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Abstract

The LIGO-Virgo collaboration uses a variety of techniques to detect and characterize gravita-

tional waves. One approach is to use templates - models for the signals derived from Einstein’s

equations. Another approach is to extract the signals directly from the coherent response of the de-

tectors in LIGO-Virgo network. Both approaches played an important role in the first gravitational

wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravita-

tional wave signals using a collection of continuous wavelets, to use a generalized wavelet family,

known as chirplets, that have time-evolving frequency content. Since generic gravitational wave

signals have frequency content that evolves in time, a collection of chirplets provides a more com-

pact representation of the signal, resulting in more accurate waveform reconstructions, especially

for low signal-to-noise events, and events that occupy a large time-frequency volume.
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I. INTRODUCTION

The first gravitational wave signal recorded by the advanced LIGO detectors [1], GW150914,

was detected by multiple search pipelines [2], some that directly reconstruct the signal using

a coherent wavelet representation [3], and others that use waveform models, or templates,

derived from general relativity [4]. Both types of analysis play an important role in grav-

itational wave (GW) detection and characterization: the modeled searches are the most

sensitive to the types of signals they are targeting, while the direct reconstruction methods

are sensitive to a wider variety of GW sources. Both types of analysis also play an important

role in understanding the physical properties of the sources. The template based analysis

provides a mapping between the shape of the waveform and the physical properties of the

source, allowing us to infer that GW150914 was produced by the collision of two black holes,

each ∼ 30 times the mass of the Sun [5]. The greater flexibility of the wavelet-based recon-

struction approach was used to test for deviations from the predictions of general relativity

by using BayesWave to search for excess power that was not picked up by the templated

reconstructions [6].

While all of the GWs detected so far have been from compact binary systems, there

exist other GW sources that are not as well modeled: for example core-collapse supernovae;

post-merger oscillations of hypermassive neutron stars; magnetar flares; and pulsar glitches.

There is also the possibility that LIGO/Virgo could detect gravitational waves from a com-

pletely new and unpredicted sources. In addition to having good models for well understood

sources, it is also crucial that we are ready to both detect and characterize any possible

astrophysical signal.

One analysis technique that has been widely used in LIGO to detect and reconstruct

GWs with minimal assumptions is the BayesWave algorithm [7]. Several studies [8–10] have

shown BayesWave’s capability to robustly distinguish between real astrophysical signals and

transient noise artifacts (glitches) that are known to occur in the detectors, and to faithfully

reconstruct waveforms from simulated signals. It does this by reconstructing the detector

data using a sum of Morlet-Gabor sine-Gaussian wavelets. The number of wavelets used is

determined by the data, with more complicated signals (i.e. those having more structure in

time-frequency space) needing more wavelets. Because Morlet-Gabor wavelets have variable

shapes in time-frequency space they are generally able to fit waveforms well, but there are
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several avenues for improving the fidelity of the waveform reconstructions. One is to modify

the prior on the wavelet placement - such as using a “clustering prior” [7] which assigns

greater probability to regions in time-frequency that are close to other wavelets. Another

is to change the wavelet model. Here we investigate the use of “chirplets” - modified sine-

Gaussian wavelets with linear frequency evolution [11]. The motivation for using chirplets is

that the frequency content of GW signals typically evolves with time [12–16]. The chirplets

can model both increasing and decreasing frequency evolution.

II. CHIRPLET FRAME

The Morlet-Gabor sine-Gaussian wavelets currently used by BayesWave form an over-

complete basis, technically a frame [17], that can reconstruct any possible signal. They have

a simple analytic representation in the Fourier domain, making it easy to search over the

time of arrival, and allowing for efficient calculation of the likelihood function. But there

may be other frames that are able to reconstruct signals more efficiently.

In choosing a new wavelet frame for BayesWave, we consider what types of gravitational-

wave signals we might detect. Many astrophysical sources of GWs have frequency content

that evolves in time, most notably mergers of compact binary objects. Because of this,

we might expect that using a frame function that itself includes frequency evolution could

better reconstruct GW signals. The simplest way to incorporate changing frequency into

BayesWave is to add a linear frequency evolution to the Morlet-Gabor wavelets, producing

a function known as a chirplet [11].
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FIG. 1. Examples of a wavelet (left) and chirplet (right) in the time domain. For both examples

f0 = 200 Hz, t0 = 0 s, Q = 10, φ0 = 0, and A = 10. In the chirplet example ḟ0 = 3158 Hz2.
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In the time domain, chirplets can be expressed as

Ψ(t;A, f0, ḟ0, Q, t0, φ0) = Ae−∆t2/τ2

cos(2πf0∆t+ πḟ0∆t2 + φ0) (1)

where τ = Q/(2πf0) and ∆t = t− t0. Here ḟ0 represents the frequency evolution and is the

linear frequency derivative at time t = t0. In the limit that ḟ0 = 0, this expression reduces

to the expression for Morlet-Gabor wavelets. Chirplets can have either ḟ0 > 0 (chirping),

or ḟ0 < 0 (anti-chirping). Time domain plots of a chirplet with ḟ0 > 0 and a Morlet-Gabor

wavelet (ḟ0 = 0) are shown in Figure 1.

The same characteristics that make Morlet-Gabor wavelets a good frame are also true for

chirplets: they are continuous, occupy a small time-frequency volume, and can be expressed

analytically in the Fourier domain, though with a slightly more complicated expression:

Ψ(f ;A, f0, β,Q, t0, φ0) =
A
√
πτ

2(1 + π2β2)1/4
e
−π

2τ2∆f2

1+π2β2 e−2πift0(ei(φ0+δ−π3βτ2∆f2)/(1+π2β2)

+ e−Q
2f/f0e−i(φ0+δ−π3β2∆f2)/(1+π2β2))

(2)

where ∆f = f − f0, δ = 1
2

arctan(πḟ0τ
2), and we have introduced the dimensionless param-

eter β = ḟ0τ
2. For the remainder of this paper we will us β as our chirp parameter.

In time-frequency space, wavelets can be represented by ellipses whose principle axes are

aligned with the time and frequency axes. Similarly, chirplets can be represented by a tilted

ellipse. The equation for the ellipse is

(1 + π2β2)x2 + π2y2 − 2π2βxy = 1 (3)

where we have introduced the dimensionless variables x = ∆t/τ and y = τ∆f . Details of

the derivation of this expression can be found in the Appendix.

In terms of these new coordinates, the ellipse is tilted with respect to the time axis by

the angle

θ =
1

2
arctan

(
2π2β

π2(1− β2)− 1

)
(4)

The ellipse has area 1 +O(β4). A spectrogram of a variety of chirplets is shown in Figure 2.

III. METHODS

Bayesian inference requires the specification of a likelihood and prior, and a method

to compute the posterior distribution and model evidence. Since the replacement of sine-

Gaussian wavelets by chirplets only adds one new parameter to the frame functions, the
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FIG. 2. Example spectrogram of chirplets at f0 = 300 Hz, Q = 100 and f0 = 800 Hz, Q = 80.

For both frequency-Q combinations are shown chirplets with beta values of (from left to right)

β = −0.8, −0.4, 0.0, 0.4, 0.8.

implementation is almost identical to the original BayesWave algorithm [7]. In our study

we started with the version of BayesWave used in the second advanced LIGO observation

run, which differs from the original in the choice of priors, and in some of the proposal

distributions used to evolve the MCMC algorithm.

A. Priors and Proposals

We use uniform priors on Q (Q ∈ [0.01, 40]) and φ0 (φ0 ∈ [0, 2π]). We also use a uniform

prior on f0 and t0 over the time-frequency volume being analyzed.

The prior on the amplitudes of the individual wavelets (chirplets) is given as a prior on

the SNR of the individual frame functions. For an individual wavelet or chirplet, the SNR

is estimated as:

SNR ≡ 4

∫ |Ψ(f ;A, f0, ḟ0, Q, t0, φ0)|2
Sn(f)

df ' A
√
Q√

2
√

2πf0Sn(f0)
, (5)

where Sn(f) is the one-sided power spectral density of the noise. The prior on the SNR for
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wavelets in signal model is the same as described in Refs.[7, 8]:

p(SNR) =
3SNR

4SNR2
∗

(
1 + SNR

4SNR∗

)5 (6)

For the glitch model, the prior on the SNR is

p(SNR) =
SNR

2SNR2
∗

(
1 + SNR

2SNR∗

)3 (7)

where SNR∗ is the SNR at which the distributions peak, empirically chosen to be SNR∗ = 5.

For chirplets, we limited the tilt of the ellipse in τ -scaled time-frequency space to be

below 45 degrees, which acording to Eq. 4 corresponds to β = ±
√

1− 1/π2 ≈ ±0.95.

Physically this limit corresponds to roughly a doubling of the frequency across the du-

ration of the chirplet. For larger values of |β| the chirplets no longer provide a very

compact time-frequency representation. We adopt a uniform prior on β in the range

β ∈ [−
√

1− 1/π2,
√

1− 1/π2]. The prior on the number of frame functions is uniform

in Nw ∈ [0, 20].

For the jump proposals used in the RJMCMC, we follow the same proposals as described

in [7]. One particular jump proposal is to use the Fisher information matrix, and update the

frame function parameters by drawing from a multivariate Gaussian distribution defined by

q(~x|~y) =

√
det Γ

2π
e−

1
2

Γij∆x
i∆xj . (8)

The Fisher matrix for a single wavelet is given in [7], and we extend this Fisher matrix to

a single chirplet. In the case the Fisher information matrix for a chirplet with parameters
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~θ → {t0, f0, Q, lnA, φ0, β} is given by:

Γ = SNR2



4π2f2
0 (Q2+1+π2β2)

Q2 −2π2β π2βf0

Q
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2
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0
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. (9)

B. Simulated Data

To test the performance of the chirplet frame, we will look at how faithfully simulated GW

signals can be reconstructed, and the number of frame functions used in the reconstruction.

Our test data set consists of the of binary black hole merger signals, and unpolarized white

noise bursts in simulated Gaussian noise at the aLIGO design sensitivity [18].

The binary black hole data set is a system of two 50M�back holes with the waveform

generated using the Effective One Body approximation [19] over a range of SNRs. We choose

binary black holes as a test waveform in part because these are examples of waveforms we

know have frequency evolution and thus are somewhere we believe a frame with frequency

evolution could be beneficial. We also now know that GWs from black hole systems are

detectable by LIGO, and we can likely expect more of these signals in the future. In ad-

dition to the standard BBH waveforms, we also tested BBH waveforms that have been

time reversed, so that the frequency decreases over time. This set is used to demonstrate

that the chirplet frame is good for general signals with time-frequency evolution, and is not

specifically targeting BBH signals.

The second class of waveforms used are unpolarized white noise bursts (WNBs). These

waveforms serve as a good test for the chirplet frame because they contain complicated

frequency structure, which does not evolve smoothly like the BBH signals. These signals
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can sometimes present challenges for BayesWave because they are unpolarized, whereas the

current implementation of BayesWave assumes that the signals are elliptically polarized. We

will see that this mis-modeling throws-off our estimates of the fidelity of the reconstruction

as a function of signal-to-noise ratio. For this study we used WNB waveforms that thad a

characteristic duration of τ = 0.1 s, and bandwidth of ∆f = 100 Hz.

In previous studies of unmodeled searches [3, 20], sine-Gaussian waveforms (SGs) have

also been used as test cases. However, we have already seen that though BayesWave can

reconstruct SGs well, we are relatively insensitive to them in a search. This is a natural

result of the fact that the signal-to-glitch Bayes factor scales with the number of wavelets

used. For a sine-Gaussian signal we expect and indeed see that BayesWave typically uses

only one wavelet to reconstruct SGs, so the Bayes factor scales only with SNR, making it

more difficult to distinguish between signals and glitches. As wavelets are chirplets in the

limit that ḟ0 → 0, we see the same behavior from chirplets and so do not consider SGs here.

IV. RESULTS

The two metrics we will look at are the number of frame functions used (N), and the

match between waveforms, which as is defined as

M =
(h|h̄)√

(h|h)(h̄|h̄)
(10)

where h̄ is the injected signal, and h is the recovered signal, and (a|b) denotes the standard

noise-weighted inner product [21] evaluated across the detector network. Here we are using

a simulated network consisting of the LIGO Hanford and Livingston observatories operating

at design sensitivity.

A. Dimensionality

The results for the average (mean) number of frame functions and total dimensions used

for the BBH injection set and the WNB injection set are shown in Figure 3. To find the

total number of dimensions used, we multiply the number of frame functions used by five

for wavelets and six for chirplets. The difference is more apparent for the BBH injections,

but we see that in general fewer chirplets are used than wavelets. This is as predicted–
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FIG. 3. The upper two panels show how the average number of frame functions (wavelets or

chirplets) scales with the SNR. The lower two panels show the scaling for the total model dimension,

which takes into account the number of parameters used by each frame function. The panels on

the left are for 50M�-50M�BBHs, and the panels on the right are for white noise bursts. The filled

markers in the panels on the left represent regular BBH injections, and hollow marker represent

time-reversed BBH injections.

the extra parameter, ḟ0 in the chirplet frame allows for fewer frame functions to be used

in the reconstruction. For the BBH injections, we see that the chirplet frame function also

uses fewer overall dimensions, while for the WNB injections though fewer chirplets are used

the overall number of dimensions is slightly higher. This implies that the extra flexibility

of chirplets may make them preferable for waveform reconstruction of BBH like events,

particularly at low SNRs. A heuristic example of this can be seen in Fig. 4, where we

see how the chirplets frequency evolution allows them to more closely follow the frequency

evolution of the BBH signal.

We also see that, as shown in Ref. [8, 9], the number of wavelets used is roughly linearly

dependent on the SNR of the injected signal. In Ref. [8] this dependence was written as
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FIG. 4. An example of the wavelet frame (left) and chirplet frame (right) in action. In this case

we used a simulated BBH signal with component masses of 29M�and 30M�at an SNR of 35. The

solid line is the predicted f(t) track and the colored ellipses are the wavelets or chirplets from a

fair draw from the posterior distribution.

N ≈ 1 + γSNR, but here we generalize this expression to:

N ≈ α + γSNR, (11)

with the constants α and γ being determined by the waveform morphology. In practice this

expression is only valid for sufficient large SNRs, otherwise the number of frame functions

used drops rapidly to one (the minimum allowed number of frame functions in BayesWave’s

signal model).

Using the results from the BBH injections, we preform a simple linear fit to find α and γ

for the wavelet and chirplet runs. In both cases the slopes are very similar: γchirp = 0.065,

γwave = 0.066. The starting number of frame functions though varies significantly: αwave =

5.6, and αchirp = 3.3. So while the number of frame functions used increases at a similar

rate for both chirplets and wavelets, chirplets use reliably fewer frame functions.

For the WNB injections, we see that while for higher SNR injections slightly more wavelets

tend to be used than chirplets, the difference is not nearly as striking as for BBH injections.

Again with a simple linear fit we see γchirp = 0.21, γwave = 0.23, αchirp = 0.76, and αwave =

0.53, giving very similar slopes and starting points for both frame functions.
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FIG. 5. The upper panels show the median match between the injected signal and reconstructed

waveform versus SNR, while the lower panels shows the difference in the matches ∆M = Mchirplet−

Mwavelet. The plots on the left are for 50M�-50M�BBH signals, while the plots on the right are

for unpolarized white noise bursts.

B. Match

As predicted, the chirplet frame generally uses fewer frame functions. To test how well

the injected signal is recovered, we look at the match. Fig. 5 shows the mean match between

the injected and recovered waveforms for a set of two 50M�BHs in simulated aLIGO noise

(left) and a set of WNBs (right) for a range of SNRs using either chirplets or wavelets as

the frame function.

In the BBH case, for SNRs above about 25, the matches of the two different methods

are comparable. However at lower SNRs, we see that chirplets outperform wavelets, giving

consistently higher matches. This is important because low SNR events are more common

that high SNR events, so small improvements in performance for low SNR signals can result

in a large number of additional detections. A particular example of a chirplet and wavelet

reconstruction of a time-reversed BBH signal in shown Fig. 6. The plots show the whitened

strain, found by inverse Fourier transforming the Fourier domain signal h̃(f)/
√
Sn(f). We

see here that the chirplet frame manages to fit earlier and later parts of the signal.

For the WNB injections, we see that the two frame functions perform about equally as
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FIG. 6. Example of waveform reconstruction for a BBH, and a time reversed BBH system (both

at 50-50M�). The red (blue) band shows the 50% credible interval of the reconstructed waveform

using the chirplet (wavelet) frame. Both bases closely match the injected waveform (black) well

in the higher power region, but chirplets are able to more accurately reconstruct the waveform in

the regions with less power. The BBH event was injected with SNR 11.2, and has a median match

of 0.79 for the chirplet frame, and 0.66 for the wavelet frame. The time-reversed BBH event was

injected with a network SNR of 10.25. The median network match for the chirplet frame is 0.91,

and for the wavelet frame it is 0.87.

well. Previous injection studies with BayesWave have shown that WNBs can be difficult to

to reconstruct. One reason is that the WNBs are unpolarized, while BayesWave assumes an

elliptical polarization. WNBs also just have a very complicated, non-deterministic frequency

evolution. An example WNB waveform is shown in Fig. 7, where we can see that there is

no clear frequency evolution. Because the chirplets we use have only linearly increasing

or decreasing frequency, the chirplet frame struggles to recover the fine details of signal.

Thus we expect chirplets will provide the most benefit for signals with fairly smooth time-

frequency evolution.

We can also study what we theoretically would expect that matches to be for these

injections. For the match given in Eq. 10, we assume that the injected waveform h̄ is

dependent on parameters λ̄i, and the recovered waveform has parameters λi. In the high SNR

limit, the recovered and true injected parameters should be relatively consistent, or ∆λi =

λ̄i − λi is small. Note that in this context the parameters are those of the wavelet/chirplet

representation, and not, for example, the masses and spins of of the black holes. We can
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FIG. 7. An example WNB waveform in the time domain. This example waveform shows that

WNBs are complicated signals with no well defined frequency evolution.

approximate the recovered waveform as:

h = h̄+ h,i∆λ
i (12)

and ∆λi approximately follows the normal distribution:

p(∆λi) =
√

det(Γ/2π)e−Γij∆λ
i∆λj/2 (13)

where Γij = (h,i |h,j ) is the Fisher information matrix. We can expand our expression for

the match, Eq. 10 then to be [22]

M = 1− 1

2
∆λi∆λj

(
(h,i |h,j )

(h|h)
− (h|h,i )(h|h,j )

(h|h)2

)
. (14)

Recognizing that the expected value of ∆λi∆λj is E[∆λi∆λj] ≈ Γ−1
ij [23], we find the

expected match is:

E[M ] ≈ 1− D − 1

2SNR2 . (15)

where D is the dimension of the model. The minus one comes from the second term in Eq. 14

removing the dependence on the amplitude of the signal. Note that this derivation assumes a

templated search, and so should be thought of as more of a “rule of thumb” for this analysis.

Using the scaling for the number of wavelets in Eq. 11, we have D = Np(α+γSNR)+4, where
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Np is 5 for wavelets, and 6 for chirplets, and an additional 4 common extrinsic parameters

(sky location, ellipticity and polarization angle). The full expression for the predicted match

is then:

E[M ] ≈ 1− Np(α + γSNR) + 3

2SNR2 . (16)

Figure 8 shows again the average match for the injected binary black hole signals, with

the match predicted by Eq. 16. The recovered matches for the BBH injections follow the

predicted match relatively well, however the recovered matches for the WNB injections are

lower than the analytical prediction due to the signal model (polarized) not matching the

simulated signals (un-polarized).

0 10 20 30 40 50
Injected SNR

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

M
at

ch

wavelets
chirplets
predicted

10 20 30 40 50 60 70
Injected SNR

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

M
at

ch

wavelets
chirplets
predicted

FIG. 8. The predicted match 16 plotted with the actual match for the set of BBH injections

(left) and WNB injections (right). The BBH injections generally follow the predicted match vs.

SNR scaling, but the prediction overestimates the match for unpolarized WNB injections since the

BayesWave signal model assumes elliptical polarization.

C. Bayes Factors

The BayesWave algorithm considers three distinct models: GW Signals + Gaussian noise

(S); Noise transients (Glitches) + Gaussian noise (G); Gaussian noise (N ); and computes

evidence ratios, or Bayes factors, between the models. Here we investigate how the choice

of frame impacts the Bayes factors between the models.

Figure 9 shows lnBS,N (left) and lnBS,G (right) recovered using chirplets and wavelets

for simulated binary black hole signals. We see that both bases return very similar lnBS,N ,

with the chirplet frame giving just slightly higher Bayes factors. This is unsurprising since
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FIG. 9. The log signal-to-glitch (left) and signal-to-noise (right) Bayes factors for a set of 50−50M�

binary black holes using the chirplet and wavelet bases. The lower panel shows the difference in

the log Bayes factors between the chirplet and wavelet frames, scaled by the wavelet frame log

Bayes factor.

lnBS,N scales with the recovered SNR, and chirplets are able to recover more SNR due to

their ability to recover signals with higher fidelity.

The signal-to-glitch Bayes factors lnBS,G show the opposite behavior, with the wavelet

frame providing better separation between signals and glitches than the chirplet frame. This

seemingly paradoxical result is due to the chirplet frame providing higher fidelity reconstruc-

tions using less parameters for both signals and glitches. Moreover, since the glitch model

sees the signal in the individual detectors, which has lower signal-to-noise than the network

response seen by the signal model, and since the chirplets outperform wavelets mostly at low

SNR, the chirplet model boosts the evidence for the glitch model more than it boosts the

evidence for the signal model, resulting in lower lnBS,G than for the wavelet model. From

the perspective of a search, where the goal is to separate signals from instrument noise, the

wavelet frame outperforms the chirplet frame despite not doing as well at reconstructing

signals. The same behavior was also seen when using the “clustering prior” [7], which leads

to higher matches, especially at low SNR, but worse separation between signals and glitches.

The reduction in the signal-to-glitch Bayes factor has prevented the clustering prior and

the chirplet frame from being used in the current LIGO/Virgo analyses, despite the im-
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provements they offer for signal and glitch reconstruction. We made this decision in order

to maximize detection capabilities (i.e. signal and glitch separation), rather than focusing

on our waveform reconstruction capabilities. Going forward we plan to implement new mod-

els that do a much better job of separating signals and glitches, and that will not penalize

models that do a better job of fitting low signal-to-noise features. One option is to modify

the glitch model to be anti-coincident between detectors. This can be done by introducing a

prior that disfavors placing wavelets at frequencies and times that are occupied by wavelets

in the glitch models for the other detectors.

V. DISCUSSION

We have found that added flexibility offered by chirplet frame functions can reduce the

overall model dimension, despite adding an additional parameter to each frame function,

and improve waveform reconstruction, particularly at low SNRs. Limitations in the model

selection approach that is currently used by BayesWave to distinguish between signals and

glitches has so-far prevented the adoption of chirplets, but these limitations will soon be

resolved. Ideally BayesWave should utilize a wide range of frame elements, including dif-

ferent types of wavelets and chirplets, and perhaps reduced-basis elements for black hole

signals [24]. The optimal mix could then be dynamically selected via the trans-dimensional

MCMC algorithm, hewing closer to our mantra “model everything and let the data sort it

out”.
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Appendix A: Match

Computing the match as described in Eq. 10 between two chirplets (or wavelets) can be

used to further understand how chirplets are represented in time-frequency space. Here we

go through this calculation and show how it can be used to derive an expression for the

16



chirplet ellipse in time-frequency space.

For two wavelets the match is given by

M =

√
2τ1τ2

τ 2
1 + τ 2

2

cos

(
∆φ− 2π∆t0(f01τ

2
1 + f02τ

2
2 )

τ 2
1 + τ 2

2

)
e
−∆t2+π2τ2

1 τ
2
2 ∆f2

0
τ2
1 +τ2

2 , (A1)

where we are working in the high-Q limit and thus dropped terms of order e−Q
2

relative

to the leading term. When the match is maximized over phase the cosine term above goes

to one. Introducing the average τ̄ = τ1 + τ2 and difference ∆τ = τ1 − τ2 and working to

quadratic order in the parameter differences the match is given by

M = 1− ∆τ 2 + 2∆t2 + 2π2∆f 2
0 τ̄

2

4τ̄ 2
. (A2)

A similar but slightly more involved calculation for chirplets gives a match of

M = 1− 4∆τ 2 + 8∆t2 + 8π2(∆f0τ̄
2 − β̄∆t)2 + π2(τ̄∆β − 2β̄∆τ)2

16τ̄ 2
(A3)

where we are again working to quadratic order in the parameter differences. The full ex-

pression of the match, maximized over phase is given by

M =
N1

D
1/4
1

e
−N2
D2 (A4)

where

N1 =
√

2τ1τ2

((
1 + π2β2

1

) (
1 + π2β2

2

))1/4
, (A5)

D1 = π6β2
1β

2
2(β1τ

2
2 − β2τ

2
1 )2 + π4(β2

1τ
2
2 + β2

2τ
2
1 )− 2π4β1β2(β1τ

2
2 − β2τ

2
1 )(β1τ

2
1 − β2τ

2
2 )

+π2(β1τ
2
1 − β2τ

2
2 )2 + 2π2(τ 2

1 + τ 2
2 )(β1τ

2
2 + β2τ

2
1 )2 + (τ 2

1 + τ 2
2 )2 , (A6)

N2 = ((1 + π2β2
2)τ 2

1 + (1 + π2β2
1)τ 2

2 )(t01 − t02)2 + π2τ 2
1 τ

2
2 (τ 2

1 + τ 2
2 )(f01 − f02)2

−2π2τ 2
1 τ

2
2 (β1 + β2)(t01 − t02)(f01 − f02) . (A7)

D2 = (τ 2
1 + τ 2

2 )2 + π2(β1τ
2
2 − β2τ

2
1 )2 . (A8)

We further simplify this expression by maximizing over ∆τ and ∆β, and introducing the

dimensionless variables x = ∆t/τ̄ and y = ∆f0 τ̄ :

Mmax = 1− x2 + π2(y − β̄x)2

2
. (A9)
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The numerator of the second term defines the orientation of the ellipses covered by the

chirplets. Thus the angle θ that the ellipse is rotated up from the time axis is given by

tan(2θ) =
2π2β

π2(1− β2)− 1
. (A10)
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