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We evolve a binary black hole system bearing a mass ratio of q = m1/m2 = 2/3 and individual
spins of Sz

1/m
2
1 = 0.95 and Sz

2/m
2
2 = −0.95 in a configuration where the large black hole has its spin

antialigned with the orbital angular momentum, Lz, and the small black hole has its spin aligned
with Lz. This configuration was chosen to measure the maximum recoil of the remnant black hole
for nonprecessing binaries. We find that the remnant black hole recoils at just above 500km/s,
the largest recorded value from numerical simulations for aligned spin configurations. The remnant
mass, spin, and gravitational waveform peak luminosity and frequency also provide a valuable point
in parameter space for source modeling.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

Since the breakthroughs in numerical relativity of
2005 [1–3] it is possible to accurately simulate moderate-
mass-ratio and moderate-spin black-hole binaries. State
of the art numerical relativity codes now routinely evolve
binaries with mass ratios as small as q . 1/16 [4–9], and
are pushing towards much smaller mass ratios. Indeed,
there have been some initial explorations of q = 1/100
binaries [6, 7].

However, when it comes to highly-spinning binaries,
prior to the work of [10] of the SXS Collaboration [11],
it was not even possible to construct initial data for bi-
naries with spins larger than ∼ 0.93 [12]. This limita-
tion was due to the use of conformally flat initial data.
Conformal flatness is a convenient assumption because
the Einstein constraint system takes on a particularly
simple form. Indeed, using the puncture approach, the
momentum constraints can be solved exactly using the
Bowen-York ansatz [13]. There were several attempts
to increase the spins of the black holes while still pre-
serving conformal flatness [14, 15], but these introduced
negligible improvements. Lovelace et al. [10] were able to
overcome these limitations by choosing the initial data to
be a superposition of conformally Kerr black holes in the
Kerr-Schild gauge. Using these new data, they were able
to evolve binaries with spins as large as 0.97 [16] and,
later, spins as high as 0.994 [17]. Production simulations
remain still very lengthy.

Recently, we introduced a version of highly-spinning
initial data, also based on the superposition of two Kerr
black holes [18, 19], but this time in a puncture gauge.
The main differences between the two approaches is
how easily the latter can be incorporated into moving-
punctures codes. In Refs. [18, 20], we were able to evolve
an equal-mass binary with aligned spins, and spin mag-
nitudes of χ = 0.95 and χ = 0.99 respectively, using this
new data and compare with the results of the Lovelace
et al., finding excellent agreement.

Studies of aligned spin binaries have provided insight

on the basic spin-orbit dynamics of black hole mergers
and also allow for a first approximation for source pa-
rameter estimations of gravitational wave signals [21] be-
cause this reduced parameter space [22] contains two of
the most important parameters for the modeling wave-
forms: the mass ratio (in addition to the total mass) and
the spin components along the orbital angular momen-
tum [23].

In [24] we found, after extrapolation of a fitting
formula, that the maximum recoil for binaries with
aligned/anti-aligned spins occurs when the mass ratio be-
tween the smaller and larger black hole is near q = 2/3.
Since that study used Bowen-York initial data, we were
not able to produce actual simulations of near-maximal
spinning holes to verify this prediction. In this paper,
we revisit this configuration with our new HiSpID ini-
tial data, which is able to generate binaries with spins
much closer to unity. Here we evolve a binary with spins
χi = 0.95 and measure a recoil of ∼ 502km/s, the largest
recoil ever obtained for such nonprecessing binary black
hole mergers.

In this paper, we show the results of a convergence se-
ries of simulations of unequal-mass binary with aligned
spins of χ = 0.95. There is no similar simulation to our
knowledge in the literature, thus filling a gap in the grav-
itational waveforms template banks that are currently
used in the detection and parameter estimation of grav-
itational wave signals as observed by LIGO and other
detectors [21, 25]. This important region of parameter
space of highly spinning binaries is currently poorly cov-
ered by current catalogs [9, 22, 26] and benefits from new,
accurate simulations.

We use the following standard conventions throughout
this paper. In all cases, we use geometric units where
G = 1 and c = 1. Latin letters (i, j, . . .) represent
spatial indices. Spatial 3-metrics are denoted by γij and
extrinsic curvatures by Kij . The trace-free part of the
extrinsic curvature is denoted by Aij . A tilde indicates
a conformally related quantity. Thus γij = ψ4γ̃ij and

Aij = ψ−2Ãij , where ψ is some conformal factor. We
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denote the covariant derivative associated with γij by Di

and the covariant derivative associated with γ̃ij by D̃i.
A lapse function is denoted by α, while a shift vector by
βi.

This paper is organized as follows. In Sec. II A, we
provide a brief overview of how the initial data are con-
structed and prove its convergent properties. In Sec. II B
we describe the numerical techniques used to evolve these
data. In Sec. III, we present detailed waveform, trajec-
tories, masses and spin results of the binary evolution.
In Sec. III A, we analyze the various diagnostics to de-
termine the accuracy of the simulation and show the nu-
merical convergence of the evolution system. We also
provide values for the final remnant mass, spin and recoil
velocity as well as the peak luminosity and corresponding
peak frequency and amplitude as derived from the grav-
itational waveform. Finally, in Sec. IV, we discuss our
results and how they apply to parameter estimation and
follow up simulations to gravitational wave observations.

II. NUMERICAL TECHNIQUES

A. Initial Data

We construct initial data for a black-hole binary
with individual spins χ1,2 = 0.95 using the HiSpID
code [18, 19], with the modifications introduced in [20].
The HiSpID code solves the four Einstein constraint
equations using the conformal transverse traceless de-
composition [27–30].

In this approach, the spatial metric γij and extrinsic
curvature Kij are given by

γij = ψ4γ̃ij , (1)

Kij = ψ−2Ãij +
1

3
Kγij , (2)

Ãij = M̃ij + (L̃b)ij , (3)

where the conformal metric γ̃ij , the trace of the extrinsic

curvature K, and the trace-free tensor M̃ij are free data.
The Einstein constraints then become a set of four cou-
pled elliptical equations for the scalar field u = ψ − ψ0

and components of the spatial vector bi (ψ0 is a singular
function specified analytically). The resulting elliptical
equations are solved using an extension to the TwoP-
unctures [31] thorn.

The free data are chosen by superimposing two boosted
Kerr black holes, as described in more detail in [18]. The
superposition has the form

γ̃ij = γ̃
(+)
ij + γ̃

(−)
ij , (4)

K = K(+) +K(−), (5)

Mij =
[
Ã

(+)
ij + Ã

(−)
ij

]TF

, (6)

ψ0 = ψ(+) + ψ(−) − 1, (7)

where (+) and (−) refer to the two black holes, γ̃
(±)
ij

and Ãij are the conformal metric and trace-free extrinsic
curvatures for a boosted and rotated Kerr black hole,
K(±) is the mean curvature, and the conformal factor

ψ(±) is chosen such that ψ(±) = 12

√
det(γ

(±)
ij ) (where γ

(±)
ij

is the physical metric from a boosted and rotated Kerr
black hole).

To get γ̃
(±)
ij , etc., we start with Kerr black holes

in quasi-isotropic (QI) coordinates and perform a fish-
eye (FE) radial coordinate transformation followed by a
Lorentz boost (see [20] for more details). The FE trans-
formation is needed because it expands the horizon size,
which greatly speeds up the convergence of the elliptic
solver and has the form

rQI = rFE[1−AFE exp(−r2FE/sFE2)], (8)

where rFE is the fisheye radial coordinate, rQI is the orig-
inal QI radial coordinate, and AFE and sFE are parame-
ters.

We use an attenuation function described in [18, 20]
to modify both the metric and elliptical equations inside
the horizons. We briefly summarize the procedure here.
The elliptical equations for u and bi are modified to

D̃2u− g

(
ψR̃

8
+
ψ5K2

12
− ÃijÃ

ij

8ψ7
− D̃2

(
ψ(+) + ψ(−)

))
= 0 ,(9)

∆̃Lb
i + gD̃jM̃

ij − g 2

3
ψ6γ̃ijD̃jK = 0 , (10)

(11)

where ∆̃Lb
i ≡ D̃j(L̃b)ij is the vector Laplacian and R̃ is

the scalar curvature associated with γ̃ij , and where the
attenuation function g takes the form

g = g+ × g− , (12)

g± =


1 if r± > rmax

0 if r± < rmin

G(r±) otherwise,

, (13)

where the function G(r) smoothly transitions from 0 at
r = rmin to 1 at r = rmax. Here r± is the coordinate
distance to puncture (+) or (−), and the parameters
rmin < rmax are chosen to be within the horizon. Note
that if g = 1, the Einstein constraints will be satisfied.
The function G(r±) can be chosen such that g is C∞,
however, this leads to poorer performance than choosing
G(r±) to be a polynomial such that g is differentiable a
finite number of times when r± = rmin and r± = rmax.
In addition, the background metric itself is modified so
that

γ̃ij → δij + g(γ̃ij − δij), (14)

Γ̃kij → gΓ̃kij . (15)

Finally, far from the holes, we attenuate γ̃ij , K, and
ψ0. This is achieved by consistently changing the metric
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fields and their derivatives so that

γ̃
(±)
ij → f(r±)(γ̃

(±)
ij − δij) + δij , (16)

K(±) → f(r±)K(±), (17)(
ψ(±) − 1

)
→ f(r±)

(
ψ(±) − 1

)
, (18)

where f(r) = exp(−r4/s4far) and r± is the coordinate
distance to puncture (+) or (−).

For compatibility with the original TwoPunctures
code, we chose to set up HiSpID so that the parame-
ters of the binary are specified in terms of momenta and
spins of the two holes. However, unlike for Bowen-York
data, the values specified are only approximate, as the
solution vector bi can modify both of these. In prac-
tice, we find that the spins are modified by only a trivial
amount while orbital angular momentum (as measured
from the difference between the total angular momen-
tum measured at spatial infinity and the two spin an-
gular momenta) is reduced significantly. Furthermore,
for this unequal-mass case (and generally when the two
black holes are not identical), the linear momentum of
the two black holes are modified by different amounts.
This means that the system with the default parameters
will have net Arnowitt-Deser-Misner (ADM) linear mo-
mentum. To compensate for both of these changes, the
boost applied to each black hole needs to be adjusted. In
practice, the change in orbital angular momentum is the
larger of the two. We adjust these boosts using an iter-
ative procedure. To compensate for the missing angular
momentum, we increase the magnitude of the linear mo-
mentum of each black hole by a factor of δL/D, where δL
is the missing angular momentum and D is the separa-
tion of the two black holes in quasi-isotropic coordinates.
This process is repeated until the orbital angular mo-
mentum is within 1 part in 10,000 of the desired value.
To remove excess linear momentum, we subtract half the
measured net linear momentum from each black hole.
Here, we repeat this subtraction until the measured lin-
ear momentum is smaller than 10−6M . The net effect
is that the two black holes have linear momentum pa-
rameters with different magnitudes, and both black holes
have linear momentum parameters larger in magnitude
than those predicted by simple quasicircular conditions
would imply [32]. All parameters for the χ = 0.95 run
are given in Table I. Finally, in order to get a satisfac-
tory solution for the initial data problem, i.e., constraints
residuals below 10−8, as measured on the adaptive-mesh
refinement (AMR) computational grid (see Sec. III A),
we used 450 × 450 × 22 collocation points (the third di-
mension is an axis of approximate symmetry).

In Fig. 1, we show the convergence of the L2 norms
of the Hamiltonian (H) and the momentum constraint
components (M i) versus the number of collocation points
(NA×NB×Nφ) = N×N×(40). Here, the constraints are
not measured on the computational grid, but rather on
106 randomly chosen points located in the volume outside
the two horizons and inside a sphere with radius equal to
the separation of the two black holes. The convergence

is algebraic (approaching 8th order). (Algebraic conver-
gence is expected because of the use of the attenuation
functions mentioned above). This initial-data L2 norm
is defined to be

||f ||2 =

√√√√ 1

N

N∑
n=1

f(~xn)2,

where ~xn are 106 randomly chosen points.
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FIG. 1. The convergence of the L2 norm of the Hamiltonian
and momentum constraint residuals of the initial data solver
versus the number of collocation points (N × N × 40). The
L2 norm is measured with respect 106 randomly chosen points
lying outside the two horizons and inside a sphere with radius
equal to the separation of the two black holes. The observed
power law of ∼ N−7 for the convergence rate is consistent
with the C6 smoothness of the attenuation function g [see
Eq. (12)].

B. Evolution

We evolve black hole binary initial data sets using
the LazEv [33] implementation of the moving punc-
tures approach for the conformal and covariant formu-
lation of the Z4 (CCZ4) system (Ref. [34]) which in-
cludes stronger damping of the constraint violations
than the standard BSSNOK [35–37] system. For the
run presented here, we use centered, eighth-order accu-
rate finite differencing in space [38] and a fourth-order
Runge-Kutta time integrator. Our code uses the Cac-
tus/EinsteinToolkit [39, 40] infrastructure. We use
the Carpet mesh refinement driver to provide a “moving
boxes” style of mesh refinement [41]. Fifth-order Kreiss-
Oliger dissipation is added to evolved variables with dissi-
pation coefficient ε = 0.1. For the CCZ4 damping param-
eters, we chose κ1 = 0.21, κ2 = 0, and κ3 = 0 (see [34]).

We locate the apparent horizons using the AHFind-
erDirect code [42] and measure the horizon spins using
the isolated horizon algorithm [43]. We calculate the ra-
diation scalar ψ4 using the Antenna thorn [44, 45]. We
then extrapolate the waveform to an infinite observer lo-
cation using the perturbative formulas given in Ref. [46].
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TABLE I. Initial data parameters for a χ = 0.95 highly spin-
ning binary with mass ratio q = 2/3. The two spins are given

by ~Si = (0, 0, Si) and the two momenta are ~Pi = (P r
i , P

t
i , 0),

where i = 1, 2. The parameter M is the sum of the masses
of the two black holes. Unlike for Bowen-York data, the mo-
menta and spins cannot be specified exactly. However, the
horizon masses of each black hole (mH

1 and mH
2 ) closely match

the mass parameters m1 and m2 that are used to define the
background metric. Quantities denoted by “init” were mea-
sured at t = 0, while quantities denoted by “equi” are mea-
sured at t = 200. Relaxed quantities shown are from the high
resolution N144 simulation. mH

i , Si, χi are masses, spin an-
gular momenta, and dimensionless spins, respectively, of the
two black holes. The quantity rH is the polar coordinate ra-
dius of the horizons. Finally, MADM and Jtot are the ADM
mass and total angular momentum measured at spatial infin-
ity. Also included are the attenuation and fisheye parameters
described in the text.

Initial Data Quantities

P r
1 /M = 0.00101 P t

2/M = −0.097945
P r
2 /M = −0.00100 P t

1/M = 0.098958
m1/M = 0.39860 m2/M = 0.60140
S1/M

2 = 0.15094 S2/M
2 = −0.34359

Jtot/M
2 = 0.74449 MADM/M = 0.98873

mH init
1 /M = 0.39846 mH init

2 /M = 0.60019
Sinit
1 /M2 = 0.15090 Sinit

2 /M2 = −0.34347
χinit
1 = 0.95042 χinit

2 = −0.95346
rH init
1 /M = 0.422 rH init

2 /M = 0.420

Relaxed Quantities

mH equi
1 /M = 0.3985± 0.0001 mH equi

2 /M = 0.6002± 0.0008

Sequi
1 /M2 = 0.1518± 0.0001 Sequi

2 /M2 = −0.3440± 0.0004

χequi
1 = 0.9503± 0.0002 χequi

2 = −0.9534± 0.0006

rH equi
1 /M = 0.173± 0.001 rH equi

2 /M = 0.273± 0.001

Additional Parameters
rmin = 0.01 rmax = 0.4
AFE2 = 0.86 sFE2 = 1.5
AFE1 = 0.936 sFE1 = 1.5
sfar = 10.0

For the gauge equations, we use [2, 47, 48]

(∂t − βi∂i)α = −2α2K , (19a)

∂tβ
a =

3

4
Γ̃a − ηβa . (19b)

Note that the lapse is not evolved with the standard
1+log form. Here we multiply the RHS of the lapse
equation by an additional factor of α. This has the
effect of increasing the equilibrium (coordinate) size of
the horizons. For the initial values of shift, we chose
βi(t = 0) = 0, while for the initial values of the lapse,

we chose an ad-hoc function α(t = 0) = ψ̃−2, where

ψ̃ = 1 + m1/(2r1) + m2/(2r2) and ri is the coordinate

distance to black hole i. For the function η, we chose

η(~r) = (ηc − ηo) exp(−(r/ηs)
4) + ηo, (20)

where ηc = 2.0/M , ηs = 40.0M , and ηo = 0.25/M . With
this choice, η is small in the outer zones. As shown
in Ref. [49], the magnitude of η limits how large the
timestep can be with dtmax ∝ 1/η. Since this limit is
independent of spatial resolution, it is only significant in
the very coarse outer zones where the standard Courant-
Friedrichs-Lewy condition would otherwise lead to a large
value for dtmax.

We performed three simulations at low (N100),
medium (N120), and high (N144) resolutions. The num-
ber ”NXXX” denotes an overall scale factor for the grid
structure. For example, N100 has a resolution of M/1.0
in the wavezone, and N120 is a factor of 1.2 higher with a
wavezone resolution of M/1.2. In all cases, the grid struc-
ture consists of 11 levels of refinement with the finest
mesh extending to ±0.3M (in all directions) from the
centers of the two black holes, while the coarsest level
extends to ±400M (in all directions). The resolution
on the finest level is M/256, M/307.2, and M/368.64
for N100, N120, and N144 resolutions. On the coarsest
grid, the resolution is M/0.25, M/0.3, and M/0.36 for
N100, N120, and N144, respectively. We initially have
the finest mesh centered around both black holes, but
after the gauge settles and the horizons have expanded,
we remove the finest mesh around the larger BH. The
highest resolution run required 868,222SUs in our local
machine, Blue Sky on 32 nodes until merger, and then
24 nodes afterwards in a wall-time of 69 days. The two
lower resolution runs required an additional 681,530 SUs
on Blue Sky, for a total of 1,549,752SUs.

III. RESULTS

We performed a convergence set of three simulations
from a coordinate separation of 10M (simple proper dis-
tance of 13.8M) through merger for an unequal-mass bi-
nary, q = 2/3 where the larger hole spin is anti-aligned
and the smaller aligned with the orbital angular momen-
tum and both have dimensionless magnitudes of 0.95.
Note that by simple proper distance we mean the proper
distance of that part of the coordinate line joining the
centers of the two black holes that is between the two
horizons.

Figure 2 shows the tracks of the holes in the orbital
(xy-) plane, their relative separation (both the coordinate
separation and the simple proper distance along the line
joining the black holes), as well as the orbital phase. To
calculate the eccentricity, we fit a sinusoidal part and a
secular part to the simple proper distance over a period of
two orbits after the gauge settles (from t = 230M to t =
580M). The eccentricity is then e = |(D − Dsec)/D| =
0.0013, where D is the simple proper distance.

Note that we did not need to use an eccentricity reduc-
tion procedure like [50–53] (although, this would be pos-
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FIG. 2. The trajectories of the two black holes, as well as the
time dependence of the orbital separation (coordinate and
simple proper distance) and phase.

sible). Rather, the initial data obtained using HiSpID
with the parameters obtained by setting the radial mo-
mentum (pre-solve) and post-solve net linear angular mo-
mentum to the values given by [32] is sufficient to obtain
binaries with eccentricity ∼ 0.001. This shows that the
improved procedure of [32] to provide quasicircular or-
bits, tested for lowers spins, also holds for the high spin
binary here considered.

The waveform of the leading (2,2) mode is shown in
Fig. 3. We extract ψ4 directly from the simulations, and
then compute the strain h by double integration over
time. Note that at the relevant scale of the waveform,
the initial burst of radiation from our initial data is rela-
tively small, almost invisible. This is in contrast for what
is observed in Bowen-York or other conformally flat ini-
tial data, where for high spins, of the order of 0.9, the
initial burst can have an amplitude comparable to that of
the merger of the two black holes and lead to serious con-
tamination of the evolution. Besides, Bowen-York data
cannot reach spin values of 0.95 as shown in this paper,
since it is limited by spins below 0.93 [12, 14, 15].

From the waveforms we compute the radiated energy
and radiated linear and angular momentum using the
formulas given in [54, 55]. The recoil of the remnant

is given by −δ ~P/Mrem, where δ ~P is the radiated linear
momentum and Mrem is the mass of the remnant black
hole. Our results are summarized in Fig. 4.

A. Diagnostics

One of the most important diagnostics for a black-hole-
binary simulation is the degree to which the constraints
are satisfied and to what degree the horizon masses and
spins are conserved. In Fig. 5, we show the individual
horizon mass and dimensionless spin during the evolu-
tion, as well as the remnant mass and spin post-merger.
Due to our grid configuration, the smaller black hole was
actually better resolved. Consequently, the spin of the
smaller black hole was actually conserved to a better de-
gree. The spin of the smaller black hole decreased slowly
for a net change of 0.0002, or 0.02%., the larger black
hole, on the other hand, showed a spin decrease (in mag-
nitude) of 0.001, or 0.1%. The smaller black hole’s mass
varied by less than 0.005%, while the larger black hole’s
mass increased by 0.013%. Note that prior to merger, the
spins are within ±0.003 of 0.95 and the masses change
by less than 0.13%.

In Fig. 7, we show in detail the L2 norm of the Hamil-
tonian and momentum constraints during the evolution
of the binary for the highest resolution run (N144). Here
the L2 norm is over the region outside the two horizons
(or common horizon) and inside a sphere of radius 30M .
Note how the constraints start small (5×10−9−5×10−8)
and quickly increase to 10−5−10−4. This increase is due
to unresolved features in the initial data (i.e., the AMR
grid cannot propagate high-frequency data accurately).
The constraints then damp to 5 × 10−8 − 5 × 10−7 and
remain roughly constant from then on.

In Fig. 8, we again show the L2 norm of the constraints,
but for the three different resolutions (N100,N120,N144).
In the bottom panel of each we show the Richardson ex-
trapolation convergence order, d. The data is sampled
every 48M of evolution time, starting after 1 orbit when
the constraints settle at t = 150M . In all four con-
straints, we see a convergence order of between 4 and
8.

One method which we found was useful for increasing
the run speed was to change the lapse condition. Rather
than using the standard 1+log lapse, we use a modified
slicing closely related to harmonic slicing. This alterna-
tive lapse keeps the horizons at a larger coordinate size
than 1+log. However, there is still a rapid decrease in the
coordinate size of the horizons at very early time. This
rapid change in the gauge (see Fig. 6) may be responsible
for the initial jump in the constraint violations seen in
Fig. 7.

IV. DISCUSSION

In this paper we demonstrated that it is possible to
accurately evolve unequal-mass black-hole binaries with
spins well beyond the Bowen-York limit using the “mov-
ing puncture” formalism, and to efficiently generate con-
vergent initial data for such binaries with low eccentric-
ity without resorting to expensive iterative eccentricity-
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TABLE II. Remnant quantities for the three resolutions (labeled N100, N120, and N144) and extrapolated to infinite resolution.
The percent difference of the extrapolated value and N144 resolution, % ∆res is given. In addition, the extrapolated value is
compared with the expected values from fitting formulas. Mrem/Mequi and χrem are the final mass and spin of the remnant
measured on the horizon. Vrecoil and Lpeak are the recoil velocity in km/s and the peak Luminosity in dimensionless units,

measured at infinite observer location. Mequiω
peak
22 and |r/MequiH

peak
22 | are the peak frequency and amplitude of the 22 mode

of the strain. The equilibrium mass Mequi = mequi
1 +mequi

2 is used for normalization. The last two rows are for the amplitude
and phase of rMequiΨ

22
4 . The Richardson extrapolation convergence order, d, is also given.

Quantity N100 N120 N144 Inf. Res. % ∆res d Fit Fit % difference
Mrem/Mequi 0.9626 0.9622 0.9620 0.9619± 0.0009 0.01% 5.1 0.9620 0.01%
χrem 0.5116 0.5121 0.5124 0.5125± 0.0001 0.02% 5.6 0.5100 0.49%
Vrecoil 498.83 500.08 500.81 501.83± 1.14 0.20% 3.0 497.60 0.84%
Lpeak(×104) 7.9051 7.9384 7.9523 7.9623± 0.0203 0.13% 4.8 7.8400 1.54%

Mequiω
peak
22 0.3271 0.3276 0.3278 0.3279± 0.0019 0.03% 5.0 0.3309 0.91%

|r/MequiH
peak
22 | 0.3748 0.3749 0.3749 0.3749± 0.0010 0.00% 11.0 0.3743 0.16%

rMequi|Ψ22
4 | × 10 0.5741 0.5756 0.5763 0.5769± 0.0004 0.07% 4.1 - -

Arg(Ψ22
4 )/2π 10.4693 10.4908 10.4937 10.4941± 0.0004 0.01% 11.0 - -

reduction procedures. This means that comparative
studies of these challenging evolutions by the two main
methods to numerically solve the field equations of gen-
eral relativity field equations (the generalized harmonic
approach used by SXS and various flavors of the “mov-
ing punctures” approach used by many other groups) are
now possible beyond the equal-mass case [18, 20]. Inde-
pendent comparison, along the lines explored in [56, 57],
have been very successful in demonstrating the accuracy
and correctness of moderate-spin black hole simulations.
These new techniques also open the possibility of explor-
ing a region of parameter space which is of high interest
for both astrophysical and gravitational wave studies.

In addition, we computed the peak luminosity, fre-
quency, and amplitude which are key characteristic fea-
tures of the merger phase of the binary, and have con-
tributed to the remnant final black hole modeling by eval-
uating the final mass, spin, and recoil of the merged black
hole. In particular we have computed the largest recoil
velocity recorded of nonprecessing binaries, just above
500 km/s, as predicted by the extrapolation of the formu-
las given in [24]. The agreement between the extrapola-
tion of the fitting formulae and the measured values from
this simulation, as shown in Table II, give us a measure
of the expected accuracy of these kinds of simulations.
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