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We explore the possibility of probing the nonstandard interactions between the neutrino and
a hypothetical massive scalar or pseudoscalar via neutrino flavor transformation in supernovae.
We find that in the ultrarelativistic limit, the effective interaction between the neutrinos vanishes
if neutrinos are Dirac fermions but not if they are Majorana fermions. The impact of the new
neutrino interaction upon the flavor transformation above the neutrinosphere is calculated in the
context of the multi-angle “neutrino bulb model”. We find that the addition of the nonstandard
neutrino self-interaction (NSSI) to the ordinary V-A self-interaction between neutrinos is capable of
dramatically altering the collective oscillations when its strength is comparable to the standard, V-A,
interaction. The effect of flavor-preserving (FP) NSSI is generally to suppress flavor transformation,
while the flavor-violating (FV) interactions are found to promote flavor transformations. If the
neutrino signal from a Galactic supernova can be sufficiently well understood, supernova neutrinos
can provide complimentary constraints on scalar/pseudoscalar interactions of neutrinos as well as
distinguishing whether the neutrino is a Majorana or Dirac fermion.

∗ yyang30@ncsu.edu; jpknelle@ncsu.edu

mailto:yyang30@ncsu.edu
mailto:jpknelle@ncsu.edu


2

I. INTRODUCTION

The physical conditions found in the core of a core-collapse supernova (CCSN) provide us with an alternative and
complimentary laboratory for probing the properties of the neutrino. In addition to the extreme matter density, the
neutrino density in the vicinity of the proto-neutron star (PNS) is so high that neutrinos can experience coherent
forward-scattering from the other neutrinos emitted from the PNS. Indeed, during some epochs of the explosion,
this neutrino-neutrino self-interaction can dominate the flavor evolution. The complete description of the flavor
transformation in CCSN is given in terms of Quantum Kinetic Equations [1–4] which are found to reduce to a
Schrödinger-like equation in the limit where the exchange of energy and momentum between neutrinos and the
medium vanishes. Using Standard Model physics, the Hamiltonian H that enters this equation is built out of a
vacuum contribution HV , a matter contribution HM , and a self-interaction HSI . The self-interaction makes the flavor
evolution of one neutrino dependent upon the flavor evolution of every other neutrino it encounters. The full problem
is currently beyond the scope of computing platforms. The current state-of-the-art model for the calculations of
neutrino flavor transformation in supernovae is known as the “neutrino bulb model” which imposes both spherical
symmetry for neutrino emissions from the neutrinosphere, and axial symmetry around every radial ray, in order to
reduce the number of independent variables needed to describe the neutrino field to just three. The three degrees of
freedom are typically chosen to be: the radial coordinate along a ray, the neutrino energy, and the angle of emission
relative to the normal at the neutrinosphere [5]. Multiple studies of the neutrino flavor transformation in CCSN using
the bulb model have found the addition of HSI can leave distinct features in the neutrino spectra which vary with
time and which one would hope to observe in the signal from a future Galactic supernova: for recent reviews we refer
the reader to Mirizzi et al. [6] and Horiuchi & Kneller [7]

The conditions found in a CCSN mean that any change to the properties of the neutrino often modify the outcome
of the flavor transformation. For example, new - sterile - flavors of neutrinos have been considered on several occasions
[8–15]. Authors have found that active-sterile mass-splittings of order ∼ 0.1 eV2 or greater, and mixing angles larger
than ∼ 0.01◦ can introduce new adiabtaic Mikheyev-Smirnov-Wolfenstein (MSW) [16–18] resonances close to the
PNS whose effect upon the neutrino flavor composition of the flux changes the dynamics of the explosion [12, 14]
as well as the flavor evolution at larger radii and the neutrino signal [12, 15]. Similarly one can also consider new
interactions of neutrinos coupled via some new field to either matter (electrons and quarks) or to other neutrinos.
There are several studies of the effect of nonstandard interactions of neutrinos with charged fermions and a pair of
recent reviews can be found in Miranda aand Nunokawa [19] and Ohlsson [20]. Again, these scenarios often lead to new
resonances and flavor evolution which differs substantially from the Standard Model, V-A, case [21–29]. For example,
it has been shown one can observe neutrino self-interaction effects in the normal mass ordering when nonstandard
interactions are included that cannot occur with just Standard Model physics [26–29]. Alternatively one can also
consider non-standard interactions of neutrinos among themselves - so-called non-standard self-interactions (NSSI).
Compared with nonstandard interactions of neutrinos with charged fermions, the parameters of NSSI are much less
constrained by terrestrial experiments [30–33] and current constraints show that NSSI can be as large as the standard
neutrino self-interaction. This provides an unique opportunity for us to take advantage of the CCSN environment as
a neutrino laboratory and place complimentary constraints upon unknown interactions among neutrinos.

The form of the NSSI is not unique. Blennow et al. [27] and Das et al. explored NSSI for supernova neutrino
originating from a non-standard model gauge boson. This form of interaction leads to an effective neutrino-neutrino
interaction Hamiltonian similar to the standard V-A except for a flavor-dependent coupling strength and flavor-
violating terms [34]. Dighe and Sen later applied instability analysis to study the “fast conversion” in the presence of
such a NSSI [35]. These works show clearly that the presence of NSSI can have significant influence on neutrino flavor
transformation in supernovae. For example, it is pointed out the presence of NSSI can lead to flavor equilibration in
both mass hierarchies [27], and it can also cause collective oscillation in normal mass hierarchy if NSSI is stronger
than standard V-A [34].

While the gauge boson model is well-motivated, it represents just one category of possible NSSI candidates. Another
strong candidate for NSSI is a Yukawa coupling between neutrinos and nonstandard scalar or pseudoscalar fields.
This type of interaction has a long history and is used in several models to explain the origin of neutrino mass. One
prominent example is the “majoron model” by Gelmini [36, 37]. Indeed, constraints on the neutrino-majoron coupling
by using the neutrino signal from SN1987A have been made [38–43] although these previous works did not link the
neutrino-scalar coupling to neutrino flavor transformation.

Our goal in this paper is to explore the consequence of a neutrino-scalar/pseudoscalar interaction upon the flavor
transformation. Our paper is organized in the following way. In section §II we write out the neutrino evolution
equation and derive the single-particle effective Hamiltonian of NSSI under the mean field framework, showing the
difference between the case of a Dirac neutrino and a Majorana neutrino. In section §III we solve the neutrino flavor
evolution equations numerically with the NSSI term added to the standard Hamiltonian, using realistic supernova
profiles and spectra, and show its impact on neutrino collective oscillations at two different snapshots of a CCSN. We
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also make a comparison of the results by “single-angle” approach and “multi-angle” approach. In §IV we summarize
our results and conclude.

II. THE FLAVOR EVOLUTION OF SUPERNOVA NEUTRINOS

In this section we describe the formulism of neutrino flavor transformations in the supernova environment. During
a supernova explosion, the ambient region around the contracting core is an environment featuring dense matter,
violent turbulence, and an intense flux of neutrinos. What we want to compute is the flavor evolution history of the
∼ 1058 neutrinos emitted as the PNS cools. As mentioned earlier, a full treatment of neutrino flavor evolution requires
solving the quantum-kinetic equations taking all refraction and scattering effects into account. This is a gigantic task
in terms of computational expense. Fortunately it has been demonstrated that neutrino flavor transformations usually
happens in regions relatively far from the core due to the dense matter and multiangle suppression effect [44, 45],
thus only the refraction effect is relevant and the Schrödinger-like flavor evolution equation for streaming neutrinos
can be applied1.

A. The equations of flavor evolution

The flavor evolution equation of a test neutrino propagating with momentum q in the supernova environment takes
the following form:

i
dSq

dτ
= H (τ,q)Sq, (1)

where τ is the “local proper time” [53] and Sq is the matrix encoding the evolution history of the test neutrino. In
ultrarelativistic and weak gravity limit, we can replace τ with the distance r from the center of the neutrinosphere2.
The probability that a neutrino in some generic initial state νj with momentum q at distance r0 is later detected as
state νi at distance r is P (νj → νi) = Pij = |Sq;ij(r; r0)|2. Similarly, the evolution of the antineutrinos is given by

an evolution matrix S̄ which evolves according to a Hamiltonian H̄ . The total Hamiltonian can be divided into three
parts as

H(r,q) = HV(E) +HM(r) +HSI(r, q̂) (2)

with q̂ indicating a unit vector in the direction of the neutrino’s momentum. Note that the vacuum term HV is only
a function of neutrino energy E = |q|, while the matter term HM is only dependent on position r. The vacuum term
and matter term are straight-forward to write out in the flavor basis for a relativistic three flavor neutrino with energy
E:

HV =
1

2E
UV





m2
1 0 0

0 m2
2 0

0 0 m2
3



U †
V, HM =

√
2GF ne(r)





1 0 0
0 0 0
0 0 0



 . (3)

In the standard model the self-interaction term in the Hamiltonian, HSI, has a form which arises from the V-A
interaction and is dependent on both the position and direction of the neutrino’s momentum. The expression for the
self-interaction from the V-A interaction is

HV−A (r, q̂) =
√

2GF

∫

(1 − p̂ · q̂) [ρ(r,p) dnν (r,p) − ρ̄∗(r,p) dnν̄ (r,p)] dEp. (4)

where ρ(r,p) is the density matrix of the ambient neutrinos at position r with momentum p and dnν(r,p) is the
differential neutrino number density [5], which is the differential contribution to the neutrino number density at r from
those neutrinos with energy Ep = |p| propagating in the directions between p̂ and p̂ + dp̂, per unit energy (the hat
indicates a unit vector). The quantities ρ̄(r,p) and dnν̄(r,p) are similar in meaning but for antineutrinos. The differ-
ential contribution ρ (r,p) dnν (r,p) can be further decomposed into ρ (r,p) dnν (r,p) =

∑

α=e,µ,τ
ρα (r,p) dnνα

(r,p)

by summing over the original flavor states of the neutrinos at the neutrinosphere.

1 We also note that more recent works on “neutrino fast conversion” [35, 46–52] indicate flavor transformations may occur close to the
PNS potentially upsetting this paradigm.

2 Throughout the paper we set ~ = c ≡ 1.
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FIG. 1. The lowest order scalar and pseudoscalar interactions between neutrinos.

B. The effective Hamiltonian of NSSI

Let us consider the form of the additional contribution to HSI from a hypothetical coupling between neutrinos via
a scalar or pseudoscalar interaction. Instead of asking the nature of the hypothetical scalar fields, we focus on the
phenomenological consequences if such a Yukawa coupling between neutrinos and some scalar fields exists. Generally
the coupling can be written as

−Lint =
1

2
gαβ ν̄ανβφ+

i

2
hαβ ν̄αγ

5νβχ, (5)

where the φ/χ is the hypothetical scalar/pseudoscalar field, and g and h are the hermitian coupling matrices3. In
many models the scalar fields are taken to be massless leading to new long range interactions, while in other models
the scalar fields are massive leading to a shortening of the range of the interaction considerably. The assumed mass
of the scalar/pseudoscalar field and the typical energy of the neutrinos have considerable impact upon the neutrino
phenomenology. In this paper we assume the scalar/pseudoscalar field has a mass larger than the GeV scale, which
is well beyond the typical energies of supernova neutrinos. This excludes many scenarios in which the neutrino-scalar
field coupling could change the CCSN dynamics through “cooling effects” [43]. This also makes it possible to adopt
the “4-fermion” approximation, which is the basis of discussing neutrino-neutrino coherent forward scattering effect in
the supernova environments. With this assumption, we can derive an effective neutrino NSSI Hamiltonian in addition
to the regular V-A type neutrino self-interaction.

Under the assumption that the mediating particles φ and χ are sufficiently massive, the effective interaction Hamil-
tonian can be written in a 4-fermion form

Hint = −Lint ≈ 1

8m2
φ

gαβgξη (ν̄ανβ) (ν̄ξνη) − 1

8m2
χ

hαβhξη

(

ν̄αγ
5νβ

) (

ν̄ξγ
5νη

)

, (6)

where mφ and mχ are the rest mass of φ and χ, respectively. Note that a factor of 1/2 has been introduced to avoid
double counting. Just as with the V-A self-interaction, by applying the mean field approximation we can transform
the 4-neutrino operators into an effective 2-neutrino operator (see appendix A). Interestingly, the resulting effective
Hamiltonian holds different implications for Dirac neutrino and Majorana neutrino. For the Dirac neutrino we find

(ν̄ανβ) (ν̄ξνη) ≈ −1

2
〈ν̄αLγ

µνηL〉 (ν̄ξRγµνβR) − 1

2
〈ν̄ξRγµνβR〉 (ν̄αLγ

µνηL) + (αη ↔ ξβ) (7)

and

(

ν̄αγ
5νβ

) (

ν̄ξγ
5νη

)

≈ 1

2
〈ν̄αLγ

µνηL〉 (ν̄ξRγµνβR) +
1

2
〈ν̄ξRγµνβR〉 (ν̄αLγ

µνηL) + (αη ↔ ξβ) (8)

where we have used (αη ↔ ξβ) to denote the same terms as the earlier part of the equation but with subscripts
exchanged. Thus we have decomposed the scalar/pseudoscalar coupling of neutrino fields into products of left-left

3 For simplicity we assume g and h are real and symmetric in the following without loss of generality.
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coupling and right-right coupling of the vector-vector type. However, in the ultrarelativistic limit the right-handed
component of neutrino fields vanishes, resulting in a zero contribution to these equations from right-handed neutrino
current. So in the Dirac neutrino case, neither scalar nor pseudoscalar interactions can give observable effects in the
limit of vanishing neutrino mass.

But if neutrinos are Majorana fermions we find instead

(ν̄ανβ) (ν̄ξνη) ≈ − 1

2
〈ν̄αLγ

µνηL〉
(

ν̄C
ξLγµν

C
βL

)

− 1

2

〈

ν̄C
ξLγµν

C
βL

〉

(ν̄αLγ
µνηL) + (αη ↔ ξβ) (9)

and

(

ν̄αγ
5νβ

) (

ν̄ξγ
5νη

)

≈ 1

2
〈ν̄αLγ

µνηL〉
(

ν̄C
ξLγµν

C
βL

)

+
1

2

〈

ν̄C
ξLγµν

C
βL

〉

(ν̄αLγ
µνηL) + (αη ↔ ξβ) . (10)

Unlike the Dirac neutrino, the charge conjugate currents of Majorana neutrino do not vanish even in the limit of zero
neutrino mass. From the effective Hamiltonian operators (9) and (10) we can derive the single-particle Hamiltonian
that can be used in neutrino flavor evolution equations by evaluating the average value of neutrino currents under
single-particle states. In the following derivation we consider a 2-flavor neutrino but from our result the generalization
to neutrinos with more then 2 flavors is straightforward. The single-particle states for neutrino and antineutrino with
momentum p are

|ν (p)〉 = ae |νe (p)〉 + ax |νx (p)〉 , |ν̄ (p)〉 = āe |ν̄e (p)〉 + āx |ν̄x (p)〉 . (11)

Evaluating the average values on the single-particle states we obtain (see appendix A)

〈ν (p) |ν̄αLγ
µνβL| ν (p)〉 =

pµ

Ep V
a∗

αaβ, 〈ν̄ (p) |ν̄αLγ
µνβL| ν̄ (p)〉 = − pµ

Ep V
ā∗

β āα (12)

for normal currents and

〈ν (p)
∣

∣ν̄C
αLγ

µνC
βL

∣

∣ ν (p)〉 = − pµ

Ep V
a∗

βaα, 〈ν̄ (p)
∣

∣ν̄C
αLγ

µνC
βL

∣

∣ ν̄ (p)〉 =
pµ

Ep V
ā∗

αāβ (13)

for charge conjugate currents, respectively. Here pµ ≡ (Ep,p) is the 4-momentum. If we define the single-particle
density matrices as [5]

ρ(p) =

(

|ae|2 aea
∗
x

a∗
eax |ax|2

)

, ρ̄(p) =

(

|āe|2 āeā
∗
x

ā∗
eāx |āx|2

)

(14)

for neutrinos and antineutrinos respectively, then the final single-particle effective Hamiltonian of the nonstandard
neutrino self-interaction can be obtained as (see the appendix B for details)

HS (r, q̂) = 4

∫

(1 − p̂ · q̂) {g̃ [ρ∗(r,p) dnν (r,p) − ρ̄(r,p) dnν̄ (r,p)] g̃} dEp (15)

for neutrino-neutrino interaction via a scalar field and similarly,

HP (r, q̂) = 4

∫

(1 − p̂ · q̂)
{

h̃ [ρ∗(r,p) dnν (r,p) − ρ̄(r,p) dnν̄ (r,p)] h̃
}

dEp (16)

for neutrino-neutrino interaction through a pseudoscalar field. Here Ep is the energy of the background neutrinos

with momentum p, and the elements of g̃ and h̃ are (g̃)αβ ≡ g̃αβ = 1
4mφ

gαβ and (h̃)αβ ≡ h̃αβ = 1
4mχ

hαβ . Note that

Eqs. (15) and (16) are valid for a neutrino model with arbitrary number of flavors.
Thus we can add to the standard V-A self-interaction a new term given in Eqs. (15) and/or (16) so that

HSI = HV−A +HS/P. (17)

At first glance the expressions for the NSSI looks very similar to the NSSI Hamiltonian due to gauge bosons [34], as
both of them have a current-current nature and are modulated by the coupling matrix g̃. However, they are distinct
in that wherever the gauge boson Hamiltonian uses the density matrix ρp (ρ̄∗

p) the NSSI uses ρ∗
p (ρ̄p). In addition,

the NSSI mediated by a scalar or pseudoscalar field emerges only from the “exchange terms” of the interaction so
we do not find the term g̃ Tr

[(

ρp − ρ̄∗
p

)

g̃
]

which appears in the gauge boson case [34]. We shall see that these
subtle nuances between the form of the self-interaction with the standard V-A or, indeed, any gauge-mediated boson
interaction, and a scalar/pseudoscalar interaction are key for the NSSI to have distinct observable effects.
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FIG. 2. The matter density profiles being used for the calculations of neutrino flavor transformation. The two dashed lines in
each plot indicate the beginning and end of the calculation.

Flavor Luminosity Lν,∞ Mean Energy 〈Eν,∞〉 rms Energy
√

〈E2
ν,∞〉

e 4.606 × 1051 erg/s 10.24 MeV 11.44 MeV

µ,τ 5.473 × 1051 erg/s 14.32 MeV 16.78 MeV

ē 4.572 × 1051 erg/s 12.88 MeV 14.51 MeV

µ̄, τ̄ 5.522 × 1051 erg/s 14.42 MeV 16.93 MeV

TABLE I. The luminosities, mean energies, and rms energies used for the tpb = 1.0 s calculation.

III. THE EFFECTS OF NSSI ON NEUTRINO FLAVOR TRANSFORMATION IN SUPERNOVAE

Since the NSSI from scalar and pseudoscalar interactions have the same form we treat them as indistinguishable
and focus on the phenomenological consequences of the scalar part of the NSSI. We define two parameters α1 and α2

so that the g̃ matrix is parameterized as

g̃ =

[
√

2

4
GF

]1/2




α1 α2 α2

α2 α1 α2

α2 α2 α1



 . (18)

The parameter α1 indicates the strength of flavor-preserving (FP) NSSI while α2 indicates the strength of flavor-
violating (FV) NSSI. When α1 or α2 is equal to unity it means the corresponding NSSI has an strength equal to the
standard V-A interaction. For simplicity we have assumed the flavor-preserving and flavor-violating parameters are
identical for all flavors but note this is a restriction that can be relaxed.

The neutrino mixing angles and square mass differences we adopt throughout the rest of the paper are m2
2 −m2

1 =
7.59 × 10−5 eV2,

∣

∣m2
3 −m2

2

∣

∣ = 2.32 × 10−3 eV2 θ12 = 33.9◦ θ13 = 9◦ and θ23 = 45◦ which are consistent with the
Particle Data Group evaluations [54]. The CP phase δCP is set to zero. In the following calculations we will generally
work with the inverted mass ordering (IMO) but will show some results using the normal mass ordering (NMO) and
will indicate when this occurs.

The density profiles and neutrino spectra for our calculations comes from the 1-D GR-compatible CCSN simulation
for the 10.8 M⊙ progenitor calculated by Fischer et al. [55]. The matter density profiles are shown in figure (2).
The neutrino emission is assumed to be half-isotropic and the neutrino spectra at r are given by the pinched thermal
spectra found by Keil et al. [56]. Therefore we have

dnν (r,p) =
Lν,∞

4π2R2
ν〈Eν,∞〉 fν (Ep) d(cos θ)dφ (19)

with

fν (Ep) =
(γν + 1)γν +1

Γ(γν + 1)

Eγν
p

〈Eν,∞〉γν +1 exp

(

− (γν + 1)Ep

〈Eν,∞〉

)

, (20)
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where θ is the angle between the neutrino beams and the radial direction at r, φ the azimuthal angle of the beam,
Lν,∞ the neutrino luminosity, 〈Eν,∞〉 the mean energy and γν the pinch parameter which can be derived from the
mean energy 〈Eν,∞〉 and the mean square energy 〈E2

ν,∞〉 via

γν =
2〈Eν,∞〉2 − 〈E2

ν,∞〉
〈E2

ν,∞〉 − 〈Eν,∞〉2
. (21)

The numerical values for the neutrino luminosities, mean and rms energies for post-bounce times of tpb = 1.0 s and
tpb = 2.8 s are shown in tables (I) and (II). These two snapshots are representative of the early to intermediate cooling
phase of CCSN explosion and were chosen based on the results from Wu et al. [57] which showed flavor transformations
at these two epochs for the 18.0 M⊙ simulation by Fischer et al. [55] and the similarity of the neutrino spectra in
this model with the 10.8 M⊙ simulation also by Fischer et al. The neutrinosphere radius is set to Rν = 19 km for the
tpb = 1.0 s profile and Rν = 17 km for the tpb = 2.8 s. For both time slices we compute the evolution starting from
r = 100 km. Our calculation adopts the multi-angle, multi-energy bulb model framework for energies ranging from
1 MeV to 60 MeV in 200 bins, and the neutrino emission angles ranging from 0◦ to 90◦ in 200 bins4. We have also
verified our results have converged with the number of energy and angular bins.

FIG. 3. Survival probability of electron neutrinos (top panels) and antineutrinos (bottom panels) with flavor-preserving NSSI
at tpb = 1.0s. The left panels are the flux averaged probabilities as a function of distance r while the right panels are plotted
as function of energy at r = 400 km. The combinations of the NSSI parameters are given in the legends.

4 Determination of the number of angle bins needed in multi-angle calculations can be difficult. Insufficient angular resolution has been
found to cause spurious flavor instabilities[58]. However, for the CCSN cooling phase, the matter density is generally not high enough
for such artifacts to develop so the required number of angular bins can be reduced. Convergence has been checked to make sure 200
bins are sufficient for both tpb = 1.0 s and tpb = 2.8 s.
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FIG. 4. Top panels: The heatmaps of survival probability of electron neutrinos at tpb = 1.0s and r = 400km as a function of
energy and emission angle when there is only flavor-preserving NSSI. Bottom panels: The same but for electron antineutrinos.

Flavor Luminosity Lν,∞ Mean Energy 〈Eν,∞〉 rms Energy
√

〈E2
ν,∞〉

e 2.504 × 1051 erg/s 9.891 MeV 11.12 MeV

µ,τ 2.864 × 1051 erg/s 12.66 MeV 14.99 MeV

ē 2.277 × 1051 erg/s 11.83 MeV 13.65 MeV

µ̄, τ̄ 2.875 × 1051 erg/s 12.70 MeV 15.07 MeV

TABLE II. The luminosities, mean energies, and rms energies used for the tpb = 2.8 s calculation.

A. Flavor transformation at tpb = 1.0 s

Figure (3) shows the numerical results of the survival probabilities of electron neutrino and antineutrino as a function
of distance r from the neutrinosphere, for tpb = 1.0 s and different values of α1 when α2 = 0. In the left panels the
probabilities are averaged over the energy and angular bins used in the calculation; in the right panels the survival
probabilities are shown at r = 400 km as a function of neutrino energy averaged over the angular distribution only.
We see that when there is no NSSI there is a noticeable amount of electron neutrinos transformation into muon and
tau neutrinos, and that there are also flavor transformations in the electron antineutrino sector. This is in agreement
with the results from Wu et al. [57]. When we add NSSI we can see the flavor transformation in the neutrino sector is
delayed although the average survival probability at r = 400 km is essentially unchanged. The spectra of the electron
neutrinos at r = 400 km also look similar for the three values of α1 shown though larger NSSI seems to suppress the
transformation of the higher energy neutrinos.

The flavor transformation in the antineutrino sector, however, is more affected by NSSI. As the NSSI is turned
on, the transformation is immediately suppressed, with the final survival probability going back to Pν̄eν̄e

= 1. This
suppression effect can be seen more clearly in the sequence of 2-D plots shown figure (4), where we can see the region
of flavor transformation keeps shrinking with an increasing NSSI in both neutrino and antineutrino sectors.

The effect of the NSSI becomes even more interesting when the flavor-violating NSSI parameter α2 is non-zero.
Figure 5 shows that the flavor-violating NSSI have the effect of undoing the suppression of the flavor-preserving NSSI.
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As we can see from the blue curve in the figure, the flavor transformation is restored to the original level (i.e. no
NSSI) for the combination α1 = 1.5, α2 = 0.6. At smaller α2, the transformation is only partially restored across the
spectrum, as shown by the red curve in the figure. The sequence of 2-D plots shown in figure 6 also show the pattern
of transformed regions can be largely restored when flavor-violating NSSI is significant.

B. Flavor transformation at tpb = 2.8 s

In order to make sure the “shut-down” effect of NSSI is not specific to some certain settings of the supernova
environment, we perform the same kind of calculations for the tpb = 2.8 s time slice of 10.8 M⊙ progenitor. In figure
(7) we plot the results with flavor-preserving NSSI only. It shows a similar “shut-down” effect in the neutrino sector
as at tpb = 1.0 s. However, flavor transformation does not take place in the antineutrino sector with just the V-A
term - this result is consistent with the Wu et al. results [57] - so there is no difference when NSSI is added. From the
spectrum at r = 400 km we can see the dip in the survival probability becomes shallower as NSSI increased, but the
range of flavor transformation remains the same. The sequence of 2-D plots shown in figure (8) also show a shrinking
of the transformed regions due to NSSI, similar to the shrinking seen in the tpb = 1.0 s case. And also as before,
the effect of the flavor-violating NSSI is a restoration of flavor transformation to a state as if NSSI does not exist, as
shown by figure (9) and (10).

Finally, it is also interesting to look at the effects of a pure flavor-violating NSSI. As seen in figure (11), the
pure flavor-violating NSSI is capable of enforcing flavor transformation in the antineutrino sector for the IMO at
the post-bounce time of tpb = 2.8 s, and the flavor transformation in the neutrino sector is also enhanced for this
ordering. When the mass ordering is normal the NSSI can also lead to some flavor oscillations for both neutrino and
antineutrinos, especially in the region close to the neutrinosphere, although the final survival probabilities are not
very different from the result without NSSI even for the case where the flavor-violating parameter α2 = 2. These

FIG. 5. Top panels: Survival probability of electron neutrinos at tpb = 1.0s as a function of distance (left panel) and energy
(right panel) at r = 400 km with flavor-violating NSSI. The bottom panels are the same but for electron antineutrinos.



10

FIG. 6. Top panels: The heatmaps of survival probability of electron neutrinos at tpb = 1.0s and r = 400km as a function of
energy and emission angle when there is flavor-violating NSSI. Bottom panels: The same but for electron antineutrinos.

results with non-zero pure flavor-violating NSSI are qualitatively similar to that found by Das, Dighe and Sen with
the gauge boson NSSI [34, 35]. This flavor transformation with pure flavor-violating NSSI can be also compared to
the results with only the standard V-A interaction found in Wu et al. [57]. Using the 18.0 M⊙ simulation by Fischer
et al. [55], Wu et al. observed no transformation in the antineutrinos and only a small amount of transformation in
the neutrinos at these late times.

C. “Single-angle” vs “multi-angle” approach

In the previous sections we have demonstrated the suppression effect by flavor-preserving NSSI and the effect of
undoing the suppression effect by the flavor-violating terms in the NSSI under the “multi-angle” framework. One
often sees in the literature on supernova neutrinos reference to a “single-angle” approximation. This approximation
assumes the evolution history of a neutrino is independent of its emission direction and is identical with that of the
neutrinos propagating in a chosen direction5. This approximation has been used in previous works about NSSI and
supernova neutrinos such as [27, 34]. The “single-angle” approximation greatly reduces runtimes but its drawback
is that it has been known to produce collective flavor transformation which is not seen in “multi-angle” calculation
due to its artificial synchronization of different angular modes. While in some cases the “single-angle” approach gives
qualitatively similar results as “multi-angle” approach, it also lacks the decoherence effect and can often result in
flavor transformation occurring at much smaller radii than seen in multi-angle calculations [45]. In this section we
compare the “multi-angle” results with “single-angle” counterparts to see whether the effects caused by NSSI can be
reproduced more expediently in the single-angle calculations. In the “single-angle” approximation all neutrinos with
the same energy share the same evolution history regardless of their direction of propagation, so the NSSI Hamiltonian

5 The chosen direction is often set to be either the radial direction or 45◦ relative to the radial direction at the neutrinosphere. Here we
adopted the radial direction.
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FIG. 7. Top panels: Survival probability of electron neutrinos at tpb = 2.8s as a function of distance (left panel) and energy
(right panel) at r = 400 km with flavor-preserving NSSI. The bottom panels are the same but for electron antineutrinos.

(15) and (16) can be simplified to be [5]

HS (r) =
D (r/Rν)

2πR2
ν

∫ {

g̃

[

ρ∗(r, E)
Lν,∞

〈Eν,∞〉 fν (E) − ρ̄(r, E)
Lν̄,∞

〈Eν̄,∞〉 fν̄ (E)

]

g̃

}

dE (22)

HP (r) =
D (r/Rν)

2πR2
ν

∫ {

h̃

[

ρ∗(r, E)
Lν,∞

〈Eν,∞〉 fν (E) − ρ̄(r, E)
Lν̄,∞

〈Eν̄,∞〉 fν̄ (E)

]

h̃

}

dE (23)

where

D (r/Rν) =
1

2

[

1 −
√

1 − (Rν/r)
2

]2

(24)

is the geometric factor obtained after averaging over all the angular modes. E ≡ Ep is the energy of the background
neutrinos. The expression for the single-angle version of the V-A interactions can be found in Duan et al. [5].

In figure (12) we plot the survival probabilities for tpb = 2.8 s in neutrino sector computed with “single-angle”
approach. In the upper panels, we only include the flavor-preserving NSSI. Here we can see that unlike in the
“multi-angle” case, the NSSI do not suppress the flavor transformtion. Instead, in the final spectrum we notice that
the flavor-preserving NSSI actually enhances flavor transformation of the neutrinos in the high energy tail. In the
lower panels we again add the flavor-violating terms, and just as “multi-angle” case the effect of the flavor-preserving
NSSI is largely wiped out, since the enhanced transformation in the high energy tail disappears. Thus it appears
the presence of flavor-preserving NSSI has different effects in “single-angle” and “multi-angle” cases but that single-
angle does reproduce the correct trend that the flavor-violating terms always tends to undo any effect caused by
flavor-preserving NSSI. The mechanism through which flavor-preserving NSSI shuts down collective oscillations in
multi-angle calculation is still a point of interest that needs further investigation.
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FIG. 8. Top panels: The heatmaps of survival probability of electron neutrinos at tpb = 2.8s and r = 400km as a function of
energy and emission angle when there is only flavor-preserving NSSI. Bottom panels: The same but for electron antineutrinos.

IV. SUMMARY AND DISCUSSION
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FIG. 9. Top panels: Survival probability of electron neutrinos at tpb = 2.8s as a function of distance (left panel) and energy
(right panel) at r = 400 km with flavor-violating NSSI. Bottom panels: The same but for electron antineutrinos.
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FIG. 10. Top panels: The heatmaps of survival probability of electron neutrinos at tpb = 2.8s and r = 400km as a function of
energy and emission angle when there is flavor-violating NSSI. Bottom panels: The same but for electron antineutrinos.
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FIG. 11. Top panels: Survival probability of electron neutrinos (left) and antineutrinos (right) at tpb = 2.8s as a function of
distance with pure flavor violating NSSI for IMO. Bottom panels: The same as top panels but for NMO.
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FIG. 12. Top panels: “Single-angle” survival probability of electron neutrinos at tpb = 2.8 s as a function of distance (left
panel) and energy (right panel) at r = 400 km with flavor-preserving NSSI. Bottom panels: The same but with flavor-violating
terms.
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In this paper we have derived the effective neutrino-neutrino Hamiltonian due to a NSSI with a scalar/pseudoscalar
field and applied it to the case of neutrino flavor transformations at two epochs of a core-collapse supernova. We
find that, as in the case of NSSI due to a new neutrino interaction via a guage boson, there is a suppression effect
of the flavor-preserving NSSI which is capable of delaying or shutting down entirely collective flavor oscillation when
the strength of the NSSI is comparable to the standard V-A interaction. The presence of flavor-violating terms in
the NSSI has the effect of reducing the suppression effect of the flavor-preserving interactions and can even restore
the collective flavor oscillations to more-or-less the Standard Model behavior when sufficiently large. When only
flavor-violating interactions occur, NSSI can increase the flavor transformation beyond those of V-A alone and even
induce oscillations in circumstances where the standard V-A does not. Finally, we find that while the single-angle
approximation can give qualitatively similar results to multi-angle calculations as we vary the NSSI parameters, there
are large quantitative differences between the two.

In order to exploit our findings we must successfully identify the signatures of collective flavor oscillation in the
signal from a Galactic CCSN. If that can be done, our results indicate that supernova neutrinos can provide several
complimentary methods for the determination of neutrino properties should the neutrino be a Majorana fermion and
the neutrino-scalar interaction be comparable to the standard V-A interaction (but with small flavor violation). First,
the effects of observation of scalar or pseudoscalar NSSI could be used as a complimentary method for identifying
the Majorana or Dirac nature of the neutrino. If the NSSI is of the order of the weak interaction, NSSI effects have
nothing to do with the neutrino mass so appear even if the mass ordering is normal and the Majorana phases conspire
to give an neutrinoless double beta decay effective Majorana mass mββ which is exactly zero. At the same time, the
presence or absence of NSSI signatures in the neutrino signal from a Galactic supernova neutrino burst provides a
complimentary tool for measuring, or placing upper limits upon, the coupling strength of NSSI. Current bounds on
neutrino-scalar coupling strength are found by a variety of analyses to be |g|2 < 10−7 ∼ 10−6 for scalar masses below
100 MeV, but there are presently no bounds for scalar masses above 300 MeV [59, 60]. The effective neutrino-neutrino
self-interaction we derived is valid only for scalar fields with large masses so NSSI of supernova neutrinos are able to
provide constraints in what is currently a blank area in the neutrino-scalar coupling exclusion plot. Finally, the NSSI
we have considered in this paper are flavor symmetric even though they may be flavor-violating. Other than simplicity,
there is no reason to expect this property to be true. The interaction strength might be unequal for different neutrino
flavors or between different pairs of neutrino flavors. Such flavor asymmetry would introduce new phenomenology, as
indicated by the results from Das, Dighe & Sen and Dighe & Sen [34, 35] for NSSI due to gauge bosons.
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Appendix A: The mean field approximation

In this section we first derive the mean field expressions of the 4-neutrino operators that appear in the NSSI
mediated by scalar fields, namely eq. (7) (8) (9) and (10). For generality we start by defining a generic 4-fermion
operator as follows

Mab
1234 =

(

ψ̄1Γaψ2

) (

ψ̄3Γbψ4

)

, (A1)

here Γa can be anyone of the 16 Γ-matrices forming the basis of the vectorial space of all 4 × 4 matrices. Applying
the mean field approximation on the 4-fermion operator results in the following expression

Mab
1234 ≈

〈

ψ̄1Γaψ2

〉 (

ψ̄3Γbψ4

)

+
〈

ψ̄3Γbψ4

〉 (

ψ̄1Γaψ2

)

−

∑

c,d=S,P,V,A,T

Cab,cd

[〈

ψ̄3Γdψ2

〉 (

ψ̄1Γcψ4

)

+
〈

ψ̄1Γcψ4

〉 (

ψ̄3Γdψ2

)]

.
(A2)

The first two terms of Eq. (A2) represent the regular “Hartree terms”, while the following terms inside the summation
are the “exchange terms” arising from the mean field treatment [61]. Note that: a Fierz transformation has been
performed to the “exchange terms” since the fermion operators contain spinors, we have dropped the constant term
that is present in the mean field expression because it does not have any effect in the evolution equations. In the case
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of scalar-scalar interaction, we have a, b = S. Replacing the generic fermion fields ψ with neutrino fields, we have

(ν̄1ν2) (ν̄3ν4) ≈ 〈ν̄1ν2〉 (ν̄3ν4) + 〈ν̄3ν4〉 (ν̄1ν2) −

∑

c,d=S,P,V,A,T

CSS,cd

[〈

ν̄3Γdν2

〉

(ν̄1Γcν4) + 〈ν̄1Γcν4〉
(

ν̄3Γdν2

)]

.
(A3)

In the relativistic limit only vector and pseudovector terms can survive the averaging in the single-particle state [62]
so we can drop all terms in the right-hand side of equation (A3) except for the terms with V × V or A × A form.
Interestingly, the “Hartree terms” are among those who do not survive, which is not the case in the NSSI mediated
by gauge bosons where the “Hartree terms” are vector-vector type. Therefore we are left with

(ν̄1ν2) (ν̄3ν4) ≈ − 1
4

〈

ν̄1ΓV ν4

〉 (

ν̄3ΓV ν2

)

+ 1
4

〈

ν̄1ΓAν4

〉 (

ν̄3ΓAν2

)

+ (14 ↔ 32)

= − 1
2 〈ν̄1γ

µPRν4〉 (ν̄3γ
µPLν2) − 1

2 〈ν̄1γ
µPLν4〉 (ν̄3γ

µPRν2) + (14 ↔ 32) ,

(A4)

where ΓV ≡ γµ, ΓA ≡ γµγ5 and PL/R = 1
2 (1 ∓ γ5) are the projection operators. Decomposing the neutrino into

ν =
(

νL νR

)T

for Dirac neutrinos, and ν =
(

νL νC
L

)T

for Majorana neutrino, we eventually obtain equations (7)

and (9). The derivation for the equations (8) and (10) follows a similar path.
Next we derive the expressions for equations (12) and (13). First we write down the quantized field operator for

Majorana neutrino

ν (x) =
∑

h=±1

∑

p

1

2EpV

[

a(h) (p)u(h) (p) e−ip·x + a(h)† (p) v(h) (p) eip·x
]

≡ νC (x) , (A5)

where x ≡ xµ ≡ (t,x) is the 4-position and p ≡ pµ ≡ (Ep,p) is the 4-momentum. Then we can decompose the
neutrino field into its 2 chirality components νL(x) = PLν(x) and νC

L (x) = PRν(x). If neutrino has mass then both
helicity states are present for each of the 2 chirality fields. But in the relativistic limit, for each helicity state, one of
the 2 chirality components will be suppressed, resulting in the following equations

νL (x) =
∑

p

1

2EpV

[

a(−) (p)u(−) (p) e−ip·x + a(+)† (p) v(+) (p) eip·x
]

, (A6)

and

νC
L (x) =

∑

p

1

2EpV

[

a(+) (p)u(+) (p) e−ip·x + a(−)† (p) v(−) (p) eip·x
]

, (A7)

Since Majorana particles are their own antiparticles, we cannot distinguish a Majorana neutrino from an antineu-
trino by their creation and annihilation operators. Nevertheless it is customary to call Majorana neutrino with
negative(positive) helicity neutrino(antineutrino), therefore we have (flavor subscripts omitted)

|ν (p)〉 ≡ |ν (p)〉 =
1

√

2EpV
a(−)† (p) |0〉 , |ν̄ (p)〉 ≡ |ν̄ (p)〉 =

1
√

2EpV
a(+)† (p) |0〉 , (A8)

Note we adopt the finite volume normalization convention from [63] so that the 4-momentum is summed instead of
integrated. The corresponding commutation relations for the creation and annihilation operators are

{

a(h)
α (p) , a

(h′)†

β (p′)

}

= (2EpV ) δαβδhh′δpp′ , (A9)

with α, β denoting the neutrino flavor. Combining equations (A6), (A7), (A8) and (A9), we can obtain the current
equations (12) and (13) with the flavor-superposition states (11).

Appendix B: The effective Hamiltonian

In this section we derive the effective single-particle Hamiltonian for the nonstandard neutrino self-interaction, which
is to be used in the flavor evolution equation. For simplicity we consider the case in which there are only neutrinos
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with momentum p in the background, and the momentum of the test neutrino is q. We start with combining Eqs.
(6) and (9). If we only consider the scalar part, the mean field Hamiltonian operator becomes

HMF
S = −g̃αβ

[〈

ν̄C
αL γ

µ ν̄C
ηL

〉

ν̄ξL γµ νβL + 〈ν̄ξL γµ νβL〉 ν̄C
αL γ

µ ν̄C
ηL + (αη ↔ ξβ)

]

g̃ξη Nν , (B1)

where Nν is the number of neutrinos in the background, and g̃αβ = 1
4mφ

gαβ . Here we note that the absence of the

“Hartree terms” such as
〈

ν̄C
αL γ

µ ν̄C
βL

〉

(ν̄ξL γµ νηL) in the Eq. (B1) is the one of the major differences between a

scalar/pseudoscalar NSSI and the NSSI mediated by gauge bosons. Using Eqs. (12) and (13) we obtain

HMF
S = g̃αβ

(

pµ

Ep

)

[

c∗
ηcα ν̄ξL γµνβL − c∗

ξ cβ ν̄
C
αL γµ ν

C
ηL + (αη ↔ ξβ)

]

g̃ξη

(

Nν

V

)

(B2)

The next step is to evaluate the matrix elements by averaging over the single-particle states of the test neutrino with
four momentum qµ ≡ (Eq,q). The i, j element of the Hamiltonian matrix is

HS,ij =

∫

V

d3x 〈νi (q)| HMF
S

∣

∣ νj (q)〉 = 2 (1 − p̂ · q̂)
(

g̃αj g̃iη cα c
∗
η + g̃αi g̃jη cη c

∗
α

)

nν , (B3)

where i, j are the flavor indices and also representing the corresponding element of HS. nν = Nν/V is the neutrino
density. The angular factor 1 − p̂ · q̂ comes from the inner product of (pµ/Ep) and (qµ/Eq). Since in this paper we
assume the coupling matrices are real and symmetric, the result can be simplified to be

HS = 2 (1 − p̂ · q̂)
(

g̃ ρ∗(p) g̃ + g̃T ρ∗(p) g̃T
)

nν = 4 (1 − p̂ · q̂) (g̃ ρ∗ (p) g̃) nν , (B4)

where the density matrix ρ(p) is defined according to Eq. (14). Due to the absence of the Hartree terms, we notice
there is no term such as g̃Tr(ρg̃) that appears in the Hamiltonian of the gauge boson case. Finally, the addition of
antineutrinos into the background results in an extra term in the Hamiltonian

HS = 4 (1 − p̂ · q̂) g̃ (ρ∗(p)nν − ρ̄(p)nν̄) g̃. (B5)

In the context of the bulb model we have a collection of neutrino and antineutrino states of different energies and
emission angles. To obtain the effective Hamiltonian in the bulb model we need to perform integrations over these
distributions which means we must replace nν →

∫

dnν dEp and nν̄ →
∫

dnν̄ dEp thus leading to Eq. (15). The
derivation of Eq. (16) is similar.
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