collider, protons
in very high intensity lasers, and electrons in the high magnetic fields of magnetars. The gradation in the allowed wedge region
indicates the strength of the radiation-reaction effect, which is strongest just before it crosses into the disallowed ‘large radiation
reaction’ regime.

• Classical radiation regime: The energy radiated in a dynamical time must be large compared to the energy
radiated per quantum, so that many quanta are emitted in a dynamical time. In the non-relativistic regime
aτext � 1 the corresponding requirement is

aτext � α−1/2, (5)

where α = q2/}, and the relativistic regime aτext � 1 it is

aτext � α−1/4. (6)

For elementary particles typically α� 1 while for macroscopic charged bodies α� 1.
Our derivation method employs a certain limiting procedure which automatically enforces the conditions (2),(3),

and (4). The two dimensional parameter space of acceleration a and external timescale τext is illustrated in Fig 1.
The solid line aτext = 1 is the boundary between non-relativistic and relativistic motion; the lower left region is
non-relativistic while the upper right is relativistic. The shaded regions on the left and at the top correspond to
strong radiation reaction and lie outside our domain of validity, by (3) and (4). Our second order self force will be
significant only near these boundaries. The region to the left of the dashed line is disallowed since the radiation is
not classical, by (6) (assuming an elementary particle so that α � 1). Also shown on the plot are some illustrative
examples:

• A proton at the Large Hadron Collider, for which a ∼ 3 · 1012 s−1, τext ∼ 1.4 · 10−8 s, τ∗ ∼ 6 · 10−27 s. In this
case we have a2τextτ∗ ∼ 10−9, so higher order radiation reaction effects are negligible. Lead ions in the LHC
experience a similar acceleration, and have a τ∗ almost two orders of magnitude larger, τ∗ ∼ 2 · 10−25 s, so the
scale of effect is a2τextτ∗ ∼ 10−8.
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• For high-intensity laser systems with intensities in the range 1019 W/cm2−1022 W/cm2 [35–37], the acceleration
scale for a proton is then in the range a ∼ 1017 s−1− 1021 s−1, and using τext ∼ 10−16 s and τ∗ ∼ 6 · 10−23 s gives
a2τextτ∗ in the range 10−8-100. At the upper end of this range, second order radiation reaction effects could
become significant. [38]

• Turning to astrophysics, the magnetic fields near certain neutron stars, referred to as “magnetars”, can be
extremely large, B ∼ 108 − 1011T. At the high end of this range, higher order self force effects could easily
become large even for slowly moving particles.

II. MOTION OF A FINITE BODY COUPLED TO AN EXTERNAL FIELD

In this section, we consider a finite extended body moving in an external field in flat spacetime. We will review the
governing equation, the non-perturbative definition of the body parameters. In the following sections we will review
the non-perturbative equations of motion for the body moments, and specialize to the limit of a small body to obtain
explicit results.

A. Governing equations

The system we are considering is a finite, extended, charged body coupled to an external field in flat spacetime.
The extended body is described by a matter stress-energy tensor TµνM , which we assume is smooth and which vanishes
outside a world tube of compact spatial support. We will consider both electromagnetic and scalar self forces.

The coupling to either type of field is governed by the body’s charge, which is described by a charge current
density jµ such that ∇µjµ = 0 (electromagnetic case), or a scalar charge density ρ (scalar case). We assume that the
charge current or density functions are also smooth and of compact spatial support. These fields obey the standard
inhomogeneous wave equations for the respective type of field:

∇[µFλσ] = 0, (7a)

∇µFµν = 4πjν (E&M case), (7b)

and

∇µ∇µΦ = −4πρ (scalar case). (8)

The total stress-energy tensor Tµν is given by the sum of the matter contribution TM µν and the field contribution
TF µν . This stress energy contribution for the electromagnetic field is

4πTF µν = FµλF
λ
ν −

1

4
gµνFσλF

σλ, (9)

or, for the scalar field, is

4πTF µν = ∇µΦ∇νΦ− 1

2
gµν∇λΦ∇λΦ. (10)

We assume that this total stress-energy is conserved:

∇µ (TµνM + TµνF ) = 0. (11)

We choose to divide the field into an external field F (ext)µν (Scalar: Φ(ext)), and a self field F (self)µν (Scalar: Φ(self))
which is the retarded solution to the field equations (7) or (8) with the given source. The external field may be
expressed as, for the electromagnetic case,

F (ext)
µν = Fµν − F (self)

µν , (12)

or, for the scalar case,

Φ(ext) = Φ − Φ(self) . (13)
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Inserting the decompositions (12),(13) into the quadratic expressions (9),(10) for the field stress energy tensor, we
find following GHW that the field stress energy can be expressed as the sum of three terms:

TµνF = Tµν(self) + Tµν(cross) + Tµν(ext). (14)

Here Tµν(self) is quadratic in the self field, Tµν(ext) is quadratic in the external field, and Tµν(cross) is a cross term which

depends on both the self field and the external field.
In the following subsection we will discuss the definition of body parameters such as mass, momentum, and spin.

For those definitions, we will use the sum of the matter and self stress energy tensors,

Tµν = TµνM + Tµν(self), (15)

excluding the cross and external contribution, following GHW. The conservation of stress-energy (11) can be rewritten
in terms of this quantity as:

∇µTµν = F (ext)νµjµ (E&M case), (16a)

∇µTµν = Φ(ext);νρ (scalar case). (16b)

The motivation for choosing the definition (15) for the body parameter definitions is that in the limit when the body
becomes small, the fields Tµν , jµ, and ρ vary over the small body lengthscale, while the external fields F (ext)µν and
Φ(ext);µ vary only on a longer lengthscale set by the external field.

The only equations that are needed for our derivation of the self force are the field equations (7) and (8), the stress
energy conservation equation in the form (16), and the definition of the self-field as the retarded field.

B. Non-perturbative definition of body parameters: the Dixon-Harte formalism

We now turn to a discussion of the definition of body parameters for a finite body, including the body’s mass,
momentum, spin, and choice of representative worldline.

For a conserved stress energy tensor Tµν in flat spacetime of compact spatial support, there is a natural choice of
momentum and spin, namely

Pµ(Isolated) =

∫
Σ

TµνdΣν , (17a)

Sµν(Isolated)(z
µ) =2

∫
Σ

(x− z)[µT ν]λdΣλ, (17b)

where Σ is any spacelike hypersurface. The center of mass worldline is then the set of points zµ which satisfy

Sµν(Isolated)(z
µ)P(Isolated)ν = 0. (18)

Equation (18) is known as a spin supplementary condition, and generalizations of this condition will be discussed
below.

However, this treatment is not applicable to our present context for two reasons:

• First, the stress-energy tensor (15) that we wish to use in the definitions is not conserved, instead there is a
forcing term from the external field on the right hand side of Eqs. (16). Hence, the expressions (17) will no
longer be independent of the choice of hypersurface Σ, and a specific choice of hypersurface Σ will be required.
This will be discussed further below.

• Second, the stress energy term (15) that we will use does not have compact spatial support, due to the self
field contribution. Hence, there is no guarantee that the expressions (17) are convergent and well defined. The
convergence of these integrals is discussed further below.

There exists a general, fully non-perturbative set of definitions of worldlines, electromagnetic moments, and stress-
energy moments of an extended body. These definitions were introduced by Dixon [39, 40] in the context of curved
spacetime, and extended by Harte [32]. We follow the Dixon-Harte framework and definitions, with some modifications
that we discuss below. The remainder of this section reviews those aspects of the Dixon-Harte framework that are
most important for our derivation.
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Past light cone 

FIG. 2. An illustration of our definitions of total momentum and spin of an extended body. The body is confined to the
world tube shown, but is coupled to a long range field (scalar or electromagnetic) that extends beyond the worldtube. Given
a representative worldline zµ(τ), shown as a dashed line, we define momentum and spin by integrating over future null cones
Στ of points on the worldline. The field stress energy tensor at a point xµ̃ on such a null cone will depend on the sources in
the intersection of its past lightcone with the worldtube, shaded in gray. This region is confined to within the region of the
worldtube consisting of times τ ′ with |τ − τ ′| smaller than a light-crossing time.

Before discussing the definitions of body parameters, we review the covariant bitensor formalism [9]. We work in
flat spacetime, but we will be using non-Lorentzian coordinates. We will denote by xµ̃ a field point off the worldline,
and we use tilded indices for tensors at such points. We will denote by zµ(τ) a point on the worldline (figure 2), and
use normal (untilded) indices for the tensors at such points. General bitensors are functions of both zµ and xµ̃, and
can have one or more indices of either type.

An important set of bitensors are Synge’s worldfunction σ(x, z) and its derivatives. Synge’s worldfunction is defined
only for pairs of points that are sufficiently close that there exists a unique geodesic that joins them. For this unique
geodesic, σ(x, z) measures one-half of the square of the geodesic distance between the two points. It is negative for
timelike separated points, positive for spacelike separated points, and zero for null-related points. The first covariant
derivative of Synge’s worldfunction can be used to define a covariant version of a position vector σµ(x, z) ≡ ∇µσ(x, z),
where the derivative is with respect to z. We will also find useful the second derivatives, σµλ(x, z) ≡ ∇λ∇µσ and
σµ̃λ ≡ ∇µ̃∇λσ.

In the Dixon-Harte framework, one chooses a worldline zα(τ) for the body, where τ is a parameter that need not be
proper time, and a choice of a unit vector nα(τ) along the worldline with nα(d/dτ)α = −1. The formalism supplies
conditions that eventually determine the worldline and parameterization. Given these choices, one defines a foliation
of spacetime by hypersurfaces Στ as follows. Each hypersurface is labeled by the parameter τ at which it intersects
the worldline, so zα(τ) ∈ Στ , and is generated by geodesics starting on the worldline that are orthogonal to nα.

The Dixon-Harte definitions of the momentum and spin of an extended body are

PD
µ (τ) =

∫
Στ

dΣµ̃(x)T µ̃ν̃M (x)Kν̃µ(x, zτ ), (19a)

SD
µν(τ) =2

∫
Στ

dΣµ̃(x)T µ̃ν̃M (x)Hν̃[µ(x, zτ )σν](x, zτ ), (19b)
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where

H µ̃
ν =− (σνµ̃)

−1
, (20a)

Kµ̃
ν =H µ̃

λσ
λ
ν . (20b)

In flat spacetime, these definitions reduce to:

PµD(τ) =

∫
Στ

dΣµ̃(xλ̃)T µ̃ν̃M (xλ̃)gν̃
µ(xλ̃, zλ(τ)), (21a)

SµνD (τ) =2

∫
Στ

dΣµ̃(xλ̃)T µ̃ν̃M (xλ̃)gν̃
[µ(xλ̃, zλ)σν](xλ̃, zλ), (21b)

where gµν̃ ≡ −σµν̃ is the parallel propagator bitensor in flat spacetime.
We modify the Dixon-Harte framework in the following ways.

• We specialize the parameter τ to be the proper time.

• We dispense with the unit vector nα(τ).

• We use the stress energy tensor Tµν of Eq. (15) instead of the matter stress energy tensor TµνM .

• We use null hypersurfaces Στ that are generated by the set of future null geodesics starting at worldline point
zα(τ). This family of null hypersurfaces foliates the convex normal neighborhood of the worldline, which covers
the entire manifold for the flat spacetime case we consider in this paper.

Our definitions are then

PµB(τ) =

∫
Στ

dΣµ̃(xλ̃)T µ̃ν̃(xλ̃)gν̃
µ(xλ̃, zλ(τ)), (22a)

SµνB (τ) =2

∫
Στ

dΣµ̃(xλ̃)T µ̃ν̃(xλ̃)gν̃
[µ(xλ̃, zλ)σν](xλ̃, zλ), (22b)

Here the subscript B denotes “bare”; these definitions will be replaced by renormalized momentum and spin in Sec.
IV F below.

The motivations for our choice of foliation of future null cones are as follows. The integrals (17) contain a contri-
bution from the stress energy tensor of the self field from Eq. (15). That self field, evaluated at a point x on the
hypersurface Στ over which one integrates, in turn depends on the body’s charge distribution on the past light cone
of x. When one uses a spacelike hypersurface Στ , the dependence on the body’s charge distribution extends into
the distant past, as one takes x further and further out on the spacelike hypersurface. By contrast, for a future null
cone, Στ , the dependence on the body’s charge distribution is limited to times within a light-crossing time of τ , as
illustrated in figure (2). In addition, we show in Appendix A that the integrals (22) are well defined and finite when
the hypersurfaces Στ are chosen to be future null cones.

There are three choices we have alluded to in the above definition of momentum and spin: the worldline z(τ)
(which is fixed by the spin supplementary condition), the choice (15) of body stress-energy tensor, and the choice
of the hypersurface of integration. As we have argued, not all choices give rise to physically acceptable definitions.
Within those that do there is considerable freedom. This freedom corresponds to different ways of describing a given
dynamical system. Different choices will give rise to different forms of the laws of motion, but will not change any
physical predictions.

We also define the bare rest mass mB by

m2
B ≡ −P

µ
BPB µ. (23)

We define the 4-velocity in the usual way as uµ(τ) = dzµ/dτ , with uµuµ = −1, and note that

PµB 6= mBu
µ, (24)

beyond leading order.
The definitions (22) are valid for any choice of worldline zτ . To pick out a unique worldline one must specify a spin

supplementary condition [39, 40], which takes the generic form

SµνB (τ)ων = 0, (25)
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where ων is some vector field defined on the worldline. Such a spin supplementary condition defines a center of mass
worldline [41] [42]. Our spin supplementary condition is defined in terms of a renormalized spin Sµν , which we define
in Eq. (63) below. Our spin supplementary condition is

Sµνuν = 0, (26)

which reduces at leading order in the size and mass of the body to the condition (25) with ων = uν .

C. Electromagnetic multipole moments

We now turn to a discussion of electromagnetic multipole moments. We define the total (conserved) bare charge
qB , charge moment J µB , dipole QµνB , and quadrupole QµνρB of the body to be

qB(τ) = qB =

∫
Στ

dΣν̃j
ν̃ , (27a)

J µB (τ) =

∫
Στ

dΣν̃g
ν̃
λu

λjµ̃gµ̃
µ, (27b)

QµνB (τ) =−
∫

Στ

dΣν̃g
ν̃
λu

λjµ̃gµ̃
µσν , (27c)

QµνρB (τ) =

∫
Στ

dΣν̃g
ν̃
λu

λjµ̃gµ̃
µσνσρ. (27d)

In these expressions, the arguments of all the bitensors gν̃λ, σν , etc. are (x, z(τ)), while the argument of jµ̃ is (x).
The definition (27c) has a minus sign due to the properties of Synge’s worldfunction (gµ

ν̃σµ = −σν̃).
For the Dixon moments [40] defined in terms of a spacelike hypersurface generated by geodesics orthogonal to nµ(τ),

the bitensor σµ(x, z(τ)) is orthogonal to nµ(τ) for all x in Στ , and hence all of the charge moments are orthogonal to
nµ in all indices following the first index:

QµνD nµ = QµνρD nµ = QµνρD nρ = 0. (28)

Since we integrate over future-directed null cones, there is no such orthogonality condition for our moments (27). In
addition, our dipole (27c) contains both a symmetric and an antisymmetric part, unlike the case for the standard
definition which includes an explicit antisymmetrization.

The number of independent components of the electromagnetic dipole (27c) and quadrupole (27d) are nominally
16 and 40, respectively. When charge conservation is imposed in Sec. VI A, we shall see that these reduce to 10
and 22. However, these are still larger than the number of degrees of freedom for the standard definitions of the
electromagnetic dipole and quadrupole, which are 6 and 14. Our bare electromagnetic moments (27) are convenient
for our derivation in Sec. VI. However, we shall express our final results for the equations of motion in terms of a set
of renormalized, projected moments, defined in Sec. IV F, which have the standard number of degrees of freedom.

D. Scalar multipole moments

For the scalar case, we define an analogous set of bare moments, based on integrals over the scalar source ρ,

qSB(τ) =

∫
Στ

dΣν̃u
ν̃ρ, (29a)

QµSB(τ) =−
∫

Στ

dΣν̃g
ν̃
λu

λρσµ, (29b)

QµνSB(τ) =

∫
Στ

dΣν̃g
ν̃
λu

λρσµσν . (29c)

All other details regarding the absence of an orthogonality condition, and the comparison to standard multipoles are
similar to those for the electromagnetic multipoles. Here the subscript S denotes “scalar” and B denotes “bare”.

The multipole moments (27) and (29) that we are defining are non-standard. However, they contain the same
information as standard multipole moments which are defined in terms of integrals over spacelike hypersurfaces.
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Some insight into the relation between the two sets of moments can be obtained by considering the leading order
expansion for Φ in terms of its source ρ in a Lorentz frame (t, xi):

Φ(t, r, ni) =
1

r

∫
d3yρ(t− r + n · y,y) +O

(
1

r2

)
, (30)

where

r = |x| and ni =
xi

r
. (31)

Taylor expanding the density about the retarded time t− r gives the usual multipole expression

Φ(t, r, ni) =
1

r

∞∑
k=0

[
1

k!
ni1 . . . nik (32)

×
∫
d3yyi1 . . . yikρ(k)(t− r,y)

]
+O

(
1

r2

)
, (33)

where ρ(k) denotes the kth time derivative. Taylor expanding instead about r − t+ y yields

Φ(t, r, ni) =
1

r

∞∑
k=0

[
1

k!

∫
d3y(niyi − y)kρ(k)(t− r + y,y)

]
+O

(
1

r2

)
, (34)

which now involves integral over the future null cones. The integrals that appear in (34) are precisely time derivatives
of our nonstandard multipoles (29)

III. NON-PERTURBATIVE EQUATIONS OF MOTION

This paper focuses primarily on a perturbative expansion of the self force. It is informative, though, to consider
the extent to which exact computations can be used to determine radiation-reaction effects. In this section, we derive
an exact law of motion for extended bodies, which is used indirectly in our derivation in the remainder of the paper.
Our exact law is a modification of an exact law of motion due to Harte [32, 39], which we review. We use Harte’s
result to perform a consistency check of our results in Sec.VI below.

A. Equation of motion for bare momentum

First, we define a generalized momentum Pτ (~ξ) as a linear map on vector fields ξµ̃ via

Pτ (~ξ) =

∫
Στ

T µ̃ν̃ξµ̃dΣν̃ . (35)

Here, as before, we choose the surface Στ of integration to be future-directed null cones. When we specialize ~ξ to
be a Killing vector field ξµ̃ = gµ̃

µ or ξµ̃ = 2gµ̃
[σσν], the resulting quantities (35) yields the definitions (22) of linear

momentum and spin [32].
To compute the time derivative of this generalized momentum, we use the general identity [32]

d

dτ

∫
Στ

vµ̃dΣµ̃ =

∫
Στ

∇µ̃vµ̃mλ̃dΣλ̃ +

∫
∂Στ

vµ̃mλ̃dSµ̃λ̃, (36)

valid for any foliation Στ and any vector field vµ̃. Here mµ̃ is any vector field that satisfies mλ̃(dτ)λ̃ = 1, dSµ̃λ̃ = dS[µ̃λ̃]

is the surface area element, and the second term of the right hand side should be interpreted as a limit of integrals
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over the boundaries of finite regions of Στ . Applying this identity with vµ̃ = T µ̃ν̃ξν̃ gives

d

dτ
Pτ (~ξ) =∫

Στ

∇µ̃T µ̃ν̃ξν̃mλ̃dΣλ̃ +
1

2

∫
Στ

T µ̃ν̃(Lξg)µ̃ν̃m
λ̃dΣλ̃

−
∫
∂Στ

T (self)ν̃µ̃ξµ̃m
λ̃dSν̃λ̃, (37)

In the last term, we’ve removed the matter contribution to the stress energy tensor, since it has compact spatial
support and so does not contribute to the boundary integral in the asymptotic limit. Using Eq. (16a) we can rewrite
the first term of (37) in terms of the external field. Specializing to Killing vector fields, for which the second term
vanishes, gives

d

dτ
Pτ (~ξ) =

∫
Στ

(
F (ext)µ̃ν̃ξµ̃jν̃

)
mλ̃dΣλ̃

−
∫
∂Στ

T (self)µ̃ν̃ξν̃m
λ̃dSµ̃λ̃. (38)

To obtain an explicit equation of motion for the worldline, Eq. (38) must be supplemented by the spin supplementary
condition (26) that determines the relationship between the 4-velocity uµ = dzµ/dτ of the worldline and the 4-
momentum PµB . To incorporate this condition we proceed as follows. First, we write down the following identities
that are valid for any choice of vector field PµB along the worldline

mBa
κ =aκ (mB + PµBuµ) + PµλDτP

λ
B

− PκνDτ

(
PνλPλB

)
, (39a)

DτmB =Dτ (mB + PµBuµ)− uµDτP
µ
B − aµP

µ
B . (39b)

Here Dτ ≡ uµ∇µ is the covariant derivative along the worldline, aκ = Dτu
κ is the 4-acceleration, and

Pµλ = δµλ + uµuλ (40)

is the projection tensor onto the space of vectors orthogonal to the 4-velocity. The second term in each of Eqs (39a),
(39b) can be obtained from (38) with the choice ξµ̃ = gµ̃

µ and the replacement d/dτ → Dτ . For the first and third
terms, we use the general identity (36) specialized to

vµ̃ = σµT µ̃λ̃nλ̃, (41)

where nλ̃ = −(dτ)λ̃ is the null normal to the future null cone Στ . Using ∇µ̃σµ = −gµ̃µ, Eq. (16a), and the identity
for any vector field vµ̃: ∫

Στ

vµ̃dΣµ̃ = −
∫

Στ

vµ̃nµ̃m
λ̃dΣλ̃, (42)

we obtain an expression for the bare momentum:

PµB(τ) =Dτ

∫
Στ

σµT µ̃λ̃nλ̃dΣµ̃

+

∫
Στ

σµ
[
F (ext)λ̃ρ̃jρ̃ − T µ̃ρ̃∇µ̃nρ̃mλ̃

]
dΣλ̃

−
∫
∂Στ

σµm[λ̃T µ̃]ρ̃nρ̃dSµ̃λ̃. (43)

Using the method of Appendix A, one can show that the boundary term in (43) vanishes when we choose ~m = ∂/∂τ in
the coordinates constructed in VI A. The expression (43) can now be substituted into the right hand sides of Eqs. (39a)
and (39b) to give explicit evolution equations for the worldline zµ(τ) and bare mass mB(τ).

In Sec. V B below we will describe a limit in which the charge, mass, and size of the body all go to zero. In this
limit, the right hand sides of Eqs. (38) and (43) can be expanded in terms of electromagnetic multipole moments
discussed in Sec. II C, thereby yielding the explicit form of the equation of motion in this limit. This calculation is
carried out in Sec. VI. Some of our calculations will proceed directly by taking moments of the field equations (7)
and (16), rather than using Eqs. (38) and (43).
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B. Equation of motion for Harte’s momentum

We now describe an alternative non-perturbative equation of motion for the momentum of extended charged bodies
in Minkowski spacetime, due to Harte [32]. It is based on Harte’s generalized momentum,

PH τ (~ξ) =

∫
Στ

T µ̃ν̃M ξµ̃dΣν̃ + Eτ (~ξ). (44)

Here the first term coincides with our bare generalized momentum (35), but omits the self-field contribution. The

second term Eτ (~ξ) is a kind of self-field contribution, and is given by Eq.(184) of Ref. [32]. It is a double integral over
spacetime that is quadratic in the source jµ̃, involves a Greens function, and depends on the source only at times τ ′

that are within a light-crossing time of τ . Its explicit form will not be needed in what follows.
Harte’s non-perturbative equation of motion is

d

dτ
PH τ (~ξ) =

∫
Στ

dΣν̃m
ν̃
(
F λ̃ρ̃ − F λ̃ρ̃S

)
ξλ̃jρ̃, (45)

for Killing vectors ~ξ, where F λ̃ρ̃S is the average of retarded and advanced self-fields. Harte incorporates the spin-
supplementary condition by solving explicitly for the relationship between the 4-velocity and momentum with a
choice of parameter τ which differs from proper time. We find it more convenient to proceed instead as described
above using the general identity (39) and choosing τ to be proper time.

We shall make use of Harte’s equation (45) as a partial consistency check of our results. By subtracting Eqs.(37)
and (45), we obtain ∫

Στ

dΣν̃m
ν̃F λ̃ρ̃R ξλ̃jρ̃ +

∫
∂Στ

T (self)µ̃ν̃ξν̃m
λ̃dSµ̃λ̃

=

(
Some total

time derivative

)
, (46)

where F λ̃ρ̃R is the radiative self-field, one half the retarded field minus one half the advanced field. We compute the
left hand side of explicitly in terms of our multipole expansion and verify that it is a total time derivative at each
order in the expansion; see Secs. VI D 2 and VI E 2 below.

IV. THE POINT PARTICLE LIMIT IN THE ELECTROMAGNETIC CASE

A. One parameter families of solutions: the Gralla-Harte-Wald axioms

We will consider a small charged body interacting with an external electromagnetic field. To describe the limit in
which the body becomes very small, we consider a one-parameter family of solutions of the field equations for the
body, labeled by a dimensionless parameter λ. Following GHW, we impose the following axioms on the family of
solutions. The axioms enforce that the mass and charge of the body go to zero as the size goes to zero.

Axiom 1 There exists a one-parameter family of fields consisting of the Maxwell tensor Fµν(λ, xµ), the charge current
density jµ(λ, xµ), and the stress-energy tensor TµνM (λ, xµ), which satisfy the Maxwell, charge current conservation and
stress-energy conservation equations:

∇νFµν(λ, xµ) =4πjν(λ, xµ), (47a)

∇[µFνλ] =0, (47b)

∇µjµ(λ, xµ) =0, (47c)

∇µTµν(λ, xµ) =0, (47d)

where Tµν ≡ TµνM + TµνF , and TµνF is given by (9). These fields are defined on the open interval 0 < λ < λ0, for some
λ0.
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Axiom 2 We assume there exist functions j̃µ(λ, t,Xi) and T̃µνM (λ, t,Xi) such that for some global Lorentz frame
coordinates (t, xi):

jµ(λ, t, xi) =λ−2j̃µ
(
λ, t,

xi − zi(λ, t)
λ

)
, (48a)

TµνM (λ, t, xi) =λ−2T̃µνM

(
λ, t,

xi − zi(λ, t)
λ

)
, (48b)

where j̃µ and T̃µνM are jointly smooth all of in their arguments, including at λ = 0, and zi(λ, t) is the center-of mass
worldline defined by (26).

Axiom 3 All of the fields Fµν , jµ, and TMµν are jointly smooth in xµ and λ away from λ = 0. There exists a worldtube

W of compact spatial support such that the supports of j̃µ and T̃µνM lie inside W for all λ.

Axiom 4 The external field F (ext)µν defined by (12) is jointly smooth in xµ̃ and λ, including at λ = 0.

B. Discussion of and motivation for the axioms

As in GHW, the axioms 1-4 are intended to describe a family of physically reasonable charge current and stress-
energy distributions, such that the limit λ → 0 represents a pointlike object. At any finite λ, however, the object is
nonsingular with smooth (in particular, non-distributional) sources and a finite self field. Our goal is to derive a set
of ordinary differential equations that govern the motion of the object in the limit of small λ.

The axioms enforce a limit where the size L of the body is much smaller than the scale2 Lext of variation of the
external field F (ext)µν . Thus, there is a separation of scales

L << Lext. (49)

One can think of the parameter λ in our one parameter family of solutions as being the ratio L/Lext, since the size
of the body decreases linearly with λ, from Eqs. (48a) and (48b). As discussed by GHW, a crucial feature of the
assumed one-parameter family is that the mass and charge of the body go to zero as λ→ 0, at the same rate as the
size.

Our axioms are identical to those of GHW except for the status of the worldline. GHW assume the existence of a
λ-independent worldline zi(t) for which a version of (48), with zi(λ, t) replaced by zi(t), is satisfied. By contrast, we
define a one-parameter family of worldlines zi(λ, t) according to the general prescription described in Sec. II B. The
two approaches coincide at leading order, but at subleading order the λ-dependent worldline is more convenient.

Axiom 2 appears to violate Lorentz invariance by the choice of a specific Lorentz frame. However, if this assumption
is satisfied in some Lorentz frame, it is satisfied in all Lorentz frames, so it does not violate Lorentz invariance. To
see this, consider the boosted frame xµ̄ = (t̄, xī) = Λµ̄µx

µ, in which the worldline is xī = wī(λ, t̄) for some function

wī. Then, in the boosted frame, an equation of the form (48a) is satisfied, where the function j̃µ is replaced by the
function j̃µ̄ given by

j̃µ̄(λ, t̄,X ī) = Λµ̄µ

×j̃µ
[
λ,Λ0

0̄t̄+ Λ0
īw

ī(λ, t̄) + λΛ0
īX

ī,Λij̄X
j̄
]
. (50)

By inspection the function j̃µ̄ is jointly smooth in all of its arguments, including at λ = 0. A similar argument applies
to Eq. (48b).

C. Consequence of axioms: the near zone and far zone limits

Following GHW, it is instructive to consider two different limits of λ→ 0 that give complementary descriptions of
the interaction of the body with the external field.

2 This scale can either be the characteristic length over which F (ext) varies, or the characteristic time
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The limit λ→ 0 at fixed rescaled coordinates

(T,Xi) ≡
(
t,
xi − zi(t, λ)

λ

)
, (51)

describes the “near zone” limit. It describes what would be measured by observers at distances from the object of
order the object’s size L. In this limit, points with fixed global Lorentzian coordinates xi become more and more
distant as λ → 0. The lengthscale Lext of the external field goes to infinity, while the size L of the body remains
finite.

The limit λ → 0 at fixed (t, xi) describes the “far zone” limit. It describes what would be measured by observers
at distances from the object of order Lext. In this limit, points at fixed rescaled coordinates (T,Xi) approach the
worldline xi = zi(0, t) as λ→ 0. In particular, the object’s size L → 0 as λ→ 0 at fixed (t, xi).

The GHW axiom approach is closely related to the matched asymptotics method often used in gravitational cal-
culations [9, 12, 43–45]. The ‘near zone’ expressions are analogous to an expansion in positive powers of the radial
coordinate, valid near the body, and the ‘far zone’ expressions are analogous to the expansions approximating the
body as a pointlike source.

We now discuss the limiting behavior of the self-field as λ→ 0. The assumptions of subsection II A do not demand
smoothness of the matter fields jµ and Tµν in λ at λ = 0. As shown by GHW, it follows from axioms 1-4 that the
limits λ → 0 of the matter fields jµ and Tµν exist as distributions. This result reflects the desired “point particle”
nature of the λ→ 0 limit of the body. However, axiom 4 demands that in the limit λ→ 0, the external field remains
smooth in the coordinates xi. This ensures that the external field possesses a well-defined value at the worldline, even
in the point particle limit.

The limiting behavior of the self field is derived in the appendix of [8], and can be described as follows. There exists

a function F̃ (self)µν , which is jointly smooth in its arguments, including at λ = 0, such that

F (self)µν(λ, t, xi) = λ−1F̃ (self)µν(λ, t,Xi). (52)

We define a tilded version of the full electromagnetic field Fµν(λ, t, xi), by

F̃µν(λ, t,Xi) = λFµν
[
λ, t, zi(t, λ) + λXi

]
. (53)

It follows from (52) that this full field can be written as

F̃µν(λ, t,Xi) =F̃ (self)µν(λ, t,Xi)

+ λF (ext)µν(λ, t, zi + λXi), (54)

so as λ→ 0 at fixed Xi, F̃µν → F̃ (self)µν . It also follows for (52) and (9) that the stress-energy tensor (15) obeys an
axiom of the form (48b)

Tµν(λ, t, xi) = λ−2T̃µν
(
λ, t,

xi − zi(λ, t)
λ

)
, (55)

where the right hand side is a smooth function of its arguments.

D. Limiting behavior of body parameters

We next specialize the general definitions (27) of electromagnetic multipole moments to the one-parameter family
of charge currents. We find from Eq.(48b) that

qB(λ) =λq̃(λ), (56a)

J µB(τ, λ) =λJ̃ µ(τ, λ), (56b)

QµνB (τ, λ) =λ2Q̃µν(τ, λ), (56c)

QµνλB (τ, λ) =λ3Q̃µν(τ, λ), (56d)

where the rescaled moments q̃, J̃ µ, Q̃µν , and Q̃µνλ have Taylor expansions about λ = 0 that start at O(λ0), for
example

q̃(λ) = q̃(0) + λq̃(1) + . . . . (57)
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The result (56) is one of the principal benefits of using the one-parameter family of solutions: in the limit λ → 0,
successively higher multipoles are suppressed by a higher and higher power of λ. Hence, the limit enforces a multipole
expansion.

Similar results apply to the 4-momentum PµB (22a) and spin SµνB (22b), which can be written as

PµB(τ, λ) =λP̃µ(τ, λ), (58a)

SµνB (τ, λ) =λ2S̃µν(τ, λ), (58b)

where P̃µ and S̃µν have nonzero limits as λ→ 0. We define a rescaled mass in terms of the rescaled momentum P̃µ,

m̃2 = −P̃µP̃µ, (59)

which satisfies λm̃ = mB , and has a finite, non-zero value in the limit λ→ 0.

E. Axioms in the scalar case

We use a set of assumptions closely related to axioms 1-4 for the scalar self force derivation. We replace the charge
current jµ with the charge density ρ, the field strength Fµν with the first derivative of the scalar field Φ;µ, and
Maxwell’s equations (7) with the Klein-Gordon wave equation (8).

The scalar charge moments (29) can be written as

qSB(λ) =λq̃S(λ), (60a)

QµSB(τ, λ) =λ2Q̃µS(τ, λ), (60b)

QµνSB(τ, λ) =λ3Q̃µνS (τ, λ), (60c)

where q̃S , Q̃µS , and Q̃µνS have finite, non-zero limits as λ→ 0, just as for the electromagnetic moments above.

F. Renormalized projected body parameters

In this section we define a set of renormalized and projected body parameters - momentum, angular momentum
and electromagnetic moments - that have a number of desirable properties:

• The final equation of motion is simpler when expressed in terms of these body parameters rather than the
original (bare) body parameters.

• The projected parameters have the conventional number of independent degrees of freedom (6 for electromagnetic
dipole, 14 for quadrupole), unlike our original definitions (27) which had 10 degrees of freedom for the dipole
and 22 for the quadrupole.

• The renormalizations are chosen such that the final equations of motion depend only on the renormalized
projected parameters.

Our definitions of renormalized projected body parameters are perturbative and are limited to the context of
the one-parameter family of solutions. It would be interesting to find more general, non-perturbative definitions that
reduce to these definitions in the λ→ 0 limit. We have been unable to do so. In particular, our perturbative definitions
of linear and angular momentum differ from those obtained by taking the λ → 0 limit of Harte’s non-perturbative
definitions (44), at second order in λ.

The renormalized mass is given by

m =− P̃µuµ − λuµF (ext)µ
νQ̃

νλuλ − 2
3λ

2q̃aµDτ

(
PµνQ̃λνuλ

)
− λ2uµF

(ext)µ
ν;λPληQ̃νησuσ + λ2uµF

(ext)µ
νQ̃

νληaλuη +O(λ3), (61)

where uµ is the 4-velocity and aµ the 4-acceleration of the worldline, Pµν = δµ
ν + uµu

ν is the projection tensor, and

Dτ = uµ∇µ. The rescaled electromagnetic dipole Q̃µλ and quadrupole Q̃µνλ which appear here are defined in Eq.
(56).
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Bare moments PµB (22a) : 4 mB (23) : 1 SµνB (22b) : 3 qB (27a) : 1 J µB (27b) : 0 QµνB (27c) : 10 QµνλB (27d) : 22

Rescaled bare moments P̃ (58a) : 4 m̃ (59) : 1 S̃µν (58b) : 3 q̃ (56a) : 1 J̃ µ (56b) : 0 Q̃µν (56c) : 10 Q̃µνλ (56d) : 22

Renormalized projected moments Not required m (61) : 1 Sµν (63) : 3 q (64) : 1 not required Qµν (65) : 6 Qµνλ (68) : 14

TABLE I. A summary of the various body parameters we have defined. Each cell lists the symbol for the quantity, the number
of the equation in which the quantity is defined, and the number of independent components in the quantity after the charge
conservation and the spin supplementary condition have been imposed.

Note that P̃µuµ = −m̃ + O(λ), so m and m̃ coincide to leading order. In the limit λ → 0 the renormalized mass
can be expanded as

m(λ) = m(0) + λm(1) + λ2m(2) + . . . , (62)

where the coefficients m(0),m(1), etc are independent of λ and m(0) 6= 0.
We do not define a renormalized momentum since the momentum is eliminated in the final equation of motion.
The renormalized spin is

Sµν =S̃µν + 2λF (ext)[µ|
λQ̃

λ|ν]ρuρ + 2
3λq̃P

[µ
λu

ν]Q̃λρaρ

+ λP [µ
λPν]

ρ

(
2
3 q̃Dτ Q̃

λρ + 4
3 q̃uηQ̃

ηλaρ + 2
3 q̃Q̃

ληuηa
ρ
)

+O(λ2). (63)

This also can be expanded in powers of λ with a leading term which is non-zero.
The charge is conserved so requires no renormalization,

q = q̃. (64)

The renormalized, projected electromagnetic dipole is

Qµν =
(
Q̃µν + λuσDτ

(
Q̃µνσ

))
Pνκ +O(λ2), (65)

Note that this dipole is orthogonal to the 4-velocity on its second index, unlike the bare dipole. We can expand Qµν

as

Qµν = Q(0)µν + λQ(1)µν +O(λ2). (66)

Charge conservation [Eq. (104c) below with m = 2 and N = 2] enforces that the spatial components of the leading
order term are antisymmetric,

Q(0)µνPµ(λPνη) = 0. (67)

At higher order, the quantity Q(1)µνPµ(λPνλ) can be computed from the time derivative of the electric quadrupole
and the corresponding subleading charge conservation [Eq. (104c), order O(λ), with m = 2 and N = 2]. Hence, the
dipole (65) has 6 independent components.

We note that if we replace the future null cone Στ in the definitions (27) of electromagnetic moments with a spacelike
hypersurface orthogonal to the 4-velocity, then the same final result would be obtained by taking the expression (65)
but omitting the correction term.

The renormalized, projected quadrupole is

Qµλη =PλνPησQ̃µνσ +O(λ). (68)

This tensor is orthogonal to the 4-velocity in its second two indices. The completely symmetric part of the spatial
projection of this quadrupole vanishes to leading order

QµνσPµ(λPνηPσρ) = O(λ), (69)

from Eq.(104c) below with m = 3, N = 3. It follows that the leading order renormalized quadrupole has the standard
number of independent components (6 electric and 8 magnetic).

The notations for and properties of the various body parameters we have defined are summarized in Table I.
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V. SUMMARY OF RESULTS: ELECTROMAGNETIC LAWS OF MOTION THROUGH SECOND
ORDER

A. Preamble: domain of validity of self force equations

The classic Abraham-Lorentz-Dirac radiation-reaction equation,

aν =
q

m
F νµuµ +

2

3

q2

m
Pνµȧµ, (70)

is a third-order differential equation which possesses transparently nonphysical runaway solutions.
As pointed out by GHW, (70) is valid only in the regime q2ȧ/ma ≡ ε � 1, and the equation has errors of order

ε2a. The runaway solutions possess a rapidly growing acceleration, and violate the assumption ε � 1. When ε & 1,
the perturbative differential equation (70) is no longer a good approximation.

The reduction of order procedure provides a method of deriving from Eq. (70) an equation which is equally accurate
but which is second order in time and which does not have runaway solutions [46–50]. Substituting the expression
for the acceleration given by the first term in (70) into the second term modifies the equation by a term which is no
larger than the pre-existing error terms. The resulting reduced-order equation is

aσ =
q

m
Fσµuµ +

2

3

q3

m2
Pσρ (F ρµ;νuµu

ν + F ρµFµνu
ν)

+O(q5). (71)

Our final results (72) are expressed as an expansion in powers of λ, a parameter which is proportional to the charge
q, also the mass m, and here also to q2/m. We do not perform a reduction of order in our results for brevity. (except
the point particle case discussed in Sec. V D below). However, we emphasize that our results should be interpreted
in terms of their reduced-order counterparts.

B. Laws of motion - general self force and center of mass evolution

We present in this section the results for the electromagnetic case. The scalar results are derived in much the same
way, and can be found in the appendix B.

The evolution of the body’s worldline zµ(τ) and rest mass to second order in λ are given by

maµ =f (0)µ + λf (1)µ + λ2f (2)µ +O(λ3), (72a)

Dτm =λF (1) + λ2F (2) +O(λ3), (72b)

where aµ is the acceleration of the worldline and m is the renormalized mass (61). Here f (0)µ is the Lorentz force,
f (1)µ and F (1) are the first order GHW results, and f (2) and F (2) are the new second-order results presented here.
Explicit expressions for all these quantities are given in this section and the derivations are given in Sec.VI below

We refer to Eqs. (72) as ‘laws’ of motion, instead of equations of motion, as they require additional information
about the body’s electromagnetic multipoles their time dependence to fully determine the motion. The requisite
additional equations parameterize the evolution of the internal degrees of freedom of the body.

At leading order we have the Lorentz force and mass conservation

f (0)µ =qF (ext)µλuλ, (73a)

Dτm =O(λ). (73b)

At subleading order we have,

f (1)κ =Pκν
[
F (ext)ν

µ;λQ
µλ + 2

3qDτa
ν +Dτ (aµS

νµ)

+ F (ext)ν
µDτQ

[µλ]uλ

−Dτ

(
uµF

(ext)µ
λQ

λν
)]
, (74a)

F (1) =− uµF (ext)µ
ν;λQ

νλ − uνF (ext)ν
µDτ

(
Qµλ

)
uλ

− 2uµF
(ext)µ

νQ
νλaλ. (74b)
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Here the body’s charge q, electromagnetic dipole Qµν , and spin Sµν are the renormalized versions (64), (65), and
(63).

To facilitate comparison of the results with those of GHW, we define an antisymmetric dipole QµνA by

QA
µνPνλ =Qµλ, (75a)

QA
µνuν =− uνQνµ, (75b)

for which QA
(µν) = 0. Eliminating Qµν in terms of QµνA , and we find

f (1)κ =Pκν
[
F (ext)ν

µ;λQA
µλ + 2

3qDτa
ν +Dτ (aµS

νµ)

+ 2Dτ

(
uµF

(ext)λ[νQA
µ]
λ

)]
, (76a)

F (1) =− uµF (ext)µ
ν;λQA

νλ −Dτ

(
F (ext)ν

µQA
µλ
)
uνuλ

− 2uµF
(ext)µ

νQA
νλaλ, (76b)

which agrees with the results of GHW. The third term in the mass evolution (76b) does not appear in GHW, however
it gives only a O(λ2) contribution when reduction of order is applied. We retain this term since we will be working
to O(λ2).

As noted in GHW, the first and second terms in the acceleration equation (76a) are the monopole self force usually
derived from the radiative self field, and the direct interactions with the external field. The final two terms in (76a)
are terms that are not usually derived in elementary treatments of electrodynamics.

The second order results can be decomposed into monopole, dipole, and quadrupole contributions:

f (2)µ =f
(2)µ
point + f

(2)µ
dipole + f

(2)µ
quadrupole, (77a)

F (2) =F (2)
point + F (2)

dipole + F (2)
quadrupole. (77b)

We have

f
(2)µ
point = 0, (78a)

F (2)
point = 0, (78b)

so there are no new point particle terms at second order. We note, however, that monopole terms at O(λ2) would
be generated if one expands out the body parameters in a power series in λ, as in Eq. (66) above, and also would
be generated by the reduction of order procedure, c.f. Sec.V D below. The explicit, new, dipole and quadrupole
contribution to the self force are

f
(2)µ
dipole = Pσκ

[
− 1

3qaµa
µaνQ

νκ + qaκDτa
µPµνQλνuλ + 7

6qDτa
κaµQ

λµuλ

− 11
6 qaµDτa

µQνκuν + 1
3qa

κaµDτQ
νµuν − qaµaµDτQ

νκuν

− 2
3qDτaµDτQ

µκ − 2qaµDτ
2Qµκ − 2

3qDτ
3Qµκuµ

]
, (79a)

f
(2)µ
quadrupole = Pσκ

[
1
2F

(ext)κ
µ;νλQ

µνλ − uµDτ

(
F (ext)µ

ν;ρPνλQλκρ
)

+ 1
2Dτ

2
(
F (ext)κ

µQ
µρ
ρ

)
− 2uµF

(ext)µ
λ;νu

νQλκρaρ + 2F (ext)[κ
µ;λQ

µ|ν]λaν + 1
2F

(ext)κ
µ;νa

νQµρρ

− 1
2F

(ext)κνDτ (aνuµQ
µρ
ρ)− uµF (ext)µ

νDτ

(
Qνκλaλ

)
+ aκuµF

(ext)µ
νDτQ

νρ
ρ

− 2aνF
(ext)(ν

µQ
µ|κ)λaλ

]
, (79b)

and the explicit, new, dipole and quadrupole contributions to the mass evolution are

F (2)
dipole =− 1

3 q̃aµa
µuλQR

λνaν − 2
3 q̃DτaνPνλDτ

(
uµQ

µλ
)
, (80a)

F (2)
quadrupole =− 1

2uµF
(ext)µ

λ;νρQ
λνρ − 1

2uµF
(ext)µ

λ;νσu
νuσQλρρ − 2uµF

(ext)µ
λ;σQ

λσνaν

− uµF (ext)µ
ν;λa

λQνρρ − 1
2DτaµF

(ext)µνuνuλQ
λρ
ρ − 1

2aνF
(ext)νµuµaλQ

λρ
ρ

− 1
2aλF

(ext)λµuµuνDτQ
νρ
ρ + aνF

(ext)ν
µDτQ

µρ
ρ + 1

2uµF
(ext)µ

λDτ
2Qλρρ. (80b)
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C. Laws of motion - evolution of spin

Like the self force, the torque may also be written in terms of the renormalized dipole, quadrupole and spin
introduced in Sec.IV F. The result is

DτS
λρPλκPρσ =PκλPσρ

(
2F (ext)[λ

µQ
µ|ρ] + 2λF (ext)[λ

ν;µQ
νµ|ρ]

− 4
3λqDτa

[λQµ|ρ]uµ + 2λF (ext)[λ
µQ

µν|ρ]aν

)
+O(λ2). (81)

Because of the spin supplementary condition (26), this projected version of DτS
λρ is sufficient to determine the entire

time derivative. The first term in this torque expression reproduces the GHW result.

D. Laws of motion - reduced order point particle limit

In this section, we specialize to monopole bodies, i.e. those with vanishing spin Sµν , electromagnetic dipole Qµν ,
and electromagnetic quadrupole Qµνλ. The equations of motion (72) then reduce to

maµ =λqF (ext)µλuλ + 2
3λ

2q2PµνDτa
ν +O(λ4), (82a)

Dτm =O(λ3). (82b)

We now apply a reduction of order to determine the acceleration through O(λ2) in terms of the external field. The
resulting acceleration, given explicitly for the first time, is

aµ =
q

m
F (ext)µνuν +

2q3

3m2
DτF

(ext)µνuν +
2q4λ

3m3
PµηF (ext)ηνF (ext)

νσu
σ

+
4q5

9m3
λ2Dτ

2F (ext)µνuν +
4q6

9m4
λ2Pµρ

(
2DτF

(ext)ρνF (ext)
νλu

λ + F (ext)ρνDτF
(ext)

νλu
λ

)
+

4q7

9m5
λ2PµρF (ext)ρνPνηF (ext)ηλF (ext)

λσu
σ +O

(
λ3
)
. (83)

VI. DETAILS OF DERIVATION

A. Preliminary definitions and constructions

The derivation is based on the axioms described in sec IV A, which are expressed in some global Lorentz frame coor-
dinates (t, xi). For the purposes of our derivation, we adopt a retarded body-following coordinate system, motivated
by the scaled coordinates (T,Xi) considered in Sec. IV A.

We choose a tetrad at a point on the worldline, zµ(τ, λ)3,

{e0̂
µ, eî

µ} ≡ {uµ, eµî}, (84)

which we constrain to be orthonormal:

~eâ · ~eb̂ = ηâb̂. (85)

We extend this tetrad along the worldline using Fermi-Walker transport

Deµâ
dτ

= eνâ (uµaν − aµuν) , (86)

and extend it off the worldline by parallel transport along generators of future null cones that originate on the
worldline.

3 Note that our construction is based on the λ-dependent worldline zµ(τ, λ), and not on the fixed, λ-independent worldline zµ(τ, 0).
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Tetrad indices are raised and lowered using ηâb̂:

uµ = eµ0̂ = −eµ0̂ eµĵ = eµîδîĵ . (87)

We next define the retarded Fermi coordinate system (T, yî) following Poisson [9]. For a given spacelike point xµ̃,
we define τ(xµ̃) such that zµ(τ) is the intersection of the past lightcone of xµ̃ with the worldline, so that

σ(zµ(τ(x)), xµ̃) = 0. (88)

Surfaces of constant τ are future light cones of points on the worldline. We define the spatial coordinates yi by

yî = −δîĵeĵ
µ(τ)σµ(zτ , x), (89)

evaluated at τ = τ(x). In these coordinates the metric takes the form [9]

ds2 =− (ϕ2 − r2a2)dτ2 + (δîĵ − nînĵ)dy
îdyĵ

+ 2(raî − ϕnî)dx
îdτ, (90)

where r2 = δîĵy
îyĵ , ϕ = 1 + yîaî, n

î = yî/r. The orthonormal basis in these coordinates is given by

~e0̂ =∂τ − raî∂î, (91a)

~eî =
(
δî
ĵ + rnîa

ĵ
)
∂ĵ − nî∂τ . (91b)

Next we re-express axiom 2 of Sec. IV A in terms of these coordinates and the orthonormal basis components of
the tensors. From Eq. (55), it takes the form

T âb̂(λ, τ, yî) =λ−2T̃ âb̂
(
λ, τ, yî/λ

)
, (92a)

jâ(λ, τ, yî) =λ−2j̃â
(
λ, τ, yî/λ

)
, (92b)

where the right hand sides are smooth functions of their arguments [distinct from the functions in (48a) and (55)].

Finally, we can write the rescaled body parameters of Sec. IV D in terms of the functions T̃ âb̂ and jâ:

P̃ â =

∫
d3Y

(
T̃ â0̂ − T̃ âînî

)
, (93a)

S̃âb̂ =2

∫
d3Y R

(
n[âT̃ b̂]0̂ − n[âT̃ b̂]̂inî

)
, (93b)

and

q̃ =

∫
d3Y (j̃0̂ − j̃ înî), (94a)

J̃ â =

∫
d3Y j̃â, (94b)

Q̃âb̂ =

∫
d3Y Rj̃ânb̂, (94c)

Q̃âb̂ĉ =

∫
d3Y R2j̃ânânb̂, (94d)

where Y î = yî/λ, R2 = δîĵY
îY ĵ , and ~n = ~u+ nî~eî. Here the integrals are over surfaces of constant τ , i.e. the future

light cones.

B. Retarded and advanced self-field

In this subsection, we compute the near-zone expansion of the retarded field in terms of the scaled multipoles (56)
and the retarded coordinates from Sec. VI A. The computation is used in sections VI D-VI E.
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Consider a field point xµ̃. Recall that τ(xµ̃) denotes the proper time at which the past lightcone of xµ̃ intersects the
wordline zµ(τ). We denote by W−(xµ̃) the intersection of the interior of the past lightcone of xµ̃ and the worldtube
W of the body. The retarded, Lorenz-gauge self-field of the body can be written as

Aµ̃−(x) =

∫
d4x′

√
−g(x′)G−

µ̃
ν′(x, x

′)jν
′
(x′)

=

∫
W−

d4x′gµ̃ν′(x, x
′)δ(σ(x, x′))jν

′
(x′), (95)

where Gµ−ν(x, x′) is the retarded propagator in Lorenz gauge. Here, gµν′ is the parallel propagator, and the 1-
dimensional delta function δ(σ(x, x′)) constrains the integral to the three-surface formed by the past null cone of the
field point x.

To relate the right hand side of (95) to the bare multipoles (27), we wish to write the integral (95) as a series of
integrals over the future null cone of the intersection point of the center-of-mass worldline (26) and the past null cone
of xµ̃, which we will write as z(τ).

To this end, we write xµ̃ = (τ, yî) and x′µ̃
′

= (τ ′, yî) in the retarded coordinates of Sec. VI A above. We denote the
value of τ ′ at which σ vanishes as

τ ′ = τ + ∆τ(τ, yî, y ′̂i). (96)

The δ-function δ(σ) can now be written as

δ(σ(xµ̃, x′ν̃
′
)) =

δ(τ ′ − τ −∆τ)

|σ,τ (τ, yî; τ + ∆τ, y ′̂i)|
. (97)

Inserting this into Eq. (95), using the fact that |det(gαβ)| = 1 in the retarded coordinates, and multiplying by a
parallel propagator factor gives

Aµ̃−(τ, yî)gµ̃
µ(τ, 0; τ, yî)

=

∫
d3y′

gµν̃′(τ, 0; τ + ∆τ, y ′̂i)jν̃
′
(τ + ∆τ, y ′̂i)

|σ,τ ′(τ, yî; τ + ∆τ, y ′̂i)|
. (98)

We now rewrite this expression in terms of the rescaled spatial coordinates Y î = yî/λ, Y ′̂i = y ′̂i/λ and in terms of the

tilded version of the charge current from Eq. (92). Noting that ∆τ(τ, λY î, λY ′̂i) vanishes as λ → 0 at fixed Y î,Y ′̂i,
we write this quantity as

∆(τ, λY î, λY ′̂i) = λ∆̃τ(τ, Y î, Y ′̂i, λ), (99)

where ∆̃τ is finite as λ→ 0. The result is

Aµ̃−(τ, Y î) = λ

∫
d3Y ′

[
gµ̃ν̃′(τ, λY

î; τ + λ∆̃τ , λY ′̂i)

× j̃ν̃
′
(τ + λ∆̃τ , Y ′̂i)

|σ,τ ′(τ, λY î; τ + λ∆̃τ , λY ′̂i)|

]
. (100)

Finally, we expand the right hand side in powers of λ, and we also take the large R = |Y | limit. Expressing the
result in terms of components on the orthonormal tetrad, the retarded field can naturally be expressed in terms of
the rescaled electromagnetic moments (94)

Aâ− =
J̃ â

R
+
Q̃âĵnĵ
R2

+ λaîn
î
Q̃âĵnĵ
R

+ λ(aâub̂ − u
âab̂)

Q̃b̂0̂ − Q̃b̂ĵnĵ
R

− λ
Q̃âĵaĵ
R

+ λ
∂τ Q̃

âĵnĵ
R

− λ∂τ Q̃
â0̂

R
+O

(
λn

Rm

)
, (101)

where the omitted terms satisfy n+m ≥ 3.
We use the result (101) to evaluate certain boundary terms at infinity that arise in Sec. VI C below.
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C. Moments of the field equations

We next express the fundamental equation (16a) and charge current conservation ∇µjµ = 0 in terms of the

coordinates (τ, Y î), using the tilded functions on the right hand sides of (92). We use tetrad component of the tensors
but write the derivatives in terms of the partial derivatives with respect to the coordinates; this unusual combination
is the most convenient for our derivation. The result is:

λF (ext)k̂îj̃î + λF (ext)k̂0̂j̃0̂ =T k̂ĵ ,ĵ + λT k̂0̂
,0 − λnîT

k̂î
,0 + λak̂T 0̂0̂ + λaîT

k̂î − λaîn
îT k̂0̂

− λak̂nîT
î0̂ − λaîRT k̂0̂

,̂i + λaînĵRT
k̂ĵ
,̂i, (102a)

λF (ext)0̂îj̃î =T î0̂ ,̂i + λT 0̂0̂
,0 − λn̂îT

î0̂
,0 + 2λaîT

î0̂ − λaîn̂
îT 0̂0̂

− λaîn̂ĵT
îĵ − λaîRT 0̂0̂

,̂i + λaîn̂ĵRT
ĵ0̂
,̂i, (102b)

and

0 = δiĵj
ĵ
,i + λj0̂

,0 − λnîδîĵj
ĵ
,0 + λaîj

î − λaîj
0̂nî − λaîRδj îj

0̂
,j + λaînĵRδĵk̂δ

l
îj
k̂
,l, (103)

where f,0 means ∂f/∂τ and ∂îf means ∂f/∂yî.

We next multiply (102) and (103) by Rmnĵ1 . . . nĵN for integers m and N and integrate with respect to Y . this
gives the hierarchy of moment equations∫

d3Y∇µT̃ îµRmnĵ1 . . . nĵN

=

∫
d3Y F (ext)̂iµjµR

mnĵ1 . . . nĵN , (104a)∫
d3Y∇µT̃ 0̂µRmnĵ1 . . . nĵN

=

∫
d3Y F (ext)0̂µjµR

mnĵ1 . . . nĵN , (104b)∫
d3Y∇µj̃µRmnĵ1 . . . nĵN = 0. (104c)

In these equations the arguments of all of the functions are (λ, τ, Y î), except for F (ext)âb̂, for which the arguments are
as on the right hand side of Eq. (53).

We now expand the λ-dependence of T̃ âb̂ and j̃â at fixed (τ, Y î) as

T̃ âb̂ = T̃ (0)âb̂ + λT̃ (1)âb̂ +O(λ2) (105a)

j̃â = j̃(0)â + λj̃(1)â +O(λ2), (105b)

with corresponding expansion of the rescaled moments

P̃ â = P̃ (0)â + λP̃ (1)â +O(λ2), (106)

and similarly for each of the spin (93b) and the electromagnetic moments (94).
The first moments of the spatial component (104a) at leading order, after integrating the spatial partial derivative

∂î by parts, and obtaining a boundary term, are

−
∫
d3Y nîT̃ (0)k̂ĵδîĵ = 0 (m = 1, N = 0), (107a)

−
∫
d3Y T̃ (0)k̂î = 0 (m = 1, N = 1), (107b)

−
∫
d3Y R T̃ (0)k̂l̂ −

∫
d3Y nl̂nîR T̃ (0)k̂ĵδîĵ −

1
6

(
J̃ (0)0̂

)2

δk̂l̂ = 0 (m = 2, N = 1), (107c)

−
∫
d3Y nĵR T̃ (0)k̂î −

∫
d3Y nîR T̃ (0)k̂ĵ = 0 (m = 2, N = 2). (107d)
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The boundary terms can be evaluated using Eqs. (101),(52),(9), and (55) and are nonzero only in (107c).
The first moments of the time component (104b) yield

−
∫
d3Y nîT̃ (0)ĵ0̂δîĵ = 0 (m = 1, N = 0), (108a)

−
∫
d3Y T̃ (0)̂i0̂ = 0 (m = 1, N = 1), (108b)

−
∫
d3Y R T̃ (0)k̂0̂ −

∫
d3Y nk̂nîR T̃ (0)ĵ0̂δîĵ = 0 (m = 2, N = 1), (108c)

−
∫
d3Y nĵR T̃ (0)̂i0̂ −

∫
d3Y nîR T̃ (0)ĵ0̂ = 0 (m = 2, N = 2), (108d)

(108e)

It follows from (107a), (108b), and (93a) that

P̃µ = m̃uµ +O(λ). (109)

The first moments of (103) yield

−
∫
d3Y nîj̃ ĵδîĵ = 0 (m = 1, N = 0), (110a)

−
∫
d3Y j(0)̂i = 0 (m = 1, N = 1), (110b)

−
∫
d3Y j(0)ĵnîR −

∫
d3Y j(0)̂inĵR = 0 (m = 2, N = 2), (110c)

−
∫
d3Y j(0)k̂R 2 − 2

∫
d3Y j(0)̂ink̂nĵR 2δîĵ = 0 (m = 3, N = 1), (110d)

−
∫
d3Y j(0)k̂nînĵR2 −

∫
d3Y j(0)ĵnînk̂R2 −

∫
d3Y j(0)̂inĵnk̂R2 = 0 (m = 3, N = 3). (110e)

It follows from Eqs. (110a),(110b), and (94a) that

J̃ â = q̃uâ +O(λ). (111)

This process may be continued to each higher order in λ. At first order in λ, from the (m = 0, N = 0) piece of
(104a) we obtain

0 =F (ext)k̂0̂

∫
d3Y j̃(0)0̂ + a(0)k̂

∫
d3Y T̃ (0)0̂0̂

− F (ext)k̂ĵ

∫
d3Y j̃(0)̂iδîĵ − a

(0)k̂

∫
d3Y nîT̃ (0)ĵ0̂δîĵ

+

∫
d3Y T̃ (0)k̂0̂

,0 − δîĵ
∫
d3Y nîT̃ (0)k̂ĵ

,0, (112)

where the external field is evaluated on the worldline. Combining (112) with (93),(94),(107a),(108c), and (110b) gives,

∂τ P̃
(0)̂i + P̃ (0)0̂a(0)̂i = Dτ P̃

(0)̂i = −F (ext)̂i0̂J̃ (0)0̂. (113)

Similarly, the O(λ) piece of the (m = 0, N = 0) piece of Eq.(104b) together with (111) and (109) gives

∂τm̃ = O(λ). (114)

Combining this with (113) gives

m̃a(0)̂i = −F (ext)̂i0̂J̃ (0)0̂, (115)

the Lorentz force law.
This procedure may be extended to higher moments, and to higher orders in perturbation theory to yield the self

force expressions in Secs. VI D-VI E, giving the final results presented in Sec. V B.
The computation of the set of equations (104) was automated, using the Mathematica computer algebra software.

The notebook used to compute the self force can be found at [51]. The equations we present take advantage of the
worldline-based tetrads in the retarded coordinates to re-assemble a covariant form for the laws of motion, so retarded
coordinates appear nowhere in our final results in section V. The hierarchy of equations (104) is similar to that used
by GHW, except that they use integrals over spacelike hypersurfaces
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D. First order laws of motion: Abraham-Lorentz-Dirac

1. Derivation of law of motion

To derive the first order laws of motion, we expand the scaled field equations (102) and (103) to second order in
λ. We will need to use the spin supplementary condition for the first order laws of motion, so we’ll present first the
leading self-torque, and we will derive the required spin renormalization (63) from the leading order self-torque.

We first compute the component of the bare momentum orthogonal to the worldline through O(λ) by combining
the (m = 1, N = 0) piece of (104a) at O(λ) with the (m = 1, N = 1) piece of (104b), together with (93), (94). The
result is

P̃ ηPηµ =− λ2

3
q̃2aµ + λPµηDτ S̃

ηνuν

+ 2λPµηF (ext)[η
λQ̃

λ|ν]uν +O(λ2). (116)

Here we have converted from equations involving tetrad components to covariant equations, by using the fact that
derivatives with respect to τ of tetrad components evaluate on the worldline can be converted to covariant Fermi
derivatives DF /dτ [8], defined for any vector vµ by

DF

dτ
vµ =

D

dτ
vµ + (aµuν − aνuµ)vν . (117)

We also note that Eq. (116) could equivalently have been derived directly from (43) instead of by taking moments of
the field equation.

We next compute the first covariant derivative of both the bare momentum and the bare spin through O(λ2). The
covariant derivative of the bare momentum is obtained from the (m = 0, N = 0) moment of the equations (104a,104b)
and the covariant derivative of the spin is obtained from the antisymmetrized moment (104a) (m = 1, N = 1).

Dτ P̃
λ =F (ext)λµJ̃µ + λF (ext)λ

µ;νQ̃
µν

− λ2

3
q̃2aνa

νuλ +O(λ2), (118a)

Dτ S̃
µν =F (ext)[µ

λQ̃
λν] +O(λ). (118b)

We also expand the rest mass, which contains no new correction at this order, by combining (109), (59), and (116).
The result is

m̃ = −P̃µuµ +O(λ2). (119)

At this point, we have imposed no spin supplementary condition, so these equations are entirely general4, but do
not describe the evolution of a worldline. To compute the center of mass acceleration, we use the spin supplementary
condition (26), which reduces at this order to, from Eq. (63)

S̃µνuν = O(λ). (120)

Combining Eqs. (116)-(119), we deduce the acceleration and evolution of the rest mass:

aσm̃ =Pσµ
[
F (ext)µνJ̃ν + λF (ext)µ

λ;νQ̃
λν + λ 2

3 q̃
2Dτa

µ

+Dτ

(
aλS̃

µλ + uνF
(ext)[ν|

ρQ̃
ρ|µ]
)]

+O(λ2), (121a)

Dτm̃ =− uµF (ext)µλJ̃λ + uµF
(ext)µ

λ;ηQ̃
λη

− 2aηF
(ext)[η

λQ̃
λ|ν]uν +O(λ2). (121b)

4 To this order in perturbation theory, and provided the definitions given in section IV.
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In addition, we find from the (m = 0, N = 0) component of the charge conservation equation (104c) at O(λ) that

Dτ q̃ = O(λ), (122)

consistent with the fact that charge is conserved to all orders. From the (m = 1, N = 0) and (m = 1, N = 1) pieces
together with Eq. (94), we find the expression for the charge moment to this order,

J̃ µ =q̃uµ + λuνDτ Q̃
µν − λaµuνuλQ̃νλ

− λPµνuλDτ Q̃
λν +O(λ2). (123)

We next rewrite our results (118a),(121a), and (121b) in terms of the projected, renormalized body parameters (61) -

(65) and eliminate J̃ µ using (123). This yields the results (74) and the leading piece of (81) given in the previous
section.

2. Consistency check using the Harte equation of motion

We now preform the consistency check described in Sec. III B. The radiative self field FµνR in Eq. (46) is given by
[32] and [9], for which the only non-vanishing component is

F̂ ησPηλuσ = F (ext)ησPηλuσ + λ
2

3
q̃Dτa

ηPηλ +O(λ2). (124)

The self stress energy tensor can also be computed from Eq. (101); see also Eq. (120) of GHW. Substituting into Eq.
(46) gives that,

DτP
µ
H −DτP

µ
B = λ2Dτ

(
2

3
q̃2aµ

)
+O(λ3), (125)

and so the right hand side is indeed a total derivative, as required.

E. New result: second order laws of motion

1. Derivation of laws of motion

The derivation at second order parallels the derivation given above at first order. We follow the same steps as
before, to one higher order in λ. First, we derive the bare momentum orthogonal to the worldline from moments
(m = 1, N = 0) of (104a) and (m = 1, N = 1) of (104b) through second order. After simplifying according to
equations obtained from the full set of moments from O(λ2) equations, we obtain

P̃κPκµ = λPµκ
[
− 2

3
q̃2aκ +Dτ S̃

κνuν + 2F (ext)[κ
λQ̃

λ|ν]uν + 4λQ̃λν[κF (ext)σ]
λ;νuσ + 3λq̃aνDτ Q̃

νκ

− 1
3λq̃aνDτ Q̃

κν + λq̃Q̃κν
(

1
3uνaσa

σ − 2
3Dτaν

)
+ 4

3λq̃Dτa
κQ̃νλuνuλ + 1

5λq̃aνa
νQ̃λκuλ

+ 4
3λq̃D

2
τ Q̃

νκuν + λq̃aκ
(

8
3Dτ Q̃

νλuνuλ + 7
5aνQ̃

λνuλ + 3aνQ̃
νλuλ

)]
+O(λ3). (126)

The higher-order moments fix also the first covariant derivatives of the bare moments. The first derivative of the
bare momentum arises from the (m = 0, N = 0) moment of the equations (104a,104b), and subsequent simplifications
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from O(λ2) moments, and takes the value

PσκDτ P̃
κ = Pσκ

[
FκνJ̃µ + λF (ext)κ

λ;νQ̃
λν + 1

2λ
2F (ext)κ

ν;λσQ̃
νλσ

+ λ2q̃Dτa
κaµuν

(
1
5 Q̃

νµ − 1
3 Q̃

µν
)

+ λ2qaµDτa
µuν

(
1
5 Q̃

νκ + 1
3λ

2Q̃κν
)

+ λ2q̃aµa
µ
(

4
15Dτ Q̃

νκuν + 2
3λ

2Dτ Q̃
κνuν + 4

15aνQ̃
νκ
)

+ 2
3λ

2q̃aµD
2
τ Q̃

[κµ]

+ λ2q̃aκ
(

8
15aµDτ Q̃

νµuν − 2
3aµDτ Q̃

µνuν + 4
5aµa

µQ̃νλuνuλ − 2
15DτaµPµνQ̃λνuλ

)]
+O(λ3) (127a)

uµDτ P̃
µ =uνF

(ext)νµJ̃µ + 2
3λq̃

2aµa
µ + λuµF

(ext)µ
ν;λQ̃

νλ + 1
2λ

2uµF
(ext)µ

ν;λ;σQ̃
νλσ

− λ2q̃aµa
µ
(

8
3Dτ Q̃

νλuνuλ + 22
15aνQ̃

λνuλ + 8
3aνQ̃

νλuλ

)
− 4

3λ
2q̃aµDτa

µQ̃νλuνuλ

− 4
3λ

2q̃aµD
2
τ Q̃

νµuν − λ2 2
3 q̃aµDτaνQ̃

νµ +O(λ4). (127b)

The torque is computed from the antisymmetric part (m = 1, N = 1) of (104a) and simplifications from O(λ2)
equations,

Dτ S̃
νλPνκPλµ =2F (ext)[κ|

νQ̃
ν|µ] + 2λF (ext)[κ|

ν;λQ̃
νλ|µ] + 2λq̃a[κPµ]

λ

(
1
3Dτ Q̃

νλuν + 2
3Dτ Q̃

λνuν

)
+ 2

3λq̃Dτa
[κQ̃µ]νuν − 2

3λq̃D
2
τ Q̃

[κµ] +O(λ2). (128)

The rest mass is derived by expanding 59, using the bare momentum (116). This gives

m̃+ P̃µuµ = λ2 1

m̃

(
− 2

9
q̃4aµa

µ +
8

3
q̃2aµF

(ext)[µ|
νQ̃

ν|λ]uλ −
1

2
aµaν S̃

µ
κS̃

νκ

− aνF (ext)
µ

[λ|Q̃µ|η]S̃νλuη −
1

2
F (ext)

κ
[λ|F (ext)µ

[ν|Q̃
κ|σ]Q̃µ|η]uσu

ηPνλ
)

+O(λ3). (129)

Similarly, we derive the charge moment through second order using the (m = 1, N = 0) and (m = 1, N = 1) pieces
of Eq.(104c) at O(λ2). The result is

J̃ µ =q̃uµ + λuνDτ Q̃
µν − λaµuνuλQνλ − λPµνuλDτ Q̃

λν

− 1
2λ

2Dτa
µQ̃νλρuνuλuρ − 1

2λ
2D2

τ Q̃
µνλuνuλ

− λ2aµ
(

3
2aνQ̃

(νλρ)uλuρ + 3
2Dτ Q̃

νλρuνuλuρ

)
− λ2Pµν

(
3Dτ Q̃

(νλρ)aλuρ +D2
τ Q̃

λνρuλuρ

)
+O(λ3). (130)

Finally, to evaluate the explicit equations of motion for the worldline and for the evolution of the rest mass, we use
the following rescaled versions of the general identities (39):

m̃aκ =aκ
(
m̃+ P̃µuµ

)
+ PκλDτ P̃

λ

− PκνDτ

(
PνλP̃λ

)
, (131a)

Dτm̃ =Dτ

(
m̃+ P̃µuµ

)
− uµDτ P̃

µ − aµP̃µ, (131b)

One can think of the first and third terms in each of (131) as representing the effect of hidden momentum, that is,
the component of momentum perpendicular to ~u. By substituting the results (126)-(129) and (130) into the general
identity (131), making use of the spin supplementary condition (26), and eliminating the body parameters in terms
of the renormalized projected body parameters (61)-(68), we finally arrive at the second order equations of motion
(77)-(80).
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2. Consistency check using the Harte equation of motion

We turn now to the consistency check described in Sec. III B. We first compute the regular self field through second
order. The expansions (101) we use to derive these expressions are expanded asymptotically at large R. However,
taking the difference between the retarded and advanced fields in the multipole expansion, re-expanded at small R
will yield the regular field. This procedure can be thought of as obtaining an asymptotic form for the fields, then
replacing the extended source with a pointlike source for the purposes of computing the regular field. Since the regular
field should depend only on the standard multipoles of the body, the regular field should be indistinguishable for the
extended and replaced pointlike body. This procedure and argument are analogous to that used by Pound [52] for
the gravitational case.

The result in terms of the tetrad components and retarded coordinates from VI A is

FR k̂0̂ = 2
3λDτa

îq̃δk̂î −
2
3λ

2aîa
îak̂q̃R−

2
3λ

2ak̂Dτa
îq̃nĵRδîĵ + 2

3λ
2Dτ

2aîq̃Rδk̂î

− 4
3λ

2aîDτa
ĵ q̃nîRδk̂ĵ + 2

3λ
2aîDτa

îq̃nĵRδk̂ĵ −
2
3λ

2aîDτa
îQ̃0̂ĵδk̂ĵ −

2
3λ

2Dτ
2aîQ̃ĵl̂δîl̂δk̂ĵ

+ 1
3λ

2aîa
îaĵQ̃

ĵl̂δk̂l̂ + 2
3λ

2aîa
îaĵQ̃

l̂ĵδk̂l̂ −
1
3λ

2Dτ
2aîQ̃ĵl̂δîĵδk̂l̂ −

2
3λ

2aîa
îδk̂ĵ∂τ Q̃

0̂ĵ

− 5
3λ

2Dτa
îδîl̂δk̂ĵ∂τ Q̃

ĵl̂ − λ2Dτa
îδîl̂δk̂ĵ∂τ Q̃

l̂ĵ − λ2aîδk̂ĵ∂τ
2Q̃îĵ − λ2aîδk̂ĵ∂τ

2Q̃ĵî

+ 2
3λ

2δk̂î∂τ
3Q̃0̂î +O(λ3), (132)

and

FR k̂ĵ = 2
3λ

2ak̂Dτa
îq̃Rδĵî −

1
3λ

2aîa
îak̂q̃n

l̂Rδĵl̂ + 1
3λ

2aîa
îak̂Q̃

0̂l̂δĵl̂ −
2
3λ

2ak̂Dτa
îQ̃l̂m̂δîm̂δĵl̂

− 2
3λ

2ak̂Dτa
îQ̃l̂m̂δîl̂δĵm̂ −

2
3λ

2aĵDτa
îq̃Rδk̂î + 1

3λ
2Dτ

2aîq̃nl̂Rδĵl̂δk̂î −
1
3λ

2Dτ
2aîQ̃0̂l̂δĵl̂δk̂î

+ 1
3λ

2aîa
îaĵ q̃n

l̂Rδk̂l̂ −
1
3λ

2aîa
îaĵQ̃

0̂l̂δk̂l̂ + 2
3λ

2aĵDτa
îQ̃l̂m̂δîm̂δk̂l̂ −

1
3λ

2Dτ
2aîq̃nl̂Rδĵîδk̂l̂

+ 1
3λ

2Dτ
2aîQ̃0̂l̂δĵîδk̂l̂ −

1
3λ

2aîDτa
l̂Q̃îm̂δĵm̂δk̂l̂ + 1

3λ
2aîDτa

îQ̃l̂m̂δĵm̂δk̂l̂

− 1
3λ

2aîDτa
l̂Q̃m̂îδĵm̂δk̂l̂ + 2

3λ
2aĵDτa

îQ̃l̂m̂δîl̂δk̂m̂ + 1
3λ

2aîDτa
l̂Q̃îm̂δĵl̂δk̂m̂

− 1
3λ

2aîDτa
îQ̃l̂m̂δĵl̂δk̂m̂ + 1

3λ
2aîDτa

l̂Q̃m̂îδĵl̂δk̂m̂ −
2
3λ

2Dτa
îδĵl̂δk̂î∂τ Q̃

0̂l̂

+ 2
3λ

2Dτa
îδĵîδk̂l̂∂τ Q̃

0̂l̂ − λ2aîak̂δĵl̂∂τ Q̃
îl̂ + λ2aîaĵδk̂l̂∂τ Q̃

îl̂ − λ2aîak̂δĵl̂∂τ Q̃
l̂̂i

+ λ2aîaĵδk̂l̂∂τ Q̃
l̂̂i − 1

3λ
2aîa

îδĵl̂δk̂m̂∂τ Q̃
l̂m̂ + 1

3λ
2aîa

îδĵl̂δk̂m̂∂τ Q̃
m̂l̂ + 1

3λ
2δĵîδk̂l̂∂τ

3Q̃îl̂

− 1
3λ

2δĵîδk̂l̂∂τ
3Q̃l̂̂i +O(λ3) (133)

Inserting covariant versions of these expressions into the first term on the RHS of Eq. (46) gives

Pκν
∫
d3Σµ̃m

µ̃gν λ̃F
λ̃ρ̃
R jρ̃ = Pκν

[
2
3λ

2q̃2Dτa
ν + 2

3λ
3q̃aνDτa

µPµλQ̃ρλuρ − 2
3λ

3q̃aνDτaµQ̃
µρuρ

+ 2
3λ

3q̃Dτ
2aνQ̃λρuλuρ + 2

3λ
3q̃Dτa

νaµQ̃
ρµuρ + 2

3λ
3q̃Dτa

νDτ

(
Q̃λρuλuρ

)
+ 2

3λ
3q̃aµa

µδk̂ĵDτ

(
uλPνρQ̃λρ

)
− 2

3λ
3q̃DτaσPσµDτ

(
PνλPµρQ̃λρ

)
+ 2

3λ
3q̃Dτ

(
PνµDτ

(
PµλDτ

(
PλρuσQ̃σρ

)))]
+O(λ4), (134a)

uν

∫
d3Σµ̃m

µ̃gν λ̃F
λ̃ρ̃
R jρ̃ =− 2

3λ
3q̃aµDτa

µQ̃νλuνuλ + 2
3λ

3q̃Dτ
2aµPµνQ̃νλuλ − 2

3λ
3q̃aνDτaµQ̃

νµ

+ 4
3λ

3q̃Dτa
µPµνDτ

(
PνλuρQ̃(ρλ)

)
+O(λ4) (134b)

To evaluate the second term on the right hand side of (46), we note from Eqs. (22a), (35),(37), and (58a) that it is
given by the right hand sides of Eq.(127), multiplied by λ, and with the external fields set to zero. Equation (46) thus
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evaluates to

DτP
κ
H −DτP

κ
B = λDτ

[
2
3λq̃

2aκ − 4
3λ

2q̃aκ
(
Dτ Q̃

ληuλuη + 2
5aνQ̃

λνuλ + aνQ̃
νλuλ

)
− 8

3λ
2q̃aνPκµDτ Q̃

[νµ]

+ λ2q̃aνDτ Q̃
κν − 2

3λ
2uκaµaνQ̃

µν − q̃λ2Pκµ
(

2
3D

2
τ Q̃

λµuλ + 4
15aνa

νQ̃λκuλ + 2
3aνa

νQ̃κλuλ

)
− 2

3λ
2(Pκµ + uκuµ)DτaνQ̃

νµ

]
+O(λ4). (135)

The right hand side is a total derivative as required, so our results satisfy the consistency condition.

VII. CONCLUSIONS

In this paper, we have demonstrated the use of rigorous, limit based methods for deriving higher-order self forces.
Via an extension to the method first introduced by GHW, combined with reasoning motivated by the work of Harte
[32], we have derived the entire self force effect through second order without any ad hoc regularization. These
methods also yield the full multipole dependence of radiation-reaction effects. The dipole dependence of the first
order radiation-reaction force was derived by GHW, and we find the analogous second order dependence on dipole
and quadrupole contributions. Our results contain the first extended body dependence of any second order self force,
electromagnetic or otherwise, as well as the first explicit expression for the self torque, which first arises at second
order.
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Appendix A: Convergence of integrals for bare spin and momentum

In this appendix, we show that the integral (35)

Pτ (ξ) =

∫
Στ

T µ̃ν̃ξµ̃dΣν̃ (A1)

is well defined in Minkowski spacetime when ξµ̃ is one of the ten Killing vector fields, Στ is a future null cone, and
T µ̃ν̃ is the stress-energy tensor (15) that involves the retarded self-field. Different choices of Killing vector field ξµ̃

give rise to our definitions (22) of linear momentum and spin.
We fix a point zτ on the center of mass worldline and introduce coordinates (u, r, θ, φ) = (u, r, θ1, θ2) = (u, r, θA)

such that the metric is

ds2 = −2dudr − du2 + r2dΩ2 (A2)

and that the null cone Στ is the surface u = τ = constant. We define nµ = −(du)α, the null normal to Στ . The
integral (A1) can be written as

Pτ (ξ) ∝
∫ ∞

0

drr2

∫
d2ΩQµξ

µ, (A3)

where we have dropped the tildes for simplicity and

Qµ = Tµνn
ν . (A4)

A priori, we would not expect the integral (A3) to converge, since the leading order components of Tµν scale as
1/r2. However, we shall see that cancellations occur because the surface Στ is asymptotically a surface of constant
phase for the outgoing radiation. From Eq.(A3), a sufficient condition for convergence is that∫

d2ΩQµξ
µ = O(r−4) (A5)
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as r →∞.
The general form of a Killing vector field in the coordinates (A2) as r →∞ is [53]

~ξ =
[
α+ 1

2uΨ +O(r−1)
]
∂u +

[
Y A +O(r−1)

]
∂A

−
[

1
2rΨ +O(1)

]
∂r, (A6)

where Y A(θB) is a conformal Killing vector field on the 2-sphere that encodes rotation and boosts, Ψ = DAY
A, and

DA is the covariant derivative operator with respect to the 2-sphere metric hAB defined by dΩ2 = hABdθ
AdθB . The

function α(θB) is a linear combination of l = 0 and l = 1 spherical harmonics and encodes translations.
Now inserting (A6) into (A5), we find the sufficient condition for convergence is∫

d2Ω

{[
1
2uΨ + α+O(r−1)

]
Qu

+
[
Y A +O(r−1)

]
QA

+
[
− 1

2rΨ +O(1)
]
Qr

}
= O(r−4), (A7)

which will be satisfied if

Qu = O(r−4), (A8a)

QA = O(r−4), (A8b)

Qr = O(r−5). (A8c)

Consider first the scalar case. When the scalar charge density ρ is smooth, the method of Sec. 11.1 of [54] can be
used to show that the retarded scalar field Φ(self) has an expansion near future null infinity of the form

Φ(self) =
f(u, θA)

r
+
g(u, θA)

r2
+O(r−3), (A9)

for some smooth functions f and g. Inserting this expansion into Eqs.(10),(14),(15), and (A4) yields

Qr =
−f2

r4
+O(r−5) (A10a)

Qu =
−1

2r4

[
f2 + hABDAfDBf

]
+O(r−4) (A10b)

QA =
1

r3
fDAf +O(r−4) (A10c)

It can be seen that these expressions do not satisfy the scalings (A8). However, inserting the expressions (A10) into
(A7) and integrating by parts on the two-sphere, we find that the leading order terms cancel and so the condition
(A7) is satisfied.

Turn now to the electromagnetic case. We can use the method of Sec 11.1 of [54] to deduce the asymptotic scaling

of the component of the retarded field F
(self)
µν . Defining ρ = r−1, the metric can be written as ds2 = ρ−2ds̃2 with

ds̃2 = −ρ2du2 − 2dudρ+ dΩ2. (A11)

Since the field equations (7) are conformally invariant away from sources, F
(self)
µν is a solution of the equations in the

metric (A11) and hence is a smooth function of (ρ, u, θA) at ρ = 0, i.e. on future null infinity. It follows that for
general solutions with smooth sources

F (self)
ur =O(r−2), (A12a)

F
(self)
uA =O(1), (A12b)

F
(self)
rA =O(r−2), (A12c)

F
(self)
AB =O(1) (A12d)
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as r →∞. From Eqs. (9),(14),(15), and (A4) we find that

Qr =− 1

r2
F

(self)
rA F

(self)
rB hAB , (A13a)

QA =− F (self)
Ar F self

ur −
1

r2
F

(self)
AB F

(self)
rC hBC , (A13b)

Qu =− 1

2
F (self)
ur

2 − 1

2r2
F

(self)
rA F

(self)
rB hAB

− 1

r4
F

(self)
AB F

(self)
CD hAChBD. (A13c)

Inserting the scalings (A12) into the expressions (A13) we find that the conditions for convergence (A8) are satisfied.

Appendix B: Scalar laws of motion

1. Renormalized scalar moments

As for the electromagnetic case, we find it useful to introduce a renormalized set of moments to describe the scalar
charge distribution, modifying the rescaled moments q̃S ,Q̃µS , and Q̃S

µν given in Eq. (29). Unlike the electromagnetic
case, the scalar charge is not conserved, and so may be renormalized 5, so possesses an ambiguity in the chargelike
degrees of freedom. The renormalized charge is

qS = q̃S + λDτ Q̃S
µuµ − λ2Dτ

(
uµQ̃S

µνaν

)
+O(λ3). (B1)

The renormalized projected dipole is

QS
µ = Pµν

(
Q̃S

ν + λDτ Q̃
νλ
S uλ

)
+O(λ2), (B2)

which is explicitly orthogonal to the 4-velocity. We define the renormalized projected quadrupole as

QS
µν = PµλPνσ

(
Q̃S

λσ
)

+O(λ), (B3)

which is explicitly orthogonal to uµ in both of its indices, uµQ
µν
S = uνQ

µν
S = 0.

In addition, as in the electromagnetic case, we find it useful to define a renormalized mass and a renormalized spin.
The definitions are

m+ uµP̃
µ =− λuνΦ(ext);νQ̃µSuµ + λq̃Dτ q̃ − λ2uλΦ(ext);λ

µPµνQ̃νρS uρ
+ λ2uµΦ(ext);µaνQ̃

νλ
S uλ + 1

3λ
2q̃aµa

µQ̃νSuν + 1
3λ

2q̃aνDτ Q̃
ν
S

+ λ2q̃Dτ
2Q̃µSuµ −

2
3λ

2aµQ̃
µ
SDτ q̃ + λ2Dτ

(
Q̃µSuµ

)
Dτ q̃ +O(λ3) (B4a)

Sµν =S̃µν + 2λΦ(ext);[µQ̃
ν]λ
S uλ + 2

3λq̃a
[µQ̃

ν]
S + 2

3λu
[νDτ

(
q̃Q̃

µ]
S

)
+O(λ2). (B4b)

2. Scalar self force in terms of renormalized moments

As in the electromagnetic presentation, we decompose the self force and rest mass evolution as

maµ =f
(0)µ
S + λf

(1)µ
S + λ2f

(2)µ
S +O(λ3) (B5a)

Dτm =F (0)
S + λF (1)

S + λ2F (2)
S +O(λ3) (B5b)

5 That is, the definition of the charge depends on the choice of hypersurface, so it is natural to allow a redefinition of the charge in order
to simplify the equations of motion.
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Following similar steps to the electromagnetic derivation, we find the leading force and mass evolution

f
(0)µ
S =qSPσκΦ(ext)κ (B6a)

F (0)
S =− qSΦ(ext)µuµ, (B6b)

where Φ(ext)µ ≡ ∇µΦ(ext). The GHW-order scalar self force and mass evolution,

f
(1)µ
S =Pσκ

[
qSΦ(ext)κ + Φ(ext)κ

;µQS
µ + 1

3Dτa
κq2
S

+ aκqSDτqS − 2Dτ

(
QS

[κΦ(ext)µ]uµ

)
+Dτ (aµS

κµ)

]
(B7a)

F (1) =− qSΦ(ext)µuµ − uνΦ(ext)ν
;µQS

µ

− 2Φ(ext)µuµaνQ
ν
S + qSDτ

2qS (B7b)

These results are new except for the monopole terms, which can be found in [55]. The second-order results can be
expressed as a sum of as a sum of dipole and quadrupole contributions:

f
(2)µ
S =f

(2)µ
S dipole + f

(2)µ
S quadrupole,

F (2)
S =F (2)

S dipole + F (2)
S quadrupole, (B8a)

As for the electromagnetic case, there are no explicit monopole terms at this order. The explicit, new, dipole and
quadrupole contributions to the self force are:

f
(2)µ
S dipole = Pσκ

[
− 1

3qSa
κDτQS

νaν − 1
3aνa

ν (qSDτQS
κ −DτqSQS

κ)− 2
3qSDτa

κaµQS
µ

− 1
3QS

κDτ
3qS + 1

3qSDτ
3QS

κ − qSaκDτaµQS
µ −Dτ (DτqSDτQS

κ)

]
, (B9a)

f
(2)µ
S quadrupole = Pσκ

[
1
2∇Φ(ext)κ

;µνQS
µν + 1

2QS
ρ
ρDτ

2Φ(ext)κ −Dτ

(
uµΦ(ext)µ

;νQS
κν
)

+ Φ(ext)κ
;µQS

µνaν −Dτ

(
Φ(ext)µuµQS

κνaν

)
+ 1

2Φ(ext)κ
;µa

µQS
ρ
ρ

−DτΦ(ext)µuµQS
κνaν +Dτ

(
DτQS

ρ
ρΦ

(ext)κ
)

− 2Φ(ext)κaµaνQS
µν + aκΦ(ext)µuµDτQS

ρ
ρ

]
, (B9b)

and the explicit, new, dipole and quadrupole contributions to the mass evolution are

FS(2)
dipole = 1

3qSDτaµPµνDτQS
ν − aµDτ (DτqSQS

µ)− 4
3DτqSDτaµQS

µ, (B10a)

FS(2)
quadrupole =− Φ(ext)µuµaνaλQS

νλ − 2uλΦ(ext)λ
;µQS

µνaν − 1
2uµΦ(ext)µ

;νλQS
νλ

− 1
2uµΦ(ext)µ

;νλu
νuλQS

ρ
ρ + aµDτ

(
Φ(ext)µQS

ρ
ρ

)
. (B10b)

3. Scalar self torque

The self torque of a scalar charged body in terms of the renormalized moments is,

DτS
κλPκσPλρ =PσκPρλ

[
2Φ(ext)[κQS

λ] + 2λΦ(ext)[κ
;µQS

λ]µ

+ 2
3λqSDτa

[κQS
λ] + 2λΦ(ext)[κQS

λ]µaµ

]
+O(λ2) (B11)
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4. Scalar point particle reduced order

We again specialize to a monopole body, for which Sµν = 0,QµS = 0, QµνS = 0, and present the reduced order
equation of motion.

Here we give the acceleration and rest mass evolution of the point-particle limit for a scalar charge, similar to the
expressions for an electromagnetic charge given in Sec. V D. Note that the lack of a conserved total charge for the
scalar case makes this limit somewhat arbitrary - we take it to indicate the vanishing of all moments of the body
apart from the renormalized charge qS .

The acceleration, in terms of only the external field and the charge, is

aκ =
qS
m
PκσΦ(ext)σ +

4

3
λ
qS

2

m2
DτqSPκσΦ(ext)σ +

1

3
λ
qS

3

m2
PκσuµΦ(ext)σ

;µ

+
20

9
λ2 qS

3

m3
(DτqS)

2 PκσΦ(ext)σ + λ2 qS
4

m3
Pκσ

(
10

9
DτqSΦ(ext)σ

;µu
µ +

4

9
Dτ

2qSΦ(ext)σ

)
+

1

9
λ2 qS

5

m3
PκλΦλ;µνu

µuν − 4

9
λ2 q

5
S

m4
DτqSPκσΦ(ext)σuλΦ(ext)λ

+
1

9
λ2 qS

6

m4

(
−PκλΦ(ext)λ

;µu
µuσΦ(ext)σ + PκλΦ(ext)λΦ(ext)

;µνu
µuν + PκσΦ(ext)σ

;µΦ(ext)µ
)

+O
(
λ3
)

(B12)

The evolution of the renormalized mass, in terms of only the external field and the charge, is simply

Dτm = qSΦ(ext)µuµ + λqSDτ
2qS +O(λ3) (B13)
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