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The direct detection of gravitational waves (GW) from merging binary black holes and neutron
stars mark the beginning of a new era in gravitational physics, and it brings forth new opportunities
to test theories of gravity. To this end, it is crucial to search for anomalous deviations from general
relativity in a model-independent way, irrespective of gravity theories, GW sources, and background
spacetimes. In this paper, we propose a new universal framework for testing gravity with GW, based
on the generalized propagation of a GW in an effective field theory that describes modification of
gravity at cosmological scales. Then we perform a parameter estimation study, showing how well
the future observation of GW can constrain the model parameters in the generalized models of GW
propagation.

I. INTRODUCTION

The direct detection of gravitational waves (GW) from
merging binary black holes (BH) by aLIGO [1–3] has
demonstrated that the advanced detectors have sufficient
sensitivity enough to detect GW out to the distant Uni-
verse. The fourth GW event has been observed by a de-
tector network composed of two aLIGO and one aVIRGO
for the first time [4] and proved that three detectors can
well localize the sky direction of a source. Recently a GW
from binary neutron stars (NS) has been detected for the
first time [5] in coincidence with a short gamma-ray burst
[6], followed by kilonova observations with multiple elec-
tromagnetic telescopes around the world, e. g. [7–11]. In
the coming years, the currently operating detectors will
improve their sensitivities further and KAGRA will join
the detector network [12]. It is expected that GW from
the variety of compact binaries enable us to test gravity
theories in strong and dynamical regimes precisely [13].
To this end, it is crucial to search for anomalous

deviations from general relativity (GR) in a model-
independent way, because in practice it is impossible from
the computational point of view to perform comprehen-
sive GW searches in all gravity theories. One of such
model-independent tests is measuring the propagation
speed of a GW [13]. In GR, a GW propagates with the
speed of light, while in an alternative theories of gravity
the propagation speed could deviate from the speed of
light due to the modification of gravity (see [14–17] for
general formulations, and for more specific cases, nonzero
graviton mass [18, 19] and extra dimensions [20]). Also
the modification of spacetime structure at a quantum
level may affect the propagation of a GW [21, 22]. From
the GW data of BH binaries detected by aLIGO, the
constraints have been obtained on graviton mass to be
mg < 7.7×10−23 eV [3] and on the modified dispersion re-
lation [3, 23], though the latter constraint is rather weak
from a theoretical point of view. Before the occurrence
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of the coincidence event, GW170817/GRB170817A [5],
it had been expected that comparing arrival times be-
tween GW from a binary NS merger and high-energy
photons from a short gamma-ray burst emitted almost
at the same time can measure GW propagation speed
at a precision of 10−16 - 10−15 [24, 25] and consequently
tightly constrain the modification of gravity relevant to
the cosmic accelerating expansion [26]. One of the other
model-independent tests is to check the existence of GW
polarization modes predicted in GR and to search for
additional polarizations [27]. In GR, a GW has two po-
larizations, while there could be at most four additional
polarizations in alternative theories of gravity. For exam-
ple, in scalar-tensor theory and f(R) gravity theory, ad-
ditional scalar polarizations appear [28–31]. In bimetric
gravity theory and massive gravity theory, there appear
at most six and five polarization modes, respectively, in-
cluding scalar and vector modes [30, 32]. With multiple
detectors, it is possible to detect the additional modes
by separating them [33, 34] or constructing a null signal
[35]. Recently, the triple detector network of aLIGO and
VIRGO has explored the existence of an additional polar-
ization merely by showing the consistency of the detector
response functions for GR polarizations when fitting to
the data [4, 36], though this is not a complete analysis
based on the separation technique.

Another approach is to look for anomalous deviations
from GR in the amplitude and phase of a GW wave-
form. Some theoretical frameworks [37–39] parameterize
the deviations from a GR waveform from a compact bi-
nary and the others parameterize the deviations from a
GR waveform from a black-hole ringdown [40–42]. The
constraints on the deviation from a GR waveform of a
BH binary have been obtained in the generalized inspiral-
merger-ringdown Phenom (gIMR) framework [3, 43, 44]
and in the parameterized-post Einsteinian (ppE) frame-
work [23]. These constraints aim at testing GW gen-
eration, that is, the strong regime of gravity, and are
different from those aiming at GW propagation men-
tioned above. However, the problem of these parameter-
izations is that they cannot be applied to different types



2

of GW sources such as supernovae, pulsars, stochastic
background, etc. In addition, if one naively parameter-
izes the deviations from a GR waveform without linking
to physical effects, it is difficult to interpret the physical
meanings of the deviations from observations.

To treat tests of gravity with GW more exhaustively,
it is necessary to have a universally parameterized frame-
work based on interpretable physical effects, irrespective
of the models of gravity theories, GW sources, and back-
ground spacetimes. In this paper, we propose a new uni-
versal framework for testing gravity, based on the prop-
agation equation of a GW in an effective field theory
for dark energy [15, 16], which describes modification of
gravity at cosmological scales, where a linear perturba-
tion theory well holds. Then we perform a parameter es-
timation study, showing how well the future observation
of GW can constrain the model parameters in generalized
models of GW propagation. There are five advantages to
focus on GW propagation. (i) The propagation equa-
tion is formulated independent of a type of GW sources
(BH, NS, supernova, pulsar, stochastic background etc.)
and background spacetimes (Schwarzshild, Kerr, FLRW
etc.), in contrast to GW generation. The equation just
describes the properties of GW propagation, indepen-
dent of where the GW propagates. (ii) If one considers
a different theory of gravity, the propagation properties
of a GW may change. However, this deviation from GR
can be easily parameterized in the propagation equation
by introducing arbitrary functions that control propaga-
tion speed, amplitude damping (vacuum friction), gravi-
ton mass, and a source term (additional energy injection
or escape to extra dimensions), for which physical inter-
pretations are transparent. (iii) GW propagation allows
us to test gravity in a dynamical regime at cosmological
distance, at which gravity has not yet been tested pre-
cisely. The propagation of a GW itself is dynamical and
the background spacetime is also dynamical due to the
cosmic expansion. This regime of gravity is relevant to
the origin of cosmic acceleration of the present Universe
and may be related to a possible modification of GR. (iv)
Even if modification on gravity is a tiny effect, propaga-
tion from a distant source can accumulate the effect and
amplify a signal observed at a detector. (v) It is possible
by definition to combine with the constraints from cosmo-
logical observations such as cosmic expansion, large-scale
structure of the Universe, cosmic microwave background,
and etc., because some of the modification functions in
the propagation equation are common to those appearing
in the cosmological observables, e.g. [45–48].

This paper is organized as follows. In Sec. II, to de-
velop a universal parameterized framework for testing
gravity with GW propagation, we analytically solve the
GW propagation equation in an effective field theory for
dark energy [15, 16] and obtain a WKB solution. This
GW waveform is quite general because it includes arbi-
trary functions of time that describe modified amplitude
damping, modified propagation speed, nonzero graviton
mass, and a possible source term for a GW. We also

show the specific expressions of these arbitrary function
of gravity modifications in various alternative theories of
gravity. In Sec. III, we compare our framework for gener-
alized GW propagation with the pre-existing frameworks
for testing gravity with GW, though those are relevant to
GW generation. In Sec. IV, we perform a parameter es-
timation study with a Fisher information matrix on two
simple models of GW propagation whose parameters are
assumed to be constant, and clarify which parameters
are correlated each other and how well they are deter-
mined from realistic observational data. In Sec. V, we
discuss the current constraints on the model parameters
and forecast the future constraints that can be obtained
by the aLIGO-like detector network at design sensitivity.
Finally, Sec. VI is devoted to conclusion.
Throughout the paper, we adopt units c = G = 1.

II. PARAMETERIZED FRAMEWORK FOR GW

PROPAGATION

A. GW propagation equation

Following the general formulation of GW propagation
in an effective field theory [14], tensor perturbations obey
the equation of motion

h′′ij + (2 + ν)Hh′ij + (c2Tk
2 + a2µ2)hij = a2Γγij , (1)

where the prime is a derivative with respect to confor-
mal time, a is the scale factor, H ≡ a′/a is the Hubble
parameter in conformal time, ν = H−1(d lnM2

∗/dt) is
the Planck mass run rate, cT is the GW propagation
speed, and µ is graviton mass. The source term Γγij
arises from anisotropic stress. In the limit of cT = 1
and ν = µ = Γ = 0, the propagation equation (1) is re-
duced to the standard one in GR. If gravity is modified
from GR, the modification functions in general depend
on time and wavenumber, ν = ν(τ, k), cT = cT(τ, k), and
µ = µ(τ, k). For example, if the screening mechanism
works at small scales, ν can be scale-dependent. Even
graviton mass can be position-dependent when an addi-
tional scalar degree of freedom is introduced, e. g. [49].
Although the separation of cT(τ, k) and µ = µ(τ, k) is
not unique, we define µ separately because we know the
k dependence exactly when µ is constant.
The assumption here is that the weak equivalence

principle holds for matter and therefore that all matter
species external to the scalar-tensor system are coupled
minimally and universally. At a linear level or large scales
in the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
background, the modification functions are simply func-
tions of time [14] (Later this is extended to allow a wave
number dependence in some modified models of GW
propagation). The effects of this generalized propaga-
tion of GW on the cosmic microwave background (CMB)
spectrum have already been investigated numerically in
[50–53], though the CMB is sensitive only to modifica-
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tions of gravity in the early universe, which is irrelevant
to the cosmic accelerating expansion at present.

Here we focus on modifications of gravity as an expla-
nation for the cosmic accelerating expansion and on GW
observations by the second-generation detectors such as
aLIGO. In other words, all the modification functions in
Eq. (1) are slowly varying functions with cosmological
time scale, while GW wavelength ∼ k−1 is much smaller
than the cosmological horizon scale. Thus, we can obtain
a WKB solution for Eq. (1). In the next, we derive such
WKB solutions in the presence and absence of the source
term Γγij .

B. General case with Γ = 0

Setting the solution in the form hij = heij = AeiBeij
with the polarization tensor eij and assuming Γ = 0,
Eq. (1) is reduced to the two equations:

c2Tk
2 + a2µ2 + (2 + ν)HA′

A
− (B′)2 +

A′′

A
= 0 , (2)

(2 + ν)H + 2
A′

A
+
B′′

B′
= 0 . (3)

Since the case we are interested in is when modifications
to gravity are slowly varying functions with a cosmolog-
ical time scale, we neglect the terms A′/A and A′′/A in
the first equation. This is justified because c2Tk

2 and
(B′)2 are quantities in GW phase and change with the
time scale of GW period, while A′/A and A′′/A are of
the order of H2, which is much smaller than k2. In addi-
tion, we know from GW observations [43] that graviton
mass is smaller than 1.2× 10−22 eV. Then the condition
a2µ2/k2 ≪ c2T ∼ 1 is always satisfied for GW detectors in
the late-time cosmology and guarantees a wavy solution.
From the first equation, the phase part is

B = ±k
∫ τ

c̃T dτ
′ . (4)

where c̃2T ≡ c2T + a2µ2/k2 is an effective GW speed and
the τ integral runs from GW emission time at a source
to detection time at the Earth. Substituting this for the
second equation, we have the WKB solution

h ∝ q√
c̃T

exp

[

±ik
∫ τ

c̃T dτ
′

]

, (5)

q ≡ exp

[

−
∫ τ (

1 +
ν

2

)

H dτ ′
]

. (6)

To separate the correction due to gravity modification,
we define cT ≡ 1 − δg. For simplification, we replace c̃T
with cT in amplitude of Eq. (5) because δg and aµ/k can
be tightly constrained from the phase correction. Indeed
aµ/k has already been limited to be much smaller than
unity from LIGO observations [43]. Then the WKB so-

lution is

h ∝ exp

[

−1

2

∫ τ

νHdτ ′
]

exp

[

∓ik
∫ τ (

δg −
a2µ2

2k2

)

dτ ′
]

× exp

[

−
∫ τ

Hdτ ′
]

exp

[

±ik
∫ τ

dτ ′
]

. (7)

Since the last two exponential factors appear in GR, the
WKB solution can be written a more transparent way by
factorizing out a GR waveform, assuming GW generation
is the same as in GR. The sign of phase is defined by the
GR waveform phase in Eq. (A7) and we must choose the
upper sign in Eq. (7). Finally, the waveform is expressed
as

h = CMGhGR , (8)

CMG ≡ e−De−ik∆T , (9)

with

D ≡ 1

2

∫ τ

νHdτ ′

=
1

2

∫ z

0

ν

1 + z′
dz′ , (10)

∆T ≡
∫ τ (

δg −
a2µ2

2k2

)

dτ ′

=

∫ z

0

1

H

(

δg
1 + z′

− µ2

2k2(1 + z′)3

)

dz′ . (11)

where D is the damping factor, and ∆T is the time de-
lay due to the effective GW speed different from speed of
light. We call this solution the generalized GW propaga-
tion (gGP) framework to test gravity. It is quite general
and can be applied to many theories of modified grav-
ity such as Horndeski theory, including f(R) gravity as
a special case, and Einstein-aether theory. Following the
classification in [14], concrete expressions for each modi-
fication function are listed in Table I.

Particularly, when all arbitrary functions ν, cT, µ are
assumed to be constant and Γ = 0, the WKB solution in
Eq. (8) is significantly simplified as

h = (1 + z)−ν/2e−ik∆ThGR , (12)

∆T =
δgdL
1 + z

− µ2

2k2

∫ z

0

dz′

(1 + z′)3H , (13)

where

dL(z) = (1 + z)

∫ z

0

dz′

(1 + z′)H . (14)

Examples of a modified GW waveform are shown in
Fig. 1.
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gravity theory ν c2T − 1 µ Γ Refs.

general relativity 0 0 0 0 —

extra-dim. theory (D − 4)
(

1 + 1+z

HdL

)

0 0 0 Sec. II E

Horndeski theory αM αT 0 0 [14]

f(R) gravity F ′/HF 0 0 0 [54]

Einstein-aether theory 0 cσ/(1 + cσ) 0 0 [14]

modified dispersion relation 0 (nmdr − 1)AEnmdr−2 when nmdr = 0 0 [23]

bimetric massive gravity theory 0 0 m2f1 m2f1 [14, 55]

Table I. Modification functions, ν, cT, µ, and Γ in specific modified gravity theories. In the phenomenology of a modified
dispersion relation, a special case with nmdr = 0 gives nonzero graviton mass.

ν = 1

(1 + z)−1

h

(1 + z)−1

h

δg = 0.03

(1 + z)−1

h

µ/k = 0.3

Figure 1. Modified GW waveforms in the Einstein-de Sitter universe (Ωm = 1) with ν = 1 (left), δg = 0.03 (middle), µ/k = 0.3
(right). In each panel, only one parameter is changed. The curves are a GR waveform (red, solid), a numerical modified

waveform (green, solid), and a WKB modified waveform (blue, dashed). The wave number is fixed to k̃ ≡ kτ0 = 200 and the
initial condition is set so that h = 1 and h′ = 0 at z = 1 just for illustration.

C. General case with Γ 6= 0

If the propagation equation in Eq. (1) is inhomoge-
neous (Γ 6= 0), a solution becomes much more compli-
cated, but can be formally obtained. Denoting homoge-

neous solutions by

u1(τ) ≡
q(τ)

√

c̃T(τ)
cos

[

k

∫ τ

c̃Tdτ
′

]

, (15)

u2(τ) ≡
q(τ)

√

c̃T(τ)
sin

[

k

∫ τ

c̃Tdτ
′

]

, (16)

and using the following relations

u1(τ
′)u2(τ) − u1(τ)u2(τ

′)

=
q(τ)q(τ ′)

√

c̃T(τ)c̃T(τ ′)
sin

[

k

∫ τ

τ ′

c̃Tdτ
′′

]

, (17)

u1(τ
′)u′2(τ

′)− u′1(τ
′)u2(τ

′) = kq2(τ ′) , (18)

an inhomogeneous solution is
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hij(τ) = {C1u1(τ) + C2u2(τ)} eij +
∫ τ

a2(τ ′)Γ(τ ′)γij(τ
′)
u1(τ

′)u2(τ)− u1(τ)u2(τ
′)

u1(τ ′)u′2(τ
′)− u′1(τ

′)u2(τ ′)
dτ ′

= {C1u1(τ) + C2u2(τ)} eij +
q(τ)

k
√

c̃T(τ)

∫ τ a2(τ ′)Γ(τ ′)γij(τ
′)

q(τ ′)
√

c̃T(τ ′)
sin

[

k

∫ τ

τ ′

c̃Tdτ
′′

]

dτ ′ . (19)

where C1 and C2 are arbitrary coefficients.
The existence of nonzero Γ modifies GW amplitude

as Γ behaves as a source term for a GW. The simplest
case is GW propagation in the standard cosmology with
anisotropic stress πij , but without modifying gravity [56].
Setting the model parameters to cT = 1, ν = 0, µ = 0,
and Γγij = 16ππij and replacing the integrals with

∫ τ

τ ′

dτ ′′ =

∫ z

z′

dz′′

H(z′′)
,

the inhomogeneous solution is expressed as

hij = {C1u1(τ) + C2u2(τ)} eij

+
1

1 + z

∫ z

0

Γ(z′)γij(z
′)

(1 + z′)H(z′)k
sin

[

k

∫ z

z′

dz′′

H(z′′)

]

dz′ ,

(20)

where H(z) = (1 + z)H(z). Since the phase of the sine
function is k(τ − τ ′) ≫ 1 when one considers GW fre-
quency relevant to GW detectors, the integrand is rapidly
oscillating, changing its sign. However, the magnitude of
correction to GW amplitude is of the order of Γγij/Hk
and is roughly proportional to propagation distance.
In the bimetric gravity theory, the model parameters

are cT = 1, ν = 0, µ = m2f1, and Γγij = m2f1γij . In
addition to the source term, graviton mass has nonzero
value with the same dependence as Γ. Although the
correction term is more complicated, the modification of
GW amplitude is similar to that in the simple case with
anisotropic stress.

D. Modified dispersion relation

In phenomenological models of quantum gravity, quan-
tum fluctuations of spacetime can modify the disper-
sion relation of a massless particle at a low energy limit
E ≪ EQG [21]

E2 = p2

[

1 + ξ

(

E

EQG

)nQG−2
]

. (21)

In addition, similar modification of dispersion rela-
tion can be introduced by Lorentz invariance violation,
nonzero graviton mass, and extra dimensions [57–59].
Consequently, GW speed depends on graviton energy or
GW frequency. Here we extend the gGP framework by

allowing a wave number dependence for GW propaga-
tion speed. The GW propagation speed (phase velocity)
is derived from Eq. (21).

cT(E) ≡ E

p
≈ 1 +

ξ

2

(

E

Emdr

)nmdr−2

. (22)

Here we denote nQG and EQG by nmdr and Emdr, tak-
ing into account modifications of the dispersion relation
other than quantum gravity effect. While graviton speed
(group velocity) is

vg(E) ≡ dE

dp
≈ 1 +

ξ

2
(nmdr − 1)

(

E

Emdr

)nmdr−2

. (23)

Defining A ≡ ξE2−nmdr

mdr , modifications on group velocity
are summarized in the form [23, 60],

vg(E) = 1 +
(nmdr − 1)

2
AEnmdr−2 . (24)

Note that A1/(2−nmdr) is roughly equivalent to character-
istic energy scale of a theory Emdr, at which a quantum
gravity effect is switched on or a graviton starts to be
sensitive to extra dimensions. The amplitude A and the
power index nmdr in specific gravity theories are listed in
Table II.
In terms of our formulation, other properties of a GW

are not modified by the modification of dispersion rela-
tion, that is, ν = 0, µ = 0 (except for nmdr = 0), and
Γ = 0. Using δg, Eq. (22) is expressed as

δg ≈ −1

2
AEnmdr−2

= − (2π)nmdr−2

2
Afnmdr−2 , (25)

and is related to vg by

δg =
1− vg
nmdr − 1

(nmdr 6= 1) . (26)

Note that this relation is valid only when the form of the
modified dispersion relation in Eq. (21) is assumed.
We add a caveat on violation of the weak equivalence

principle and GW propagation speed. If the weak equiv-
alence principle is violated, gravitons with different en-
ergy or frequency trace different null geodesics, respond-
ing differently to gravitational potential along the line of
sight. Then these gravitons arrive at the Earth at dif-
ferent times even if they are emitted simultaneously at a
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gravity theory A nmdr Refs.

general relativity 0 — —

massive graviton (µc2)2 0 [58]

doubly special relativity ηdsrt 3 [61]

extra-dimensional theories −αedt 4 [59]

Horava-Lifshitz gravity k4
hlµ

2
hl/16 4 [62, 63]

gravitational SME (even d ≥ 4) −2̊k
(d)
(V ) d-2 [57]

gravitational SME (odd d ≥ 5) ±2̊k
(d)
(V ) d-2 [57]

Table II. Modified dispersion relations in specific modified
gravity theories. SME stands for standard model extensions.

source and propagate with the speed of light (cT = 1).
In the gGP framework here, we assume that the weak
equivalence principle holds for matter and the propaga-
tion speed is exactly cT = 1 when other modifications on
gravity is absent. The constraints on the violation of the
weak equivalence principle have been obtained from GW
observations in [64, 65].

E. Extra-dimensional theory

In a universal extra-dimensional theory, a GW damps

with h ∝ d
−(D−2)/2
L due to leakage to extra dimensions

[66]. Namely, in a higher dimensional spacetime with
D > 4, a GW damps faster than in D = 4 spacetime. If
there exists a crossover distance scale Rc beyond which
spacetime dimension behaves differently, GW amplitude
scales with

h ∝



dL

{

1 +

(

dL
Rc

)nc/2
}(D−4)/nc





−1

, (27)

where the power index nc represents transition steepness,
as proposed in [67]. Then the correspondence to our for-
mulation when dL ≫ Rc is

e−D = exp

[

−1

2

∫ z

zc

ν

1 + z′
dz′

]

=

(

dL
Rc

)−(D−4)/2

,

(28)
where zc is the redshift corresponding to Rc. Again this
is the same damping as the universal extra-dimensional

theory, h ∝ d
−(D−2)/2
L .

Here we connect the effect of extra-dimensions to ν.
Of course, in general, the contribution to ν is not only
from extra-dimensions but from modification of gravity

strength itself. In order to distinguish them, we addi-
tionally define νext, which is solely due to the extra-
dimensional effect. After some algebra with Eq. (14),
we have

νext = (D − 4)

(

1 +
1 + z

HdL

)

. (29)

When D = 4, there is no extra amplitude damping and
the standard damping, ν = 0, is recovered. At a large
distance, it approaches ν = D − 4.

F. Extra polarizations

In the generalized propagation framework above, we
concentrated only on the tensor mode of a GW. However,
if a GW is produced via parity-violating process and has
chirality, the GW may have the properties different from
GR for plus and cross polarizations, e.g. polarization-
dependent propagation speed or anomalous amplitude
ratio. As a result, the GW has linear or circular polariza-
tions. While in some modified theories of gravity, there
may exist additional polarizations corresponding to new
degrees of freedom in the theories, e.g. scalar and vector
modes [27, 68]. In all these cases, if each polarization
mode decouples, one can write down propagation equa-
tions similar to Eq. (1) for each polarization mode and
introduce other families of modified gravity parameters
in each GW waveform.

III. RELATIONS TO OTHER

PARAMETERIZED FRAMEWORKS

There has been no parameterized framework aiming at
GW propagation. However, several parameterized frame-
works for compact binary coalescence in a strong gravity
regime have been proposed and enable us to compare
GW propagation effects with GW generation effects. Of
course, observational data include the effects of both GW
generation and propagation. However, comparing both
effects gives some insights into how generation and prop-
agation effects of GW are distinguished in observational
data. In this section, we compare our gGP framework
with two other frameworks for GW generation: the ppE
model and the gIMR model. Then we derive relations
between model parameters in different frameworks and
show that the propagation effects can be distinguished
from the generation effects.

A. parameterized-post Einsteinian framework

In the ppE framework [39], a GW waveform is param-
eterized by

h(f) =



1 +
∑

j

αju
j



 ei
∑

k βku
k

hGR(f) , (30)
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where u ≡ (πMf)1/3. GR is recovered at the limit of
αj → 0 and βk → 0. Compared with the gGP framework
in Eq. (8), the following relations hold.

∑

j

αju
j = −1

2

∫ z

0

ν

1 + z′
dz′ , (31)

∑

k

βku
k = −k

∫ z

0

(

δg
1 + z′

− µ2

2k2(1 + z′)3

)

dz′

H . (32)

Since u gives a specific frequency dependence, the
above relations are simplified only if δg and ν do not
depend on k (µ is independent of k by definition),

α0 = −1

2

∫ z

0

ν

1 + z′
dz′ , (33)

β3 = − 2

M

∫ z

0

δg
(1 + z′)Hdz′ , (34)

β−3 =
M
2

∫ z

0

µ2

(1 + z′)3Hdz′ . (35)

In terms of parameterized-post Newtonian formalism, ν
correction is Newtonian-order in amplitude, δg correc-
tion is 4 post-Newtonian (PN) order in phase, and µ
correction is 1 PN order in phase. This does not nec-
essarily mean that higher PN effects are small, because
these effects are accumulated during propagation and are
amplified, proportional to propagation distance. In other
words, these higher PN terms for propagation in principle
could exceed the standard PN terms at the lower orders
for wave generation. We note that the PN order for wave
propagation is nothing to do with the PN expansion, but
merely refers to frequency dependence.

If ν and δg have a specific dependence on wavenumber
or frequency, the corresponding PN terms change. Ex-
tending ν and δg in power of k with a characteristic scale
k0,

ν(k) = ν(0) + ν(1)
(

k

k0

)

+ ν(2)
(

k

k0

)2

+ · · · , (36)

δg(k) = δ(0)g + δ(1)g

(

k

k0

)

+ δ(2)g

(

k

k0

)2

+ · · · , (37)

we have the relations

α3j = −1

2

(

2

Mk0

)j ∫ z

0

ν(j)

1 + z′
dz′ , (38)

β3(j+1) = − 2

M

(

2

Mk0

)j ∫ z

0

δ
(j)
g

(1 + z′)Hdz′ , (39)

where j = 0, 1, 2, · · · . Note that negative powers of k
is not allowed to guarantee the well-behaved low-energy
limit. The coefficients α3j and β3(j+1) correspond to 1.5j
PN order in amplitude and (4+1.5j) PN order in phase,
respectively.

B. generalized IMR Phenom framework

The gIMR framework [38] is a subclass of the ppE
framework, which is used recently by LIGO scientific
collaboration to test gravity in a strong field regime
[3, 43, 44]. This model includes deviations from GR only
in GW phase and is parameterized as

h(f) = eiδΦgIMRhGR(f) , (40)

where

δΦgIMR =
3

128η

7
∑

i=0

φiδχi(πMf)(i−5)/3 , (41)

andM is total mass, η = m1m2/(m1+m2)
2 is symmetric

mass ratio, and φi is the i-th order post-Newtonian (PN)
phase in GR [69]. The relation to the gGP framework is

3

128η

7
∑

i=0

φiδχi(πMf)(i−5)/3

= −k
∫ z

0

(

δg
1 + z′

− µ2

2k2(1 + z′)3

)

dz′

H . (42)

Here ν is irrelevant to the gIMR model because no am-
plitude correction is considered.
If δg does not depend on k (µ is independent of k by

definition), there are simple relations

δχ8 = − 256η

3Mφ8

∫ z

0

δg
1 + z′

dz′ , (43)

δχ2 =
32Mη

3φ2

∫ z

0

µ2

(1 + z′)3Hdz′ . (44)

However, the 4 PN phase in GR, φ8, is not completely
known yet. Therefore, we cannot connect δg to the gIMR
model exactly. In addition, ν correction is out of this
gIMR framework because amplitude modification is not
considered by definition.

C. Generation effect vs propagation effect

In the above, we naively connected the gGP framework
to other frameworks and derived their correspondences.
However, from the observational point of view, data from
detectors include both generation and propagation effects
and we need to distinguish them. There are three rea-
sons why we assume that a generation effect is ignored
in the gGP framework. First, a degeneracy between gen-
eration and propagation effects is problematic only when
they are at the same PN order (with the same frequency
dependence). Although various theories that could alter
GW generation are listed in [23, 70], all effects in grav-
ity modification come in at the order lower than 2 PN in
phase. On the other hand, propagation effects come in at
higher PN order than 4 PN except for graviton mass at 1
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PN. Second, as discussed in [23], a generation effect is in
general much smaller because a propagation effect is ac-
cumulated, proportional to propagation distance. Third,
most importantly, a propagation effect increases propor-
tional to source distance and can in principle be distin-
guished by analyzing multiple sources. The last point
has been demonstrated in [25], distinguishing the mod-
ification effect of GW propagation speed from intrinsic
emission time delay at a source. The above reason also
indicates that tighter constraints can be obtained once
generation and propagation tests of gravity are combined.

IV. PARAMETER ESTIMATION FROM GW

OBSERVATIONS

In this section, we investigate a simple model in
Eq. (12), in which arbitrary functions ν, cT, µ are as-
sumed to be constant and Γ = 0. Using this waveform,
we demonstrate with a Fisher information matrix how
precisely we can measure the model parameters from re-
alistic observations of GW.

A. GW waveform

For the GR waveform, hGR, we will use the phe-
nomenological waveform (PhenomD) [69], which is an up-
to-date version of inspiral-merger-ringdown (IMR) wave-
form for aligned-spinning (nonprecessing) BH-BH bina-
ries with mass ratio up to 1:18. While for BH-NS and
NS-NS binaries, we will use the inspiral waveform up to
3.5 PN order in phase, which is an early inspiral part of
the PhenomD waveform. This is because tidal deforma-
tion and disruption of a NS prevent us from analytically
modeling the merger phase for a NS binary and from
observing a clean ringdown signal after the merger.
The PhenomD waveform is composed of three parts:

inspiral, intermediate, and merger-ringdown phases. The
explicit expressions are given in Appendix A, but the
overall structure is given as follows:

hGR = GIAIMR e
iφIMR , (45)

AIMR =



















Ains f ≤ fa1

Aint fa1 < f ≤ fa2

AMR fa2 < f

, (46)

φIMR =



















φins,E + φins,L f ≤ fp1

φint fp1 < f ≤ fp2

φMR fp2 < f

. (47)

Here GI is the geometrical factor for I-th detector defined
by

GI ≡
{

1 + cos2 ι

2
F+,I(θS, φS, ψ) + i cos ι F×,I(θS, φS, ψ)

}

× e−iφD,I(θS,φS) , (48)

where φD,I is the Doppler phase for I-th detector, and
F+,I and F×,I are I-th detector’s response functions to
each polarization mode, respectively, e. g. [71]. Note that
the transition frequencies do not coincide exactly for am-
plitude and phase. The waveform of a simple model in
Eq. (12) has in total 14 parameters: the redshifted chirp
mass M, the symmetric mass ratio η, time and phase at
coalescence, tc and φc, redshift z, symmetric and asym-
metric spins, χs and χa, the angle of orbital angular mo-
mentum measured from the line of sight ι, sky direction
angles of a source, θS and φS, polarization angle ψ, and
gravitational modification parameters, δg, ν, and µ. In a
simple model, modified gravity parameters are δg, ν, and
µ and are assumed to be constant. In addition, for sim-
plicity we will assume a flat Lambda-Cold-Dark-Matter
(ΛCDM) model and fix cosmological parameters to those
determined by Planck satellite [72]. This is justified be-
cause we are interested in the models that explain the
accelerating expansion of the universe at low redshifts
(z . 1), while recover the ΛCDM universe at higher red-
shifts (z ≫ 1) to be consistent with the standard cos-
mology. The cosmological parameters, Ωm and H0, are
determined by the CMB observation at higher redshifts.
Then the luminosity distance dL is mapped into redshift
z by

dL(z) = (1 + z)

∫ z

0

dz′

H(z′)
(49)

H(z) = H0

{

Ωm(1 + z)3 + (1 − Ωm)
}1/2

.

and z is directly determined from GW observations.
In what follows, we classify modified-gravity waveform

in Eq. (12) into two subclasses, νµ model with a red-
shift prior ∆z = 10−3 and δgµ model with a timing prior
∆tc = 1 s, and consider them separately. This is be-
cause there are parameter degeneracies between z and
ν in νµ model and between tc and δg in δgµ model, re-
spectively. Since all dimensional quantities in the GW
waveform, that is, masses and frequencies, are redshifted
in the same way and degenerate with redshift, the red-
shift must be determined from a combination of

(1 + z)−ν/2M5/6

dL(z)
. (50)

The chirp mass is determined from GW phase, but z and
ν are completely degenerated. Therefore, we need source
redshift information by identifying a host galaxy or de-
tecting electromagnetic transient counterpart. Redshift
information would be available even for BH binaries only
if they are located at low redshift, z < 0.1, and have high
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SNR or good angular resolution so that a unique host
galaxy is identified [73, 74]. On the other hand, from
Eqs. (12), (45), and (A7), the quantity constrained from
an observation in δgµ model is a combination of

tc + δg
dL(z)

1 + z
. (51)

To break the degeneracy and measure δg separately, we
need to determine tc from other observational means (z
is determined from GW amplitude). If a GW event is
accompanied by an electromagnetic counterpart, tc is es-
timated from difference of arrival times between a GW
and an electromagnetic signal. Then δg is constrained in
a certain range, depending on an uncertainty in tc [24].
To have an electromagnetic counterpart and obtain in-

formation about tc, we need NS-NS and NS- BH binary
mergers, which are expected to accompany with some
electromagnetic emissions [75, 76]. For them, since we
cannot apply the PhenomD waveform, we will use the
inspiral waveform up to 3.5 PN order in phase by limit-
ing the PhenomD waveform to

hGR = GIA0 e
iφins,E f ≤ fISCO , (52)

with A0 in Eq. (A3) and fISCO = (63/2π)−1fM ≈
0.0217fM , where fM ≡ M−1. Note that fISCO is twice
the innermost stable circular orbit frequency for a point
mass in Schwarzschild spacetime.

B. Numerical setup

In the following analysis, we will set fiducial param-
eters to tc = φc = χs = χa = ν = µ = δg = 0 and
randomly generate sky locations (θS, φS) and other angle
parameters (ι, ψ) for compact binaries with fixed masses
and redshift. As for GW detectors, we consider a detector
network composed of aLIGO at Hanford and Livingston,
and aVIRGO (HLV), assuming they have the same noise
curve as aLIGO [77]. The signal-to-noise ratio (SNR) ρ
of each source is computed from

ρ2 = 4
∑

I

∫ fmax

fmin

|h̃I(f)|2
Sh(f)

df , (53)

where h̃I is the Fourier amplitude of a GW signal in Ith
detector and Sh is the noise power spectral density of a
detector. In the procedure of the source generation, we
set the SNR threshold for detection and keep only sources
with network SNR ρ > 8.
The Fisher information matrix is given by [71, 78]

Γab = 4
∑

I

Re

∫ fmax

fmin

∂ah̃
∗
I(f) ∂bh̃I(f)

Sh(f)
df , (54)

where ∂a denotes a derivative with respect to a param-
eter θa. To implement a Gaussian prior on z and tc in

the Fisher matrix formalism, we add 1/(∆ log z)2 and
1/(∆tc)

2 to the (log z, log z) and (tc, tc) components of
the Fisher matrix, respectively. This is equivalent to mul-
tiplying a likelihood function by a prior probability dis-
tribution. We take a standard deviation of z in νµ model
as ∆z = 0.001 and tc in δgµ model as ∆tc = 1 s. The
choice of the z prior is motivated by possible identifica-
tion of a host galaxy with a spectroscopic observation (for
NS-NS and NS- BH binary mergers, an electromagnetic
transient counterpart is also expected), while the choice
of the tc prior is motivated by possible association of NS-
NS and NS- BH binary mergers with short gamma-ray
bursts and the estimation of arrival time difference be-
tween a GW and gamma-ray photons from consideration
of the various emission mechanisms [79]. The parameter
estimation errors are computed from the inverse Fisher
matrix. We define the sky localization error as

∆ΩS ≡ 2π| sin θS|
√

(∆θS)2(∆φS)2 − 〈δθSδφS〉2 , (55)

where 〈· · · 〉 stands for ensemble average and ∆θS ≡
〈(δθS)2〉1/2 and ∆φS ≡ 〈(δφS)2〉1/2.

C. Results for νµ model

We generated 500 sources for each class of compact
binaries: 30M⊙BH -30M⊙BH, 10M⊙BH - 10M⊙BH,
10M⊙BH -1.4M⊙NS, and 1.4M⊙NS - 1.4M⊙NS, at z =
0.05. As mentioned in the previous subsection, we add
a redshift prior ∆z = 10−3 to break the parameter de-
generacy between z and ν. The results are shown in
Fig. 2. The larger chirp mass is, the larger SNR is. How-
ever, ∆ logM is almost the same except for a 30M⊙ -
30M⊙ BH binary because M is highly correlated with z
and the error in z is constrained by a prior ∆z = 10−3.
Only a 30M⊙ - 30M⊙ BH binary can determine M well
below the prior width. On the other hand, tc error is
smaller for lighter binaries because their higher merger
frequencies allow us to observe them longer and to de-
termine phase parameters better. Other parameters, ΩS,
cos ι, η, χs, ν, and µ, basically trace the standard scal-
ing, ∝ 1/SNR, though binaries with large mass-ratio are
less sensitive to symmetric parameters with respect to
component masses. The ν error distribution is similar to
those of ΩS and cos ι as they are correlated with ν though
GW amplitude at Newtonian order. In other words, once
the z prior is imposed, these parameters scales with the
standard SNR scaling and heavier binaries give smaller
errors in ν. While the µ error distribution is similar to
log η and χs because µ comes in the phase term at 1 PN
order and is correlated with log η and χs in the leading
terms in phase at 1 PN and 1.5 PN orders, respectively.
Since the range of η is limited to ≤ 0.25, log η error has
an upper limit. Consequently, the µ error of 1.4M⊙ -
1.4M⊙ NS binary cannot be so large.
Figure 3 shows redshift dependence of ν and µ errors

by generating 500 equal-mass BH binaries with 10M⊙

at z = 0.05, 0.1, and 0.2. A remarkable feature is that
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∆ logM ∆tc

∆ΩS [deg2] ∆ cos ι ∆ν

∆ log η ∆χs ∆µ [eV]

Figure 2. Parameter estimation errors in νµ model with a redshift prior, ∆z = 10−3, showing mass dependence: 30M⊙-30M⊙

(red), 10M⊙-10M⊙ (green), 10M⊙-1.4M⊙ (blue), 1.4M⊙-1.4M⊙ (magenta). The redshift is fixed to z = 0.05.

the error distributions of ν and µ hardly depend on red-
shift. This is explained as follows. At low redshifts, SNR
is inversely proportional to redshift and the parameter
estimation errors become worse at far distance. On the
other hand, the modified gravity effects are accumulated
during propagation and become larger as distance in-
creases. Then these scalings compensate each other and
lead to the scaling almost independent of the source red-
shift. This indicates that sources at higher redshifts are
likely to be used for constraining modified gravity param-
eters merely because they are more likely to be detected
due to large comoving volume.

In Table III, the errors in ν and µ are summarized. In
conclusion, with the help of the z prior, we can achieve
the measurement of ν up to at a level of ∆ν ≈ 1.3 by
observing a single source.

D. Results for δgµ model

We generated 500 sources for each class of compact bi-
naries: 30M⊙BH -1.4M⊙NS, 10M⊙BH - 1.4M⊙NS, and
1.4M⊙NS -1.4M⊙NS, at z = 0.05. As we mentioned
in Sec. IVA, tc and δg are completely degenerated. To
break the degeneracy, we impose tc prior, ∆tc = 1 s, as-
suming an electromagnetic counterpart. The results are
shown in Fig. 4. The dependences of the parameter esti-
mation errors are much more complicated in δgµ model

than in νµ model because of different mass ratios. The
SNR of 30M⊙ -1.4M⊙ and 10M⊙ - 1.4M⊙ binaries are al-
most same, but the mass ratio is different by three times,
leading to different durations of an inspiral phase. That
is why 10M⊙ - 1.4M⊙ binary can better determine mass
parameters, M and η, and graviton mass µ. The error
of δg is exactly the same for all binaries because this is
constrained merely by the tc prior.

We also studied the redshift dependence of δg error by
generating 500 10M⊙BH - 1.4M⊙NS binaries at z = 0.05,
0.1, and 0.2. The interesting feature is that δg is well de-
termined at high redshifts, in contrast to ν and µ errors.
This is because in Eq. (51), the quantity constrained by
the tc prior is

δg
dL(z)

1 + z
. (56)

Since this term is roughly proportional to δgz at low red-
shifts and is constrained to be . 1 s, then δg is better con-
strained at higher redshifts, irrespective of SNR. Indeed,
as shown in Table IV, for 10M⊙ BH -1.4M⊙ NS binaries
at z = 0.05, 0.1, and 0.2, δg error scales as 4.5 × 10−17,
2.3× 10−17, 1.2× 10−18 as the redshift increases, though
their median SNR are 20.5, 11.9, 9.1, respectively. There-
fore, in the δgµ model, the tc prior plays an essential role
to determine the parameter estimation precision of δg,
while µ error weakly depends on a source redshift.
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∆ν ∆µ [eV]

Figure 3. Parameter estimation errors νµ with a redshift prior, ∆z = 10−3, showing redshift dependence: z = 0.05 (red),
z = 0.1 (green), z = 0.2 (blue). The masses are fixed to 10M⊙-10M⊙.

m1 [M⊙] m2 [M⊙] ∆ν (median) ∆ν (top 10%) ∆µ [eV] (median) ∆µ [eV] (top 10%)
30 30 3.21 1.33 5.85 × 10−23 4.74× 10−23

10 10 6.37 2.46 2.03 × 10−22 1.82× 10−22

10 1.4 16.1 6.54 4.89 × 10−22 3.87× 10−22

1.4 1.4 35.9 9.92 4.09 × 10−22 3.71× 10−22

Table III. Median and top 10% errors of parameter estimation in νµ model when the redshift is fixed to z = 0.05.

V. CURRENT CONSTRAINTS AND FUTURE

PROSPECT

A. Graviton mass µ

Currently graviton mass has been constrained by sev-
eral observations of the galaxy, the solar system, and
binary pulsars (for summary, see [80] and references
therein). However, the constraints from the galaxy and
the solar system have been obtained from the observa-
tions in static gravitational fields and cannot be applied
directly to GWs. The only mass limit from dynamical
gravitational fields had been that from binary pulsars
for a long time: mg < 7.6 × 10−20 eV [81]. Recently,
aLIGO have detected gravitational waves from BH bina-
ries and updated the dynamical mass bound, combining
three GW events: mg < 7.7× 10−23 eV [3]. This is close
to our best forecast for the constraint on graviton mass in
the case of a 30M⊙ - 30M⊙ BH binary at z = 0.05 in the
νµ model (mg < 4.7 × 10−23 eV). Therefore, there is no
room for significant improvement of the mass constraint
in aLIGO era.

As expected from Eq. (11), gravitonmass bound can be
tighter at lower frequencies. There have been proposals
for the possible constraints on graviton mass from the fu-
ture observation of a compact binary with a space-based
GW detector such as LISA [82] in the millihertz band
and DECIGO [83] in the decihertz band. By observing
107M⊙ - 106M⊙ BH binary at 3 Gpc with LISA, one can
impose a limit mg < 4.0× 10−26 eV [84], while observing
106M⊙ - 105M⊙ BH binary at 3 Gpc with DECIGO gives
a limit mg < 3.7 × 10−25 eV [85]. These constraints are
about 102 - 103 times stronger than the aLIGO bound.

B. Propagation speed cT

GW propagation speed has been constrained indirectly
from ultra-high energy cosmic rays. Assuming the cosmic
rays originate in our Galaxy (conservatively assuming
short propagation distance), the absence of gravitational
Cherenkov radiation and the consequent observation of
such cosmic rays on the Earth lead to the limit on GW
speed, δg < 2 × 10−15 [86]. However, this constraint on
GW propagation speed (phase velocity) can be applied
only to a subluminal case at very high energy∼ 1010 GeV
or very high frequency ∼ 1033Hz. While from the obser-
vational data of the orbital decay of a binary pulsar, the
constraint on GW speed has been obtained, limiting su-
perluminal propagation: |δg| . 10−2 [87]. On the other
hand, the first three detections of GW from BH binaries
allow us for the first time to directly measure GW speed
on the Earth, based on arrival time difference between
detectors. Cornish et al. [88] has given a new constraint
on GW group velocity, −0.42 < 1 − vg < 0.45, by com-
bining the first three GW events in a Bayesian analysis
with a linear prior on vg. Assuming vg is constant, one
can convert the constraint on vg into −0.42 < δg < 0.45.
This constraint is rather weak, but robust and reliable.
More importantly, this is obtained in the high-density
and relatively strong-gravity environment on the Earth,
where the screening effect of modified gravity such as
the chameleon mechanism [89] and the Vainshtein mech-
anism [90] may work.

Recently, a coincidence event between GW from
a NS binary merger and a short gamma-ray burst,
GW170817/GRB170817A, was detected [5]. Assuming
the emission of the gamma ray is not delayed more than
10 sec from that of GW and using the observed difference
of the arrival times 1.7 sec and conservative distance to
the source dL = 26Mpc [6], the constant propagation
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∆ logM
∆ log η

∆ log z
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Figure 4. Parameter estimation errors in δgµ model with tc prior, ∆tc = 1 s, showing mass dependence: 30M⊙-1.4M⊙ (red),
10M⊙-1.4M⊙ (green), 1.4M⊙-1.4M⊙ (blue). The redshift is fixed to z = 0.05. In the δg plot, the green line is completely
overlapped with the blue line.

m1 [M⊙] m2 [M⊙] z ∆δg (median) ∆δg (top 10%) ∆µ [eV] (median) ∆µ [eV] (top 10%)
30 1.4 0.05 4.46 × 10−17 4.46 × 10−17 8.53 × 10−22 6.58 × 10−22

10 1.4 0.05 4.46 × 10−17 4.46 × 10−17 4.95 × 10−22 3.86 × 10−22

1.4 1.4 0.05 4.46 × 10−17 4.46 × 10−17 4.43 × 10−22 4.00 × 10−22

10 1.4 0.1 2.26 × 10−17 2.26 × 10−17 4.77 × 10−22 3.94 × 10−22

10 1.4 0.2 1.16 × 10−17 1.16 × 10−17 4.19 × 10−22 3.89 × 10−22

Table IV. Median and top 10% errors of parameter estimation in δgµ model.

speed of GW is constrained tightly so that −7× 10−16 <
δg < 3× 10−15. This is consistent with our best forecast
for the bound on GW speed |δg| < 1.2 × 10−17, because
we assume a tc prior ∆tc = 1 s and a GW source at
z = 0.2 (∼ 1Gpc), which are a slightly better prior and
much larger distance. From the theoretical point of view
in modified gravity theories, the GW propagation speed
is not always constant but is likely to evolve with time.
The constraints in time-dependent cases are discussed in
detail in the subsequent paper of this series [91].

C. Amplitude damping rate ν

The amplitude damping rate ν has not yet been con-
strained well. Our best forecast for the constraint on ν
is obtained from a 30M⊙ - 30M⊙ BH binary at z = 0.05
to be |ν| < 1.3, only if the source redshift is obtained
by the identification and spectroscopic observation of a
host galaxy. However, it is not easy to identify a host
galaxy with an aLIGO-like detector network because of
poor angular resolution. However, the very small number
of GW events with redshift information would be obtain
with aLIGO-like detector network at design sensitivity
[73, 74]. Using multiple BH-BH binaries in a few-year

observation, ν would be able to be measured at the order
of O(0.1). While the constraints from BH-NS or NS-
NS binaries are much weaker than that from a BH-BH
binary. Indeed the recent detection of GW170817 was ac-
companied with electromagnetic emissions in the broad
range of frequencies and the redshift of the host galaxy
was identified successfully. However, the constraint from
GW170817 is too weak to test realistic models of mod-
ified gravity (∆ν ≈ 80) [91]. The rate of such a event
is still largely uncertain, but if a number of GW events
with source redshifts is available, the constraint can be
improved statistically by using multiple sources. Then
the bound can be comparable to that from a single 30M⊙

- 30M⊙ BH-BH binary if 30 BH-NS binaries or 60 NS-NS
binaries are detected with any electromagnetic counter-
parts.

One of other methods proposed so far to measure GW
amplitude damping is the number count of GW sources
[92]. Once it is assumed that a binary merger rate is
constant, the power index of GW amplitude damping,
d−γ
L , is determined from a source number distribution in

distance. According to [92], γ is measured at 15% preci-
sion with 100 sources observed by aLIGO under the as-
sumption that binary parameters are completely known.
Since the assumptions on the merger rate and the bi-
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nary parameters are too strong in practice, it is difficult
to compare with our result. But, since ∆ν ∼ ∆γ at
the leading order, the naive correspondence leads to the
measurement of ν with an error of 0.15. Further study is
necessary to conclude which method is better in realistic
conditions.

VI. CONCLUSION

To treat tests of gravity with GW more exhaustively
and intuitively, irrespective of the models of gravity the-
ories, GW sources, and background spacetimes, we have
proposed a new universal framework for testing gravity,
based on the propagation equation of a GW in an effec-
tive field theory. By analytically solving the GW propa-
gation equation, we obtained a WKB solution with arbi-
trary functions of time that describe modified amplitude
damping, modified propagation speed, nonzero graviton
mass, and a possible source term for a GW. Then we
have performed a parameter estimation study with the
Fisher information matrix, showing how well the future
observation of GW can constrain the model parameters
in generalized models of GW propagation. One of the
advantages to consider GW propagation is that even if
modification on gravity is a tiny effect, propagation from
a distant source can accumulate the effect and amplify a
signal observed at a detector.

For the constant νµ model, since ν and z are com-
pletely degenerated, we need to impose a prior on red-
shift. Once the redshift information is obtained from the
spectroscopic observation of a host galaxy or an electro-
magnetic transient, ν can be determined at a precision
of ∆ν ∼ 1.3 by observing a 30M⊙ - 30M⊙ BH binary
at z = 0.05. While our best forecast for the constraint
on graviton mass is mg < 4.7 × 10−23 eV with 30M⊙ -
30M⊙ BH binary at z = 0.05. This is already close to the
graviton mass bound from aLIGO, mg < 7.7× 10−23 eV
[3], and we cannot expect the significant improvement
of the graviton mass bound in aLIGO era. For the con-
stant δgµ model, since δg and tc are completely degen-
erated, we need to impose a prior on tc, which would
be obtained from the observation of an electromagnetic
transient counterpart to a GW event. Once tc informa-
tion is obtained, δg can be determined at a precision of
δg ∼ 1.2×10−17, independent of masses of a GW source.

We already had a GW event with its source redshift
from an electromagnetic transient counterpart and an
identified host galaxy, GW170817/GRB170817A. This
event enabled us to constrain the GW speed so tightly. In
a couple of years, such events are expected to be detected
more frequently by the GW detector network. Therefore,
our universal framework for generalized GW propagation
will be a useful tool to constrain gravity theories beyond
GR.

Appendix A: PhenomD waveform

The PhenomD waveform [69] is composed of three
parts (inspiral, intermediate, and merger-ringdown
phases) and is given by

hGR = GIAIMR e
iφIMR ,

with

AIMR =



















Ains f ≤ fa1

Aint fa1 < f ≤ fa2

AMR fa2 < f

, (A1)

φIMR =



















φins,E + φins,L f ≤ fp1

φint fp1 < f ≤ fp2

φMR fp2 < f

, (A2)

and GI the geometrical factor including detector response
functions and the relative orientations of Ith detector and
a GW source. Each part is described by

A0 =
1√

6π2/3dL
M5/6f−7/6 , (A3)

Ains = A0

{

6
∑

i=0

Ai(πf)
i/3 +

3
∑

i=1

ρif
(i+6)/3

}

, (A4)

Aint = A0

4
∑

i=0

δif
i , (A5)

AMR = A0γ1
γ3fdamp

(f − fRD)2 + γ23f
2
damp

e
−

γ2(f−fRD)

γ3fdamp , (A6)

φins,E = 2πftc − φc − π/4

+
3

128
(πMf)

−5/3
7

∑

i=0

ϕi(πMf)i/3 , (A7)

φins,L =
1

η

{

σ0 +
∑

i=1

3

i+ 2
σif

(i+2)/3

}

, (A8)

φint =
1

η

{

β0 + β1f + β2 log f − β3
3
f−3

}

, (A9)

φMR =
1

η

{

α0 + α1f − α2f
−1 +

4

3
α3f

3/4

+α4 tan
−1

(

f − α5fRD

fdamp

)}

, (A10)

whereM is the total mass and is related to the chirp mass
as M = Mη−3/5, dL is luminosity distance. The explicit
expressions of the coefficients ϕi, αi, βi, γi, δi, σi, ρi,Ai

are given in [69] and some of them are fixed from
matching conditions between different parts of the wave-
form. The transition frequencies of the waveform are
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fa1 = 0.014fM and fa2 = fpeak for amplitude and
fp1 = 0.018fM and fp2 = 0.5fRD for phase, where

fM =M−1 ≈ 440Hz

(

10M⊙

M

)

, (A11)

fpeak =

∣

∣

∣

∣

∣

fRD +
fdampγ3(

√

1− γ22 − 1)

γ2

∣

∣

∣

∣

∣

, (A12)

fRD =
fM
2π

{

1.5251− 1.1568(1− aefff )0.1292
}

, (A13)

fdamp =
fRD

2Q
, (A14)

Q = 0.7000 + 1.4187(1− aefff )−0.4990 , (A15)

aefff = S + 2
√
3η − 4.399η2 + 9.397η3 − 13.181η4

+ (−0.085S + 0.101S2 − 1.355S3 − 0.868S4)η

+ (−5.837S − 2.097S2 + 4.109S3 + 2.064S4)η2 ,
(A16)

S ≡ S1 + S2

M2

= (1 − 2η)χs +
√

1− 4η χa . (A17)

Here aefff , S are from [93] and fdamp, fRD, and Q are from

[94].
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